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Derivation of an exact spectral density transport equation 
for a nonstationary scattering medium 

loannis M. Besieris 

Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 24061 
(Received 3 December 1975) 

Within the framework of the quasi optical description and the pure Markovian random process 
approximation, an exact kinetic equation is derived for the spectral density function in the case of wave 
propagation in a nondispersive medium characterized by large-scale space-time fluctuations. Also. a 
quantity. called the degree of coherence function, is defined as a quantitative measure of the irreversible 
effects of randomness. 

1. INTRODUCTION 

Investigations of electromagnetic wave propagation in 
nonstationary random media are often based on the equa­
tions of classical radiation transport theory, the usual 
derivationl•2 of which is based on considerations of ener­
gy balance, with no explicit "microscopic" interpreta­
tion given to the extinction and scattering coefficients 
entering into these equations. Moreover, use is fre­
quently made of the random phase approximation which 
is valid only for incoherent waves (such as stellar radi­
ation). Extensions to this approach introduced by 
Bugnolo,3 Stott,4 and Peacher and Watson5 are appli­
cable to partially coherent waves and account for multi­
ple scattering effects. 

In the past few years, primarily in connection with 
laser propagation, there has been considerable interest 
in the investigation of the transformation of the wave 
spectrum in media characterized by large-scale space­
time random fluctuations. Recently reported studies 
along this direction6• 1 are confined to the quasistatic 
approximation, with the time dependence of the index of 
refraction entering parametrically, mostly via a con­
stant or a variable (in the direction of propagation) 
transverse wind. Furthermore, authors who base their 
work on radiation transport theory often use uncritically 
the basic equations of Bugnolo and Peacher and Watson. 

It is the intent in this paper to lift several of the 
aforementioned restrictions and systematically derive 
an exact spectral density kinetic equation for wave 
propagation in a nondispersive medium having large­
scale space-time random fluctuations within the frame­
work of the quasioptical description and the pure 
Markovian random process approximation. 

2. THE QUASIOPTICAL DESCRIPTION 

Ignoring depolarization effects, time-dependent elec­
tromagnetic wave propagation in a nondispersive medi­
um with random space-time fluctuations of the refrac­
tive index is governed by the stochastic scalar wave 
equation, 

2 1 a2 
V' u(r, t) -?' Er(r, f) a?' u(r, t) = O. (2.1) 

Here, c is the velocity of light in vacuo, Er(r,t) is the 
relative permittivity which is assumed to be a real ran­
dom function of space and time, and u(r, t) is a scalar, 
real, random amplitude function. 
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For plane- or beam-wave propagation in the z direc­
tion, it is convenient to resort to the transformation 

u(r, f) = 1/J(r, f) exp[ik(z - vO] + c. c. , (2.2) 

where k=wo/v, V=c/(Er(r, f)lI2, and Wo is a reference 
(carrier) frequency. The ensemble average of the ran­
dom relative permittivity, viz., (Er(r,f», is assumed 
to be constant. 

In the quasioptical description, the slowly varying 
complex random amplitude function 1/J(r, t) obeys the non­
stationary stochastic parabolic equation8 

-tEl(x,t;Z)1/J(X,t;Z), z~O, (2.3) 

where x= (x,y) and 

El(X,t;Z)=[Er(X, t;z)- (Er(X, t;Z»V(Er(X, t;z» (2.4) 

is the normalized fluctuating part of the random relative 
permittivity. Equation (2.3) is rendered closed by speci­
fying the boundary condition 1/J(x, t; 0) = 1/Jo(x, f). 

3. THE SPECTRAL DENSITY 

A two- (transverse) point, two-time field density func­
tion is next introduced as follows in terms of the 
wavefunction: 

P(X2, Xl, t 2, t l ; z) = 1/J*(X2, t 2; Z) 1/J(Xl, t l ; z). 

It obeys the equation 

i a k az p(X2, Xl, t2, t l ; Z) 

=[-! ~(a~1+a:J-~V'il+~V'i2 

(3.1) 

- hl (Xl, t l ; z) +hl (x2, t 2;z)] P(X2, Xl> t 2, t l ; z), Z ~ 0, 

(3.2a) 

(3.2b) 

The "phase-space" analog of the density function is 
provided by the field spectral density which is defined 
as follows: 

f(x, p, t,w;z) =(2~ Y.f'l2 dY il drexp[ik(p .y- wr)] 

Xp(X+ty,x-h,t+h,t-tr;z). (3.3) 
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This quantity is real, but not necessarily positive 
everywhere. 9 It will be shown, however, later on in 
the exposition, that appropriate moments of the spectral 
density are physical observables. 

U sing the definition of f(x, p, t, w; z) in conjunction 
with (3.1) and (2.3), it is found that the spectral density 
evolves according to the equation 

o 
azf(x,p,t,w;z)=Lf(X,P,t,w;z), z:;,.O, (3.4a) 

f(x, p, t, w;O) = fo(x, p, t, w), (3.4b) 

Lf(x,p, t,w;z) =-(.!. ~ +p. aO 
)f(X, p, t,w;z) 

v at x 

+ fJj(x, p, t, W; z). (3.4c) 

The following representation of the permittivity-depen­
dent term on the right-hand side of (3. 4c) will prove 
useful in the sequel 10: 

Of(x,p, t,w;z) = (fYI e: fi2 dy11 dT exp[ik(p. y - WT)] 

xp(x +h, x- h t + ~T,t- ~T; z) 

x [ie1(x + h, t +h;z) - ~€I(X - h, t - hj z)]. (3.5) 

4. SPECTRAL DENSITY TRANSPORT EQUATION 
IN THE PURE MARKOVIAN RANDOM PROCESS 
APPROXIMATION 

We consider in this section a statistical analysis of 
the stochastic equation (3.4). Specifically, we shall 
derive an exact kinetic equation for the mean spectral 
density vex, p, t, Wj z) in the pure Markovian random 
process approximation. 

Averaging both sides of (3.1) yields 

(
a 10 0) a;+; at +p. ax (f(x,p,tjWjz)=e(f(x,p,t,Wjz), 

(4.1a) 

x exp[ik(p·y - WT)] (p(x +~y, x- 'h, t +h, t - hjz) 

(4.1b) 

We assume that €1 (x, tj z) is a 5 correlated (in z), homo­
geneous, wide-sense stationary Gaussian process 
specified completely by the correlation function 

(€1 (x2, t2 j Z2) €1 (Xl, t 1j z 1) 

(4.2) 

Then, on the basis of the Furutsu-Novikov l1 ,12 func­
tional formalism, we have 

(P(X2' Xl, t2 , t 1j Z )[€1 (X2, t 2 jz) - €1 (Xl' t 1 , z]) 

- €1 (Xl' t 1 ; z)] [€I (xf, tf; z ') - €I (xi, tij z ')]) 

x (5p(x2 , Xl, t 2, tlj z)/ 5[ €1 (X';, t';j z ') - €I (Xl, tij z ')]) 
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=(fre:)[Y(X2-X1, t2 -tl )-y(0,0)] 

X (P(X2, Xl' t2 , t l ; z ). (4.3) 

[The symbol 5(0) denotes a functional derivative. ] The 
last equality follows readily from the equation of evolu­
tion of the density function [cf. (3.2)] and an extension of 
the procedure followed by Tatarskii13 in connection with 
the time-independent stochastic parabolic equation. 

Using the coordinate transformation X2,I - X + ~y, t 2,1 

- t ±h in (4.3) and introducing the result into the sta­
tistically averaged equation (4.1), we obtain 

(J!...+l..i..+p.J!...)(f(X p t w·z) 
az v at ax " , , 

=(~) (;:) ~2 dy11 dT exp[ik(p' y- WT)][y(y, T) 

-y(O,O)]<p(x+~y,x-~y, t+h, t-~TjZ). (4.4) 

This equation Simplifies considerably upon introducing 
the spectrum of the space-time correlation function, 
viz. , 

y(p,W) =C~) ~2 dyht dT exp[- ik(poy -lilT)] y(y, T), 

(4.5a) 

y(y,T)=J 2dPJ dwexp[ik(p·y-uJT)Y(p,w). (4.5b) 
R RI 

Bearing in mind the definition of the spectral density 
[cf. (3.3)], (4.4) changes to the simple, convolution­
type transport equation 

(
a 1 a a rrk ) 

az+; iit+ P ' ax +2 Y (0,0) (f(x,p,t,Wjz) 

=- dp' dw'y(p-p', w-w')(f(x,p',t,W'jz). rrki;: A ) 

2 R2 RI 

(4.6) 

It follows from (4.5b) that 

(4.7) 

The spectrum y(p,w), however, is real, nonnegative, 
and even in both arguments. By virtue of the last prop­
erty, it is seen that 

y(0,0)=1 dp'1 dw'y(P-p',w-w'), 
R2 Rl 

(4.8) 

and Eq. (4.6) can be recast into the form 

( a 1 a a) - +- - +p. - (f(x,p, t,w;z) 
(lz v at ax 

=~2dP~ldWIW(P'P"W'W') 

X [(f(x, p', t, 1O'j z) -(f(x, p, t, Wj z)]' (4.9a) 

rrk A( I ') W(p,p/,W,w ' )=2 Y p-p ,W-U' • (4.9b) 

This expression has the form of a radiation transport 
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equation. [More precisely, if (4. 9a) is integrated over 
w, it becomes a Boltzmann equation for waves (quasi­
particles in phase space). ] It extends the kinetic equa­
tion reported by Klyatskin and Tatarskii14 in connection 
with the stationary stochastic parabolic equation, and, 
in the quasi static case, it provides a rigorous basis for 
the work of Fante (cf. Ref. 7). 

From what was said earlier about yep, w), it follows 
that the transition probability (or scattering indicatrix) 
W(p,p',w,w l

) is real, nonnegative, and obeys the (de­
tailed balance) property W(p/,p,WI,w)==W(P,P',w,w'). 
The scattering rate (also called the extinction coefficient 
or collision frequency) is defined in general by 

V(P,W)==f.2 dp' f 1dw 'W(P,p',w,w'). 
R R 

(4.10) 

In the case under consideration here, the scattering 
rate is independent of p and wand is given by 

v == (1Tk/2) 1'(0,0). (4.11) 

5. PHYSICAL OBSERVABLES 

Having established an expression for the mean spec­
tral density by solving the kinetic equation (4.9), the 
following physically meaningful averaged quantities can 
be obtained by straightforward integration: (i) the mutual 
space-time coherence (p(x+ty, x-iy, t+iT, t-iT;Z» 
==! dp! dw exp[ - ik(p· Y - WT) J(J(x, p, t, w; z »; (ii) the 
mean intensity density (1/!*(x, t; z ) 1/! (x, t; z» == J dp J dw 
x (f(x, p, t, w; z»; (iii) the intensity density in momentum 
space (p(P,p, w, w; z» =! dp J dt (f(x, p, t, w; z», where 
p(p, p, w, w; z) is the momentum representation of the in­
tensity denSity; (iv) the mean intensity flux density 
(J(x, t; z» == J dp J dwp (f(x,P, t, w; z», where J(x, t; z) 
= (i/2k)[(V.1/!*)1/!- 1f!*(V.If!)] is the intensity flux density. 
Furthermore, denoting the total mean intensity, viz., 
J dX(1/!*(x, t;z)1/!(x, t;z» by I(t;z), the following two aver­
aged quantities are important in connection with the 
propagation of spatially bounded beams: (i) the mean 
"center of gravity" of the beam xc(t; z) == [J dp J dw J dxx 
x(J(x,p,t,w;z»J/I(t;z); (ii) spread of a beam ia2(t;z) 
== (f dp J dw J dx(x- xc)2(J(X, p, t, w;z»VI(t; z). 

6. CONSERVATION OF THE MEAN INTENSITY; 
DEGREE OF COHERENCE 

By virtue of the self-adjointness of the operator 

appearing on the right-hand side of (2.3), the intensity 
denSity function 1 1/!(x, t;z) 12 obeys the conservation law15 

(6.1) 

where J(x, t; z) is the intensity flux density (cf. previous 
section). 

It was pointed out in the previous section that 
(11f!(x,t;z)1 2)=!dp!dw (J(x,p,t,w;z» and (J(x,t;z» 
= J dp J dwp (J(x, p, t, w; z ». Bearing in mind these re­
lationships and integrating both sides of (4.9) over p 
and w results in the following conservation law for the 
mean intensity: 
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In tegration of this equation over the entire transverse 
observation plane yields the relation 

(6.3) 

The quantity D(x, p, t, w; z) == (J(x, p, t, w; z»2 is defined 
next as the phas e-space degree Of coherence density. 
Integrating this quantity over p- and w-space we obtain 
the configuration-space degree of coherence density 
d(x,t;z)=JdpJdwD(x,p,t,w;z). Both sides of this last 
relation are operated on next with [a/az + (l/v)(a/at)] 
and use is made of the transport equation (4.9): 

( a 1 a) az +vat d(x,t;z)+Vx·K(x,t;z) 

where 

X[(J(X,p/,t,w';Z» (J(x,p,t,w;z» 

- (J(x,p, t,w;z»)2], (6.4) 

(6.5) 

is the configuration-space degree of coherence flux. 

The right-hand side of (6.4) can be rewritten in the 
more useful form 

-J 2dpj2 dp ' J dwf1dw'W(p,p/,W,W') 
R R R1 R 

X[ (J(x, p, t, w; z» - (J(x, pI, t, w'; z »]2.; 0 (6.6) 

on using the following two properties of the transition 
probability: (i) W( pI, p, w', w) == W(p, p', w, w') (detailed 
balance); (ii) W(p,p/,W, w')"" 0 (nonnegativity). USing, 
then, (6.6) in conjunction with (6.4), it is seen that 

( a 1 a) az+vat d(x,t;z)+Vx·K(x,t;z)';O. (6.7) 

Integrating this relation over x results in the inequality 

C~ +; a~)[~2dXd(X,t;Z)]';0 (6.8) 

which exhibits the monotonic decrease of the total de­
gree of coherence as it is convected along the z direc­
tion with the constant velocity v. 

It should be noted that inequality (6.8) is analogous 
to Boltzmann's H theorem is statistical mechanics. In 
the latter case, the configuration - space degree of co­
herence density (related to the entropy) would be de­
fined as d(x,t,z)=- JdpJdw(j)ln(j). It has been 
pointed out, however, that (f) can assume negative 
values; hence, the need for the alternative approach 
presented in this section. 

7. CONCLUDING REMARKS 

The transport equation for the spectral density de-

loannis M. Besieris 1709 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 24 Mar 2014 18:51:59



rived in Sec. 4 is an integrodifferential equation of the 
convolution type which can be integrated formally, i. e. , 
(j(x, p, t, w; z) can be expressed in terms of the initial 
distribution (f(x, p, t,w; 0), by a technique analogous 
to that suggested by Dolin16 in the case of a stationary 
scattering medium. This formal solution can then be 
examined for specific fluctuation spectra (cf. Refs. 17 
and 18), in particular, those arising from a constant or 
a space-dependent (in the z direction) transverse wind 
(cf. Refs. 6 and 7). It should be noted, however, that 
the formulation presented in this paper is general 
enough, and it allows also the investigation of stochastic 
wave propagation in a space-time-dependent medium to 
and from moving sources. The latter subject has been 
recently examined by Strobehn19 who used a quasistatic 
approximation and Rytov's method of smooth 
perturbations. 

The discussion in this paper is confined to the mean 
spectral density, or, equivalently, to the space- time 
mutual coherence (cf. Sec. 5). This work, however, 
can be extended in several directions. For example, 
within the quasioptical assumption and the pure Mark­
ovian random process approximation, one can examine 
longitudinal (in the z direction) correlations, as well as 
transverse correlations for higher moments. In par­
ticular, a kinetic equation for the fourth moment would 
be important because of its relationship with the physi­
cal phenomenon of scintillation. 

The main results presented in this paper, as well as 
the various extensions outlined in the previous para­
graph, although interesting by virtue of the fact that they 
extend the corresponding results for the case of a sta­
tionary scattering medium, are, nonetheless, restric­
ted in scope because of the following three underl ying 
assumptions: (i) quasioptical approximation; (ii) non-

1710 J. Math. Phys., Vol. 17, No.9, September 1976 

dispersive medium; (iii) pure Markovian random pro­
cess approximation. Attempts are presently being made 
towards relaxing these serious restrictions. 
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