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In this work, an extension is proposed to the standard iterative Boltzmann inversion (IBI) method
used to derive coarse-grained potentials. It is shown that the inclusion of target data from multiple
states yields a less state-dependent potential, and is thus better suited to simulate systems over a range
of thermodynamic states than the standard IBI method. The inclusion of target data from multiple
states forces the algorithm to sample regions of potential phase space that match the radial distribu-
tion function at multiple state points, thus producing a derived potential that is more representative
of the underlying interactions. It is shown that the algorithm is able to converge to the true potential
for a system where the underlying potential is known. It is also shown that potentials derived via
the proposed method better predict the behavior of n-alkane chains than those derived via the stan-
dard IBI method. Additionally, through the examination of alkane monolayers, it is shown that the
relative weight given to each state in the fitting procedure can impact bulk system properties, allow-
ing the potentials to be further tuned in order to match the properties of reference atomistic and/or
experimental systems. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880555]

I. INTRODUCTION

The utility of coarse-grained (CG) forcefields for use in
simulations of soft matter and biological systems has been
well established in the literature, enabling simulation to ex-
plore greater length- and time-scales than is feasible with
fully atomistic models. This is of particular importance when
studying the self-assembly of soft matter systems, where
the assembly is typically driven by weak forces (e.g., hy-
drophobicity and entropy)1–6 and structures often demon-
strate hierarchical ordering (e.g., molecules organized into
micelles, micelles organized into local/global patterns).5, 7–11

While generic, non-specific CG models have been widely
applied,12–16 providing important information regarding
trends and design rules, it is often necessary to use CG models
specifically mapped to the system of interest to provide a di-
rect one-to-one correspondence with experiment. While sev-
eral “transferable” CG forcefields, such as TraPPE-CG17 and
MARTINI,18 have been developed, akin to forcefield develop-
ment at the atomistic level,19–23 the development of new CG
forcefields is still often necessary. This is often required since
the available forcefields may be lacking the necessary molec-
ular species/groupings or may not have been optimized for the
properties of interest. This second point is of particular con-
sequence, since, for example, a forcefield optimized to match
phase behavior may not appropriately capture subtle struc-
tural features.17 Generally speaking, direct structural corre-
spondence is needed to accurately transition between different
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simulation levels (e.g., atomistic to CG), in order to perform
multiscale24–26 and hybrid-multiscale simulations,27–33 as
well as to recover atomistic details from CG simulations.34–38

Several approaches have been developed to derive and
optimize CG forcefields.39–45 Among these, the iterative
Boltzmann inversion (IBI) method39 has become a popular
choice due to its straightforward nature, general applicabil-
ity to a wide range of systems, and basis in structural prop-
erties. The IBI method relies on self-consistently adjusting
a given potential to achieve convergence with target struc-
tural data; for nonbonded interactions this target data takes the
form of the radial distribution function (RDF) between inter-
action sites and the potential is iteratively updated according
to

Vi+1 (r) = Vi (r) − αkBT ln

[
gi (r)

g∗ (r)

]
, (1)

where Vi(r) is a numerical pair potential; i represents the cur-
rent iteration; α is a damping factor to suppress large changes
to the potential update typically varying from 0.2 to unity,
where smaller values tend to be necessary to capture dense
and/or crystalline states);46 kB is the Boltzmann constant; T
is the absolute temperature; r is the separation between par-
ticles; gi(r) is the pair RDF from the simulation of Vi(r), and
g∗(r) is the RDF of the target system mapped to the CG level.
Although the CG potentials derived from IBI are typically
able to accurately reproduce the target RDFs, they are, in gen-
eral, only applicable at the state point for which they were de-
rived, due to the structural nature of their derivation (e.g., note
the explicit temperature dependence of Eq. (1), as well as the
implicit temperature and density dependence through the g(r)
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terms).47, 48 For example, separate potentials were required
to capture both the solid and fluid structures of a pure sim-
ple lipid.46 Additionally, several works have shown that CG
polymer potentials derived via the IBI method can depend on
the chemical environment for which they were derived.39, 50, 51

Qian et al.49 found that the potentials derived using IBI for
ethylbenzene scale in a nonlinear fashion with temperature
(i.e., a square root dependence), however, in the same work, it
was found that CG potentials derived for polystyrene were in-
dependent of temperature. Other recent work has shown that
some of the CG potentials in a benzene-urea-water system de-
rived via IBI possess a degree of state point transferability, but
not all.52 It is thus unclear why IBI provides transferability for
some but not all potentials; this may ultimately depend on a
number of factors, including the effective size of the CG beads
and the “shape” of the RDFs being fit, but may also be a limi-
tation of the single state methodology. Furthermore, for com-
plex systems, it may not be possible to optimize potentials at
the state points of interest, due to time- or length-scale limi-
tations of the atomistic simulations, thus making it difficult to
apply the IBI method appropriately given that potentials are
not necessarily transferable. Perhaps of most concern is the
fact that the IBI method does not guarantee a unique solution,
as a multitude of vastly differing potentials may give rise to
otherwise matching RDFs. The form of the final derived po-
tential may also vary based on runtime parameters, such as
the initial potential guess, potential cutoff, magnitude of the
damping factor, etc. Additionally, the derived potential may
include artifacts associated with intermediate and long-range
structural correlations in the system, e.g., oscillatory behav-
ior in the potential that follows the peaks and valleys in the
RDF, which may alter other properties of the system, even if
the RDFs match.

In this work, the IBI method is extended to perform
multi-state optimization, i.e., the potential is self-consistently
adjusted to achieve simultaneous convergence of target data
from multiple states. The general idea, illustrated in Figure 1,
is that the inclusion of target data from multiple states adds
constraints to the optimization problem, such that the derived
forcefield tends toward a single potential that can adequately
represent all states. For example, potentials in region i of the
upper portion of Figure 1 are able to match the target struc-
ture at a single state i, potentials in region ii are able to repro-
duce target data at state ii, etc., with a single representative po-
tential lying at the overlap of these regions, shown as region
iv. To test the efficacy of the proposed multi-state iterative
Boltzmann inversion (MS IBI) method, in Sec. III A, we first
perform potential optimizations for the idealized system of a
Lennard-Jones (LJ) fluid for which the potential is known, in
order to determine if the method resolves the correct poten-
tial. In Sec. III B, to test the method in a system where only
nonbonded interactions are present in the CG model, a 3-to-1
mapped CG forcefield is optimized for propane using target
data generated from united-atom (UA) propane simulations,
and compared with a single-site LJ model mapped to the ex-
perimental critical point of propane. In Sec. III C, we apply
this approach to n-dodecane, a system more representative of
the typical application of a CG forcefield. In Sec. III D, we ex-
amine a monolayer system composed of n-dodecane, where it
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FIG. 1. Regions of good potential phase space for states with optimal overlap
(top) and too much overlap (bottom).

is demonstrated that adjustment of the relative weights given
to each target in the MS IBI method can be used to tune the
potentials to match other measurable system properties be-
yond the RDF.

II. METHOD AND SIMULATION DETAILS

A. Single-state iterative Boltzmann inversion

In the IBI method (which for clarity we shall refer to as
single state, SS IBI), a numerical pair potential, V(r) is iter-
atively updated according to Eq. (1). In this manner, V(r) is
updated at each separation, r, based on whether the RDF over-
predicts or underpredicts the target RDF at the given r, and is
repeated until the trial RDF matches the target RDF within
some tolerance.39 The initial guess of the numerical potential
is often taken to be the Boltzmann inversion of the RDF of the
target system

V0 (r) = −kBT ln(g∗(r)). (2)

While not exact for site-site interactions in molecules,53 this
methodology is motivated by the statistical mechanics rela-
tionship between the potential of mean force (PMF) and the
RDF, and provides a reasonable starting potential over which
to iterate.

Typically, potentials derived with this method are ca-
pable of reproducing the target RDFs with high accuracy,
with slight deviations resulting from information lost during
coarse-graining. The ease of use of the IBI method and its
general applicability make it a powerful tool; given a CG
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mapping and a target RDF, site-site pair potentials can be
readily derived with little user input.

B. Multistate extension of IBI

Although potentials derived with SS IBI will typically
reproduce their target RDFs with high accuracy, caution must
be taken when using the potentials. Upon successful conver-
gence of the potential, it is only guaranteed that the derived
and target RDFs match, not that the potential is necessarily
representative of the “true” underlying potential (i.e., not nec-
essarily state independent). It is important to note, especially
since information is lost due to coarse-graining, that a multi-
tude of potentials may give rise to similar RDFs. Only a small
portion of the potentials that produce matching RDFs may ac-
tually fall within the region of potentials that match the true
potential and, since the true potential is typically unknown,
it is difficult to assess the accuracy of the derived potentials.
If the derived potential falls far outside the true potential re-
gion, this may give rise to potentials that, despite providing a
good match for the target RDF, lack transferability and may
contain artifacts making them incapable of resolving system
properties other than the RDF.

The proposed MS IBI method aims to minimize the state
dependence of the derived potentials by adding additional
constraints to the optimization process such that the derived
potentials fall within the region of phase space where poten-
tials are representative of the “true” potential. This approach
relies on two key assumptions: (1) different thermodynamic
states have different regions of the potential phase space that
adequately reproduce their respective target RDFs, and (2)
that the true, underlying potential lies within the common
overlap between these regions of phase space. As the name
suggests, this is accomplished by updating the derived po-
tential to simultaneously match target RDFs at different ther-
modynamic states, producing a single potential that provides
sufficient matching for all target RDFs considered. As shown
graphically in the upper portion of Figure 1, the converged
potential lies at the intersection of each of the regions rep-
resenting the target RDFs, as this is the only region where a
sufficient match will be found for all states.

The implementation of MS IBI is similar to that of SS
IBI, the only additional requirement is more target data. As
in SS IBI, the initial potential is assumed to be the Boltzmann
inversions of the target RDFs, averaged over the N states used,

Vs,0 (r) = − 1

N

∑
s

kBTs ln(g∗
s (r)), (3)

where the subscript s represents the property as state s. After
a trial CG simulation is run at each state using the potential
from Eq. (3), the potential is updated according to

Vs,i+1 (r) = Vs,i (r) − 1

N

∑
s

αs (r) kBTs ln

[
gi

s (r)

g∗
s (r)

]
. (4)

While in SS IBI, α represents a damping factor useful for
suppressing fluctuations in the potential update, here αs(r)
also serves as a weighting factor, allowing more or less em-
phasis to be put on each state. For example, if fitting a po-

tential with three states, where state 1 will ultimately be of
most interest, it may make sense to give state 1 a higher α

value; this will be discussed later in Sec. III D. Addition-
ally, here αs(r) is defined as a linear function of the separa-
tion r, with the points αs(0) = αmax, and αs(rcutoff) = 0. When
Vs(rcutoff) = 0 is used for the initial potential guess, this en-
sures that the derived potential smoothly decays to zero at
the interaction cutoff, rcutoff (i.e., the point at which we as-
sume that pair interactions are zero). Since α decreases as r
increases, increased emphasis is placed on shorter-range in-
teractions compared to long-range interactions, similar to the
radial dependence of the pressure correction formula often
used with IBI.39 This helps to suppress the influence of long-
range structural correlations on the derived potential, as short-
range interactions may certainly give rise to long-range cor-
relations (e.g., the formation of bulk crystals from particles
interacting through a short-ranged, truncated potential). For
direct comparability in this work, both SS and MS IBI treat
the damping factor as a linear function of separation, with a
fixed value of 0 at the potential cutoff. Note that, although
bonded interactions may be optimized in a similar manner
(i.e., adjusting the potential to match a target distribution),
in this work, we make the assumption that bonded and non-
bonded interactions are sufficiently independent such that we
use analytical bonded potentials, as has been done in previous
work.46, 54, 55

The choice of states used in the fitting procedure is natu-
rally important to deriving an accurate potential. To derive a
potential most representative of the underlying one, it would
not be beneficial to choose states with RDFs that are too sim-
ilar, as the overlap region would be large, essentially provid-
ing minimal additional constraints; this situation is shown in
the lower portion of Figure 1. In such a case, there would be
no advantage to the multistate fitting. At the other end of the
spectrum, there may in fact be no overlap between states, or
more specifically, no overlap for a given level of matching
(i.e., no overlap without relaxing the tolerance of a RDF sim-
ilarity test). For some systems, it may not be possible to de-
fine a single pair potential that accurately reproduces the tar-
get structure at all states. This is not a problem unique to CG
potentials, as it applies at all levels of modeling, e.g., classi-
cal atomistic potentials may also lack full state-independence
given that they do not allow variation in electron density.

C. Simulation model

In this work, simulations were performed using 3 dis-
tinct models: generic LJ fluid, TraPPE-UA, and CG models
derived via IBI. First, simulations of monatomic LJ spheres
were performed in the canonical ensemble (i.e., fixed num-
ber of particles N, volume V, and temperature T), with tem-
perature controlled via the Nosé-Hoover thermostat. These
monatomic LJ systems contained 1468 particles initially ran-
domly distributed throughout the box, and were run for
1 × 106 timesteps, during which the reduced temperature was
decreased from 2.0 to the final target temperature. The sys-
tems were further equilibrated for 1 × 106 timesteps before
target data were collected over 1 × 105 steps. A timestep of
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1 × 10−3 in reduced time units was used. The interaction pa-
rameters used in all LJ simulations were σ = 1.0 and ε = 1.0,
with a potential cutoff rcutoff = 3σ . Here, no coarse-graining
was applied to the target systems, as these simulations were
used simply to test the efficacy of the potential derivation
under the ideal circumstances where the true potential is
known.

The second model used relies on the TraPPE-UA force-
field for simulation.19 Here, alkanes were simulated in the
canonical ensemble, with temperature controlled via the
Nosé-Hoover thermostat. Bulk fluid systems of both propane
(1024 molecules) and n-dodecane (400 molecules) were sim-
ulated at 3 different states, as listed in Sec. III, and used to
generate target RDF data. Although not an all-atom model (as
hydrogens are not explicitly modeled), the TraPPE forcefield
was chosen for computational convenience, since, in princi-
ple, the target data can come from any source. In all cases,
a timestep of 1 fs was used. After an initial equilibration pe-
riod of 5 ns, data were collected over a 10 ns production run.
In addition to the bulk fluid n-dodecane simulations, UA sim-
ulations were performed of n-dodecane gel and fluid mono-
layers, composed of 100 n-dodecane chains each. These were
performed in the same manner as the bulk simulations at 298
K, but with the first bead of each chain held stationary such
that a 2D hexagonally arranged periodic array with density
4.10 chains per nm2 (gel-like) and 3.79 chains per nm2 (fluid-
like) was achieved; these were chosen to match state points
commonly used in alkylsilane monolayer simulations and
experiments.56

The third model used is a CG representation of alkanes.
In all cases, a 3-to-1 CG model (i.e., each CG bead repre-
sents 3 UA carbon groups) was used to simulate bulk fluid
and monolayer systems of alkanes. Pair potentials were de-
rived using the SS and MS IBI methods, using the results
of the UA simulations as target data, as discussed in detail
in Sec. III. The bond stretching and angle bending potentials
used in the study of dodecane were derived by a Boltzmann
inversion of the bonded distributions sampled in the atom-
istic trajectory mapped to the CG level.54 Specifically, from a
normalized bond length distribution p(r), the bond stretching
potential is written as

Vbond = −kBT ln (p (r)) , (5)

which, assuming a Gaussian bond length distribution, results
in a harmonic potential about the most probable bond length,
req; note an identical formalism was used for angles, where
θ is substituted for r, and the normalization includes a fac-
tor of sin−1θ . Since minimal state dependence was found be-
tween systems, a single set of bonded parameters was used in
all simulations, with k/kB = 15.60 K/Å and req = 3.56 Å for
bonds and k/kB = 0.17 K/deg2 and θ eq = 174.53 Å for an-
gles. Bond histograms and additional details are included in
the supplementary material.57

In all cases, the GPU-enabled HOOMD-Blue58, 59 simu-
lation engine was used to perform the simulations. The high
performance of the GPU allows for rapid derivation of po-
tentials. A standard potential optimization using MS IBI re-
quired approximately 50 iterations to be well-converged. For
the pure LJ systems with 1468 particles, this convergence took

less than 1 h using three NVidia GTX580 GPUs concurrently.
The following convergence criteria were used to measure how
well a trial RDF matched with its target, where dr is the size
of a RDF bin,

ff it = 1 −
∑rcut

0 (|gi(r) − g∗(r)|)∑rcut

0 (|gi(r)| + |g∗(r)|) . (6)

An ffit value of unity represents a perfect match between the
trial and target RDFs. Additionally, in all figures, the follow-
ing two-point central moving average smoothing function was
applied to the derived potential to reduce the noise

V
′
n (r) = 1

3
[Vn−1 (r) + Vn (r) + Vn+1 (r)], (7)

where Vn(r) is the nth element of the numerical potential, and
the prime denotes the smoothed value. The application of the
smoothing function was not found to significantly influence
the behavior or degree of matching.

III. RESULTS

A. Monatomic Lennard-Jones fluid

To test the efficacy of the MS IBI method, potentials were
derived using RDFs from monatomic LJ spheres as target
data, and the results compared to single state potential deriva-
tion (i.e., SS IBI). Target data were acquired from the fol-
lowing states: state A, reduced density ρ∗ = Nσ 3/V = 0.85,
reduced temperature T∗ = kBT/ε = 0.5; state B, ρ∗ = 0.67, T∗

= 1.5; and state C, ρ∗ = 0.18, T∗ = 2.0. No coarse-graining
was performed since the goal was to test whether the MS
IBI method could recover a known potential. In contrast to
mapping an atomistic system to the CG level, no information
about the system is lost ensuring that a single potential is ap-
plicable to all states and that this potential is known.

While the RDFs match well, as illustrated in Figure 2, the
potentials derived via SS IBI demonstrate significant state de-
pendence, as shown in Figure 2(d). For the more dense states
A and B (Figures 2(a) and 2(b)), the SS IBI method was not
able to converge to the true potential to the extent that in the
most dense system (state A), the converged potential is al-
most purely repulsive. This result is due to the elevated den-
sity of this state, where the structure can be reproduced with
a purely repulsive potential.60 In this case, even though the
RDF matches the target well, the overall behavior of the sys-
tem would be dramatically altered as compared to the target.
A similar situation arises in state B where only a weak attrac-
tive potential is required to match the target structure. In state
C, however, the low density causes attractive forces to become
important, and as such, the attractive portion of the LJ po-
tential is needed to fully reproduce the target data. Thus, the
true LJ potential is recovered only for state C. The application
of SS IBI to the monatomic LJ system illustrates two points:
(1) that potentials derived via SS IBI are state-dependent, and
(2) these potentials are not unique, in that both the LJ poten-
tial and the vastly differing derived potential produce match-
ing RDFs.

MS IBI aims to address the aforementioned issues by
forcing the potential to sample portions of potential phase
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FIG. 2. RDFs and potentials derived for the LJ system. (a)–(d) SS IBI results. (e)–(h) MS IBI results. The α value used for the MS IBI optimization was 0.7 for
each state. ffit for the potentials was calculated in the range σ ≤ r ≤ rcutoff. The solid black line represents the target RDF (a)–(c), (e)–(g) or the known potential
(d) and (h). The circles represent the derived potential (d, h) or the RDFs calculated from simulations using the derived potential (a)–(c), (e)–(g).

space that satisfy all of the constraints, i.e., find a single poten-
tial that matches the target structure at multiple states. The re-
sults of applying MS IBI to the monatomic LJ fluid are shown
in Figures 2(e)–2(h). The inclusion of target data from mul-
tiple states results in closely matching RDFs and a derived
potential that accurately reproduces the true LJ potential, as
shown in Figure 2(h). Although this example is simple, as no
coarse-graining was performed, it illustrates the ability of MS

IBI to recover a known potential and reduce state-dependence
of the derived potential.

B. Propane

To further test the MS IBI algorithm, potential optimiza-
tions were performed on propane. The chosen 3-to-1 mapping
results in a single-site model that can be directly compared to
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FIG. 3. RDFs (a)–(c) and potential (d) derived for propane using MS IBI. (a)–(c) correspond to states A, B, and C in the text, respectively. The α values used
were 0.5, 0.7, and 0.5 for states A, B, and C, respectively.

known single site 12-6 LJ models from the literature.61 Note,
the 12-6 LJ potential should not be considered to be the “true”
potential, but rather a good approximation. Target data were
acquired from UA simulations at the following states: state
A, 298 K, 0.818 g/ml; state B, 298 K, 0.439 g/ml; and state
C, 298 K, 0.014 g/ml. The damping values used in the subse-
quent MS IBI optimizations were αA(0) = 0.5, αB(0) = 0.7,
and αC(0) = 0.5. The resulting RDFs and (single) pair poten-
tial are presented in Figure 3. At each state, ffit indicates excel-
lent agreement between the target RDFs and those calculated
from simulations using the derived potential. Moreover, we
find that the derived potential agrees well with a single-site
12-6 LJ model using parameters mapped to the critical point
of propane,61 providing confidence in the MS IBI method.
While the match between the two potentials is good, the de-
rived potential does show two small bumps at ∼7 Å and an-
other at ∼9.5 Å, which are likely related to orientational ef-
fects; that is, this is likely related to treating the three UA car-
bon groups as a single, spherically symmetric interaction site.

To illustrate the consistency of the potentials derived via
MS IBI (i.e., that the final potential is insensitive to the ini-
tial guess), optimizations were performed using a number of
different initial potentials. In addition to the PMF-like quan-
tity of Eq. (3), three additional initial guesses were used,
each a 12-6 LJ potential with vastly differing parameters:
(1) ε1 = 0.46 kcal/mol, σ 1 = 4.51 Å; (2) ε2 = 0.001ε1, σ 2

= σ 1; and (3) ε3 = 2ε1, σ 3 = σ 1. The final derived poten-
tials are, in each case, very similar to each other and to the
derived potential in Figure 3(d), as shown in Figure 4. Partic-
ularly, the ffit values between each potential and the derived
potential shown in Figure 3(d) are 0.986, 0.980, and 0.986,
respectively.

C. n-dodecane

To examine a more complex system and test the state-
independence, n-dodecane was examined in the bulk state.
Intermolecular pair potentials were derived for the beads of a
CG model of n-dodecane, again using a 3-to-1 mapping. The
resulting 4-site model contains two middle beads and two ter-
minal beads, where middle and terminal beads were treated
as unique entities, resulting in the need to derive three pair
potentials; harmonic bonds, and angles were used, as detailed
in Sec. II C. The target data were collected from UA simu-
lations of n-dodecane at the following states: state A, 298 K,
1.04 g/ml; state B, 298 K, 0.74 g/ml; and state C, 370 K, 0.55
g/ml; the damping values used were αA(0) = 0.5, αB(0) = 0.7,
and αC(0) = 0.5. Note that state B corresponds to the experi-
mental density at standard ambient temperature and pressure,
and, as such, was given higher weight than the other states
in this example. Close agreement with the target RDFs was
found, with an ffit value greater than 0.98 for each of the nine
RDFs calculated (shown in the supplementary material57).

As a further test to assess the quality of the potentials
derived via MS IBI, the average squared radius of gyration
normalized by the average end-to-end distance, denoted by
Rchain, was calculated, providing a measure of the chain con-
formations at different thermodynamic states. Using poten-
tials derived with MS IBI, good agreement was seen between
the UA target data and the CG model for the ratio Rchain, as
shown in Figure 5; in this plotting scheme an ideal match cor-
responds to a data point situated on the line y = x. MS IBI de-
viates slightly from the target data for larger values of Rchain,
which is likely related to the fact that, for simplicity, only a
single Gaussian was used to fit the bond-angle distribution;
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FIG. 4. Different initial guesses (top) and the resulting derived potentials
(bottom) for propane optimizations. Blue triangles: LJ with ε = ε2 and
σ = σ 2; black circles: V0(r) from Eq. (2) (same shown in Figure 3); green
“x”: LJ with ε = ε1 and σ = σ 1; solid black line: 1-site propane model49 (not
used as initial guess, shown for reference); magenta “+”: LJ with ε = ε3 and
σ = σ 3. Symbols in top plot correspond to the same symbols in the bottom
plot. Note that all potentials converge to very similar values.

for n-dodecane, the bond angle distributions of states A and B
are closely approximated by a single Gaussian, however state
C, which corresponds to larger values of Rchain, may be better
approximated by multiple super-imposed Gaussians, as has
been proposed by Milano et al.;54 the use of two Gaussians
would allow chains in the less dense states to adopt smaller,
less extended configurations, leading to better agreement with
the UA target data (bond angle histograms are included in the
supplementary material57). While deviations for MS IBI be-
come more apparent as Rchain increases, the potentials derived
from only state B (i.e., standard temperature and pressure) via
SS IBI show larger, systematic deviations of Rchain over the
entire range of state points considered, in all cases, predicting
larger values of Rchain. Since both MS IBI and SS IBI em-
ploy the same bond/angle parameters, it would have been ex-
pected that SS IBI would also show the same increased devia-
tions for larger Rchain. However, the ability of MS IBI to more
appropriately capture the chain conformations of n-dodecane
appears to be directly attributable to the increased accuracy

FIG. 5. Comparison of a structural metric between the CG and UA models of
n-dodecane. The CG potentials were derived from MS IBI (top) and SS IBI
(bottom). A value lying on the solid line represents a perfect match between
the CG and UA models. Squares represent data points from simulations at
state points where the potential was derived; circles are data points from other
states used for testing the state dependence. The states used in the multi-state
fitting are states A, B, and C as described above the n-dodecane with αA(0)
= 0.5, αB(0) = 0.7, and αC(0) = 0.5. State B was used for the single state
fitting with α = 0.7.

of the derived pair potentials. Note, in both cases, additional
simulations were performed at state points not used in the fit-
ting (state points used in the fittings are highlighted with open
squares in Figure 5), showing good transferability of the de-
rived potentials of MS IBI.

D. Tuning CG potentials

While it is not uncommon to tune potentials to repro-
duce desired behaviors, such tuning is often accomplished by
manually adjusting the potentials or mixing potentials derived
at different state points, e.g., modifying cross-interactions to
ensure stability of CG bilayers.62 MS IBI provides a more
systematic way to optimize the CG forcefields by adjusting
the relative weights applied to each state in the optimiza-
tion process, providing a similar effect to manually mixing
parameters from optimizations performed independently at
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different state points. As mentioned in Sec. II B, here the
damping coefficient, αs(r), is a function of both separation,
r, and state, s. Adjusting the αs(0) value given to each state, s,
alters the weight given to the state in the fitting, i.e., more or
less emphasis can be placed on matching a given state. While
adjusting the relative weights may have only a small effect
on the derived RDFs, it may alter subtle features of the de-
rived potential which can significantly alter other properties.
To demonstrate this, as well as to further test the transferabil-
ity of the derived potentials, alkane monolayers were simu-
lated using the 3-to-1 CG model, with potentials optimized in
the bulk states discussed above, using various values of αs(0)
for each of the three states. The average tilt angle, θ , with re-
spect to the surface and the nematic order parameter, S2,63 of
the chains were calculated and compared with those values
calculated from the corresponding UA simulations. The ne-
matic order parmeter is defined as S2 = 〈 3

2 cos2 θ − 1
2 〉, where

θ is the angle between an individual chain in the system and
the average direction of all the chains in the system; this yields
a value of unity for perfect orientational ordering, decaying to
zero as ordering is lost. Note that the UA monolayer simula-
tions were not used as target data in the potential derivation;
they were used only to validate the properties predicted by the
derived CG potential.

Unique sets of CG potentials were derived over a range
of αs(0) values, as summarized in Table I. Here, the states A,
B, and C are the same states previously used as target data to
derive a CG potential for bulk systems of n-dodecane above
in Sec. III C. Initially, potentials were optimized with equal
weights assigned to each state. As shown in Table I, this α set
yields potentials that significantly overpredict the fluid phase
order parameter, while underpredicting the gel phase chain
tilt. Since the monolayers are inherently ordered, it would
be expected that increasing the relative weight given to the
most dense state—state A—would yield a potential that bet-
ter captures the system behavior. By systematically reducing
the weight given to the less dense states, first state C, then

TABLE I. Average chain tilt with respect to surface normal, θ , and nematic
order parameter, S2, for the monolayers in the fluid state (subscript F) and
in the gel state (subscript G). The states A, B, and C are the same ones
used in Subsection III C. Values are given as ensemble averages ± standard
deviation.

αA/αB/αC θF S2,F θG S2,G

0.7/0.7/0.7 19 ± 6.3◦ 0.97 ± 0.013 18 ± 6.5◦ 0.98 ± 0.017
0.7/0.7/0.6 20 ± 6.1◦ 0.97 ± 0.012 20 ± 3.7◦ 0.992 ± 0.0018
0.7/0.7/0.5 18 ± 6.9◦ 0.96 ± 0.020 20 ± 3.8◦ 0.991 ± 0.0022
0.7/0.7/0.4 15 ± 7.0◦ 0.95 ± 0.018 20 ± 4.0◦ 0.990 ± 0.0027
0.7/0.7/0.3 13 ± 6.8◦ 0.94 ± 0.019 19 ± 4.2◦ 0.990 ± 0.0036
0.7/0.7/0.2 12 ± 6.3◦ 0.93 ± 0.014 12 ± 6.4◦ 0.96 ± 0.014
0.7/0.7/0.1 10 ± 5.6◦ 0.95 ± 0.011 8 ± 5.3◦ 0.958 ± 0.008
0.7/0.4/0.1 18 ± 9.0◦ 0.83 ± 0.021 29 ± 3.9◦ 0.988 ± 0.0026
0.7/0.1/0.1 20 ± 10◦ 0.81 ± 0.023 32.2 ± 3.6◦ 0.989 ± 0.002

SS IBI, state A 17 ± 8.8◦ 0.85 ± 0.017 15 ± 7.4◦ 0.89 ± 0.014
SS IBI, state B 23 ± 4.9◦ 0.983 ± 0.005 21.3 ± 3.3◦ 0.993 ± 0.001
SS IBI, state C 23 ± 4.1◦ 0.988 ± 0.002 20 ± 4.6◦ 0.987 ± 0.002

United atom 20 ± 15◦ 0.820 ± 0.028 32.4 ± 10.1◦ 0.965 ± 0.046

state B, a potential that very closely reproduces the monolayer
behavior is obtained for αs(0) values of 0.7, 0.1, and 0.1 for
states A, B, and C, respectively. Given the small weights as-
signed to states B and C, it may be expected that this potential
would give results similar to the potential derived via SS IBI
at state A. However, it can be seen in Table I that this clearly
is not the case; potentials derived from SS IBI at state A show
large deviations, underpredicting both the average tilt angle
and nematic order parameter in the gel phase monolayer, in
stark contrast to the near perfect behavior predicted by MS
IBI. This result is a direct consequence of using the MS IBI
method; even though low weights are given to the other states,
the derived potentials will only be considered converged if all
states demonstrate good agreement. That is, state points with
lower weights are still able to make changes to the potential,
albeit of smaller magnitude; if those changes negatively im-
pact the fitting of higher weighted states, a strong correction
will be applied, producing subtle changes to the potentials as
compared to systems with equal weight. The weights can also
be defined as a function of the potentials for each state, e.g.,
equal weights for all potentials and states except the potential
between terminal and middle beads for state A.

While in this case, tilt angle and nematic order demon-
strated a strong sensitivity to the weighting factors, not all
systems or properties will necessarily demonstrate such clear
dependence. The ability of the CG potential to reproduce the
properties of the target model may certainly be linked to the
level of coarse-graining applied (i.e., how many atoms and
what type of atoms are lumped together into a single CG
bead) and therefore deviations of desired properties may be
inherent to the CG model, not the choice of weighting func-
tions. Similarly, as previously discussed in Sec. III C, the fit-
ting of the topological parameters (e.g., bonds, angles, and/or
dihedrals) can also influence the measured properties (e.g.,
Rchain), and thus deficiencies caused by these topological pa-
rameters are not likely to be fixed via a simple adjustment of
weights. However, adjustment of the weights should provide
a means to tune potentials that might otherwise be adjusted
manually or would need to be derived by mixing potentials
from different state points. The use of MS IBI simply pro-
vides a clearer, more systematic framework for this process,
even if the weights are modified via trial and error.

IV. CONCLUSION

A multi-state extension of the popular IBI method has
been proposed. In the proposed MS IBI method, multiple ther-
modynamic states are used in the derivation of a single, gener-
ally applicable potential. For systems with a known potential,
it was shown that the MS IBI method was capable of accu-
rately recovering the true, underlying potential, while the SS
IBI method was unable to consistently derive a generally ap-
plicable potential. Through the coarse-graining of propane,
it was shown that MS IBI was able to recover a potential
very similar to a previously published single-site model, with
excellent reproducibility. Furthermore, potentials derived via
MS IBI were shown to better reproduce structural confor-
mations of n-dodecane than potentials derived via SS IBI.
It was also demonstrated that adjusting the relative weights
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given to each target in the optimizations can be used to tune
system properties beyond the RDF; in this case, tuning the
weights enabled potentials to be derived that provided near
perfect agreement between CG and atomistic models when
considering the nematic order parameter and tilt angle of an
n-dodecane monolayer. While pressure, and thermodynamics
in general, were not investigated in this work, the standard
pressure correction scheme of SS IBI39 could be trivially ap-
plied to MS IBI by calculating the average pressure deviations
between all states. As such, the MS IBI stands as an improve-
ment of the typical IBI method, producing more generally ap-
plicable potentials that can be tuned to match target properties
from experiment or finer-grained simulations.

This improved methodology should be very useful for a
host of molecular systems, including, for example, lipid sys-
tems, where not only do systems demonstrate structural het-
erogeneity within a given state point (i.e., different molecular
structures in a single system), but properties such as tilt angle,
nematic order, area per lipid, etc., need to be tuned in order to
match atomistic simulations and experiment.64–68 Given that
the MS IBI approach is also capable of deriving potentials
which demonstrate increased levels of transferability than SS
IBI, potentials can therefore be derived for complex systems
with many unique interactions by examining the individual
components separately, reducing the number of simultaneous
optimizations that need to be performed. Furthermore, this
work presents a method to develop potentials that may allow
the examination of phase transitions; in many prior works uti-
lizing SS IBI, different potentials are needed to appropriately
model different states, making it difficult to accurately exam-
ine the transition between those states.18, 46, 69, 70 Additionally,
given that multi-GPU machines and GPU enabled simulation
packages58, 71–74 are becoming more common, the potential
derivation process can be performed quite efficiently, even if
a large number of targets are needed or a large number of
iterations must be undertaken to find appropriate weighting
functions.
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