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We study the theory of fermions coupled to external gauge and gravitational fields. In three 
dimensions, the existence of massive fermions is known to lead to the induced Chern-Simons term. 
We derive the induced Chern-Simons term by a path integral method. 

§ 1. Introduction 

In the investigation of quantum theory anomalies play an important role, since in 
modern theory the symmetries are fully utilized_ Anomalies give restrictions on the 
symmetries from the quantum side_ Especially, anomalies in even dimensions are 
well known, for example, chiral U(l), gauge and gravitational anomalies,etc. 

In odd dimensions, there are some different aspects1
}-l5) from even dimensional 

theory. One is the existence of the parity violating effective action. As is well 
known, the odd dimensional theory coupled to external gauge and gravitational fields 
has the invariance under infinitesimal gauge and infinitesimal general coordinate 
transformations and, when the fermion mass vanishes, under the parity transfor­
mation also. But the theory in which the number of fermions is odd is not invariant 
under the global transformation with a winding number. That is to say, if the 
winding number ofthe global transformation is n, the effective action changes by 7rlnl 
under this transformation/) 

det( -l/J) -> ( -1)ndet( -l/J) . (1'1) 

To cancel the global anomaly, one needs to add a term which changes in the same 
manner as above under the global transformation. This term is called a topological 
mass term.2

) In gauge theory, it is given by 

(1·2) 

where tr stands for a trace over the internal indices and e for the gauge coupling 
constant, and we use the following notations: 

Under the global gauge transformation, 

Ap-> U-1ApU + u-1apu , 

(1' 2) changes as 

(1'3) 

(1'4) 
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Derivation 0/ Gauge and Gravitational Induced Chern-Simons 513 

(1'5) 

On the other hand, in gravity theory, the topological term is given by 

o f' _ 1 p.va[R ab + 2 c a obJ 
..L cs - 4 Jil f1. € p.vabWa 3 W p.b W vc Waa , 

(1'6) 

with Wp.ab being the spin connection. The above topological mass term is added by 
hand. Meanwhile, this term is also introduced by the existence of a massive fermion. 
This is called the induced Chern-Simons term. This term is also generated by the 
regulator mass term in the case that the massless fermion theory is regularized by the 
Pauli-Villars regulator. But it has an opposite sign to the one induced by the fermion 
mass term. In this paper, we only consider the Chern-Simons term generated by the 
fermion mass and investigate a way how to compute it. 

The induced Chern-Simons term due to the fermion mass term (not by the 
regulator mass term) is calculated by several methods. As one of simple methods, 
there is the perturbation method.2),4) One can obtain the term by computing one-loop 
amplitudes with two and three gauge fields. In addition, there is a topological 
method. The answer in this method is given as follows: 

1m r eff= 7J[e, A]=2 r Q(A, W) + constant , 
JM2n+l 

dQ(A, w)=A(R)ch(F)!2n+2, (1'7) 

where reff is the effective action; A(R) is the Dirac genus defined as 

-()_ .fR / 47r 
A R -detsinh.,IR/47r (1'8) 

and ch(F) is the Chern character defined as 

Tr eiF /21t=1_ Tr F2 + ... 
o 87r 

(1'9) 

In these expressions, we use the differential form and the symbol !2n'F2 denotes that we 
only extract a in+2 form. 1m reff is given in arbitrary odd dimensions. In the path 
integral formalism,2),16) one may use the proper time method to evaluate the induced 
Chern-Simons term. In this case, the gauge field has been restricted to Ap.=constant 
to make the computation easy. In the topological method,3) the induced Chern­
Simons terms were obtained in the theory of gauge fields and gravity. But in 
perturbation theory, the gravitational term was merely calculated to the second order 
within the weak field approximation.S

) In the path integral method, the gravitational 
term has not been calculated before. In this paper, we would like to compute the 
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514 S.Ojima 

induced Chern-Simons terms in both gauge and gravitational theories by the path 
integral method with no restrictions on field configurations and no approximations. 

The organization of this paper is as follows. In the next section, we derive the 
induced Chern-Simons term from the one-loop effective action in the case of the theory 
of fermions coupled to gauge fields. In § 3, we derive the Chern-Simons term in 
gravity theory. In § 4, we present our conclusion. 

§ 2. Chern-Simons term in gauge theory 

Let us consider the induced Chern-Simons term in gauge theory. For conve· 
nience, we will work in the Euclidean space throughout this paper. Notations are as 
follows. The metric is taken as gPII=diag( -1, -1, -1). The antihermitian Dirac 
matrices satisfy 

(2·1) 

and we choose Dirac matrices to be 

(2·2) 

where (Ji are the Pauli matrices. We will consider the theory of massive fermions 
coupled to external gauge fields. The Lagrangian is given by 

(2·3) 

Here Ap stands for ApaTa, where the Ta,s are the antihermitian generators of a gauge 
group C. Since the induced Chern-Simons term is generated from the one-loop 
effective action reff, we need to define it. We define reff as 

(2·4) 

This can be also written as 

r eff= -In det( -l/J-m)= -Tr In( -l/J-m) . (2·5) 

This Tr stands for the traces over Dirac matrices and internal indices as well as for 
the integration in coordinate space. We would like to compute the Chern-Simons 
term by starting from the above Lagrangian in the path integral formalism. We 
expect that the proper time method is not quite suitable and rather complicated; 
in this method one computes det( -l/J - m) . essentially as det( -l/J - m) 

=Jdet(~l/J-m)det(-l/J-m)t =Jdet(-l/J-m)(-l/J-m)t, so the information on the 
phase factor may be missed. In order to obtain the Chern-Simons term easily, we use 
the method which is analogous to the one used to obtain the consistent anomaliesfrom 
the path integral measure.l7) According to it, we may take the operator in the 
Lagrangian as 
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Derivation of Gauge and Gravitational Induced. Chern-Simons 515 

_ (-l/J-m) r eff--Trln(':1 ) -Zrp -m 

_ (-l/J-m)(i~ -m) 
- - Tr In ( . :1 )( . :1 ) -zrp-m zrp-m 

= -Trln[( -l/J-m)(i~ -m)J+Tr In[( - i~ -m)(i~ -m)] . (2·6) 

In this expression, in the first line, (- i~ - m) is added to be reff=O for A,,=O. In the 
second line we add (i~ - m)/(i~ - m) to obtain the Chern-Simons term easily and to 
convert the above effective action to an integration over the momentum. We can 
rewrite (2·6) as 

reff= -Tr In[( -l/J-m)(i~-m)]+Tr In[( - i~ -m)(i~ -m)] 

= - Tr In( ~ ~ - eAm - ieA ~ + m2) + Tr In( ~ ~ + m2) 

( f d 3k ("" ds 
= ) d

3
x (271-)3 <xlk>tr)o S 

x [exp{ - i(J"J"-eAm-ieA~ +m2)s}-exp{ - i(J"J"+m2)s}]<klx> 

= fd
3
x f(~:13tr 1"" ~ 

Xexp{ -«J,,+ ik,,)(J"+ik")-eAm-ieA( ~ + i,ff) + m2)s} 

= fd3xtr 1"" :;2f(~:13exp{-m2s}exp{k"k"} 
Xexp{ -J"J"s-2ik"J"/S+eAms+ ieA(~s+ i,ff!S)} , (2·7) 

where in the fourth line of the above expression we have deformed the path of 
integration: S-" is, and in the fifth line we have rescaled the momentum: /Sk"-,, k". 
The symbol tr stands for the trace over the internal indices and Dirac matrices. We 
omit exp{ - i( J"J" + m2)s} in the third line of (2·7), since it is easily shown that this 
term gives no contribution. In (2·7), we used the plane wave18

),19) 

<xlk>=e- ikx 
• (2·8) 

The next problem is how to extract the induced Chern-Simons term from this 
action in (2; 7). One of the properties of the induced Chern-Simons term is to have the 
contraction with the Levi-Civita tensor and a proportionality factor of m/lml. That 
is, it is enough to consider the contribution from the terms which have the above 
properties and are finite as m-"O. To do this computation, the following formula is 
very useful. 

("" -m 2 s z-lds- r(z) 
)0 e s - I m21z . (2·9) 

By this formula, we notice that if we would like to obtain the contribution of finite 
terms as m-"O, it is sufficient to extract the terms which are proportional to S2 with 
a factor m or proportional to S3 with a factor m3 in the expansion of exp{ - J"J"s 
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516 S.Ojima 

-2ikpa
p 
IS+ eAms+ ieA( ¢s+ ili.fS)} in the last line of (2-7). From the.above expres­

sion, we thus obtain the terms in reff which contain the induced Chern-Simons term: 
in the second order of the expansion of exp{ - apaps - 2ikpap IS + eAms + ieA( ¢s 
+ iii .fS)}, 

2\ (ie)(em)s2A¢A, (2-10) 

and in the third order, 

(2-11) 

In these expressions, we omit the terms which do not satisfy the expected properties 
of the Chern-Simons term. In three dimensions, the integration over the momentum 
and Dirac matrices are given by 

1 (k2d3k- 1 1 IkPkv k2d3k- 1 - gpV 
(2;r)3 J e - 8;r3/2, (2;r)3 P e -2 8;r3/2 , 

The integration over s gives rise to 

r(l) 
(a> 1 -m 2 s 2 I7i 

)0 S1/2 e =lmr= Iml ' 

[
a> 1/2 -m 2 s 

S e 
o 

Using these formulas, we obtain 

fd3
X 1~;r ie21:1 (-2€pVPtrApavAp) 

+ ~ [1:;~13( ~2€pVPtrA~vAp)+ 1~~I~1 (-2€pVPtrA~vAp)J, 

(2-12) 

(2-13) 

(2·14) 

where tr stands for the trace over the internal indices. As a final result, we get 

fd3x 8
1;r 1:1 €pVPtr( -ie2A pavAp- 2f A~vAp). (2-15) 

At a glance, it may appear that (1- 2) is different from (2 -15). This difference is due 
to that of notational convention, and if we change AI' --+ zAp in (2 -15), (2 -15) agrees 
with (1- 2). In (2 -15), the overall factor i comes from the imaginary part of r eff• The 
result obtained by the above method agrees with the one obtained by the topological 
method with a topological mass term corresponding to ,u=e2m/8;rlml. 
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Derivation of Gauge and Gravitational Induced Chern-Simons 517 

§ 3. Chern-Simons term in gravitational theory 

Now we would like to compute the induced Chern-Simons term in gravity theory. 
The method of computation in this section is similar to that in gauge theory . We 
extract the terms which contain the Levi-Civita tensor and are proportional to m/lml. 
We take the starting effective action as 

(3·1) 

where 

l/J - p(a Z mn) -y p-ZWpmnCf , 

(3·2) 

The connection W does not contain the torsion and hpa is the vielbein. When we 
compute the above reff, we have to take the change into more careful account from x 
space to k space since there exists the geodesic bi-scalar in gravity theory.19)-21) This 
is a major difference from the case of gauge theory. We thus compute r eff by taking 
into account the possible contribution of the geodesic hi-scalar. We first rewrite 
Eq. (3·1). 

_ (-il/J-m)(il/J-w-m) 
reff- -In det ( 'TII + )( 'TII ) - Z.IfJ W - m Z.IfJ - W - m 

= -Tr In[( - il/J - m)(il/J- W - m)] +Tr In[( - il/J+ w - m)(il/J- w- m)] 

= - Tr In[l/Jl/J + il/Jw + mw + m2
] + Tr In[ (l/J + iw)(l/J + iw) + m2

] 

(3·3) 

where w= t yPWpmnCf
mn and W p= t WpmnCfmn. The symbol tr stands for the trace over 

Dirac matrices. It can be confirmed that the last term in (3·3) gives no contribution 
to the induced Chern-Simons term. We thus omit the last term. Similar to the 
calculation in the previous section, we calculate the above expression in the 
momentum space. In the present case, (xix') is given by 

(xlx')=o(x-x') . (3·4) 

In gravity theory, 0 function is givenby a formula including the geodesic bi-scalar. 
Here we introduce the geodesic bi-scalar Cf(X, x') as follows:19) 

(3·5) 

The scalar Cf(X, x') is equal to one half of the square of the distance along the geodesic 
between x and x'. The geodesic interval Cf(X, x'), which is a bi-scalar, satisfies 
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518 S.Ojima 

~ Dp6(X, X')DP6(X, X')=6(X, X'), 

lD' ( ')D'P ( ')- ( ') 2 P 6 X, X 6 X, X -6 X, X , (3-6) 

where D/ represents the covariant derivative with respect to x'. The coincidence 
limit is given by2o),21) 

lim6(x, x')=O, limDp6(x, x')=O, 
x-x' x-x' 

limD~JJ6(x, x')=gPJJ, limD~JJDa6(x, x')=O, 
x-x' I.-X' 

(3-7) 

By using Eqs. (3-4) and (3-5), the formula (3-3) can be written as 

(3-3)= fd3Xl~~f(~:13 f~ tr exp{ -i[(Dp+iLlp)(DP+ iLlP) 

+ ~ + (iJ,O-J)co+ mco+ m2]s} 

f f ds f d
3
k = d3xl~~ SS/2 (271-)3 tr exp{ - m2s}exp{Ll~P}exp{ - Ll~P} 

x exp{ Ll~P - ( D~P + ~ + iJ,Oco )s 

- i(Ll~P+ D~P+ iJco}[S- mcos} (3-8) 

with LlP =.kaDPDa6(X, x'). In (3-8), we have deformed the path of integration: s~ is, 
and we have rescaled the momentum: [Skp~ kp. In these evaluations, there is one 
important technical point. If we define 

. A=Ll~P, 

B= -( D~P+ ~ + iJ,Oco )s- i(Ll~P+ D~P+ iJco) [S-mcos , (3-9) 

then, 

(3-10) 

where we must consider commutators except for the first term B in the above 
expansion. This is a difficult point in the calculation in gravity theory. Moreover, 
being different from the chiral anomaly, the trace over Dirac matrices does not 
contain the chirality operator Ys. A priori, we cannot drop these commutator terms 
in (3 -10). In the following, however, we explain that these commutator terms give no 
contribution to the induced Chern-Simons term. t 

We expect that very higher commutator terms give no contribution, since they 
give the terms higher order in co and R. In fact, we can easily confirm that it is 
sufficient to analyse the terms up to the fourth order, 
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Derivation of. Gauge and Gravitational Induced Chern-Simons 519 

[A,B] , [[A, B], A], [[A, B], B], 

[[[A, B], A], B] , 

[[[B, A], B], B] , 

[[[A, B], A], A] , 

[[[B, A], B], A] . (3·ll) 

Since the terms which contain m are primarily important, we first consider them. In 
the expression B in (3·9), there is a term with ms which does not include the 
derivative. The induced Chern-Simons term is given by the terms with ms2 or m3s3

, 

as was explained in § 2. Since the order of the terms with a factor m, which survive 
after the commutator, is inevitably not less than 0(S3/2), the m3s3 term is generated 
only by the expansion of B. 

Hence we have to carefully analyse the commutator terms which contribute to the 
ms2 terms. For this purpose, we first note that the terms with ms3/2 are not generated 
from the commutators: In [A, B] the 0(SI/2) term is 2zL:1vD'\L1pL1"') and it commutes 
with mcos, so in [[A, B], B] the 0(ms3/2) terms are not generated. Moreover, the 
0(ms3/2) term which is generated in the product of B and. [A, B] also vanishes in the 
coincidence limit. 

In the commutator terms, there can exist a term with ms2
, but this has the form, 

[[A, B], B] ~ [2Dv(.,1pL1"')DV + 2(DvDV LJ",)L1'" 

+2(DV L1",)(DvL1"') + iyvcoDV(L1pL1"'), mco]s2 , (3·12) 

and it can be easily shown that these terms vanish in the coincidence limit or by taking 
the y matrix trace. There exists no term with a factor m which we must take into 
account except for (3·12); this will be sho';Vn in the Appendix. Moreover, in the 
Appendix, we will show that the cross terms between B and the commutator terms of 
order of O(s) or 0(SI/2) give no contribution to the Chern-Simons term. 

It has thus been established that the commutator terms [A, B]+··· in (3·10) give 
no contribution to the induced Chern-Simons term. 

From now on, let us try to compute the induced Chern-Simons term coming back 
to Eq. (3·8). To compute the Chern-Simons term, it is enough to expa~d eB to the 
third order. We write them down explicitly as 

x 211 [ co( D~"'+ f + il/Jco )+( D~"'+ f + il/Jco) co Jms2 

- 311 {[ (iL1~'" + iD'" L1", - J co) (iL1~'" + iD'" L1", - J co) co 

+ (iL1~'" + iD'" L1", - J co) co( iL1~'" + iD'" L1", - J co) 

+ co(iL1~'" + iD'" L1", - J co) (iL1~'" + iD'" L1", ~ J co)] ms2 + (mco )3} ] . (3·l3) 

We discard the terms which do not possess the expected properties of the Chern­
Simons term, such as the Levi-Civita tensor structure; the expansion in co to the third 
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520 S.Ojima 

order gives 

rd 3 l' fA£f~ [ -m 2 s .!Ip.!I
P 1 ('W + ~1/J') 2 

) c x L~ S5/2 (2nY tr e e 2T Z (J)(J) (J)t (J). rns 

-l! (3(J).J(J).J(J),rns2 +m3(J)3s3) ] . (3·14) 

By using Eq. (3·7) and after integrating over k and s variables, we take the trace over 
r matrices and obtain the final result, 

(3 ·15) 

As in the case of gauge theory, because of notational difference, if we change.(J)rl ~d(J) 
then (3 ·15) is in agreement with (1· 6). The reason for the appearance of theotVerall 
factor i in (3·15) is the same as that in gauge theory .. This result, which has been 
obtained with no approximations, agrees with the one in.Ref.· 5) and corresponds<to 
the Chern-Simons term with J.l=327l'Iml/t?m in the notation of (1·6). 

§ 4. Conclusion 

In this paper, we calculated the induced Chern-Simons term in the theory with 
fermions coupled to external gauge and gravitational fields by the path int~gral 
method. The induced Chern-Simons term which we obtained in this paper ls;;in 
agreement with the standard results. 1

),2) 

In the present method, we can get the answer including the precise numerical 
coefficients and with no restrictions on the background field configurations. More­
over, we could also treat the gravity theory as well as gauge theory. In the pal'lt; at 
least in the gravity case, except for the topological method, we have not been able to 
obtain the exact formula without the weak field approximation. 

In this paper we took the basic operator associated with the Lagrangian' as :the 
form like (- I!J- m)(i¢ -m), but we do not understand how this choice is relatedtQ,the 
three dimensional topology. We would like to understand this point still better. 

As the future research of this method, there are applications to supersymmtric 
theory and also higher dimensional extensions. These are under corisideration. 
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Appendix 

From the considerations in the text, the commutator terms in (3·11) which we 
must examine are of the order of 0(S1l2) or O(s). We investigate these terms in 
sequence: 
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Derivation of Gauge and Gravitational Induced Chern-Simons 521 

[A,B] . (A·l) 

The term of O(S1!2) exists only in [A, B]. This term vanishes in the coincidence 
limit and does not contribute to the Chern-Simons term. The term of O(s) gives no 
contribution because the commutator with D,JY' has different characteristics from 
that of the Chern-Simons term and the commutator with l/Jcv vanishes in the coinci­
dence limit. The terms of O(ms2

), which are generated by the products of some 
powers B and some powers of [A, B], vanish in the coincidence limit or have the 
different' tensor structure from the Chern-Simons term. 

[[A, B], A]. (A·2) 

There are only O(s) terms, which give no contribution by the same reason as the 
terms of O(s) in [A, B]. 

[[A, B], B]. (A·3) 

There are O(S)+O(S3/2)+ ... terms which do not contribute to the Chern-Simons 
term because of the vanishing or different tensorial structures of these terms in the 
coincidence limit similar to the cross terms in (A ·1). 

In the next order, we encounter 

[[[A, B], A], A]~O, (A·4) 

. and these is no series which contains this commutator. A series of [[[A, B], A], A] 
here means the terms which contain the repeated commutator between [[[A, B], A], 
A] and A or B. 

[[[A, B], A], B] . (A ·5) 

Since [[A, B], A] ~ O(s), the leading order is O(S3/2). Moreover, [[A, B], A] 
commutes with mcvs in the last factor B so the term with a factor m is of order higher 
than O(S2). This term and its series have no effect on the Chern-Simons term. 

[[[B, A], B], A] . (A·6) 

Using the Jacobi identity, we can show that this is equal to (A·5). 

[[[B, A], B], B] . (A·7) 

The order of the term with a factor m is higher than O(S2) because the terms of 
O(s) generated in [[A, B], B] commute with mcv in the last factor B. Other terms 
without m are the order of O(S3/2), at least. Therefore this series gives no contribu­
tion. 
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