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Abstract

The human leukocyte antigen (HLA) is key to many aspects of human physiology and medicine. All current sequence-

based HLA typing methodologies are targeted approaches requiring the amplification of specific HLA gene segments.

Whole genome, exome and transcriptome shotgun sequencing can generate prodigious data but due to the

complexity of HLA loci these data have not been immediately informative regarding HLA genotype. We describe

HLAminer, a computational method for identifying HLA alleles directly from shotgun sequence datasets (http://www.

bcgsc.ca/platform/bioinfo/software/hlaminer). This approach circumvents the additional time and cost of generating

HLA-specific data and capitalizes on the increasing accessibility and affordability of massively parallel sequencing.

Background
Due to its central role in adaptive immunity, human leuko-

cyte antigen (HLA) is implicated in wide ranging areas of

medicine, from infectious disease and vaccinology to can-

cer, autoimmunity, aging and regenerative and transplanta-

tion medicine [1-7]. The HLA locus is the most

polymorphic region of the genome with over 5,000 variant

HLA-class I allelic sequences catalogued to date. This

genetic heterogeneity is the principal challenge to HLA

typing methodologies, and it is the reason why this region

has remained largely opaque to analysis by next-generation

sequencing (NGS) platforms. Conventional sequence-based

HLA typing approaches, the most recent of which exploits

the sequence throughput of the Illumina MiSeq [8] and

relatively long sequence reads of the 454 NGS platform [9],

are targeted assays that rely on amplification of hypervari-

able sub-regions of these loci and variant detection within

these amplicons. As such, HLA calls are based on sequence

information that is not as comprehensive as for shotgun

datasets, and must be generated de novo for each subject.

The widespread uptake of large-scale genome, exome and

transcriptome shotgun sequencing approaches for biome-

dical research, and now for clinical use, prompted us to

explore the utility of these types of NGS data sets for HLA

typing. The need has been for a solution to the problem of

managing the many millions of short sequence reads NGS

technologies produce, managing the many thousands of

reference allele sequences, and integrating all of these data

in a manner that maximally informs HLA content. Here

we present a method for HLA allele prediction from next-

generation shotgun sequence datasets. We focus on data

generated from the Illumina platform, from which most

sequence data are currently derived worldwide. Impor-

tantly, HLA allele assignments from shotgun datasets can

not be derived from standard alignment-based interpretive

methods for the simple reason that the extant genome

reference sequences [10,11] on which these methods rely

do not provide any useful representation of HLA allelic

diversity. Therefore, we have developed a computational

pipeline that derives HLA allele predictions by targeted

assembly of shotgun sequence data and comparison to a

database of reference allele sequences. Our solution allows,

for the first time, application of the power of NGS to the

interrogation of one of the most important and complex

sets of human genes. Our method is scalable, such that it

will provide utility in extracting HLA information even

from very large sequence data sets, such as those currently

being compiled by various international consortia [12-15].

Materials and methods
Library construction and sequencing

Written informed consent was obtained from all donors

and samples were collected following assessment of tissue

specimens by a pathologist according to standardized
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operating procedures, immediately following surgical

resection. Library construction and Illumina sequencing

were performed as previously described for RNA-Seq [16]

and whole genome shotgun (WGS) [17]. For the colorectal

cancer (CRC) RNA-Seq study, four lanes of 100-nucleotide

paired-end sequences were obtained for each of the two

pools, providing an average of 5 million paired reads per

sample. For WGS, approximately 430 million paired 100-

nucleotide WGS reads (approximately 30× depth coverage

human genome) from normal and tumor samples from

four diffuse large B cell lymphoma patients were processed

[17]. The sequencing data from the CRC study have been

submitted to the NCBI Sequence Read Archive [18] under

accession number SRP010181. A file describing the sample

libraries is available at [19].

Exome capture libraries were prepared using the SureSe-

lect system (Agilent) according to the manufacturer’s

instructions. Approximately 30 million (normal samples)

and 120 million (normal plus tumor samples)

100-nucleotide exon capture paired-end sequence reads

were generated from three ovarian cancer patients whose

HLA alleles were verified by PCR-based methods. Verifica-

tion of HLA allele predictions was accomplished by PCR

amplification of exons 2 and 3 from HLA-I A, B and C, fol-

lowed by capillary sequencing as previously described [20].

IMGT/HLA sequences

HLA coding DNA sequence (CDS) and genomic

sequence databases from release 3.3.0 and 3.4.0 were

obtained, respectively, from [21]. HLA-I exon 2 and 3

concatenated sequence FASTA files were prepared using

exon coordinates available from the flat file database

(EMBL format) released by IMGT [22]. For HLA allele

predictions from RNA-Seq data, we used concatenated

exons 2 and 3 as sequence targets for assembly using

the TASR assembly tool [23]. For predictions from gen-

ome and exome NGS data, we used HLA-I genomic

sequences from major genes A, B and C.

Computational HLA allele predictions by targeted read

assembly

HLA CDS or genomic sequences from IMGT/HLA

(sequence targets) are read by TASR (default options used

with -i 1), creating a hash table of every possible

15-nucleotide word (k-mers) encountered. NGS data sets

are interrogated for the presence of one of these k-mers in

5’ (on either strand) and candidate reads recruited.

Recruited reads seed the assembly in a manner analogous

to that of SSAKE [24]. Only sequence contigs equal to or

larger than a user-determined length (200 nucleotides

chosen for this study) are considered for further analysis.

Reciprocal BLAST [25] (v.2.2.22 with options -a 8 -F F -p

blastn -m 7) alignments are performed between the contig

and HLA CDS or genomic sequence databases depending

on the read source (RNA-Seq or WGS and exon capture),

parsed at runtime using PERL Bio::SearchIO modules and

summarized. HLAminer parses these alignment files and

generates a score and probability for each putative HLA

coding variant identified from sequence contigs. Briefly,

for each assembled contig, best BLAST HLA alignments

are reported, tracking the sequence identity over the align-

ment portion, as well as over the length of the contig.

Contigs are organized by increasing number of HLA

sequences they co-characterize best, listing all possible ex-

equo best hits and tracking HLA sequences that, recipro-

cally, best identify each contig. For each putative HLA, a

score SHLA is calculated as the sum of score computed for

each contig aligning to it. Individual contig scores factor in

the contig depth of coverage, length and percent sequence

identity, such that a score reflects the number of bases

aligned to a particular HLA allele. A reciprocal best hit

where a given HLA aligns best to a given contig doubles

the score for the identified HLA sequence:

SHLA =

n∑

Contig=1

ScoreContig = size∗depth∗
%sequence identity

For any given contig, the probability of characterizing

a single HLA allele by chance is equal to the inverse

proportion of HLA sequences in the sequence database.

And since shorter contigs may not capture sufficient

bases to characterize any one type unambiguously, the

probability P that a contig characterizes one or another

HLA type is mutually exclusive such that:

PContig1 is HLAx
=

∑
PHLA

The expect value (Eval) of each computationally deter-

mined HLAx, EvalHLAx, is calculated as:

EvalHLAx
= (PContig1 is HLAx

∗PHLAx is Contig1
)∗(PContig2 is HLAx

∗PHLAx is Contig2
)∗

. . .

∗ (PContigx is HLAx

∗PHLAx is Contigx
)

since individual contig probabilities and reciprocal

best hits are independent events. A short list of HLA

allele groups (for example, A*02) and protein coding

alleles (for example, A*02:01), sorted by decreasing

score, are catalogued for each major HLA gene. When

separate contigs characterize the same types, only the

types that overlap are reported, unless the non-overlap-

ping ones are characterized by additional, distinct contig

(s). In addition, we summarize ambiguous HLA alleles

using the P designation, when applicable.

Simulated data sets

In separate experiments, we removed HLA CDS, exonic

regions and genes from 15K randomly selected Ensembl

[26] transcripts, approximately 220K exon regions [27]

(SureSelect Target Enrichment, Agilent Technologies,

Inc. [28] and the HuRef genome [11]). For each data
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type, we randomly generated 20 sets of six (2 × A, 2 ×

B, 2 × C) HLA-I alleles (total of 120 alleles). In triplicate

experiments, we merged each set of six sequences with

HLA-less CDS, exon regions or HuRef, respectively, and

simulated at various depth of coverage 50-, 75-, 100- or

150-nucleotide paired-end reads with 0.5, 1, 2 or 3 error

using SAMtools [29] wgsim, and ran TASR and

BLASTN as described above. For the simulation from

direct read pair alignments, we used the simulated reads

described above and ran BWA [30] with defaults and

generated HLAminer predictions from SAM files.

Assessment metrics

We define the sensitivity as a proportion, that is, the

number of HLA allele groups or protein coding alleles

detected over the sum of distinct groups or protein cod-

ing alleles randomly chosen for the simulation or pre-

dicted by PCR, when applicable. The ambiguity rate is

the proportion of all ambiguous predictions per total

allele groups or protein coding alleles predicted. Ambig-

uous predictions arise when HLA allele groups or pro-

tein coding gene names differ despite having an

identical score and probability. The specificity is defined

as a proportion of number of groups or alleles predicted

accurately divided by the total number of groups or

alleles detected, respectively.

HLA typing

HLA class I alleles were predicted directly from the RNA-

Seq data as described [20]. Briefly, genomic DNA was

extracted from patient granulocytes, and exons two and

three from HLA class I genes (A, B, and Cw) were ampli-

fied by PCR [31]. PCR amplicons were cloned and

sequenced using an ABI 3730XL instrument, according to

standard procedures. Clone sequences were assembled

using Phred/Phrap/Consed [32]. The resulting sequence

data were aligned against all available exon 2 and 3

nucleotide sequences from the 3.1.0 release of the IMGT/

HLA database [22] using ClustalW [33]. Protein coding

allele assignments [34] were based on high-quality exact

or synonymous matches at informative nucleotide

positions.

Results and discussion
To maximize the performance of HLAminer with short

read data, we implemented stringent, localized, de novo

assembly of sequence reads prior to alignment (Figure 1,

left). Direct alignment of reads to reference alleles is

also supported (Figure 1, right), but at the present time

we find this modality has modest utility due to current

limitations on read length. HLAminer predictions are

arranged by HLA gene (for example, HLA class I A, B

and C) and for each, putative alleles are ranked by high-

est scoring HLA protein coding alleles. A confidence

value reflects the likelihood of each prediction (expect

value) on a log10 scale. A sample output from HLAmi-

ner is shown (Table 1).

For initial evaluation of HLAminer we relied on simu-

lated data sets, which allowed us to determine the influ-

ence on performance of sequencing parameters such as

depth of coverage, sequence read length, and sequence

error. We produced simulated data sets for each of the

three formats, RNA-Seq, WGS and exome, by taking

reference sequences (Ensembl transcripts, the HuRef

genome, and hg19 exon capture regions, respectively)

and substituting HLA-I A, B and C sequences with two

randomly chosen alleles of HLA-I A, B and C. From

these modified references we generated faux sequence

reads. For each sequence format, 20 such data sets were

generated and these were queried in triplicate, yielding a

total of 360 allele predictions per condition tested. The

sensitivity, specificity and ambiguity of HLA class I allele

prediction was evaluated by comparing the highest-scor-

ing HLAminer predictions to the randomly selected

alleles. By ambiguity we mean the prediction of multiple,

equally probably alleles.

HLA nomenclature (for example, HLA A*02:01)

defines the digits immediately following the asterisk as

the allele group (two-digit resolution, formerly referred

to as supertype) and the next set of digits (those follow-

ing the semicolon, often referred to as four-digit resolu-

tion) as the individual protein coding allele [34]. Further

separators and digits are sometimes used to describe

allelic variants that contain silent nucleotide differences.

Using simulated data, we found that at the level of HLA

allele groups, RNA-Seq data provided high sensitivity

and specificity (each >95.7%) with a low ambiguity

(<4.5%), even at relatively low coverage (<5 million total

read pairs) (Figure 2; Additional file 1). Likewise, WGS

provided high sensitivity and specificity (each >97.3%)

and no observable ambiguity (0.0%) for prediction of

allele groups, but required substantially higher sequence

depth, on the order of 400 million paired reads, to

achieve this (Figure 2; Additional file 1). This is the

equivalent of approximately 30× genome coverage with

100-nucleotide reads. For both RNA-Seq and WGS

data, predictions at the level of individual protein coding

alleles showed very similar sensitivity and specificity to

that observed for allele group predictions, but ambiguity

levels increased to approximately 30% (Figure 2; Addi-

tional file 1). Our expectations for HLA allele prediction

from exome data were low, because allelic diversity of

HLA coding sequence tends to have limited representa-

tion in standard capture reagents. For example, the Agi-

lent SureSelect system that we use at our center

contains 36 120-nucleotide RNA probes targeting the

HLA class I region of hg19. Still, we included evaluation

of this data type for the purpose of completeness, and
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with the understanding that a variety of HLA alleles

could possibly be captured by imperfectly matching

probes of this length. Our simulations revealed that

exome data did in fact show some modest utility for

HLA prediction, at least at the allele group level. For

allele group prediction, high specificity (92.8%) and low

ambiguity (4.7%) could be achieved at low coverage

(40 million read pairs); however, considerably higher

coverage was necessary to increase sensitivity, and even

at very high exome coverage (240 million read pairs)

sensitivity never approached that observed for the other

data types. By comparison, for RNA-Seq, 5 million and

3 million 100-nucleotide RNA-Seq read pairs are

required for 95% sensitivity and specificity, respectively.

For WGS, 427 million and 57 million 100-nucleotide

read pairs are needed for 95% sensitivity and specificity,

respectively. Under the conditions tested, exome data

did not provide such high levels of detection and

prediction accuracy at any read depth and performance

for predicting individual protein coding alleles from

exome data was uniformly poor (Figure 2).

Overall, from simulation, RNA-Seq datasets provided

the greatest utility for HLA prediction. This may be due,

in part, to lower representation in RNA-Seq data of off-

target regions, such as the minor HLA class I genes, pseu-

dogenes, and HLA class II genes, compared to genome or

exome data, where these regions would be expected to

have approximately equal representation as the class I

alleles of interest, A, B and C. The stark contrast in HLA-

miner predictions derived from RNA-Seq compared to

WGS or exome capture highlights intrinsic properties of

these datasets and their value for computational HLA pre-

dictions. Functional HLA-I alleles are expressed on all

nucleated cells, and despite possible amplification biases in

the RNA-Seq library construction protocol, the high abun-

dance of HLA-I transcripts is such that relatively low

Figure 1 Computational predictions of HLA-I from shotgun data by targeted assembly (left) or read alignment (right). For targeted

assembly, NGS reads having their first fifteen 5’ bases matching one of HLA CDS (RNA-Seq) or genomic (WGS/exon capture) sequences are

recruited and assembled de novo with TASR. Resulting sequence contigs are aligned against a database sequence of all predicted HLA CDS

(RNA-Seq) or genomic sequences (WGS/exon capture), tracking best HLA hit(s). Reciprocal best alignments are considered in the same manner.

Putative allele assignments from shotgun datasets (HLAminer) are informed by contig length, depth of coverage and similarity to reference

sequences, when applicable. The probability of each prediction being correct is estimated by determining the probability of that prediction

being observed by chance.
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depth of sequencing is needed for robust predictions

(approximately 5 million). On the other hand, non-func-

tional (null) HLA alleles that are present in the genome

(but transcriptionally silent) can confound HLA prediction

from WGS or exome capture data, since the functional

alleles and null alleles are equally represented in these data

types. HLAminer has the functionality to report predic-

tions from null alleles, if desired.

We explored further the effects of read length (up to

150 nucleotides) and sequencing errors (up to 3%) with

RNA-Seq data. Not unexpectedly, performance

improved with increasing read length and decreasing

base error (Table 2). Reads with length less than 75

nucleotides and error rates higher than 1% significantly

impacted performance for prediction of individual pro-

tein coding alleles, but prediction of allele groups

remained robust (Table 2).

Next, we evaluated the performance of HLAminer with

real shotgun datasets, including RNA-Seq data from 16

CRC libraries (RL Warren, DJ Freeman, P Watson, RA

Moore, EA Allen-Vercoe, RA Holt, manuscript sub-

mitted), WGS and RNA-Seq from four lymphoma libraries

[17] and exon capture data from three ovarian cancer

libraries (Figure 2; Additional file 1). HLA predictions

were compared to results from these same subjects

obtained from standard PCR and capillary sequence-based

typing [20]. Results mirrored those obtained from simu-

lated data. For all data types, prediction of allele groups

was more reliable than prediction of individual protein

coding alleles. For prediction of allele groups, the CRC

RNA-Seq data yielded predictions with highest sensitivity

and specificity (>96.5%) and low ambiguity (<2.4%), even

at low sequence depth (approximately 5 million pairs per

sample). From a total of 81 HLA allele groups predicted

by HLAminer on the CRC cohort shotgun data only a

single allele group prediction conflicted with PCR-based

typing results (Additional file 2). For WGS and exome

data, high sensitivity and specificity could also be achieved,

but only at much higher depth of coverage. For all data

types, the ambiguity associated with prediction of indivi-

dual protein coding alleles were higher than for prediction

of allele groups, with predictions from exome data sets

more significantly impacted than predictions from WGS

or RNA-Seq data sets. HLAminer predictions were also

benchmarked on low-coverage 100-nucleotide WGS data

from 20 individuals of the 1000 Genomes cohort [15].

HLA class I allele predictions obtained from these same

HapMap samples by the targeted PCR method of Erlich

and colleagues have been previously published [9]. Apply-

ing HLAminer to this data set, allele group sensitivity and

specificity of 86.7 ± 15.9% and 86.3 ± 16.1% were achieved

(Additional file 3), despite the relatively low number of

genome shotgun reads processed (mean ± standard devia-

tion of 361.2 ± 80.9 million. Further, our results from

these 1000 Genomes samples are consistent with those we

obtained from the diffuse large B cell lymphoma control

normal tissue (sensitivity and specificity of 68.8 ± 31.5%

and 71.3 ± 21.8%) and tumor tissue (sensitivity and specifi-

city of 75.0 ± 20.4% and 87.5 ± 14.4%) WGS datasets, for

which substantially higher sequence coverage was available

(approximately 1.1 billion reads per sample). As discussed,

the data type availability (WGS) and the lower depth of

Table 1 Output from HLAminer HLA class I predictions from a CRC patient 100-nucleotide RNA-Seq sample

Allelea Scoreb Expect value (Eval) Confidence (-10 × log10(Eval))

HLA-Ac

Predictiond 1 - A*02

A*02:01P 64038.03 1.63E-06 57.9

Prediction 2 - A*11

A*11:01P 5463.99 5.30E-09 82.8

HLA-B

Prediction 1 - B*27

B*27:05P 64579.61 2.67E-18 175.7

Prediction 2 - B*07

B*07:02P 56662.08 6.63E-12 111.8

HLA-C

Prediction 1 - C*07

C*07:02P 49419.33 5.23E-08 72.8

Prediction 2 - C*02

C*02:02Pe 20466.00 6.64E-16 151.8

C*02:21e 20466.00 6.64E-16 151.8

aHLA protein coding alleles validated by PCR are shown in bold face. bThe protein coding allele predictions are arranged by decreasing score from most to less

likely. cMost likely HLA class I allele groups and protein coding alleles (Confidence (-10 × log10(Eval)) ≥ 20 Score ≥ 1,000) for each gene. dThe prediction rank

factors in the maximum score for each predicted allele. eAmbiguity arises when two or more HLA allele group or protein coding alleles have the same score (for

example, C*02:02P and C*02:21).
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coverage (10- to 20-fold) are both limiting factors for

HLAminer predictions.

HLAminer can evaluate reads by direct alignment

(Figure 1, right). However, with Illumina read lengths

currently ranging from 100 to 150 nucleotides, this

approach has limited utility at the present time. At best

we observed 80.0 ± 3.5% sensitivity and 78.2 ± 2.8% spe-

cificity (mean ± standard deviation; Figure 2, top panel;

Additional file 1).

Regardless of input data, HLAminer predictions for

HLA allele groups (two-digit resolution) are more robust

than for HLA protein-coding alleles (four-digit resolution)

(Figure 2; Additional file 1). Both the sensitivity and speci-

ficity of four-digit allele predictions are reduced relative to

their two-digit counterparts, but changes to the ambiguity

of predictions are more pronounced. For example, with 5

million × 100-nucleotide simulated RNA-Seq read pairs,

four-digit predictions show a 8.9% decrease in sensitivity,

8.2% decrease in specificity, and a 31.9% increase in ambi-

guity, compared to two-digit predictions. This is because

HLA coding alleles often differ by only a single base. In

contrast to conventional HLA genotyping methods where

sequence analysis is restricted to HLA amplicons, a target

of reduced complexity compared to shotgun sequence

data, HLAminer interrogates the full diversity of sequence

information in whole transcriptome, whole genome or

whole exome datasets. Here, single base differences can be

more easily missed due to factors such as low or unequally

distributed sequence coverage and base errors. Thus, the

performance of HLAminer for robust four-digit HLA

allele calls is a limitation of the current data sets and per-

formance is expected to improve as sequencing

Figure 2 HLAminer performance. HLA allele group and protein coding allele predictions derived from targeted read assembly (black symbols)

or direct read alignment (grey symbols) of simulated 100-nucleotide RNA-Seq, WGS and exon capture (ExCap) datasets were compared to

original, spiked-in, HLA sequences and performance metrics evaluated (ambiguity, sensitivity and specificity represented by circle, triangle and

square symbols, respectively). HLAminer predictions were also obtained from targeted assembly of colorectal cancer (CRC; blue symbols),

lymphoma (DLBCL; red, orange and yellow symbols), 1000 Genomes (1KG; green symbols) and ovarian cancer (OV; violet and magenta symbols)

patient tumor (T) and/or matched normal (N) shotgun datasets and compared to PCR-based HLA types to calculate performance metrics.
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technologies evolve to offer greater accuracy and read

length at reduced cost.

Conclusions
HLAminer is the implementation of a strategy for auto-

mated HLA typing directly from NGS data sets. It is a

fundamentally different approach compared to conven-

tional methods that all rely on first amplifying HLA

genes. The identification of allelic variants from an indi-

vidual NGS data set by simple sequence search or align-

ment is precluded by the complexity of the locus, the

massive allelic diversity in the population and limitations

of short sequence reads to adequately capture these var-

iations. The option of typing, retrospectively, existing

cohorts for which NGS data have already been gener-

ated is enabling, particularly for large community

resource projects [12-15]. In this context, the HLA info

is value-added, as no additional cost is necessary to

generate further HLA specific data from an existing data

set. The method can also be applied prospectively. In

fact, it may turn out to be the case that it is most effi-

cient to do all HLA typing by shotgun sequencing, since

these types of data sets are maximally informative and

are becoming routine to generate.

It is recognized that certain HLA allele combinations are

common in certain populations, presumably due to link-

age disequilibrium [35]. For example the combination of

HLA-I A*01; C*07; B*08 is common in some western Eur-

opean populations. These conserved extended haplotypes

are not yet well represented in HLA databases, but in

future we will explore the possibility of using this type of

information to further improve computational HLA typ-

ing. We also expect to extend our approach to prediction

of HLA class II alleles. HLAminer is available for public

use [36].

Abbreviations

CDS: coding DNA sequence; CRC: colorectal cancer; HLA: human leukocyte

antigen; NGS: next-generation sequencing; PCR: polymerase chain reaction;

WGS: whole genome shotgun.
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Table 2 Effect of read length and base error on HLAminer predictions from targeted assembly of simulated RNA-Seq

dataa

HLA allele
resolution

Base error (%) Read length
(nucleotides)

Sensitivity (mean ± SD%) Specificity (mean ± SD%) Ambiguity(mean ± SD%)

Two-digit 1.0 50 13.62 ± 2.80 92.86 ± 10.10 19.06 ± 16.53

75 62.32 ± 3.62 90.27 ± 3.28 8.93 ± 2.67

100 95.72 ± 0.53 96.31 ± 0.02 4.46 ± 3.84

150 97.97 ± 2.80 95.73 ± 3.63 0.00 ± 0.00

Two-digit 0.5 100 93.04 ± 4.60 96.39 ± 1.44 2.91 ± 1.69

1.0 95.72 ± 0.53 96.31 ± 0.02 4.46 ± 3.84

2.0 64.64 ± 4.79 96.13 ± 1.43 13.40 ± 3.02

3.0 6.67 ± 2.51 100.00 ± 0.00 8.59 ± 8.34

Four-digit 1.0 50 7.78 ± 1.92 60.51 ± 20.02 27.78 ± 4.81

75 51.94 ± 2.93 77.36 ± 5.44 37.38 ± 11.16

100 86.84 ± 1.75 88.13 ± 1.41 36.32 ± 4.76

150 93.33 ± 3.63 93.07 ± 2.91 22.87 ± 2.40

Four-digit 0.5 100 84.72 ± 5.42 89.65 ± 2.25 24.03 ± 3.00

1.0 86.84 ± 1.75 88.13 ± 1.41 36.32 ± 4.76

2.0 56.94 ± 1.73 87.49 ± 4.77 39.14 ± 5.73

3.0 4.44 ± 2.10 68.69 ± 17.03 37.22 ± 25.62

aIn triplicate experiments, 5 million read pairs 50, 75, 100 or 150 nucleotides in length (top) and 100-nucleotide read pairs having 0.5, 1, 2 or 3% errors (bottom)

were randomly generated from 20 sets of transcripts, each containing 6 randomly chosen reference HLA alleles. HLAminer predictions derived from targeted

read assembly were compared to each reference set and the performance of HLAminer was assessed by measuring the specificity, sensitivity and ambiguity. SD,

standard deviation.
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