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ABSTRACT

The problem of deriving an optimal set of thermodynamic properties of minerals from a diverse
experimental data base is reviewed and a preferred methodology proposed. Mathematical pro-
gramming(MAP) methods extend the linear programming (LIP) approach first presented by Gordon
(1973), and make it possible to account for the type of information conveyed, and the uncertainties
attending both phase equilibrium data and direct measurements of phase properties. For phase
equilibrium data which are (in most cases) characterized by non-normal error distributions across
experimental brackets, the midpoint of a bracket is no more probable than other points, and the data
are best treated by considering the inequality in the change in Gibbs free energy of reaction at each
half-bracket. Direct measurements of phase properties can be assumed to have approximately normal
error distributions, and the MAP technique optimizes agreement with these values by using the
principles of least squares in the definition of an objective function. The structure of this problem,
treatment of uncertainties in various types of experimental data, and method of optimizing final
solutions are discussed in some detail.

The method is applied to experimental data in the MgO-SiO2-H2O system, where inconsistencies
among the data are resolved and an optimal set of thermodynamic properties is presented. The derived
standard state entropies and volumes agree with all direct measurements (within their uncertainties), as
do enthalpies of formation from the elements except for those of talc (+16 kJ mol" •), anthophyllite
(+ 14 kJ mol~'), and brucite (— 1 kJ mol~'). Stable phase relations in the system have the topology
predicted by Greenwood (1963, 1971), with quartz- and forsterite-absent invariant points at
683 "C-6-4 kb and 797 °C-12 kb respectively, repeating at 552 °C-120 b and 550 °C-55 b. The
thermodynamic analysis indicates little remaining flexibility in the phase relations, which, when
combined with suitable activity models for solid solution, should allow for accurate determination of
the conditions of metamorphism of ultramafic rocks.

INTRODUCTION

Modern petrology has come to depend more and more heavily upon computed
equilibrium relations among minerals and solutions. The need is felt equally by both
experimental petrologists and by those whose data and problems come from natural
assemblages. This need to compute equilibria has sharpened the demand for thermodynamic
data that are both comprehensive and internally consistent, i.e. that agree with all the
primary experimental data.

[Journal of Petrology, Vol. 27, Pan 6, pp. 1331-1364, 1986] © Oxford University Press 1986
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Information yielding thermodynamic data is acquired chiefly in two distinct ways. The
first and classically standard approach is through calorimetric measurement of individual
phase properties, and the second consists of determination of equilibria between assemblages
of phases. The latter, while dealing directly with some of the equilibria of interest, does not
determine any thermodynamic property of any individual mineral, but only changes in the
thermodynamic properties of the reaction. The two are related, however, by the fact that
these 'delta' properties can all be derived through linear combinations of the properties for
the individual phases. A satisfactory technique of thermodynamic analysis must evaluate
data from both sources, as well as data pertaining to heat capacity and molar volume. In
addition, there is a need to incorporate a growing body of data that involves minerals which
exhibit solid solution behaviour and/or ordering phenomena.

Several compilations of calorimetric data for minerals are in use at present, including those
by Kelley (1960), Kelley & King (1961), Robie et al. (1979), Stull & Prophet (1971), and
CODATA (e.g., 1978). Important differences between these notwithstanding, they all are
similar in that they make little use of constraints from phase equilibrium data. It has been
pointed out, however, that consideration of mineral equilibria can considerably refine values
determined calorimetrically (Zen, 1972). For example, typical uncertainties in calorimetric-
ally determined enthalpies of formation are 1-5-6 kJ mol"1, whereas the width of a phase
equilibrium bracket may translate to as little as 1-2 kJ mol"1 distributed among all the
phases in the equilibrium. For this reason, petrologists have increasingly turned to phase
equilibrium data for their fine-tuning of thermodynamic parameters.

Although several different techniques have been employed for the extraction of thermo-
dynamic parameters from phase equilibrium experiments, all are founded on the same
principle, namely, that the stable assemblage is the one with the lowest free energy.
Consequently, all we can deduce from a successful phase equilibrium experiment, in which
one assemblage is observed to be more stable than another, is the sign of the free energy
change. No other information is available. In particular, there is no information on where,
within a reversed bracket, the equilibrium conditions might lie. There exists no 'central limit
theorem' to favour the mid-point of a bracket, and no way to say how far from a 'half-bracket'
the equilibrium might lie. This non-central characteristic of such experiments was first
recognized by Gordon (1973, 1977), who introduced the technique of linear programming
(LIP) to the literature of experimental petrology. Briefly, LIP is a mathematical technique for
analysis of systems of linear inequalities which, in the case of phase equilibrium data, express
the sign of the free energy change of an experimentally observed reaction. The first step of the
solution involves establishing the existence of a 'feasible region' that is consistent with all
inequality constraints, while the last step uses an objective function to maximize or minimize
any variable or linear combination of variables. Following Gordon's lead, the linear
programming approach has been applied in several studies, including those by Day &
Halbach (1979), Day & Kumin (1980), Hammerstrom (1981), Halbach & Chatterjee (1982,
1984), Berman & Brown (1984), and Day et al. (1985).

Others have used techniques more recognizable to statisticians such as multiple linear
regression (Zen, 1972; Haas & Fisher, 1976; Haas et al, 1981; Robinson et al., 1982; Powell &
Holland, 1985), in which the statistical 'central tendency' was controlled by various schemes
of data weighting (Haas et al., 1981; Lindsley et al., 1981). The most extensive published
analysis to date is that of Helgeson et al. (1978), which used a method of successive fits to
experimental data in progressively more complex systems. Each new item of data added to
the compilation was required to agree with thermodynamic properties of phases that had
been fixed by previous analysis of experimental data, an unsatisfactory method because 'best
fit' curves are not required to be consistent with all brackets, the derived properties depend
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TABLE 1

Comparison of LIP/MAP and regression techniques for the analysis of phase equilibrium data

Linear programming analysis Regression analysis

Treats phase equilibrium data as statements of
inequalities in Ar G

Analyses individual half-brackets
—provides for constraints from unreversed experi-
ments
—every half-bracket can be analysed with different
assumptions (e.g., solid solution effects, different
starting materials)

Ensures consistency with all data (if consistency is
possible)

Provides a range of solutions (feasible region) from
which a unique solution is obtained with a suitable
objective function

Uncertainties approximated by the range of values
consistent with all data

Treats weighted midpoints of brackets as positions
where Ar G = 0

Analyses pairs of experimental half-brackets

Minimizes sum of squares of residuals, but does not
ensure consistency with all data

Provides a 'unique' solution (dependent on weighting
factors)

Uncertainties computed from variance/covariance
matrix

on the order of data analysis, and not all experiments that involve a given phase contribute to
the refinement of its thermodynamic properties.

There seems to have developed something of a schism between those who prefer the
well-tried methods of multiple linear regression and those who prefer to apply the technique
of linear programming to the analysis of phase equilibrium data. The purpose of this paper is,
in part, to set out clearly the differences between the two methods, and to argue that the
linear programming method, or a non-linear variation of it, is more powerful than regression
analysis, largely because it provides a mathematical technique that is compatible with the
nature of phase equilibrium data. Differences between the two techniques are summarized in
Table 1 and discussed in the following pages. The essential difference can be appreciated by
considering a pair of experiments which bracket a given equilibrium. Regression operates on
the pair of half-brackets and produces a solution that is controlled by, but not (necessarily)
coincident with, the midpoint of the experiments. LIP operates on individual half-brackets,
and produces a solution consistent with the directional sense of each half-bracket, but which
may lie at any point between the experiments. The significance of this difference is that, in an
analysis of favorable sets of experimental data (i.e. those for which it is possible to obtain
solutions that do not conflict with any experiment), LIP ensures consistency with all
half-brackets, while regression analysis may contradict individual data points in the process
of achieving a statistical 'best fit' to the weighted midpoints. This difference becomes
increasingly important as the number of experimental brackets grows and the opportunity
for inconsistencies among the data increases. Clearly, any analysis that purports to produce a
'best fit', and yet contradicts valid data, is not optimal.

It can also be argued on the basis of statistical treatment of the errors associated with phase
equilibrium data that regression is not an appropriate means of analysis for these data.
Demarest & Haselton (1981) showed that normal error distributions are associated only with
those data for which d/s < 1, where 2d is the temperature separation between half-brackets
and s is the standard error of reported temperatures. Although s is seldom documented, and
is difficult to assess from the information commonly reported by experimental petrologists
(c.f. Bird & Anderson, 1973), reasonable estimates indicate that d/s is commonly in the range
2-4. For such data, the probability distribution is constant across the central portion of a
bracket, and the midpoint of the bracket is no more probable than any other point.
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Regression techniques are appropriate, however, for the analysis of calorimetric and
volumetric data because these measurements can be assumed to be governed by a Gaussian
error distribution, with the mean value being the most probable. The technique of LIP can be
modified to take account of this fact by using a non-linear objective function that applies the
least squares criterion to these data. Thus, the method of deriving thermodynamic properties
which we discuss in this paper takes into account the nature of the uncertainties attending
each type of data used in the analysis.

We define an optimal set of thermodynamic properties by the following two criteria, first in
words and more formally below. An optimal set of properties is characterized by: (1)
Thermodynamic consistency with all valid experimental constraints, be they independently
measured properties of a phase or indirect constraints from phase equilibria. (2) Minimum
deviation, in the least-squares sense, of derived parameters from their directly measured
values.

Mathematical programming (MAP) methods, which include a variety of optimization
techniques of which linear programming is one, are used for the data analysis.* These
techniques are not dealt with in this paper, as numerous texts cover the topic (e.g.,
Himmelblau, 1972; Gill et al, 1981). In the following pages we provide details of the
mathematical programming approach, which in part reiterate, and in part extend the lucid
presentation of LIP techniques by Halbach & Chatterjee (1982). The order of presentation
follows the order of most general solution algorithms. We first discuss the constraints from
which a feasible solution is obtained, and show how to incorporate uncertainties in the data
used to formulate these constraints. We then discuss the objective function that defines
optimal values of all parameters using least squares criteria while maintaining the consistency
achieved in the first step. Lastly, we show an example of the method with an analysis of
experimental data in the system Mg0-SiO2-H2O.

CONSTRAINTS ON THE SOLUTION

Calorimetric constraints

Calorimetric and volumetric data directly constrain standard-state thermodynamic
properties (Af H°, S°, V°) of individual minerals. As most data are reported with two sigma
uncertainties (Robie et al., 1967,1979), these uncertainties can be used to bracket a measured
value, using upper and lower 'bounds' provided with most LIP/MAP software packages.
These bounds ensure that solutions will be within the uncertainties of these data, and 'best'
values can be derived in final optimization of the problem discussed below.

Although this procedure is straightforward in principle, several difficulties are commonly
encountered. For third law entropies, only the lower bound can be used if a zero-point
contribution for disorder of unknown magnitude is required for a given phase. For many

* The alternative method to MAP that has been addressed above is commonly termed unconstrained regression
analysis, whether linear of nonlinear. It is this technique that has been used to date by proponents of regression
analysis for the problem outlined here (Helgeson et al., 1978; Haas et al., 1981). There exist, however, constrained
regression methods that allow incorporation of a (limited) number of constraints on the fit parameters (see e.g.,
Lawson & Hanson, 1974). Typically, such least squares problems are solved by algorithms which proceed in the
reverse direction to MAP routines, in that they first solve the unconstrained problem. The initial solution is
subsequently modified by means of one or more suitable strategies aiming at reducing iteratively the inconsistencies
with the parameter constraints. If successful, one would expect such algorithms to produce optimal and consistent
solutions very similar to those obtained by MAP techniques and, at least in theory, the distinction between the two
methods becomes immaterial. We are not aware of any practical attempt to use constrained regression techniques to
solve an optimization problem of the size and structure outlined here, although a recent application (Ghiorso
et al., 1983) makes use of specially designed regression routines to calibrate thermodynamic properties for
multicomponent silicate melts on the basis of experimental data.
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minerals, various precise molar volume determinations do not overlap within the stated
uncertainties. Unless one value is preferred (because, for example, of sample purity or
superior phase characterization) a practical solution is to use bounds which span the entire
range of values and associated uncertainties. The most difficulty arises with enthalpies of
formation, which show a great deal of scatter between different determinations (e.g.
Af HfOrsterite summarized in Table 3), and calorimetric values for many phases are not
consistent with phase equilibrium data (Berman et al., 1985). We have found it most
convenient to establish reference values by placing bounds on the Af H° value of only one
phase for each component in the system under analysis, and then use the final optimization to
achieve consistency with as many other measured enthalpies as possible.

Phase equilibrium constraints

Phase equilibrium data are characterized by measured pressure, temperature, and phase
composition. In some sets of data, phases are of variable composition, and in some the
activities of one or more species may be controlled. Regardless of the variables that have
been measured, the basic thermodynamic information gained from conversion of phase
assemblage A to assemblage B under the static physical conditions of an experiment may be
cast into an inequality in Gibbs free energy:

GA > GB (1)

or, equivalently,

G B - G A < 0 . (la)

In general,

Ar G
FT

 <0 (products stable) (2a)

Ar G
PT

 >0 (reactants stable) (2b)

where Ar G
p
'
T is the Gibbs free energy of a reaction at pressure, P, and temperature, T

(Kelvin). These relations are independent of any reference state. The change in free energy of a
reaction is computed from:

phases

ArG
PT

 = I ^KG
PT

 (3)
i

where Vj are reaction coefficients, and Aa G
Pl r is the apparent Gibbs free energy of formation

(Benson, 1968; Helgeson et al, 1978) of phase i from the elements at P and T. Adopting as the
standard state the pure phase at P and T, this can be expanded by:

A a Gf r = AaH
PT

-TS
PT

 + RT\nai (4)

where at is the activity of i,

(5)
T, P,

and, if volume is considered to be independent of T,

(6)

S° and Af H° are the third law entropy and enthalpy of formation from the elements,

= S
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TABLE 2

Separation of variables for the mathematical programming problem (relation 8)

Left hand side Right hand side

(LHS) (RHS) Assumptions/equations for evaluation of RHS

T

AfH° jCpdT For minerals: Berman & Brown (1985); for aqueous
Tt species: H e l g e s o n et al. (1981)

T

S° - T - J ( C p / T ) d T For minerals: Berman & Brown (1985); for aqueous
jt species: Helgeson et al. (1981)

p

V° j(V
PiT

—V)dP Assumed equation of state for minerals and aqueous

Pi species

p

| Vt,,dP Assumed equation of state. For H2O: Haar et al.

P (1984), Delany & Helgeson (1978); for CO2: Kerrick
& Jacobs (1981)

RT In a, X-, known from experiments; y, = 1 (ideal), or calculated
with an assumed model

respectively, both at the reference pressure (PT = 1 b) and temperature (Tr = 298-15 K).
Combining equations 3-6 gives

phases T T P

AIG
PT

= £ vi{Af#°-r-s°+JCp,dr-r-j(Cp/r)dr+Jv;d/'+/mnai}. (7)
' T, T, P,

Each phase equilibrium experiment provides an inequality constraint (relations 2a or 2b)
which, when expressed through equation 7, involves a rather large number of parameters,
consisting of the experimental variables and the thermodynamic properties of all phases.
Mathematical programming (MAP) techniques require that we separate all terms into two
classes. The first class includes all terms with parameters to be determined, which are
collected on the left hand side (LHS) of the inequalities 2a or 2b. The second class includes all
terms that are thought to be known sufficiently well to be treated as constants, and are
therefore collected on the right hand side (RHS). Table 2 shows a convenient separation of
variables, along with the assumptions and equations that we have used to evaluate them. At
the pressure and temperature of each experiment, the sum of the terms on the RHS is a
constant, C. Combination of equation 7 with relations 2a and 2b then yields

phases minerals

X vi{Aff/?-T-S?}+ X Vi{K?(P-Pr)} < C (products stable) (8a)
i i

" f" vi{Af H° - T• S?} + """IfS v;{ V?(P - Pr)} > C (reactants stable). (8b)
i i

The relations given in 8a and 8b are linear in the variables (Af H°, S°, V?), and represent
the fundamental equations by which standard state thermodynamic properties of minerals
(or any other phase or species) can be derived from phase equilibrium data by means of
mathematical or linear programming. We have found that the separation of variables shown
in Table 2 generally allows for more than adequate solutions to large problems (Berman et

al., 1985). Thus, prior to the MAP analysis, CP functions of all minerals (and expansivity/
compressibility if volume is considered dependent on P and T) are evaluated by regression
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analysis of relevant data, and equations of state for gases and aqueous species are adopted. If
volumetric or calorimetric data are not available for certain minerals, or if such data are of
questionable accuracy, the appropriate coefficients can be left as variables on the LHS of the
MAP problem. In such cases constraints on these properties are needed to ensure reasonable
solutions, and a technique for providing these constraints is discussed below under 'The
Objective Function' section.

In analysis of phase equilibrium data involving solution phases, all activity terms can be
grouped on the RHS (as shown in Table 2) if compositions of all phases are known and
activity models are adopted. In many cases, it may be preferable to derive solution
parameters at the same time as standard state properties (e.g., Berman & Brown, 1984; Engi
et al., 1984). Activity terms for all phases can then be factored (RT In a = RT In y + RT In X)
such that the RTlnX terms remain on the RHS, while all parameters used to represent the
RTlny terms are moved to the LHS. Depending on the functional form chosen to describe
the latter terms, the constraint relations may be linear in all parameters or in all but a few
solution parameters (W), as long as compositions of all solution phases are known or can be
estimated. For example, Berman & Brown (1984) presented a generalized form for Margules
equations and showed that they yield linear constraints on the interaction parameters which
can be solved with the method of LIP. Other formulations, such as the quasi-chemical or the
van Laar equations, contain nonlinear terms because the interaction parameters cannot be
factored so as to be solely functions of compositional variables. In such cases, solution of
the problem requires mathematical programming techniques to analyse these nonlinear
constraints.

While exchange equilibrium data are also treated as discussed above, it may be useful to
comment further on the derivation of the sense of the inequality sign in (2), which depends on
the directional sense of the reaction observed experimentally. For standard reversal
experiments, this directional sense derives from the observed changes in phase proportions
between initial and final run charges. For exchange equilibria, the directional sense stems
from the observed changes in phase compositions. Thus, relation 2a (products stable) applies
if one can show that in the course of an experiment the composition of all solution phases
changed such that the phase components on the right hand side of an expressed equilibrium
increased, while those on the left hand side decreased. Relation 2b (reactants stable) holds if
the solution phases show the opposite sense of compositional changes.

It is also important to note that the structure of the problem described above applies
equally well to solubility experiments, although we are unaware of previous attempts to
analyse such data with LIP or MAP techniques. In most solubility experiments, such as

quartz = SiO2(aqueous) (9)

the progress of a reaction is monitored by tracing the changes in fluid composition.
Experiments in which equilibrium is approached from undersaturation involve quartz
dissolution, and they yield half-brackets for which relation 2a (products stable) holds.
Experiments in which equilibrium is approached from supersaturation yield half-brackets
for which relation 2b (reactants stable) holds. When equilibria have not been reversed, but
experiments have been run for a sufficiently long duration to expect that equilibrium was
obtained, it may be appropriate to add an 'artificial' constraint which provides the opposite
half-bracket for the equilibrium.

TREATMENT OF EXPERIMENTAL ERRORS IN PHASE EQUILIBRIUM DATA

In the case of two experiments that bracket an equilibrium, there is a probability of 10 that
the equilibrium lies between the experimental data points (e.g., Zen, 1972; Demarest &
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Haselton, 1981). Any intermediate point is equally likely as the location of the equilibrium
conditions. However, the nominal conditions reported for an experiment may not coincide
with the actual conditions because of unavoidable errors in control and measurement of run
conditions. Thus, to ensure certainty that the equilibrium conditions lie between the
conditions used in the data analysis, it is essential to use not the nominal values, but
adjusted values that account for the experimental uncertainty in defining the conditions
of the experiment. Specifically, the brackets must be expanded to the limits allowed by
the combined uncertainties in control and measurement so that they are less constraining
than the nominal values. In this way we may be certain that the true equilibrium lies
between the points used in the data reduction. If, after such adjustment, an experiment is
inconsistent, we must look to other causes such as insufficient reaction progress, inadequate
phase characterization, inappropriate equations of state, or unreasonable estimates of
experimental accuracy and/or precision. Consequently, it is important that the magnitude of
the errors reported by an experimentalist account for both the experimental precision
(arising from P-T fluctuations during a run) and for the accuracy (which incorporates
uncertainties resulting from calibration, temperature gradients across samples, etc.).
Insufficient reaction progress or incomplete characterization of any phase introduce doubt
as to the validity of the experiment, rather than numerical contributions to the precision or
accuracy.

In general, the P-T-X coordinates of experimental data should be adjusted in such a way
that the adjusted data form the widest permissible brackets for the equilibrium. Proper
treatment of experimental brackets thus requires knowledge of the slopes of the equilibrium
curve with respect to all intensive variables. The nominal value, /, of each variable controlled
during an experiment is adjusted to

I* = I + E A , (10)

where /* is the adjusted value, E is the error (best estimate of the combined precision and
accuracy) in this variable, and A, takes the value + 1 or — 1, as described below. For a given
bracket on the high or low temperature side of an equilibrium (/ = T), AT is equal to + 1 or
— 1, respectively. A, for other variables is given by

A, = Astab-Aslope (11)

where Aslab takes the values — 1 or + 1, depending on whether the high or low temperature
assemblage is stable, respectively, and As,ope takes the value + 1 or — 1 corresponding to the
sign of the (dljdT) slope of the equilibrium. In most cases the relevant (81/dT) slopes are
known from the phase equilibrium data, but where the slopes are uncertain and
thermodynamic variables are reasonably well known, they can be computed from the
thermodynamic relations: (dP/dT)x c = 0 = Ar5/Ar V, (dT/dXj)P G = o = (RT)/(Xj ArS), and
(dP/dXfa c = o = -{RT)/{XS Ar V). '

Reversal experiments

In reversal experiments, each experimental charge has the potential to yield one
half-bracket for an equilibrium. The directional sense of the half-bracket is determined by
growth of one assemblage and reduction of another from starting materials that contain
either reactants, products, or a mixture of both. The most important requirements in
assessing the reliability of such experiments are: (1) that phases are suitably well characterized
with respect to composition, ordering state, grain size, etc.; (2) that the amount of reaction
observed is sufficient to establish the direction of reaction with confidence; and (3) that
changes in the proportions of all phases are consistent with the reaction stoichiometry



THERMODYNAMIC DATA 1339

650 660 670 680 690 700

Temperature (C)
710

FIG. 1. Method used to derive the pressure and temperature of data points for MAP analysis (triangles) from
nominal experimental half-brackets (squares) with P and T uncertainties shown by error bars. Note that the
adjustment to account for experimental uncertainties must take into account the slope of the equilibrium curve (see

text).

without the appearance of extraneous phases, so that one is certain of the reaction for which
data have been collected.

For reversal experiments in which all phases are of fixed composition, the method of
adjustment for experimental errors is straightforward (Fig. 1). Because many dehydration
reactions change from positive to negative slope with increasing pressure, care must be taken
to adjust brackets with the appropriate slope. Thus, preliminary calculation of the
equilibrium curve may be necessary to ascertain the region of slope change, although the
actual value of the slope is not needed in the adjustment. Care must also be taken in adjusting
data for equilibria evolving H2O and CO2 which exhibit maxima in the T-XCO2 plane.

It seems worthwhile to point out that use of MAP or LIP techniques allows the
incorporation of some constraints from experimental data involving a solution phase even
when an activity model for a solution phase is not known or assumed. For example, if the
model is not known, and we have a pair of half-brackets on the equilibrium forsterite
(Fo) + pyrope (Py) = orthopyroxene (Opx) + spinel (Sp) (Fig. 2), the half-brackets in the
'Fo + Py' field place valid constraints on the thermodynamic properties of stoichiometric
enstatite because enstatite must have a smaller stability field than the stable aluminous

21.5

21.0 -

v_
13

2 0 . 5 -
CD

CL

20.0

1060 1080

Temperature (C)
1140

FIG. 2. MAP analysis applied to experimental half-brackets for an equilibrium involving a solution phase (Opx).
The low pressure experiment must be analysed in conjunction with a solution model for Opx, whereas the high
pressure half-bracket is a valid constraint for the equilibrium involving Opx as well as stoichiometric enstatite (En).
This is true because the equilibrium with En must lie at lower pressure than the displaced equilibrium with stable

aluminous Opx.
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orthopyroxene. The same argument more commonly applies when a solution model is used,
but when we are not certain that a given phase has attained its equilibrium composition. If,
for example, the starting materials for an experiment of short duration on the above
equilibrium contained stoichiometric enstatite, it is often preferable to use stoichiometric
enstatite for the 'Fo + Py stable' half-bracket, and the stable orthopyroxene composition for
the 'En + Sp stable' half-bracket, rather than assume that the equilibrium orthopyroxene
composition was attained.

Weight change experiments

Several studies monitor reaction progress by weight changes in isobaric series of
experiments, spanning a range in either temperature (e.g., Evans, 1965) or fluid composition
(e.g., Jacobs & Kerrick, 1981). Such experiments permit the determination of phase
equilibrium boundaries by extrapolation of the monitored weight or composition changes to
the line of zero weight or composition change. These data can be analysed with MAP
techniques by creating half-brackets that reflect the experimental uncertainties in location of
the equilibrium. In evaluating the existing data from weight change studies, we have observed
a surprisingly high proportion of inconsistencies. These are particularly common in studies
monitoring fluid composition (e.g., mole fraction ZCOJ, even though the experiments
themselves appear to have been performed carefully. Scrutiny of the reported procedures
leads us to propose two likely sources for the disagreement: (a) the experimental uncertainty
of each data point is commonly neglected when the locus of equilibrium conditions is
determined; and (b) the functional form fitted to the raw data has no theoretical basis and
may be inadequate.

Consider, for example, three data sets (Fig. 3) on two decarbonation reactions studied by
Jacobs & Kerrick (1981). These authors calculated equilibrium XCO2 values and their
uncertainties by fitting the experimental data to an arbitrary polynomial quadratic in XCOl,

ignoring: (a) the experimental errors in XCOl and ACO2 (the number of moles of CO2

consumed/produced in an experiment); and (b) the possibility that alternate functional forms
chosen to represent the data might yield an intercept at a different XCOr Until a functional
form derived on the basis of kinetic theory becomes available, point (b) may be best evaluated
by fitting the same experimental data sets to alternate arbitrary functions chosen with the
intent to represent the data locally, near ACO2 = 0.

We have investigated the combined effects of points (a) and (b) for the data reported by
Jacobs & Kerrick (1981) using a Monte Carlo approach to estimate the uncertainty in XCO2 at
ACOl = 0. The raw data were perturbed by U*R, where U denotes the reported experimental
uncertainty ( + 001 in XCO2 and + 1 fimol in ACO2) and R denotes a random number. For each
data point, one thousand such numbers were generated, having a standard deviation of 1 and
a mean of 0. For each set of perturbed data, a least squares fit was computed. In addition to
the quadratic polynome used by Jacobs & Kerrick, alternative polynomes were tried,
involving terms in (XCO2)~

l and (ATC02)
4. Figure 3 displays some representative confidence

bands resulting from these calculations. These figures illustrate several important conclu-
sions about the potential hazards in the interpretation of weight change data:

1. As long as the functional form to fit weight change data is not known theoretically, it is
not sufficient to represent the data by one type of polynomial. Several functions should be
tested and compared, both against the raw data and with respect to their behaviour near zero
weight change. In many cases, the error brackets indicated by such a procedure are
considerably wider than would be apparent from fitting to only one functional form.

2. For data sets that do not significantly cover regions on both sides of the equilibrium,
only one half-bracket can be defined with confidence.
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a) calcite + quartz + rutile

- sphene + CO2

1450 °C, 2 kbar)

0.3

\\| b) calcite + quartz + andalusite

- anorthite + CO2

(370 °C, 2 kbar)

0.2

o

2 6
o
£

o
O

0

V. V-.

i e ) calcite + quartz + andalusite

' - anorthite + CO 2

(400 °C, 2 kbarl

\

Mole fraction (CO2)

FIG. 3. Weight change data for two equilibria at different pressures and temperatures. The raw data with
rectangular error boxes, and the derived uncertainties in the equilibrium values of XCOl (solid bars on base lines) are
from Jacobs & Kerrick (1981). 2a confidence bands were computed from Monte Carlo analysis of regression curves
fit to three polynomials:

ACQ, = a + bx + ex
2 (shaded regions; function used by Jacobs & Kerrick)

ACQJ = a + bx + c/x (long-dashed line)
Ac0] = a + bx + ex

2
 + dx* (dotted line)

where x = ^COl-
For each diagram, uncertainties in the location of the equilibrium position are defined by the intersection of the

AcOl = 0 line with the computed 2a confidence bands. Where data lie at A c o , values that are significantly on both
sides of the zero base line (Fig. 3a), the bracket defined by two of the functions are in good agreement. Data collected
on one side of the base line serve only to define a single half-bracket (XCOl — 02 in Fig. 3c) because confidence bands
for all functions fail to intersect the base line at high XCOj. The alternate functions used to represent the data set in
Fig. 3b indicate larger uncertainties in the equilibrium position than derived by Jacobs & Kerrick (1981), with two of

the functions failing to define a bracket at high XCOl.
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3. From a theoretical point of view, fitting the kinetic behaviour of the two half-reactions
by one simple function is probably inappropriate, for the pertinent rate constants are likely to
be quite dissimilar. The error estimates obtained from a Monte Carlo analysis such as we
have conducted are therefore still somewhat optimistic. Furthermore their validity depends
crucially on the estimates of experimental uncertainties being realistic, with account being
made for possible systematic errors, due for example to the presence of additional volatile
species (CH4, H2) contributing to the total weight change observed.

THE OBJECTIVE FUNCTION

The preceding discussion outlines the first portion of the LIP/MAP problem: the structure
of the constraints and the considerations necessary to set up the constraint relations. The set
of constraint inequalities is analysed for internal consistency by mathematical programming
techniques (LIP if all constraints are linear), and unless some of the constraints are in mutual
conflict, such a set of constraints defines & feasible region within parameter space, such that
any set of parameter values (fit values) from within the feasible region satisfies all of the
constraint relations. It is quite commonly the case that various sets of experiments for one or
more equilibria are in conflict, and permit no values that are consistent with all data. In such
cases, the inconsistencies must be resolved by either: (a) removing certain data from the
experimental data base, usually on the grounds of incomplete phase characterization and/or
amount of reaction detected; or (b) expanding the errors assigned to certain experimental
data for which documentation of the source of errors is lacking or questionable; or (c)
modifying any of the coefficients of equations used to evaluate the RHS (Table 2), particularly
CP coefficients. To some it may seem to be a disadvantage of the LIP/MAP approach that
inconsistencies need be resolved during analysis. Although it is true that regression analysis
will produce solutions to systems of inconsistent data, meaningful solutions will only be
obtained if those obviously discordant data are removed and the remainder re-analysed (see,
for example, the discussion on pp. 19-21 of Haas et al., 1981). Thus, inconsistencies can and
should be resolved with either technique. We feel that it is advantageous to use a
mathematical technique that requires this critical evaluation step, and see no way to avoid the
exercise of judgement in screening which data are to be included in the analysis.

Once a feasible solution has been obtained, one requires a selection criterion or objective
function in order to define and find a unique 'best' solution. The simplest objective functions
are linear in the variables of the problem and might be formulated so as to find the maximum
or minimum AfH° of a particular phase, or the maximum or minimum of a linear
combination of AfH°, S°, and V° values for one or more phases.

The objective function we prefer is nonlinear in the variables of the problem, and was
developed to take account of the specific nature of the data, namely that in most chemical
systems there exist numerous measurements of the fundamental properties of phases,
especially of their molar volumes, heat capacities, entropies, and heats of formation. The
precision of these data is typically evaluated by the experimentalists reporting them and,
except for the temperature-dependent CP, their representation by a mean value with an
estimated standard error is probably justified. To the extent that such a representation
approximates a Gaussian error distribution with its mean equal to Zt and its standard
deviation equal to s,, it may be desirable to derive the Yj parameters by using the principle of
least squares in the definition of the objective function (F). Therefore, we minimize

parameters

F= I (3-lW (12)
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where the summation includes those parameters for which 'direct' physical measurements
exist (e.g., Af H°, S°, V°). The qualitative effect of using an objective function such as (12) is
that one obtains as close a match between fit parameters and physical measurements as is
permitted by the phase equilibrium data. The function proposed by Day & Kumin (1980),
which minimizes the sum of the absolute values of the differences, produces very similar
results but has the disadvantage of describing a discontinuous probability function.

In practice, we have found that application of (12) yields quite satisfactory solution sets.
The implicitly assumed normal probability distribution of the fit parameters has been
checked by computing residuals. As one might expect, outliers (unexpectedly large
deviations) occur more frequently for those types of data which result from complex, indirect
measurement. The uncertainty of Af H° measurements is more difficult to assess than that of
V° or S° data, a fact that is reflected in the residual distribution. For example, analysis of large
systems of data involving more than 70 minerals (Berman et al., 1985) has shown that,
whereas most V° and S° data are fit within 2<r, Af H° values are commonly fit within 3-4<r with
a few much larger deviations with the low-temperature HF determinations. These
observations, together with the wide scatter among different measurements of Af H° of
specific minerals (for example, forsterite, discussed below), indicate that calorimetric
enthalpies are the least accurate of the various data types used to determine thermodynamic
properties of minerals. For this reason, we advocate exclusion of highly discordant Af H°

values, a conclusion that may help to alleviate the ambiguity between the 'minimum
deviation' and 'minimax deviation' solutions proposed by Day et al. (1985). Although there
exist robust statistical methods (Huber, 1981) which are designed to accommodate such
outliers and which thus may eliminate undue subjectivity in data screening, further work is
needed to assess the practical consequences of such formulations.

A remaining shortcoming of the objective function (12) is that phase equilibrium data carry
no weight in the final optimization. Although, as discussed above, there is no justification for
striving to position equilibrium curves midway between phase equilibrium brackets, it is
somewhat unsatisfactory that equilibria be coincident with data points that have been
adjusted for their estimated maximum uncertainties. One way to avoid this situation is to add
to each constraint row representing a phase equilibrium half-bracket a 'slack' variable
representing the difference (in temperature, for example) between the position of the fit
equilibrium curve and the experimental data point. These slack variables can be added to the
terms in (12) with a penalty function, the value of which increases as the adjusted position of
any experiment is approached (pertinent slack variable approaches zero), but which becomes
negligible as the nominal position of each experiment is neared. The main difficulty in
combining the two components of the objective function lies in the relative weighting of
residuals from the calorimetric and phase equilibrium data. For small, favorable, or only
loosely constraining data sets, the problem may not be severe, but for data sets as large even
as that described in the second part of this paper, conflict between the two types of data is
unavoidable. Until further work defines a means of distributing the weight between these
two components of the objective function, we recommend use of (12) for the final
optimization of thermodynamic variables.

Optimization of CP or V(P, T) terms

It is frequently desirable to derive CP, expansivity, or compressibility coefficients
during analysis of phase equilibrium data if these coefficients are poorly defined by
direct experimental data, or when examining possible sources of inconsistencies among
experimental data. These coefficients can be derived in the MAP problem by changing the
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separation of variables (Table 2) so that they appear as variables on the LHS. The coefficients
can then be optimized using an objective function, modified from (12) such that the Yx are the
computed heat capacities (or volumes) evaluated at each temperature (and pressure) for
which the Cj> (or volumetric) data (ZJ were measured or estimated. This objective function is
extremely useful for producing small adjustments to heat capacity functions so as to allow
consistency to be obtained with otherwise inconsistent phase equilibrium data (see part II
below).

Optimization o/KD values from natural assemblages

Carefully evaluated natural KD data offer a valuable check on, and extension of
experimental data for many silicates, oxides, and other mineral groups. It is very important,
however, to apply stringent criteria to the selection of data. Close approach to exchange
equilibrium has to be demonstrated through mineral analyses, and the P-T conditions of
equilibration must be estimated with care as they are not known directly, in contrast with
experimental constraints.

If one assumes that measured distribution coefficients, KD, represent equilibrium
conditions, then one may stipulate that the derived parameters for the minerals depart as
little as possible from values that predict these measured Ko values. If the statement 'depart as
little as possible' is construed in the least squares sense, for example, these new constraints are
most easily met by including them in the (nonlinear) objective function. The separation of
terms is straightforward: at given P and T, the equilibrium constant K may be factored as
K = KD*Kr K is related to Ar G

p< T and the latter may be expanded according to (7).
Adopting explicit solution models for the coexisting solution phases permits factoring of Ky

in terms of solution parameters. These Ky terms contribute to the RHS constant of relations
8a and 8b, while KD remains as a LHS variable.

UNCERTAINTIES IN DERIVED THERMODYNAMIC PROPERTIES

Directly measured thermodynamic properties have well characterized uncertainties (2<j
errors are commonly tabulated) which are based on the precision of the measurements and
the uncertainties of auxiliary data. The task of assigning errors to thermodynamic properties
that have been derived from phase equilibrium data is a very different problem that has been
addressed repeatedly (e.g., Chayes, 1968; Zen, 1972; Bird & Anderson, 1973; Helgeson et al.,

1978; Demarest & Haselton, 1981; Haas et al., 1981). The difficulty in estimating uncertainties
in these data stems from: (1) the high probability for introduction of systematic errors
through analysis of many different types of experiments; (2) the high correlation between
errors in Af H° and S°, and between properties derived for different phases; (3) the inadequacy
of standard statistical methods for most phase equilibrium brackets because of the
non-normal error distributions generally attending these data (Demarest & Haselton, 1981);

(4) the commonly insufficient documentation of errors stemming from both calibration of
experimental equipment, and from control of intensive variables during experiments; and

(5) the need to rely on somewhat subjective criteria for resolving inconsistencies among data
sets, a process that usually leads to underestimation of uncertainties.

Most studies that rely primarily on phase equilibrium data have not reported uncertainties
in derived properties for one or more of the reasons listed above. This is true of the extensive
work of Helgeson et al. (1978) who estimate relative uncertainties in Aff/° values of
approximately 1 kJ mol ~' , and also of those studies that utilized the technique of LI P (Day &
Halbach, 1979; Day & Kumin, 1980; Halbach & Chatterjee, 1982, 1984). Haas and
co-workers (Haas et al., 1981; Robinson et al, 1982) and Powell & Holland (1985) do
compute uncertainties, but their significance must be questioned on the basis of the various
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assumptions that were made in relation to points 3 and 4 above. Although it may well be
impossible to compute errors from phase equilibrium data with the rigor which we might
like, estimated uncertainties do serve the important purpose of indicating relative errors, i.e.
which phase properties are well constrained and consistent with available data, and which
are not.

An indication of the magnitude of uncertainties in thermodynamic properties can be
obtained with MAP techniques by defining the range of values that are consistent with all
experimental data. This sensitivity analysis can be accomplished by formulating an objective
function:

TrS° (13)

which is first minimized and then maximized (while properties of all phases are allowed to
vary) to find the range of Af G° values for the ith phase that are consistent with all data. (The
uncertainties in Af H°, S°, or V° could similarly be determined, but for problems containing
many phases, the computational expense of finding the range of each phase property may be
prohibitive.) The resulting range of values will in all cases be no larger than the uncertainties
of direct measurements of phase properties, and, in most cases, considerably smaller. One
obvious shortcoming of this procedure is that, in some situations, the range of values will not
convey the overall confidence in derived properties. Consider two phases A and B that
participate in different equilibria for which we have extremely tight brackets. The procedure
described above will locate the range of values for each phase that are consistent with each
set of experiments. If we have numerous other equilibria which involve only phase A but
which are no more constraining than the first set of brackets, this information is not conveyed
in the results. For phase A, however, the absolute uncertainty must be considered less than
for phase B, because the possibility of systematic error is reduced with each additional set of
experiments that is consistent with its derived thermodynamic properties.

We also note that the range of permissible thermodynamic properties derived through LIP
or MAP techniques should not be taken as an invitation to adjust any group of
thermodynamic values, as the self-consistency of the data base would be destroyed. In order
to maintain thermodynamic consistency with all data, changes to the thermodynamic
properties of any phase must be compensated by changes in the properties of other phases,
and this process can be accomplished only with further LIP or MAP analysis.

APPLICATION TO THE SYSTEM MgO-SiO2-H2O

In this section, experimental data in the system MgO-SiO2-H2O are used to derive an
optimal set of thermodynamic properties for 10 phases: orthoenstatite (E), talc (T), forsterite
(F), quartz (Q), anthophyllite (A), chrysotile (C), antigorite (An), brucite (B), periclase
(P), and H2O (W). This system provides an excellent opportunity to apply the mathe-
matical programming techniques discussed above, both because of the wealth of calori-
metric and phase equilibrium data, and because the technique can be used to resolve
inconsistencies among experimental data, and uncertainties in phase relations which have
been controversial.

Greenwood (1963) was the first to undertake a systematic study of the stability field of
anthophyllite. He studied 6 different equilibria (Table 4), and suggested that the vapor-
conservative TEA equilibrium bounds the anthophyllite stability field at approximately
20 kb. On the basis of additional experimental data on two equilibria studied by Greenwood,
Chernosky (1976) suggested an upper stability limit of c. 5 kb. Solubility experiments of 8
different assemblages (Hemley et al, 1977a, b) led these authors to propose the existence of
two invariant points that bound the anthophyllite stability field only at low pressure.
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Chernosky & Autio (1979) presented additional experimental data for two of the equilibria
studied by Greenwood (1963), and were led to favour the topology of latter phase diagram,
but they did not rule out the possibility of invariant points limiting the anthophyllite stability
field at high pressure. Very recently, Chernosky et al. (1985) presented phase equilibrium data
for 5 of the 6 equilibria originally studied by Greenwood, as well as data for the TEA
equilibrium. These data, when combined with the large amount of precise calorimetric
measurements, place extremely tight constraints on phase relations in this system, with little
latitude for further change. We present a thermodynamic analysis of this extremely well
studied system in order to illustrate the advantages of the mathematical programming
technique in providing a means to (a) resolve inconsistencies between data, and (b) derive an
optimal set of thermodynamic properties of phases in this system which are consistent with
most available data and which permit phase relationships to be calculated with confidence.
The results have important applications to the metamorphism of ultramafic rocks, in so far as
denning the stability fields of mineral assemblages in this system.

Calorimetric and volumetric data

Calorimetric and volumetric data listed in Table 3 were used to constrain the
thermodynamic properties of phases within the uncertainties of these data. Because
enthalpies of formation cannot be determined directly with the accuracy needed for
calculating phase relations (see, for example, the range of values reported for forsterite and
enstatite in Table 3) only the values of quartz, periclase, and H2O were fixed during the
analysis in order to provide reference enthalpies for each component in the system.
Agreement with the calorimetrically determined Af H° for other minerals was sought during
the final optimization discussed below.

Previous LIP studies have not considered uncertainties in reported molar volumes of
minerals (e.g., Day & Halbach, 1979; Chatterjee et al, 1984; Day et al, 1985). However,
comparison of different determinations of molar volumes for most minerals indicates
significant uncertainties, which in many cases are somewhat greater than the precision of
individual measurements. Different determinations of the molar volume of talc, for example,
do not agree within the quoted uncertainties of the measurements, and probably reflect real
differences between samples synthesized under different conditions, and perhaps with
different degrees of stacking disorder. We account for the uncertainties in these data by
placing bounds on the volume of this phase which span the total range of all precise and
apparently accurate determinations. Consequently, the derived thermodynamic properties
can be considered to be representative of the 'average' phase used in the calorimetric and
phase equilibrium studies. We have constrained the molar volume of anthophyllite within the
uncertainty of the data for the synthetic phase studied by Chernosky et al (1985), which are in
good agreement with the data for the natural sample measured by Krupka et al (1985b).
These data indicate a slightly larger value than reported by Greenwood (1963), and used by
Day et al, (1985) in their analysis of this system.

Volumetric data at elevated pressure and temperature are not available for the hydrous
phases considered in this study. Because the calculated position of most equilibria (in
particular dehydration reactions with large values of Ar H and Ar S) are relatively insensitive
to variations of the volume of minerals at pressures less than 10 kb and temperatures less than
1000 °C (c.f. Helgeson et al, 1978, pp. 30-3), and because estimation of mineral expansivities
and compressibilities would introduce an additional and unnecessary source of uncertainty
in the calculations, we have assumed that molar volumes of minerals (with the exception of
quartz, discussed below) are independent of pressure and temperature.
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TABLE 3

Calorimetric and volumetric data for MSH phases

1347

Anthophyllite

Antigorite

Brucite

Chrysotile

Orthoenstatite

Forsterite

Periclase

Quartz

Talc

H 2O

AyH° (kJ mol ')*

-1208600 + 7-6

-924-54 + 0-4

-4364-33 ±3-4

-1546-63+ 20t
-1548-95+1-3
-1548-38+1-4

-2176-21+ l-3t
-2171-56 + 2-2
— 2176-96± 1-5
-2174-25+1-6
-2171-69+1-7
-2172-32+1-8
— 2173-53+ 1-8

-601-50 + 0-30

-910-70 ± 1 0

-5915-90 ±4-3t

-285-83 ±0-04

S'{Jmol->)

53700 ±2-7

3598-53 ±26-8

6318 + 013

221-33 + 1-7

66-27 ±0 1 0

9411+010

26-95±015

41-46 ±0-20

260-79 ±0-80

69-95 ±008

V° (cm
2
 mol'

1
)

265-44 ±0-42

1749-13 ±8-7

24-63 + 0-07

107-46 + 0-42

31-312 + 0-02

43-79 + 0-03

11-25 ±0 0 1

22-688 ±001

136-25 ±0-26

Reference

Weeks (1955)
Krupka et al. (19856)
Chernosky et al. (1985)
King et al. (1967)
Kunze (1961)
Robie et al. (1979)
Giauque & Archibald (1937)
Robie et al. (1967)
King et al. (1967)
King et al. (1967)
Chernosky (1975)
Brousse et al. (1984)
Charlu et al. (1975)
Shearer & Kleppa (1973)
Krupka et al. (19856)
Brousse et al. (1984)
Shearer & Kleppa (1973)
Brousse et al. (1984)
Torgeson & Sahama (1948)
Charlu et al. (1975)
King et al. (1967)
Kiseleva et al. (1979)
Kiseleva et al. (1979)
Robie et al. (1982)
Robie et al. (1967)
CODATA (1978)
CODATA (1978)
Krupka et al. (1979)
CODATA (1978)
CODATA (1978)
Robie et al. (1979)
Barany(1963)
Robie & Stout (1963)
Robie et al. (1967)
CODATA (1978)
CODATA (1978)

* All values computed using heat capacity functions of Berman & Brown (1985).
t Values not used in final optimization for reasons discussed in text.

Heat capacities of minerals are represented by the equation:

w h e r e , for Trcf <T< T ; ,

(14)

(14a)

Quartz is the only phase considered in this study which undergoes a lambda transition.
Equation 14a provides for reasonably accurate representation of its CP to within
approximately 30° of the transition, and equations presented in appendix II of Berman &
Brown (1985) allow for calculation of the thermodynamic properties of quartz at elevated
pressures. In order to reproduce the PT position of the polymorphic transition (Mirwald &
Massonne, 1980) with the assumption that the volume of /?-quartz is constant, it is necessary
to consider the volume of a-quartz as a function of P and T (c.f. Helgeson et al., 1978,



TABLE 4

Phase equilibrium data and associated uncertainties used in mathematical programming analysis

T = 3E Q W

A = 7E Q W

T F = 5E W

9T 4F = 5A 4W

A F = 9E W

7T = 3A 4Q 4W

P range (bars)

500-1000
10000-17000

500-1803
2000

2000-4000
1000-2600
6000-30000*
1000-2600

10000
500-3000

2000
2000-2600

500-6000
500-4000

6000-30000*
2000

1000-4000
500-6000

2000-2600
500-6000
500-3000

1000-5000
2000

T range (°C)

656-700
785-800
648-766
726-740
730-770
662-805
800-840
750-772

810
664-775

750
658-712
621-679
600-706
680-750
651-665
663-694
597-716
695-712
632-735
647-742
694-775
715-730

No.

2
5
8
2
3
4
6
5
1
9
1
2
3
10
7
2
7
12
2
9
10
5
2

Apparatus^

CS
PC
CS
CS
CS
CS
PC
CS
PC
CS
CS
CS
CS
CS
PC
CS
CS
CS
CS
CS
CS
CS
CS

Errors

P

1%
300
2%
20
20
50
5%
50

300
20

5%
50

1%
2%
5%
20
50

1%
50

1%
20
50

5%

usedX

T

6-9
10
5
5
10

5-7
10

5-10
10

5-7
5

5-11
5-6
5
10
5
5

6-10
5

5-9
5-7
5-12
7

Reference

Chernosky et al. (1985)
Chernosky et al. (1985)
Chernosky (1976)
Skippen (1971)
Bartholomew (1984)
Greenwood (1963)
Kitahara et al. (1966)
Greenwood (1963)
Chernosky et al. (1985)
Chernosky & Autio (1979)
Fyfe(1962)
Greenwood (1963)
Chernosky et al. (1985)
Chernosky (1976)
Kitahara et al. (1966)
R. G. Berman (see text)
Greenwood (1963)
Chernosky et al. (1985)
Greenwood (1963)
Chernosky et al. (1985)
Chernosky & Autio (1979)
Greenwood (1963)
Fyfe (1962)

o
CO

m
SO
2



T 4 E = A
5C = 6F T 9W

C B = 2F 3W

An = 18F 4T 27W

B = P W

Q = S

C 2S = 2T W
An 30S = 16T 15W
T = 3E S W
7T = 3A 4S 4W
2A = 7F 9S 2W
A = 7E S W
2E = F S
T 6 H + = 3Mg + + 4S4W

10200-16 700
500-6500

1113
1000-3000

10000-30000*
20000-30000*

500-7000
2000-6000

10000-15000
3950-8230
240-2000

17000-33000*
2000*

1000-2000
250-1000

1-2000*
1000*
1000
1000
1000
1000
1000

1

755-790
399-536
430-440
425-475
560-610
450-540
330-440
480-590
615-660
690-811
554-664
920-1100
665-676

Equilibria

200-500
250

90-450
300-450
649-690
640-670
650-670
660-715
680-720
29815

3
11
2
6
4
5
12
6
4
12
7
6
2

involving

22
6
12
5
5
4
3
10
5
2

PC
CS

cs
cs
PC
PC

cs
cs
PC
IH

cs
PC

cs
aqueous silica (S)§

CS
CS
CS
CS
CS
CS
CS
CS
CS

300
2%
2%
2%
5%
5%
5%
5%
5%
1%
30
5%
5%

50
10

2%
2%
1%
1%
1%
1%
1%

10
6-10
10
10
10
10
10
5
10
5
5
12
3

5
3
5
5
5
5
5
5
5

Chemosky et al. (1985)
Chemosky (1982)
Kalinin & Zubkov (1981)
Scarfe&Wyllie(1967)
Kitahara et al. (1966)
Kitahara et al. (1966)
Johannes (1968)
Evans et al. (1976)
Evans et al. (1976)
Schramke et al. (1982)
Barnes & Ernst (1963)
Irving et al. (1977)
Franz (1982)

Hemley et al. (1980)
Ragnosdottir & Walther (1983)
Hemley et al. (1977a)
Hemley et al. (19776)
Hemley et al. (19776)
Hemley et al. (19776)
Hemley et al. (19776)
Hemley et al. (19776)
Hemley et al. (19776)
Bricker et al. (1973)

X
m
50

o
rj
w
•<

Z
>

o
o

* Data not used in final analysis for reasons discussed in text; see figures for comparison with these data.
t Apparatus: CS = cold seal, IH = internally heated, PC = piston-cylinder.
t Tabulated uncertainties were accepted as reported, except that 3° were added to temperature variations reported by Chemosky & Autio (1979),

Chemosky et al. (1985), and Barnes & Ernst (1963) in order to account for estimated calibration uncertainties.
§ Uncertainties in aqueous silica concentration taken as 5 per cent.
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pp. 81-5). Constant values of (dV/8T)P = 5-4212 x 1(T5 J ' 1 K" 1 and (dV/dP)T =

— 2-356 x 10~ 6 Jb~ 2 are consistent with these data, the Q. function for quartz (Table 5), and
the transition slope of 0-0237 kb" 1 .

CP coefficients used in our analysis (Table 5) were taken from Berman & Brown (1985),
with three exceptions. Preliminary MAP analysis showed that several phase equilibrium
experiments were inconsistent with the calorimetrically determined entropy of orthoenstatite
(Krupka et al., 1985£>) using the CP function for this phase of Berman and Brown (1985). A CP

function consistent with all data (Table 5) was derived in the MAP analysis by the technique
described above, and is only very slightly different (within 0-02 per cent) from the function
determined from regression of the CP data alone.

The CP of chrysotile given by Berman & Brown (1985) was obtained using their predictive
model, while their CP function for antigorite may be somewhat in error due to uncertainties
introduced by correcting the original CP data to the antigorite formula used in this study.
Both functions were modified (within 2 per cent) during MAP analysis of phase equilibrium
data in order to improve agreement with the calorimetrically determined entropy and phase
equilibrium constraints.

Several additional points are worthy of mention. The calorimetric data for anthophyllite
and talc have been measured up to 680 and 640 K, respectively, whereas phase equilibria
involving these phases have been studied up to 1070 K. The form of the CP function (14)
allows for reliable extrapolation to high temperature, as discussed by Berman & Brown
(1985), and use of this equation can lead to significantly different standard state properties
than those derived using the Maier-Kelley equation. The natural sample of Fe-bearing
anthophyllite used in the DSC measurements contained approximately 90 per cent of the Mg
end-member. The function given in Table 5 was derived by correcting the original data for
all impurities using the oxide CP coefficients given by the predictive model of Berman &
Brown (1985).

Analysis of phase equilibrium data

Phase equilibrium data relevant to the MSH system are presented in Table 4. Chernosky
(1976) originally pointed out an apparent inconsistency between his data for FT = EW and
the data of Greenwood (1963) for FT = AW. The LIP analysis of Day & Halbach (1979)
utilized only the data of Chernosky because of unresolved inconsistencies with the data of
Greenwood which they suggested were most apparent in the data for A = EQW and
TF = EW. Nor did these authors utilize the solubility data of Hemley et al. (1977a, b), or the
estimated positions for several univariant equilibria based on these data. Day et al. (1985)
recently presented a LIP analysis of this system, but they also considered only the phase
equilibrium data of Chernosky and co-workers. Our analysis differs in substance from that of
Day et al. (1985) in that all phase equilibrium data are considered and incompatibilities are
addressed.

Preliminary analysis of the data in Table 4 indicated major inconsistencies between several
sets of data, which we discuss below. The solubility data of Hemley et al. (1977a, b) for
chrysotile and antigorite are incompatible with the results of hydrothermal experiments on
the equilibria C = FTW (Chernosky, 1982) and An = FTW (Evans et al., 1976). The latter
data suggest larger stability fields for both serpentine minerals, a discrepancy that cannot be
due solely to the use by Hemley et al. of natural materials with 2-5 wt. per cent impurities.
The hydrothermal data were favoured for the following reasons: (a) the higher temperatures
of experiments by Chernosky (1982) and Evans et al. (1976) reduces the influence of kinetic
factors; their results are internally consistent and show substantial amounts of reaction; and



TABLE 5

Coefficients for calculation of heat capacity {J mol~
l
 K'

1
) with equation 14

Mineral

Anthophyllite

Antigoritet

Brucite

Chrysotilef

Orthoenstatitef

Forsterite

Quartz
a = /?§

Talc

Formula

Mg7Si8O22(OH)2

Mg48Si34O85(OH)62

Mg(OH)2

Mg3Si2O5(OH)4

MgSiO3

Mg2SiO4

SiO2

Mg3Si4O10(OH)2

1219-31

7394-51

136-84

61002

166-58

238-64

8001
848

664-11

-57-665

00

-5-371

-55-812

-12006

-20013

-2-403
499

-51-872

fc2x/0"3

-347-661

-5483-630

-43-619

-18-573

-22-706

00

-35-467
-009187

-21-472

k 3 x / 0 - 7

440090

8728-412

55-269

19-547 •

27-915

-11-624

49157
00002461

-32-737

Range (K)

250-385
344-679
276-296
405-847
253-299
350-666
256-296
400-1000
254-385
344-999
973-1273
253-299
304-380
398-1807
250-290
400-820
373-1373

1001-1676
250-290
349-639

A AD*

007
0-46
0-82
0-99
0-32
014
007
0-52
006
0-37
0-84
0-08
0-89
0-21
019
0-32
0-57
0-81
0-62
0-23

Reference

Krupka et al. (1985b)
Krupka et al. (1985a)
King et al. (1967)}
King et al. (1967)}
Giauque & Archibald (1937)
Kinget al. (1975)
King et al. (1967)
Estimated (Berman & Brown, 1985)
Krupka et al. (1985b)
Krupka et al. (1985a)
Haselton (1979)
Robie et al. (1982)
Robie et al. (1982)
Orr (1953)
Westrum (unpublished data)
Ghiorso et al. (1979)
White (1919)
Richet et al. (1982)
Robie & Stout (1963)
Krupka el al. (1985a)

H
X

m

o
a
• <

z

—
o
D

H

* Average absolute per cent deviation of data from adopted function.
t CP function adjusted by analysis of phase equilibrium data (see text).
% Data adjusted to molecular weight of antigorite used in this study.
§ Tabulated values: transition temperature, 7)(K), heat of transition (J moP1), (i in (J moP1)0

'
5
/K, and l2 in (J mol~')°'5/K2 of equation 14a; Trcf = 373 K

(only the ko-k3 terms are used for the CP of /?-quartz).
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(b) Chernosky's (1982) data are for the most part consistent with all other chrysotile
equilibria listed in Table 3, and with the data of Johannes (1969) for equilibria involving
mixed volatiles (Berman et al, 1985).

Thermodynamic properties of chrysotile and antigorite derived from the solubility data of
Hemley et al. (1977a, b) lead to the metastability of chrysotile above 298-15 K (e.g., Helgeson
et al, 1978). Although kinetic factors (e.g., Dungan, 1977) and solid solution effects
complicate interpretation of natural occurrences, the widespread occurrence of chrysotile in
low T serpentinites (e.g., Evans et al, 1976; Evans, 1977) suggests a true stability field for this
phase. Consequently, we have added a 'field' constraint to the problem which consists of a
low-temperature 'half-bracket' for the C = AnB equilibrium at 250 °C and 2 kb. This
temperature represents the maximum temperature for this equilibrium that allows con-
sistency with other phase equilibrium and calorimetric data (Tables 3 and 4). This kind of
'artificial' data point is extremely useful for imposing constraints from natural occurrences,
and is similar in intent to the parametric programming procedures discussed by Halbach &
Chatterjee (1982).

MAP analysis of all phase equilibrium data involving the phases F, T, A, E, and W prior to
publication of the data of Chernosky et al. (1985) revealed a major inconsistency in these
data: all data in Table 4 are mutually consistent with either Chernosky's (1976) data for
FT = EW or Greenwood's (1963) data for FT = AW, but not with both. As details of
experimental procedures reported in both studies did not reveal the source of the
disagreement, resolution of this inconsistency required additional experiments, and it seems
worthwhile to note that the design of key experiments is a major advantage of the
mathematical programming approach. Experiments performed at UBC in the past year
using synthetic materials provide a 2 kb bracket for the FT = EW equilibrium (Table 4),
which corroborates the results of Chernosky (1976). Chernosky et al (1985) recently reported
data for FT = AW that indicates equilibrium approximately 20° below the position
determined by Greenwood (1963). In an attempt to discover the source of this discrepancy,
we have reexamined Greenwood's unpublished experimental run notes, and found that
critical FTAW runs used starting materials that included small amounts of cristobalite and
enstatite, in addition to the phases involved in this equilibrium. It now seems likely that
changes in the amount of anthophyllite observed in some experimental runs by Greenwood
(1963) were due to the operation of reactions other than the FTAW reaction.

In light of this discussion, we have used in our MAP analysis all available phase
equilibrium data (Table 4), except for those experiments that involved extraneous phases
either in starting materials (Greenwood, 1963) or in run products (Chernosky, 1976, 1982;
Chernosky et al., 1985), and in which the observed changes in the proportions of reactants
and products were contradictory (e.g., TE = A experiments of Chernosky et al., 1985). In
addition, we did not use any data above 15 kb due to uncertainties in the thermodynamic
properties of H2O at high pressures, and because mineral compressibilities/expansivities
were not included in our equations of state. All phase equilibrium data were adjusted for
reported or estimated uncertainties (precision and accuracy) in pressure, temperature, and
composition (Table 4) as described above.

Results

The final solution of the MAP problem was obtained using the objective function (relation
12) which minimizes discrepancies with calorimetric and volumetric measurements. All data
shown in Table 3 were used in the final optimization except for Af//° values of talc
(preliminary analysis indicated discrepancies of » 2a), as well as forsterite and enstatite. The
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PHASES

FIG. 4. Comparison of thermodynamic properties derived by MAP analysis of all experimental data (zero base line)
with direct measurements on phase properties. All derived properties are consistent within the uncertainties of the

measurements except for the Af H° values for talc, anthophyllite, and brucite (see discussion in text).

latter two values were excluded because the range of reported values precluded selection of
'best' values.

The thermodynamic properties of phases in this system which result from our analysis are
listed in Table 6, and shown in comparison to calorimetric values in Fig. 4. For volumes and
third law entropies, all fit values lie within the uncertainties of measurements, a result that is
particularly satisfying given the diverse nature of the phase equilibrium data utilized in this
analysis, and the extremely small uncertainties associated with the recent calorimetric
measurements of Krupka et al. (1985b). Although the analysis of phase equilibrium data in
this system led Day et al. (1985) to the conclusion that the calorimetrically determined
entropy of anthophyllite might be in error, our analysis indicates that the phase equilibrium
and calorimetric data are in good agreement. The different results of Day et al. (1985) appear
to be related, at least in part, to the procedure they used to correct the Cp data for a natural
anthophyllite to its end-member composition. The Cp function adopted by Day et al. is
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TABLE 6

Thermodynamic properties derived by mathematical programming analysis of phase

equilibrium, calorimetric and volumetric data

Anthophyllite

Antigorite

Brucite

Chrysotile

Orthoenstatite

Forsterite

Periclase

Quartz (a)
(«
(«)

Talc

SiO2(aq)

H2O

A fG°(W mo/"1)

- 1 1 345-94
( - 1 1 333-6/-11 358-6)

-66084-43
( - 6 5 987-7/-66 131-9)

-834-60
(-834-1/-835-7)

-4035-95
(-4030-2/-4037-9)

-1458-50
(-1457-2/-14601)

-2055-20
(-2051-3/-2057-8)

-569-20
(-568-9/-569-6)

-856-29
- 8 5 5 0 3

(-855-2/-857-4)
-5519-62

(-5513-2/-5524-9)
-83306

(-832-0/ -834-4)
-237-13

A,H°{kJ mol'
1
)

-12072-45

-7136814

-925-63

-4363-94

-1545-84

-2174-57

-601-50

-910-70
-908-63

-5899-49

-88100

-285-83

S°{J mo/"1)

534-98

361611

6319

22013

66-28

9410

26-93

41-46
44-21

260-76

63 18

69-92

V°(cm
2
 mor

1
)

265-69

1742-63

24-63

107-20

31-31

43-61

11-25

22-69
23-72

136-28

Values in parentheses indicate the ranges in AfG° that are consistent with phase equilibrium,
calorimetric and volumetric data (Tables 3 and 4).
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FIG. 5. Comparison of heat capacity functions for Mg-anthophyllite used in this study (Table 5), by Day et al. (1985),
and by Krupka et al. (1985a). All functions were fit to Q. data (squares; some data omitted for clarity) after correction
for impurities (see text) in the natural sample (10 per cent Fe/(Fe + Mg)) measured by Krupka et al. (1985a, b).
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systematically 2 per cent lower between 298-650 K than the function used in this analysis
(Table 5) or given by Krupka et al. (1985a) (Fig. 5). As a consequence, S650-S298 calculated
with the Day et al. function is 20 J mol" ' K~ ' less than computed with our function. This
difference is larger than the difference in derived S° for anthophyllite (535 J mol ~ * K ~' in this
study compared to 541-2 J mol" * K" J) , because it is partially compensated for by their use of
a smaller molar volume for anthophyllite (265-7 cm2 in this study compared to 264-4 cm2).

Enthalpies of formation have been measured for all phases considered in this study, with
the exception of antigorite. The calculated values for forsterite and enstatite are within the
range of uncertainties of multiple calorimetric determinations, but we emphasize that the
scatter in these measurements underscores the need for phase equilibrium data to refine heats
of formation determined by calorimetric methods. The enthalpies of formation of brucite and
anthophylite are slightly outside of the calorimetric brackets, while the value for talc is
approximately 16 kJ mol"1 less negative than measured by Weeks (1955). The latter two
calorimetric values were derived from heats of solution in HF at room temperature, in
contrast to the more recent technique of high temperature solution in borate melts. Analysis
of 70 minerals in an 11 component system (Berman et al., 1985) shows very similar results,
where the only serious discrepancies between derived and measured heats of formation occur
with the values based on dissolution in HF. These discrepancies can be ascribed to the more
complex reaction schemes needed to calculate heats of formation by this technique, and also
to incomplete dissolution which is more likely at the low temperature of the HF

measurements.

Comparison of the positions of calculated equilibria with all experimental data (including
those data that were not considered in the MAP analysis) are shown in Figs. 6-12. All
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FIG. 6. Comparison of experimental data for T = EQW (filled symbols and crosses) and TF = EW (open symbols)
with computed equilibria. Symbols show the positions of data after adjustment of nominal values (end of tails) for
experimental uncertainties. Half-brackets showing growth of the low temperature assemblage have tails pointing to
higher temperature; those showing growth of the high temperature assemblage have tails pointing to lower

temperature.
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equilibria are consistent with the experimental data adjusted for errors, with the following
exceptions: (a) two half-brackets of Greenwood (1963) for the equilibrium FT = AW (Fig. 8)
and one for the equilibrium A = EQW (Fig. 7) for reasons discussed above; (b) the solubility
data for chrysotile and antigorite (Fig. 12) of Hemley et al. (1977a, by, and (c) two low pressure
half-brackets of Chernosky (1982) for the metastable chrysotile breakdown equilibrium (Fig.
9) are inconsistent with the calorimetrically determined entropy of chrysotile. The calculated
curve is 10° higher than the 05 kb reversal and 3° lower than the 20 kb reversal. Although the
source of these inconsistencies is not apparent in the reported experimental results, other
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phase equilibrium data (Table 4 and Fig. 9) for this equilibrium support the calculated
position at 20 kb; (d) the 2 kb bracket of Franz (1982) for the B = PW equilibrium (Fig. 10) is
inconsistent by 5° with the more extensive data of Barnes & Ernst (1963); and (e) the high
pressure data of Kitahara et al. (1966) for the equilibria T = EQW (Fig. 6), TF = EW (Fig. 6),
and C = FTW (Fig. 9) which are displaced to higher temperatures than other data sets.
These discrepancies are probably related to the use of metastable, poorly crystalline starting
materials which were synthesized in experimental runs of extremely short duration.

The stable phase diagram for the MSH system (Fig. 13) has the topology predicted by
Greenwood (1971), with repeating [Q] and [F] invariant points bounding the stability field
of anthophyllite. The invariant point locations (with the ranges of possible positions in
parentheses) are: 6-4 (5-9-7-2) kb-683 (677-687) °C and 12-0 (10-5-12-8) kb-797 (793-810) °C
at high pressure, and 0-055 (0-03-006) kb-550 (515-565) °C and 0-125 (0-06-0-15) kb-552
(517-567) °C at low pressure. These ranges in the invariant point locations were determined
by finding the maximum and minimum pressures and temperatures for various equilibria
whose intersections define the invariant point locations, while maintaining consistency with
all experimental data. The TEA equilibrium was used to define the ranges of pressures of the
two high-pressure invariant points and the temperature ranges for the low-pressure points.
The TAQW and FTAW equilibria were used to define the temperature ranges of the
high-pressure [Fo] and [Q] invariant points, respectively, and the pressure ranges of
the same invariant points at low pressure. The resulting uncertainties in the positions of the
higher pressure invariant points are smaller than calculated by Day et al. (1985) because we
have used calorimetric and volumetric data in addition to all phase equilibrium data to
constrain the phase diagram. Although consideration of the calorimetric data forces some of
the computed equilibria to the extremes of several phase equilibria half-brackets, the
calorimetric data do place valid constraints on the positions of the various equilibria, and
we feel that the combined experimental constraints must be used to define both the best set of
thermodynamic properties and the best phase diagram.

The stable phase relations shown in Fig. 13 are in excellent agreement with the sequence of
mineral assemblages observed in metamorphosed ultramafic rocks (e.g., Evans, 1977), and
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FIG. 13. Stable phase diagram for the MgO-SiO2-H2O system, calculated from the thermodynamic properties
derived in this study (Tables 5 and 6), using the program PT-system (Perkins et al., 1986).

the tight constraints on the position of the TE = A equilibrium allow calibration of the
pressure dependence of the various T-XCO2 topologies discussed by Evans & Trommsdorff
(1974). The steep P-T slope of many of the equilibria in this sytem make them well suited for
geothermometry, and recent work on Fe-Mg solution models for the phases in this system
(Engi et al, 1984) should allow for reliable applications to natural assemblages. The
assemblage An + E limits the upper pressure stability of the F + T assemblage, but we are
unaware of field occurrences which indicate stable coexistence of An + E.

TrommsdorrT(1983) has recently suggested that field occurrences of metaperidotites are at
odds with the stability relations (such as Fig. 13) calculated on the basis of experimental
studies, and he suggests that the discrepancies may be due to structural differences between
natural and synthetic minerals. Although chrysotile clearly occurs in serpentinites at higher
temperatures than allowed by our fit of the experimental data, interpretation of field
occurrences is hampered by the sensitivity of the position of the C = AnB equilibrium to the
effects of solid solution and possibly by uncertainties introduced by kinetic factors. Direct
experimental determination of this equilibrium or more detailed field studies on the effects of
solid solution on natural assemblages are needed before the relative stability fields of the
serpentine minerals can more confidently be established.

On the basis of PT estimates for natural assemblages, Trommsdorff (1983) inferred a
negative PT slope for the TEA equilibrium in order to account for the appearance of T + E
rocks near Cima di Gagnone, Ticino, Switzerland and elsewhere with increasing meta-
morphic grade. In so far as the entropies of talc and anthophyllite were determined on
natural samples and demand a positive slope for the TEA equilibrium, and most phase
equilibrium data listed in Table 4 were obtained with synthetic phases and also require a
positive slope, we see no evidence for the discrepancies between natural and synthetic phases
suggested by Trommsdorff. Of the variety of assumptions underlying his conclusion, the
most critical would appear to be the PT paths followed during the metamorphic events in the
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Central Alps. The strong evidence for a positive slope for the TEA equilibrium suggests that
the T + E assemblages probably formed more in response to an increase in pressure than to
an increase in temperature during metamorphism.

SUMMARY
The technique of mathematical programming is proposed as a preferred method for

extracting optimal thermodynamic properties from diverse experimental data sets. This
technique offers the distinct advantage of accounting for the varying nature of, and the
uncertainties attending all types of experimental data. Phase equilibrium data are treated as
inequalities in the Gibbs free energy of reactions, and an objective function uses the least
squares criteria to optimize agreement with calorimetric and volumetric data, while
maintaining consistency with phase equilibrium data.

Application of these techniques to experimental data in the system MgO-SiO2-H2O has
led to resolution of major inconsistencies among the phase equilibrium data. Furthermore,
the derived thermodynamic properties are in excellent agreement with measured heat
capacities, entropies, volumes, and most enthalpies of formation. Although this agreement is
encouraging given the large amount, and the wide variety of techniques used to obtain these
phase equilibrium data, the ability of the mathematical programming technique to provide
solutions that maintain consistency within the uncertainties of all experimental data becomes
increasingly important as the scope of thermodynamic analysis expands to much larger
systems in which the opportunities for inconsistencies among data are greatly multiplied.
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