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ABSTRACT: 
Calculation of the load peak voltage, potential energy and power consumption of a Marx impulse generator, as a 
function of time, are presented. The equations are generalized and can be used to the design of any type of n-stage 
Marx impulse generator. The results were validated for a thyristor controlled Marx impulse generator with a maximum 
number of stages of 10 and 3 kV input DC voltage, which used 1 MΩ resistors and 33 nF capacitors in its topology. 
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1.  INTRODUCTION 

High-voltage impulse generators are one of the 
most important components for science and military 
applications, such as laser [1], x-ray [2-3], plasma [4], 
[5], ignition systems [6], etc. All these applications 
work based on the capacitor discharge method [7–9]. 
Due to the simple art topology and good performance, 
the Marx pulse generator is used in discharge capacitor 
application. Its topology consists of capacitors, resistors 
and switches [10]. It generates the pulses by charging 
the capacitors in parallel and discharging them in series 
into a load [11–13]. 

The rapid discharged of the electricity generates a 
high electrical power known as pulsed power. Pulsed 
power is the physical value that indicates the energy 
change per unit of time. The power depends on how 
fast the energy is released [14]. It is also described as a 
technology for storing and controlling the electric 

power [15]. The pulsed power, which has a wide area 
of application in science and technology, is a method 
that can be used to express the management or control 
of a constant power for a long period of time. 

Many attempts have been made to improve the 
performance and develop the topology of the Marx 
circuit [16–19], and recently a portable [20] and 
smaller size [21] generator was presented. The basic 
mechanism of this circuit which is the charge and 
discharge of capacitors, remains the same [13]. In the 
capacitor discharge application [22–28], controlling the 
peak of the impulse voltage, which is applied across the 
load, is required. In recent years, the control, 
efficiency, reliability and pulse shape of pulsed power 
is improved by utilizing semiconductor switches [29–
33], in the classic Marx generator design [10]. In many 
cases, the Marx impulse generator was enhanced by 
replacing the traditional spark gaps with solid-state 



Majlesi Journal of Energy Management                                            Vol. 2, No. 2, June 2013 
 

2 
 

devices such as thyristors [34]. This device provides a 
finer control at the time of the capacitor discharge 
process. Even so, the peak of the applied voltage across 
the load and the potential energy, as a function of time, 
need to be calculated. 

This paper describes the derivation of load peak 
voltage and the potential energy management in a 
thyristor trigger controlled Marx impulse generator for 
the capacitor discharge application. 
 
2.  APPROACH 

Figure 1 shows a simple four-stage thyristor 
controlled Marx impulse generator which has been 
used since 1980s [34]. However, in order to carry out a 
generalized derivation, it is assumed that the circuit 
consist of n stage (n is the number of stages). In 
general, the capacitors, C, are charged in parallel 
through the resistors, R. When the voltages of each 
stage became enough for making a breakdown in spark 
gaps, capacitors are connected in series, and the 
summation of their charged voltages is the peak value 
of the discharge pulse, release across the load [12]. The 
peak of this voltage can be maximized up to about the 
number of stages times the input DC voltage ( inVn ⋅ ). 
The thyristor is a solid-state switch, which acts as a 
controlled rectifier. This solid-state switch controls the 
discharge time at the desirable moment. Since the value 
of the voltage is depending upon the time, the peak of 
the voltage can be controlled by controlling the 
discharge time. This  occur by applying a proper trigger 
pulse to the thyristor [35]. Theoretically, the thyristor 
can be switched ON when C is charged up to the 
possible breakdown voltage VB or when the trigger 
signal is applied to the gate of the thyristor. However, 
since only one thyristor is used for the circuit, and other 

switches are the traditional spark gaps which dependent 
on the spark gap’s impedance [36], [37]; the peak of 
the applied voltage across the load may be dropped to a 
smaller amount [38]. This voltage drop is an uncertain 
parameter and depends on various ambient conditions 
[39]. For this study, it is assumed that the system is 
ideal and the effect of the air impedance is neglected. 
 
3.  DERIVATION OF LOAD PEAK VOLTAGE, 
POTENTIAL ENERGY AND POWER 

By triggering the thyristor when the voltage of C 
exceeded the breakdown voltage of air gap switches, all 
air gaps can be switched ON and capacitors change to 
series connection. After that, the voltage across the 
total capacitance value of n

C  can discharge through the 
load. The turn ON characteristics of the thyristor vs. 
voltage across the capacitor in the first stage is shown 
in Figure 2. 

Therefore, the peak of the output impulse can be 
calculated via capacitor charging theory [40], as (1). 
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where 1τ  is the charge time constant for the first 
stage which can be calculated via (2). 

CR ⋅⋅= 21τ                                                                (2) 
Time of the trigger pulse for the first stage can be 

calculated by solving equation (1) based on the time t. 
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The τ  for other stages can be calculated using 
equation (4). 

CRnn ⋅⋅⋅= 2τ                                                          (4) 
where n  is the number of stages. Based on equation 

 
Fig. 1. Thyristor controlled, n-stage Marx generator 

[34] 

 
Fig. 2. Turn ON characteristics of thyristor vs. 

voltage across the capacitor in each moment of t 
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(1), in each stage, the capacitor voltage at the moment 
of t can be calculated by (5). 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

−−= n
t

encVtncV
τ

1)1(,)(,                                (5) 

This equation can be expanded and written as in 
equation (6). 
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Therefore, by applying the trigger pulse to the 
thyristor, they would release the stored energy to the 
load. At the time of t, the peak of output voltage for n-
stage system can be calculated as (7). 
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Moreover, the possible potential energy [10] as a 
function of time, which can be released to the load, can 
be calculated using (8). 

( )( )2
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1)( tloadVCtU =                                                 (8) 

Hence, equation (8) can be expanded and shown as 
equation (9). 
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Finally, the power consumed in order to produce 
this potential energy, as a function of time, can be 

calculated via derivative of the potential energy with 
respect to time as equation (10). 

)()( tU
dt
dtP =                                                           (10) 

By calculating equation (10), then equation (11) 
will yield. 
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where A  in (11) can be calculated by (12). 
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and B  in (11) can be calculated by (13). 
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In equation (13), kΨ  can be calculated via (14). 
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where kt ,Γ  is 
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To validate the derivation, equations for the applied 
peak voltage across the load, the potential energy and 
the power as a function of time are plotted and 
investigated. Values of 33nF for capacitors, 1MΩ for 
resistors, and input DC voltage of 3kV were chosen, 
where the number of stages varies from 1 to 10. 

 
Fig. 3. The load peak voltage 

 
Fig. 4. The output potential energy 

 



Majlesi Journal of Energy Management                                            Vol. 2, No. 2, June 2013 
 

4 
 

 
4.  DISCUSSION 

As a result, the peak of the voltage which can be 
applied across the load, in each triggering time, for 
each stage, is shown in Figure 3. In addition, the 
possible output potential energy, in each triggering time 
for each stage, is shown in Figure 4. Finally, the power 
consumption of the Marx impulse generator, which is 
the derivative of the energy, in each triggering time, for 
each stage, is shown in Figure 5. Based on these 
results, the peak voltage, and the potential energy at a 
certain moment will be saturated and as the time 
increases, the amount of the peak voltage and the 
potential energy do not change much. In Figure 5, as 
the peak voltage and the potential energy curves 
saturated, the power curves are reduced to zero. It can 
be concluded that by triggering the thyristor, after some 
time, the maximum voltage and the potential energy do 
not change very much and are saturated. It must be 
noted that by increasing the number of stages, since the 
order of the system increases, the charging time of the 
equivalent capacitor of the Marx impulse generator 
increases as well. Therefore, the control region as a 
function of time enlarges. Based on this, increasing the 
number of stages has advantages of increasing the peak 
of the output voltage, potential energy and controlling 
region. However, the disadvantage is longer charging 
time for the capacitor when the number of stages is 
increased, remains. Therefore, an improved circuit 
topology in the future may be able to solve this existing 
problem. 

 
5.  CONCLUSION 

In this paper, the voltage peak, as a function of 
time, for a thyristor controlled Marx impulse generator 
was derived. Moreover, the potential energy, as a 
function of time, was also derived. The results obtained 
from this paper, verified for a 10-stage thyristor 
controlled Marx impulse generator, and may help to 

estimate the approximate peak voltage, applied across 
the load; and the stored potential energy, for each 
moment when the thyristor is triggered, for an n-stage 
Marx pulse generator. 
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