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Abstract

Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand

the nature of these disorders. However, data interpretation represents a signi�cant challenge due to a lack of good

maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally

alter during disease. Here we have sought to derive expression signatures that de�ne the various cell types

and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of

transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identi�ed, one

RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based

analyses to identify clusters of robustly co-expressed genes. The biological signi�cance of these clusters was then

assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison

between analyses, 20 gene signatures were de�ned. These included expression signatures for hair follicles, glands

(sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a

number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the

analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For

instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age;

we more accurately de�ne these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also

highlighted the over-/under-representation of various cell types in skin diseases, re�ecting an in�ux in immune

cells in in�ammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the

value of this new resource in de�ning the functional pro�le of skin cell types and appendages, and in improving

the interpretation of disease data.

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain

and Ireland.
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Introduction

Disorders of the skin are ranked as the fourth leading
cause of non-fatal disease burden [1], and consequently
there is signi�cant interest in better understanding the
biology of this organ and its dysregulation. Modern
platforms allow the quantitative analysis of the com-
plete set of transcripts expressed in a given sample.
These technologies have been used to characterize
the transcriptome of normal skin [2] and to determine
how this is altered in certain skin diseases [3]. How-
ever, interpretation of such data remains a signi�cant
challenge. During disease, the biology and the cellular
composition of the skin may change signi�cantly: for
example, due to the in�ux of immune cells. In addition,

when comparing samples gathered from different sites

or by different methods, the cellular composition of

individual samples may vary signi�cantly. Such differ-

ences will be re�ected in the transcriptional pro�le of

the sample, but at present, many of the genes expressed

in skin appendages (e.g. hair follicles and eccrine,

apocrine, and sebaceous glands) or cell types are largely

uncharacterized and therefore changes in their abun-

dance may be dif�cult to interpret. If we knew the genes

speci�cally expressed by cells found in the skin, we

could use them to assess their relative abundance in

samples, thereby allowing us to better interpret observed

changes in transcriptomic data derived from this organ.

In an effort to address this problem, Swindell et al

[4] used publicly available microarray data from

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
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isolated cell populations to de�ne 24 ‘cell-type speci�c’
signatures and used them to aid the interpretation of
genes differentially expressed in psoriasis, and sub-
sequently in multiple skin disorders [3]. Although
comprehensive gene marker sets for numerous immune
cell subtypes were obtained, those for many types of
skin appendages and cell types were not. Li et al [5]
used a weighted gene co-expression network analysis
approach [6] to derive co-expression clusters from
RNA-seq data of normal and psoriasis skin biopsies.
The gene clusters reported were mostly large in size,
ranging from 32 to 5427 genes, with several cell types
overrepresented in multiple modules [5]. Gene signa-
tures for skin appendages and some cell types were
also lacking in this study, as the annotation of these
co-expression clusters was predominately based on
those reported by Swindell et al [4].
We therefore set out to identify sets of genes diag-

nostic of the many cell types present in human skin.
Our approach is based on the fact that the expression
level of a gene expressed speci�cally in a particular cell
type or skin appendage will vary according to its abun-
dance in a given sample. When measured across mul-
tiple samples, any other genes expressed in a similar
manner will be observed to be co-expressed. When cor-
relation networks are constructed from transcriptomic
data [7–9], groups of co-expressed genes form highly
connected cliques within the network, which can then
be de�ned by network clustering algorithms [10]. Tak-
ing advantage of this and the subtle variation in cel-
lular composition between human skin samples (either
intrinsic to a sample or due to variation in sampling),
cell-speci�c gene signatures may be extrapolated with-
out the need to physically isolate speci�c cell types or
skin appendages.
Here, we describe the derivation of 20 highly con-

served gene expression signatures, collectively named
SkinSig, for skin appendages, cells, and processes
present in human skin. This resource aids the inter-
pretation of transcriptomic data derived from human
skin, allowing the cellular composition of samples
to be explored. Furthermore, these signatures enable
the pathological and physiological changes associated
with skin conditions, disease subtypes or therapeutic
interventions to be characterized.

Materials and methods

Data acquisition, quality control, and processing

The RNA-seq dataset (mapped to gene level and
RPKM-normalized) was obtained from the GTEx
project (http://www.gtexportal.org) [2], which at the
time of download consisted of 607 post-mortem skin
samples. Further details on the dataset are provided in
the supplementary material, Table S1. Quality control
(QC) for the RNA-seq dataset involved sample–sample
correlation analyses, performed using the analy-
sis software Miru (Kajeka Ltd, Edinburgh, UK).

The topology of the sample–sample correlation was
examined against the sample metadata, which identi�ed
major discrepancies between earlier and later RNA-seq
batches. Removal of early batches of data (LCSET-1156
to LCSET-1480) left a total of 578 samples, comprising
250 suprapubic and 328 lower leg samples.
A microarray dataset of normal skin was generated

by combining the normal samples from two large psori-
asis studies (GSE13355 and GSE30999) performed on
the Affymetrix U133 plus 2.0 array and downloaded
from the Gene Expression Omnibus (GEO) [11–13].
Further details on these datasets are provided in the
supplementary material, Table S1. Both QC and batch
correction were carried out on the microarray dataset.
Samples detected as outliers by the metrics report of
arrayQualityMetrics [14] were excluded from further
analysis. Samples passing QC were normalized using
frozen robust multi-array analysis [15] within study, fol-
lowed by intra- and inter-study batch correction using
ComBat (sva, surrogate variable analysis; Bioconductor
package) [16]. Normalized data were loaded into Miru
for sample–sample correlation analysis. Following the
removal of outliers and all samples from psoriatic pso-
riasis skin, 165 normal (healthy subjects or non-lesional
skin from psoriasis subjects) samples were available for
downstream analyses.

Co-expression network analysis and cluster
annotation for individual datasets

Of the 56 318 transcripts (genes de�ned in GENCODE
v19) in the original RNA-seq dataset, 24 128 transcripts
were expressed in normal skin (>1 RPKM in at least
one sample). The �ltered dataset of skin-expressed
transcripts was loaded into Miru, with a gene–gene
Pearson correlation threshold (r) set at r≥ 0.73. A sim-
ilar process was repeated for the microarray dataset at
probe level with a correlation threshold of r≥ 0.66. The
Markov clustering (MCL) algorithm [10] was used with
an in�ation value of 2.2 for identifying co-expression
clusters.
In order to identify the functional relevance of tran-

script clusters, we used a combination of bioinformatics
tools, literature review, as well as similarity to pre-
viously de�ned co-expression clusters [17,18]. Each
co-expression cluster was examined using a number
of bioinformatics tools, including gene ontology (GO)
annotation enrichment analysis (http://pantherdb.org;
Gene Ontology database release 2016-04-23), path-
way inspection (Reactome, http://www.reactome.org;
KEGG, http://www.genome.jp/kegg), and protein local-
ization (Human Protein Atlas, http://www.proteinatlas
.org). In addition, co-expression signatures from pre-
vious studies were manually compared with clusters
derived from skin, allowing the naming of some of the
signatures. Clusters without GO enrichment or without
similarity to previously reported co-expression signa-
tures were further investigated by checking individual
genes against the literature and the phenotypes reported
for knockout mice.

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
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SkinSig derivation

In order to compare across analyses, the RNA-seq and
the microarray data were mapped to HGNC gene sym-
bols (Ensembl BioMart, release 84), which were used
as common identi�ers. Where more than one microar-
ray probe targeted a given symbol, the probe set with
the highest median absolute deviation for signal inten-
sity was used. Both datasets were further �ltered to
include only genes common to both platforms and with
an expression greater than 1 RPKM in at least one sam-
ple in the RNA-seq dataset. A total of 15 736 transcripts
met these criteria.
Correlation networks were created from the

common-symbol �ltered datasets at r≥ 0.66 for the
microarray dataset and r≥ 0.73 for the RNA-seq
dataset. Network-derived clusters from each study were
individually annotated with the assistance of signature
tracks imported from the network analysis of the full
transcript/probe set analyses. Genes with the same
annotation for both studies were used to construct
SkinSig, together with three study-speci�c annotations
(circadian clock, skeletal muscle, and apocrine gland).

Application of SkinSig to gene expression data from
skin conditions

The utilities of SkinSig in analysing gene expression
data were demonstrated using existing microarray or
RNA-seq datasets from a variety of skin conditions. The
combined dataset originally organized and normalized
by Inkeles et al [3] was included, alongside six addi-
tional datasets identi�ed in GEO, covering a total of
18 skin conditions. The dataset from ref 3 comprised
microarray data from 15 skin conditions and normal
skin, all based on the Affymetrix U133 plus 2.0 array
platform. The six additional studies used a variety of
platforms, covering six different skin conditions, three
of which were not investigated in ref 3. An overview on
each dataset is provided in the supplementary material,
Table S1. In ref 3, the control group comprised nor-
mal skin samples from multiple studies (supplementary
material, Table S1). For all other datasets, the test groups
(i.e. skin condition) were compared against the control
groups within the same study. Complex study designs
were simpli�ed accordingly (supplementary material,
Table S1). Ageing gene expression data from Glass
et al [19] were analysed by comparing each age group
(50–60, 60–70, and> 70 years old) with the youngest
group (≤50 years).
For each dataset, the geometric means were used to

average across multiple probes for the same HGNC
symbol. The expression level of each signature was
calculated as an average of all genes within a signature
(transformed to log2 prior to averaging). The log fold
changes between these values from the pairing test and
control groups were used to plot a heatmap, thereby
allowing comparison across the different skin condi-
tions. Positive fold change re�ects overrepresentation
of the signature in the test group, i.e. a particular skin
condition. Details on each test–control pairing are

described in the supplementary material, Table S1.
Rotation gene set test (ROAST) (limma, linear models
for microarray data; Bioconductor package) [20] was
used to assess the statistical difference in expression
between the control and the test groups, treating each
gene within a signature as a separate measurement. Sig-
natures were considered to be signi�cantly altered when
the false discovery rates (FDRs)≤ 0.01 and≥ 80%genes
changed in the same direction (increased or decreased).
The effect of psoriasis on the keratinocyte differen-

tiation signature was examined using quality-controlled
raw data from GSE13355 and GSE30999 and processed
data for GSE54456 (supplementary material, Table S1).
Co-expression network analyses were carried out on
the keratinocyte differentiation signature for each study,
with only normal skin, only psoriatic skin or all sam-
ples. By using theMCL algorithm (in�ation value= 2.2)
on the co-expression network for all samples from
GSE13355, two subgroups of the keratinocyte differen-
tiation signature were identi�ed. ROAST was used to
determine whether the keratinocyte differentiation sub-
groups were signi�cantly differentially expressed. An
FDR≤ 0.01 was considered to be signi�cant.
The study only involved publicly available

de-identi�ed data; ethical approval was not required in
the country/region in which the study was carried out
(Scotland, UK).

Results

Network analysis of transcriptomic data from
normal skin

Two datasets representing large collections of normal
skin biopsies were selected (GSE13355 and GSE30999)
[11–13]. These comprised microarray data from healthy
subjects or non-lesional skin from psoriasis subjects of
mixed anatomical origin (n= 165). In addition, a collec-
tion of RNA-seq data from biopsies of post-mortem nor-
mal skin from lower leg or suprapubic regions (n= 578)
was obtained from the Genotype-Tissue Expression
(GTEx) project [2].
We interrogated these datasets using co-expression

network analysis [18,21]. Here, subtle differences
between the normal skin biopsies result in groups of
co-expressed genes forming highly connected cliques
within the network’s overall topology. This method
relies on characterizing groups of co-expressed genes,
rather than conventional analysis of statistically sig-
ni�cant differences between pre-determined sample
groups. Co-expression networks were independently
constructed for the microarray and RNA-seq datasets.
Following QC and batch correction, both the

RNA-seq and the microarray datasets showed little
overall variation between samples, suggesting little
variation attributable to technical or biological factors
(supplementary material, Figure S1A, B). Although
the microarray and RNA-seq datasets differed in a
number of respects (analysis platform, sampling site,

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
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Figure 1. Network analysis of the RNA-seq and microarray datasets. The IDs for some of the clusters are noted on the co-expression network
for (A) the RNA-seq and (B) microarray datasets. Nodes are coloured according to cluster membership. Nodes represent genes or transcripts,
and edges correlations between them above the Pearson correlation threshold value. (C) The average expression pro�le for a number of the
clusters (highlighted in B) found in the RNA-seq dataset, in some cases corresponding to the expected trends across gender and sampling
location (suprapubic or leg) or gender.

live versus dead donors, etc.), the median expression
levels for the majority of genes expressed across the two
studies were consistent (supplementary material, Figure
S1C). However, genes with little expression (<100
signal intensity, microarray; < 1 RPKM, RNA-seq)
demonstrated a non-linear relationship between the
two platforms. Saturation of microarray probes and a
non-linear signal response for highly expressed genes is
a known limitation of microarray analyses, and here, the
signal intensity plateaued at a signal intensity value of
approximately 16 000 (supplementary material, Figure
S1C). A small number of genes are observed to be very
highly expressed in RNA-seq data relative to others
(supplementary material, Figure S1D).
Correlation analysis is based on the analysis of statis-

tically improbable relationships (Figure S2) which are
used in the generation of co-expression networks. Use
of the MCL algorithm [10] enables these networks to be
divided into gene clusters that share a similar expression

pattern across the dataset. The optimal Pearson correla-
tion coef�cient r value used to construct each network
was determined empirically. At an r value of 0.73, the
RNA-seq dataset yielded a co-expression networkwhich
was composed of 10 336 nodes (genes), connected by
114 904 edges, and contained 927 clusters (Figure 1A).
The majority of the clusters were small; only 24 clus-
ters had more than 50 genes, and 123 clusters had more
than ten genes. Similar analyses were carried out on the
microarray dataset at r≥ 0.66, where the co-expression
network was composed of 15 158 nodes, 169 889 edges,
and 1549 clusters (Figure 1B). The gene clusters derived
from each dataset were mined extensively to under-
stand their gene content. The signi�cance of some clus-
ters was easy to explain as their contents shared a high
degree of similarity to those observed previously and/or
were enriched in genes with informative GO annota-
tions. Other gene clusters were less easy to interpret
and required manual curation and expert review. The

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
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Figure 2. Cross validation of signatures between the RNA-seq and microarray datasets. (A) When gene clusters derived individually from
the two datasets were compared, a portion of the genes was common to both analyses (red). These genes form the basis of SkinSig. Some
clusters consisted of more genes in the RNA-seq dataset (grey) than the microarray dataset (white) and vice versa. (B) A schematic diagram
of skin illustrates the number of marker genes for each signature. †Study-speci�c signatures. ‡The keratinocyte (subset) is a small group of
highly co-expressed genes but whose expression is independent of the keratinocyte differentiation signature genes.

full cluster list, their gene composition, and functional

annotations are provided in the supplementary material,

Table S2.

The RNA-seq dataset contained several gene clusters

that appeared to be derived from the ‘contamination’

of samples from explicable sources, including skele-

tal muscle (Cluster 12), neurones (Cluster 43), and

glial cells (Cluster 83) (see supplementary material,

Table S2). Three clusters of genes were unexpected

and inexplicable in skin samples; Cluster 1 (sper-

matids, expression predominately associated with

male suprapubic samples) contained many genes

involved in spermatogenesis, Cluster 29 (pancreas)

contained genes encoding pancreatic enzymes (such

as pancreatic lipases, proteases, and insulin), whereas

Cluster 97 (stomach mucosa) contained genes encoding

gastrokine, gastric lipase, and pepsinogens (see sup-

plementary material, Table S2). However, many of the

remaining clusters observed in the RNA-seq dataset

were found to show signi�cant overlap with gene

clusters present in the microarray dataset (see below).

Exceptions included a cluster of genes exclusively

expressed in the suprapubic samples which contained

several apocrine gland markers, e.g. ABCC11 and

ACSM1 (Figure 1C), re�ecting the restricted presence

of these glands to pubic and axillary skin regions

[22]. Conversely, a small cluster observed only in the

microarray dataset consisted exclusively of circadian

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
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Table 1. Overlap between annotation made on the co-expression clusters derived from network analysis of the RNA-seq and microarray
datasets

Cluster annotation RNA-seq-speci�c Microarray-speci�c

SkinSig

(No. of genes)

% Common (relative to

the RNA-seq dataset)

% Common (relative to

the microarray dataset)

Hair follicle 76 10 62 45% 86%

Sebaceous gland 17 229 105 86% 31%

Eccrine sweat gland 62 79 101 62% 56%

Apocrine gland 25 0 25 Dataset-speci�c

Keratinocyte differentiation 48 114 78 62% 41%

Keratinocyte (subset) 4 4 7 64% 64%

Melanocyte 1 10 7 88% 41%

Fibroblast 69 160 132 66% 45%

Endothelium 150 18 40 21% 69%

Smooth muscle 49 19 49 50% 72%

Skeletal muscle 64 0 64 Dataset-speci�c

Adipocyte 10 21 30 75% 59%

Macrophage/DC 45 39 49 52% 56%

T cell 29 13 17 37% 57%

FcεR signalling 9 0 7 44% 100%

Plasma cell 2 17 7 78% 29%

IFN 21 5 22 51% 81%

Cell cycle (S/M) 69 8 65 49% 89%

Circadian clock 0 8 8 Dataset-speci�c

Y-chromosome 3 1 13 81% 93%

clock-associated genes, such as PER1 and PER3, and
may re�ect the difference in the time of sampling or the
use of post-mortem samples in the RNA-seq dataset.

Derivation conserved skin gene signatures (SkinSig)

We identi�ed 17 signatures with overlapping gene mem-
bership in both the RNA-seq and the microarray datasets
(Figure 2A). These consisted of clusters identi�ed as
being derived from the majority of the appendages and
cell types present in skin, as well as clusters of genes
associated with core biological pathways, such as the
cell cycle (Table 1 and supplementary material, Table
S3). Within each signature, the overlap in gene mem-
bership in the RNA-seq and the microarray datasets
was 59± 18% and 63± 22% (mean± SD), respectively
(Figure 2A and Table 1). In order to de�ne a robust set
of marker genes, only those present in the same signa-
ture in both datasets were included in the �nal signature
lists. The overlapping gene sets should be considered
a highly conservative list of transcripts associated with
skin appendages, cells, and pathways.
In addition to these 17 signatures, three additional

signatures that were only observed in one of the two
datasets were also included: circadian clock (microar-
ray only), apocrine gland, and skeletal muscle (RNA-seq
only) (Figure 2B and Table 1). Apocrine glands are only
found in certain skin regions, such as external genitalia
(suprapubic samples) present only in the RNA-seq sam-
ples. Skeletal muscle contamination, presumably due to
biopsy depth, was also only evident in the RNA-seq
dataset. We have collectively named these gene signa-
tures SkinSig.
GO enrichment terms and key marker genes present

in each signature are detailed in the supplementary
material, Table S3. However, GO enrichment analy-
sis did not help with the functional assignation of

some signatures, including sebaceous gland, apocrine
gland, eccrine sweat gland, keratinocyte (subset), and
Y-chromosome. The justi�cation and relevant litera-
ture supporting the functional annotation of these signa-
tures are discussed in the supplementary material, Sup-
plementary discussion. Our analyses obtained several
novel marker gene signatures de�ned here for the �rst
time. These include signatures for hair follicles, seba-
ceous glands, eccrine sweat glands, apocrine glands,
and melanocytes. The localization of proteins encoded
by some of these genes is independently con�rmed in
immunohistochemistry images derived from the Human
Protein Atlas [23] (Figure 3).

Application of SkinSig to the interpretation of gene
expression data

To validate and test the utility of SkinSig, we gathered
transcriptomic data from studies of 18 different skin con-
ditions (pathological or physiologically altered). These
included the combined dataset reported by Inkeles et al
[3] and a further six datasets downloaded from GEO
(see supplementary material, Table S1). For each skin
condition, the fold change in expression level of all
genes within each SkinSig gene signature was calcu-
lated and compared with control samples (supplemen-
tary material, Table S1). Each skin condition had a
speci�c pro�le of altered gene expression of the Skin-
Sig signatures. Hierarchical clustering of the signatures
(excluding skeletal muscle, Y-chromosome, and apoc-
rine gland) based on these analyses revealed three main
groupings of skin conditions (Figure 4).
We also analysed an additional dataset comprising

normal and psoriatic skin (GSE13355; n= 46 external
normal skin; n= 46 patient-matched normal skin; n= 45
patient-matched psoriatic skin) [11]. The keratinocyte
differentiation signature was found to split into two

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
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Figure 3. Examples of immunohistochemical staining of proteins encoded by SkinSig marker genes. Localization of a number of the proteins
encoded by a selection of SkinSig marker genes, verifying the assignment given. Reprinted from the Human Protein Atlas database [23],
with permission.

subgroups of genes which were signi�cantly up- (38

genes) and down-regulated (19 genes) in psoriasis

(FDR≤ 0.01) (Figure 5A). When these two subgroups

of genes were applied to two additional psoriasis

datasets (GSE30999 and GSE54456), we observed

a similar trend (Figure 5B), demonstrating that this

loss of co-expression between the two subgroups was

replicable across independent studies.

Lastly, we applied SkinSig to a collection of data

from ageing human skin (infra-umbilical skin from

female twins) [19]. SkinSig revealed signi�cant changes

(FDR≤ 0.01) to gene signatures associated with hair

follicles and sebaceous gland in ageing skin (Figure 6).

Approximately 44–62% of the content of these sig-

natures was reported to be differentially expressed in

ageing skin in the original study [19] (supplementary

material, Table S4).

Discussion

Here, co-expression network analysis has been

used to interrogate transcriptomic data derived

from normal human skin. Using this approach, we

derived 20 co-expression signatures that characterize

the function-speci�c pro�le of many cell types and

appendages present in the skin. The most conserved

of these co-expressed genes across the two primary

datasets used for this study have been named Skin-

Sig. Evidence supporting these gene set annotations

is available in Table S3 and the Supplementary dis-

cussion (supplementary material), and an expanded

list of annotated gene clusters derived from these

studies, including the analysis of the data from

the MuTHER study [19], is presented in Table S2

(supplementary material).

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
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Figure 4. Skin signatures applied in analysis for 18 skin conditions. The heatmap and dendrogram were derived from the log2 fold change
for each skin condition (test versus control group) for the 17 skin signatures on the left-hand side of the dashed line. Expression of the
remaining three signatures, apocrine gland, skeletal muscle, and Y-chromosome, is highly dependent on sample properties unrelated to the
condition (such as gender, contamination or sampling sites) and was therefore not included in the clustering. Full details of the datasets
can be found in the supplementary material, Table S1. Signi�cantly altered signatures (FDR≤ 0.01 and≥ 80% of the genes altered in the
same direction) are indicated with a white dot. Due to the stated criteria for a comparison to be considered signi�cant, there are instances
where the average expression appears strongly dysregulated but is not considered signi�cant; in these cases, it may be that FDR≤ 0.01 but
only< 80% of the signature is altered in the same direction. †Data for each skin condition derived from ref 3 were compared against the data
for the same group of normal skin derived from multiple studies. ‡Sampling designs for these studies may introduce an arti�cially-altered
balance between cell populations (such as complete removal of epidermis) in the test group, but not the control group. Further details may
be found in the supplementary material, Table S1.

The utility of SkinSig was demonstrated by using
the signatures to describe the transcriptional changes
associated with 18 skin conditions and ageing. SkinSig
broadly separated the skin conditions into three groups
(Figure 4). Group 1 included psoriasis, discoid lupus
erythematosus, squamous cell carcinoma, and basal cell
carcinoma (Figure 4). Each of these presents epidermal
changes such as hyperkeratosis and epidermal hyper-
proliferation [24,25], and was characterized by marked
increases (FDR≤ 0.01) in the keratinocyte (subset) and
IFN signatures. Most conditions within this group also
demonstrated a signi�cant increase in the cell cycle sig-
nature (FDR≤ 0.01). This group also included burns,
post-operative wounds, and chancroid, each of which
was associated with wound healing or ulceration.
Group 2 was characterized by strongly up-regulated

T-cell, IFN, and macrophage/dendritic cell (DC) sig-
natures (FDR≤ 0.01 for all but acute wound), together

with down-regulated keratinocyte differentiation and
melanocyte signatures (FDR≤ 0.01 for all but sarcoid)
(Figure 4). The overall SkinSig expression pattern for
groups 1 and 2 suggested that the relative contribu-
tion of other cell types to the transcriptional pro�les of
these samples was diluted: their signatures appear to be
down-regulated by the in�ux of immune cells and asso-
ciated up-regulation of immune response genes.
Group 3 generally showed less transcriptional pertur-

bation relative to normal skin. UV-challenged skin and
vitiligo were most similar to normal skin, with the for-
mer showing an increase and the latter a decrease in
the expression of the melanocyte signature (Figure 4).
UV exposure would be expected to induce melanocyte
proliferation [26], while vitiligo involves melanocyte
loss from patches of skin [27]. Other disorders in this
group showed changes in the SkinSig signatures con-
sistent with the known pathology of those conditions,

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
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Figure 5. Alteration in the keratinocyte differentiation signature in psoriasis. Co-expression networks were constructed using only genes
in the keratinocyte differentiation signature for psoriasis studies, GSE13355 (left), GSE30999 (middle), and GSE54456 (right). (A) Using the
MCL algorithm on the network graph for the full dataset of GSE13355, the signature was split into two subgroups, one up-regulated (red)
and one down-regulated (blue) in psoriasis. This clustering has been overlaid on the networks derived from the other studies. The separation
of the keratinocyte differentiation signature subgroups is dependent on the sample types included in the network analysis: normal skin
only (top), psoriatic lesions only (middle), and both sample types (bottom). (B) The average expression for all genes within each subgroup
for each sample. (C) The log2 ratios between the expression of the two subgroups are generally lower than zero in the control samples. On
the other hand, these ratios are higher and more variable in between psoriatic samples, perhaps re�ecting disease severity.

such as the increased expression of the T-cell signature
in allergic contact dermatitis [28].
This study highlights the need to consider the sam-

pling protocols used when interpreting transcriptomic
data (Figure 4 and supplementary material, Table S1).
In the case of the acute and post-operative wound sam-
ples, the epidermis was removed prior to analysis [29],
whereas the dermis was removed from the irritant con-
tact dermatitis samples [30], and only blister �uid was
used in the analysis for the Stevens–Johnson syndrome
dataset [31]. The complete removal of epidermis in the
acute wound dataset, and the use of only epidermis
for the irritant contact dermatitis dataset, may explain
the unusual pattern within the heatmap for these two
skin conditions; the former shows underrepresentation
of epidermal cell types and overrepresentation of der-
mal cell types, whilst the reverse is true for the latter
(Figure 4). Macro-dissection or enrichment in tumour

cell populations may likewise result in reduced resident
skin cell diversity and abundance in samples such as
those from melanoma and mycosis fungoides [32,33].
Intriguingly, the keratinocyte differentiation signature

did not appear to be up-regulated in any of the skin con-
ditions, including psoriasis. Upon closer examination
of the expression of this signature in three independent
psoriasis datasets, two subgroups of the keratinocyte
differentiation signature genes were identi�ed, and the
ratio between the expression levels of these two sub-
groups was altered in psoriatic skin (Figure 5C). Higher
variation of this ratio was also noted across the psoriatic
samples, which may re�ect the magnitude of the disease
severity (Figure 5C). Within the keratinocyte differ-
entiation signature subgroup that is down-regulated
in psoriasis, several genes, such as LCE1B, LCE2B,
FLG2, and LOR, are known to be associated with the
terminally differentiated keratinocytes (cornecytes) that

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2017
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Figure 6. Effects of ageing on SkinSig. (A) The heatmap illustrates the changes in SkinSig during ageing by comparing each age group with
the youngest age group (≤50 years old), with comparisons yielding statistical signi�cance (FDR≤ 0.01 and≥ 80% genes altered in the same
direction) highlighted with a white dot. The fold change was calculated from the log2 mean expression for genes present in each signature.
Rotation gene set tests were employed for statistical analysis. (B) The violin plots show the average expression for the hair follicle and
sebaceous gland signatures for each individual. These plots show the change in distribution across age groups. The median expression value
for each age group is indicated by a blue bar.

make up the stratum corneum. Furthermore, LCE3B and

LCE3C deletions have been identi�ed as risk factors for

psoriasis in multiple ethnic groups [34]. Several genes

known to be expressed in suprabasal keratinocytes

were present within the keratinocyte differentiation

signature subgroup up-regulated in psoriasis. The

altered expression pro�le of these genes most likely

re�ects the hyperproliferation of the epidermis that is

associated with psoriasis [35]. In short, genes in these

subgroups of the keratinocyte differentiation signa-

ture were expressed at a similar ratio across normal

skin, but become uncoordinated in psoriatic lesions.

Instead of considering lists of dysregulated genes, this

co-expression approach with SkinSig allows the recog-

nition of a disrupted system by de�ning the dynamics

between genes in a physiologically normal state.

Glass et al [19] have reported a decrease in the expres-

sion of genes during skin ageing associated with ker-

atinization and fatty acid metabolism. Using SkinSig,

these changes may more accurately be described as

a reduction in the number or functional activity of

sebaceous glands and hair follicles with age (Figure 6).

These observations are consistent with the rapid decline

in scalp hair coverage in women over 45 years old

[36]. The reduction in the sebaceous gland signature is
also consistent with previous reports showing gradually
decreased activity of this gland after menopause [37]. A
small increase in the expression of smooth muscle sig-
nature is also seen in the age groups 50–60 and above 70
years (Figure 6); migration and accumulation of vascu-
lar smooth muscle cells into the tunica intima have been
implicated in ageing [38].
In summary, we have de�ned a set of marker genes,

collectively named SkinSig, which comprise a use-
ful resource of gene signatures derived from skin
appendages, cell types, and pathways present in normal
human skin. SkinSig not only includes potential new
marker genes for skin-resident cell types and processes,
but can also be used to interrogate gene expression data
derived from whole human skin. Importantly, SkinSig
can be used to obtain novel insights into the physiolog-
ical and pathological changes that occur in the skin.
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