
SIAM REVIEW c© 1999 Society for Industrial and Applied Mathematics
Vol. 41, No. 3, pp. 577–593

Derivation of Numerical
Methods Using Computer
Algebra∗

Walter Gander†

Dominik Gruntz‡

Abstract. The use of computer algebra systems in a course on scientific computation is demonstrated.
Various examples, such as the derivation of Newton’s iteration formula, the secant method,
Newton–Cotes and Gaussian integration formulas, as well as Runge–Kutta formulas, are
presented. For the derivations, the computer algebra system Maple is used.

Key words. numerical methods, computer algebra, Maple, quadrature formulas, nonlinear equations,
finite elements, Rayleigh–Ritz, Galerkin method, Runge–Kutta method

AMS subject classifications. 65-01, 68Q40, 65D32, 65H05, 65L60, 65L06

PII. S003614459935093X

1. Introduction. At ETH Zürich we have redesigned our courses on numerical
analysis. We not only teach numerical algorithms but also introduce the students to
computer algebra and make heavy use of computer algebra systems in both lectures
and assignments. Computer algebra is used to generate numerical algorithms, to
compute discretization errors, to derive convergence rates, to simplify proofs, to run
examples, and to generate plots.

We claim that it is easier for students to follow a derivation carried out with the
help of a computer algebra system than one done by hand. Computer algebra systems
take over the hard manual work, such as solving systems of equations. Students need
not be concerned with all the details (and all the small glitches) of a manual derivation
and can understand and keep an overview of the general steps of the derivation. A
computer-supported derivation is also more convincing than a presentation of the bare
results without any reasoning.

Moreover, using computer algebra systems, rather complex numerical formulas
can be derived—far more complex than what can be done in class by hand. For
example, all useful Newton–Cotes rules can be computed without difficulty, in contrast
to hand derivations, which usually end with Simpson’s rule.

We will demonstrate these claims with examples taken from our introductory
courses in scientific computing. We start with formulas for solving nonlinear equa-
tions (Newton’s formula, the secant method, and a new formula based on inverse

∗Received by the editors July 7, 1998; accepted for publication (in revised form) January 21, 1999;
published electronically July 27, 1999.

http://www.siam.org/journals/sirev/41-3/35093.html
†Institute of Scientific Computing, ETH-Zentrum, CH-8092 Zürich, Switzerland (gander@inf.

ethz.ch).
‡Fachhochschule Aargau, Klosterzelgstrasse, CH-5210 Windisch, Switzerland (gruntz@fh-aargau.

ch).

577

578 WALTER GANDER AND DOMINIK GRUNTZ

interpolation) and show, in section 5, how Newton–Cotes rules can be derived. In
the second part of the paper we show how computer algebra can be used to support
more complex derivations such as Gauss quadrature rules (section 7), Runge–Kutta
formulas (section 8), and the methods of Ritz and Galerkin (section 9).

In our examples we use Maple V Release 5, but the computations could also be
reproduced with, e.g., Mathematica, MuPad, or any other computer algebra system.

2. Newton’s Formula. One of the first formulas that students learn is Newton’s
iteration for solving a nonlinear equation f(x) = 0. Given an approximation xk for
the root s, a better approximation, xk+1 = F (xk), can be obtained using the iteration
function

> F := x -> x - f(x) / D(f)(x);

F := x→ x− f(x)
D(f)(x)

.(2.1)

This iteration converges quadratically to a simple root s of f(x). This can be
proven by computing the first derivative of F (x) at x = s, which is zero.

> dF := D(F)(x);

dF :=
f(x) D(2)(f)(x)

D(f)(x)2 ,(2.2)

> subs(f(s) = 0, D(F)(s));
0,

> subs(f(s) = 0, D(D(F))(s));
D(2)(f)(s)
D(f)(s)

.

Arbitrary precision floating point arithmetic, which is provided by most computer
algebra systems, can be used to demonstrate what quadratic convergence means “in
real life.” As an example, we compute the square root of 9 by using Newton’s iteration
to solve equation x2−9 = 0 starting with x0 = 1. As expected, the number of correct
digits doubles with each iteration.

> f := x -> x^2 - 9:
> Digits := 70:
> xk := 1.0: to 8 do xk := F(xk); lprint(xk); od:

5.000
3.400
3.023529411764705882352941176470588235294117647058823529411764705882353
3.000091554131380178530556191348134584573128862439917601281757839322499
3.000000001396983862248478425258881977121085388846948134910070368766335
3.000000000000000000325260651745651330219868255523316826048221278205013
3.000000000000000000000000000000000000017632415262334312619531048058334
3.000.

The convergence result is valid only for simple roots, because the first derivative
of f appears in the denominator of (2.2); i.e., the result is valid only if f ′(s) 6= 0.
The behavior of Newton’s iteration for an equation with a multiple root is the next
topic we discuss. Let us assume that f(x) has a zero of multiplicity n at x = s. We
therefore define f(x) to be

> f := x -> (x-s)^n * g(x);

f := x→ (x− s)n g(x),

DERIVATION OF NUMERICAL METHODS 579

where g(s) 6= 0. Again we inspect the first derivative of F (x). If F ′(s) 6= 0, then the
iteration converges only linearly.

> dF;

(x− s)n g(x)

(
(x− s)n n2 g(x)

(x− s)2 − (x− s)n n g(x)
(x− s)2 + 2

(x− s)n nD(g)(x)
x− s

+ (x− s)n (D(2))(g)(x)

)/(
(x− s)n n g(x)

x− s + (x− s)n D(g)(x)
)2

.

Taking the limit of the above expression for x→ s we obtain
> limit(%, x=s);

n− 1
n

.

We have just proven that Newton’s iteration converges linearly with factor (n− 1)/n
if f(x) has a zero of multiplicity n. Thus, e.g., convergence is linear with factor 1/2
for a double root.

Newton’s iteration also has a nice geometrical interpretation. Starting with the
approximation xk, the next value xk+1 of the iteration is the intersection of the tangent
to f(x) at [xk, f(xk)] with the x-axis. This property can also be proven with Maple.
We set up an equation p(x) = a x + b for the tangent line. p(x) must interpolate
[xk, f(xk)] and must have the same derivative as f(x) at x = xk. With these two
conditions the parameters a and b of the tangent p(x) are defined.

> f := ’f’:
> p := x -> a*x + b:
> solve({p(x[k]) = f(x[k]), D(p)(x[k]) = D(f)(x[k])}, {a, b});

{b = −D(f)(xk)xk + f(xk), a = D(f)(xk)}.
We have claimed that the intersection of the tangent p(x) with the x-axis is the next
Newton approximation. If the equation p(x) = 0 is solved, the iteration function (2.1)
is obtained, proving that the geometrical interpretation is correct.

> assign(%);
> x[k+1] = expand(solve(p(t) = 0, t));

xk+1 = xk −
f(xk)

D(f)(xk)
.

3. Secant Method. Another method we present to our students is the secant
method. Compared to Newton’s iteration, the secant method has the advantage
that no derivatives are needed. The derivative that appears in Newton’s formula is
approximated by a finite difference. The interesting aspect we demonstrate with the
help of Maple is the convergence rate of this method. The iteration function is given
in (3.1).

> F := (u, v) -> u - f(u) * (u-v) / (f(u) - f(v));

F := (u, v)→ u− f(u) (u− v)
f(u)− f(v)

,

> x[k+1] = F(x[k], x[k-1]);

xk+1 = xk −
f(xk) (xk − xk−1)
f(xk)− f(xk−1)

.(3.1)

580 WALTER GANDER AND DOMINIK GRUNTZ

Using (3.1) we obtain for the error ek+1 = xk+1 − s the recurrence

ek+1 = F (s+ ek, s+ ek−1)− s.

The right-hand side can be expanded into a multivariate Taylor series at ek = 0 and
ek+1 = 0. We assume that s is a simple root (f ′(s) 6= 0) and also that f ′′(s) 6= 0
holds. We set f(s) = 0 and compute the first term of the Taylor series expansion:

> f(s) := 0:
> e2 = normal(readlib(mtaylor)(F(s + e1, s + e0) - s, [e0, e{1], 4));

e2 =
1
2

e0 (D(2))(f)(s) e1
D(f)(s)

.

If we divide this leading coefficient by e0 and e1, we see that the limit of the quotient
e2/(e0 e1) is a constant different from zero. We assume that the convergence coefficient
is p, substitute e2 = K e1

p and e1 = K e0
p, and divide by the constant Kp.

> %/e1/e0;

e2
e1 e0

=
1
2

(D(2))(f)(s)
D(f)(s)

,

> simplify(subs(e2 = K*e1^p, e1 = K*e0^p, %/K^p), assume=positive);

e0(p2−p−1) =
1
2
K−p (D(2))(f)(s)

D(f)(s)
.

This equation is valid for all errors e0. Since the right-hand side is constant, the
left-hand side also must be independent of e0. This is the case only if the exponent
of e0 is zero. This condition is an equation for p, whose solution gives the well-known
convergence factor p = (1 +

√
5)/2 for the secant method.

> solve(ln(lhs(%)), p);

1
2

√
5 +

1
2
,

1
2
− 1

2

√
5.

4. A New Iteration Formula. Having considered the Newton and the secant
methods to compute roots of a nonlinear equation, we now want to show how a new
iteration method can be derived and analyzed. The new method is a combination of
the Newton and the secant methods. It uses function values and first derivatives at
two points. These four data define a degree-3 (Hermite) interpolation polynomial. A
zero of this polynomial can be taken as a next approximation of the root. Unfortu-
nately, the explicit expression for this zero is rather complex, so we propose to use
inverse interpolation for the given data. We then need only to evaluate the resulting
polynomial at y = 0 to obtain the new approximation for the root. In Maple, this is
done with the following commands:

> p := x -> a*x^3 + b*x^2 + c*x + d:
> solve({p(-f(x[0]))=x[0], D(p)(-f(x[0]))=-1/D(f)(x[0]),
> p(-f(x[1]))=x[1], D(p)(-f(x[1]))=-1/D(f)(x[1])},
> {a,b,c,d}):
> assign(%);
> p(0);

DERIVATION OF NUMERICAL METHODS 581(
−f(x1)3 D(f)(x1) f(x0) + f(x1)3 x0 D(f)(x0) D(f)(x1)

+ f(x1)2 D(f)(x1) f(x0)2 − f(x0)3 x1 D(f)(x0) D(f)(x1)
− f(x1)2 D(f)(x0) f(x0)2 − 3 f(x1)2 x0 D(f)(x0) D(f)(x1) f(x0)

+ f(x1) f(x0)3 D(f)(x0) + 3 f(x1)x1 D(f)(x0) D(f)(x1) f(x0)2
)/

(
D(f)(x0) D(f)(x1) (f(x1)− f(x0)) (f(x1)2 − 2 f(x1) f(x0) + f(x0)2)

)
.

The resulting expression still is not very simple. However, if the evaluation of f and
f ′ is very expensive, it still may pay off since the convergence rate is 2.73, as we will
see.

For the convergence analysis, we expand

ek+1 = F (s+ ek, s+ ek−1)− s

into a multivariate Taylor series at ek = 0 and ek+1 = 0, as we have done for the
secant method.

> F := unapply(%, x[0], x[1]):
> f(s) := 0:
> e2 = readlib(mtaylor)(F(s+e0, s+e1)-s, [e0,e1], 8):
> eq := normal(%);

eq := e2 =
1
24

e12 e02
(

D(f)(s)2 (D(4))(f)(s) + 15 (D(2))(f)(s)3

− 10 (D(2))(f)(s) (D(3))(f)(s) D(f)(s)
)/

D(f)(s)3.

As before with the secant and Newton methods we consider only simple roots; i.e.,
we assume that D(f)(s) 6= 0. If this condition holds, then the above equation tells us
that in the limit

> e2/e0^2/e1^2 = const;
e2

e02 e12 = const.

Let us again introduce the convergence coefficient p and make the following substitu-
tions:

> subs(e2=K*e1^p, e1=K*e0^p, %);

(K e0p)p

K e02 (e0p)2
= const,

> simplify(%, assume=positive);

K(−1+p) e0(p2−2−2 p) = const.

This equation must hold for all errors e0. Since K, p, and const are all constant, the
exponent of e0 must be zero.

> solve(p^2 - 2*p - 2 = 0, p);
1 +
√

3, 1−
√

3,

> evalf([%]);
[2.732050808, −.732050808].

Thus, the convergence factor is p = 1 +
√

3 and we have superquadratic convergence.

582 WALTER GANDER AND DOMINIK GRUNTZ

Let us use Maple to demonstrate the above convergence rate with an example.
We use our algorithm to compute the zero of the function f(x) = ex+x starting with
x0 = 0 and x1 = 1. For every iteration we print the number of correct digits (first
column) and its ratio to the number of correct digits in the previous step (second
column). This ratio should converge to the convergence rate p = 2.73. We see that
this is the case.

> f := x -> exp(x) + x;
f := x→ ex + x,

> solve(f(x)=0, x);
−LambertW(1),

> Digits := 500:
> x0 := 0.0: x1 := 1.0:
> for i to 6 do x2 := evalf(F(x0,x1));
> d2 := evalf(log[10](abs(x2+LambertW(1)))):
> if i = 1 then lprint(evalf(d2,20))
> else lprint(evalf(d2,20), evalf(d2/d1,20))
> fi;
> x0 := x1: x1 := x2: d1 := d2:
> od:

-2.7349672475721192576
-7.8214175487946676893 2.8597847216407742880
-23.118600850923949542 2.9558070140989569391
-63.885801375143936026 2.7633939349141321183
-176.01456902838525572 2.7551437915728687417
-481.80650538330786806 2.7373103717659224742.

5. Newton–Cotes Rules. Another example of rules that can be derived easily
with a computer algebra system is quadrature rules for approximating a definite in-
tegral. A well-known example is Simpson’s rule,∫ b

a

f(x) dx ≈ (b− a)
(

1
6
f(a) +

2
3
f

(
a+ b

2

)
+

1
6
f(b)

)
,

which uses three equidistant function values at the endpoints and in the middle of
the integration interval. The formula is obtained by interpolating the three function
values and by computing the integral of the interpolating polynomial of degree 2. Let
us first define a polynomial of degree 2. We then state the interpolation conditions
and solve the resulting linear system for the coefficients of the polynomial. Finally,
we integrate the polynomial and simplify the result.

> p := x-> a0 + a1*x + a2*x^2:
> solve({p(a)=f(a), p((a+b)/2)=f((a+b)/2), p(b)=f(b)}, {a0,a1,a2}):
> assign(%);
> factor(int(p(x), x=a..b));

−1
6

(
f(a) + 4 f

(
1
2
a+

1
2
b

)
+ f(b)

)
(a− b).

What is the error of this integration rule? Discretization errors can be computed
very simply by appropriate series expansions. Let h = (b− a)/2; then we obtain

> En := subs(b = a+2*h, int(f(x), x=a..b) - %);

En :=
∫ a+2h

a

f(x) dx− 1
3

(f(a) + 4 f(a+ h) + f(a+ 2h))h,

DERIVATION OF NUMERICAL METHODS 583

> series(En, h);

− 1
90

(D(4))(f)(a)h5 + O(h6).

This shows that the error is proportional to h5. For the composite Simpson rule (n
intervals of length 2h, b− a = 2nh), the error therefore is b−a

180 h
4f (4)(ξ) for some ξ in

(a, b).
Instead of computing the interpolation polynomial as above, we can use the Maple

function interp to interpolate a polynomial through the points (0, y0), (h, y1), and
(2h, y2). By integration we obtain the same result as above.

> factor(int(interp([0,h,2*h],[y[0],y[1],y[2]],z),z=0..2*h)*(b-a)/(2*h));

1
6

(b− a) (y0 + 4 y1 + y2).

More generally, we obtain Newton–Cotes Rules for
∫ b
a
f(x) dx by interpolating

n + 1 function values with given equidistant nodes and by integrating the degree-n
interpolation polynomial. The following procedure generates such an (n + 1)-point
normalized Newton–Cotes rule.

> Cotes := n -> factor((b-a)/(n*h) *
> int(interp([seq(i*h, i=0..n)], [seq(y[i], i=0..n)], z), z=0..n*h)):

With this procedure we can, e.g., construct the trapezoidal rule (n = 1), the Milne
rule (n = 4), or the Weddle rule (n = 6):

> Cotes(1);

1
2

(b− a) (y0 + y1),

> Cotes(4);

1
90

(b− a) (7 y0 + 32 y1 + 12 y2 + 32 y3 + 7 y4),

> Cotes(6);

1
840

(b− a) (41 y0 + 216 y1 + 27 y2 + 272 y3 + 27 y4 + 216 y5 + 41 y6).

For n = 8 we obtain the following equidistant nine-point rule which is used by the
MATLAB function quad8.

> Cotes(8);

1
28350

(b− a) (989 y0 + 5888 y1 − 928 y2 + 10496 y3 − 4540 y4 + 10496 y5

− 928 y6 + 5888 y7 + 989 y8).

In [6] we find one-sided formulas that can also be generated with Maple in the
same way. For example, given four equidistant function values (three intervals), find
an approximation for the integral over the third interval:

> factor(int(interp([0,h,2*h,3*h],[y[0],y[1],y[2],y[3]], t), t=2*h..3*h));

1
24
h (9 y3 + 19 y2 − 5 y1 + y0).

584 WALTER GANDER AND DOMINIK GRUNTZ

6. Approximating Derivatives. When replacing derivatives by finite differences,
one uses relations like, e.g.,

y′′(x) ≈ y(x− h)− 2y(x) + y(x+ h)
h2 .(6.1)

They are obtained by computing derivatives of the corresponding interpolation poly-
nomial. Relation (6.1) is obtained by the Maple statement

> diff(interp([x-h, x, x+h], [y(x-h), y(x), y(x+h)], z), z$2);
y(x+ h)− 2 y(x) + y(x− h)

h2 .

Again, we can determine the discretization error with the help of a series expansion.
> % - D(D(y))(x);

y(x+ h)− 2 y(x) + y(x− h)
h2 − (D(2))(y)(x),

> series(%, h);
1
12

(D(4))(y)(x)h2 + O(h4).

Similarly, with the statements
> diff(interp([x, x+h, x+2*h], [y(x), y(x+h), y(x+2*h)], z), z):
> normal(subs(z=x, %));

−1
2

3 y(x) + y(x+ 2h)− 4 y(x+ h)
h

,

an approximation for y′(x) is obtained. The discretization error of this approximation
is also of order h2.

> series(% - D(y)(x), h, 4);

−1
3

(D(3))(y)(x)h2 + O(h3).

7. Gauss Quadrature. The idea of Gauss quadrature is to find nodes xi and
weights wi so that the quadrature rule∫ 1

−1
f(x) dx ≈

n∑
i=1

wi f(xi)(7.1)

is exact for polynomials of degree as high as possible. For n = 3 we have to determine
the six unknowns w1, w2, w3, x1, x2, and x3. We demand exact values for the integrals
of the monomials xj for j = 0, . . . , 5 and obtain six (nonlinear) equations:

w1x
j
1 + w2x

j
2 + w3x

j
3 =

∫ 1

−1
xj dx,(7.2)

> eqns := {seq(w[1]*x[1]^k+w[2]*x[2]^k+w[3]*x[3]^k = int(x^k, x=-1..1),
> k=0..5)};

eqns :=
{
w1 x1 + w2 x2 + w3 x3 = 0, w1 x1

2 + w2 x2
2 + w3 x3

2 =
2
3
,

w1 x1
5 + w2 x2

5 + w3 x3
5 = 0, w1 x1

4 + w2 x2
4 + w3 x3

4 =
2
5
,

w1 x1
3 + w2 x2

3 + w3 x3
3 = 0, w1 + w2 + w3 = 2

}
.

DERIVATION OF NUMERICAL METHODS 585

We can solve this system with Maple:
> sols := solve(eqns, indets(eqns, name)):
> convert(sols[1], radical);{

w3 =
5
9
, w2 =

5
9
, w1 =

8
9
, x2 = −1

5

√
3
√

5, x3 =
1
5

√
3
√

5, x1 = 0
}
.

This brute force approach will not work for all values of n. For larger n the
system of nonlinear equations becomes too complicated for Maple. One has to add
some more sophisticated theory to compute the rules. It is our goal to find nodes and
weights to get an exact rule for polynomials of degree up to 2n− 1:∫ 1

−1
P2n−1(x) dx =

n∑
i=1

wiP2n−1(xi).(7.3)

We can argue as follows. Consider the decomposition of P2n−1 obtained by dividing
by some polynomial Qn(x) of degree n:

P2n−1(x) = Hn−1(x)Qn(x) +Rn−1(x).

Then ∫ 1

−1
P2n−1(x) dx =

∫ 1

−1
Hn−1(x)Qn(x) dx+

∫ 1

−1
Rn−1(x) dx.

Applying rule (7.3) on both sides and subtracting yields the following expression for
the error:

error :=
∫ 1

−1
Hn−1(x)Qn(x) dx−

n∑
i=1

wiHn−1(xi)Qn(xi)

+
∫ 1

−1
Rn−1(x) dx−

n∑
i=1

wiRn−1(xi).

Now it is easy to see that we can make the error zero by the following choices. First
take Qn(x) as the orthogonal polynomial on the interval [−1, 1] corresponding to the
scalar product

(f, g) =
∫ 1

−1
f(x)g(x) dx.

By this choice and by the definition of an orthogonal polynomial, the first term in the
error vanishes:

∫ 1
−1Hn−1(x)Qn(x) dx = 0. Qn is a Legendre polynomial available in

Maple as orthopoly[P](n,x).
Second, choose as the nodes the (real) zeros of Qn. Then the second term in the

error will also vanish:
∑n
i=1 wiHn−1(xi)Qn(xi) = 0.

Finally, compute the weights according to Newton–Cotes by integrating the in-
terpolation polynomial for Rn−1, which is of course again Rn−1 by the uniqueness of
the interpolation polynomial. Thus∫ 1

−1
Rn−1(x) dx =

n∑
i=1

wiRn−1(xi),

and the last two error terms cancel.
So, we can compute a Gauss quadrature rule, e.g., for n = 12, with the following

Maple statements:

586 WALTER GANDER AND DOMINIK GRUNTZ

> X := sort([fsolve(orthopoly[P](12, x)=0, x)]);

X := [−.9815606342, −.9041172564, −.7699026742, −.5873179543,
−.3678314990, −.1252334085, .1252334085, .3678314990,
.5873179543, .7699026742, .9041172564, .9815606342],

> interp(X, [seq(y[i], i=1..12)], z):
> Q := int(%, z=-1..1);

Q := .04717506586 y1 + .1069394295 y2 + .1600776434 y3 + .2031689029 y4

+ .2334973032 y5 + .2491475198 y6 + .2491470907 y7 + .2334921379 y8

+ .2031674530 y9 + .1600783833 y10 + .1069391353 y11 + .04717532540 y12.

We note that numerical errors occur (the weights should be symmetric) because
we are computing the rules here in a well-known unstable way. However, Maple offers
us more precision by increasing the value of Digits. With two runs of the above
statements with different precision we are able to obtain the rules correct to the
number of decimal digits we want.

The Gauss–Lobatto quadrature rule on [−1, 1] using the endpoints and two in-
termediate points can be computed with a computer algebra system as follows [1].
Considering the symmetry of the formula, we stipulate

> A := f -> int(f(t), t=-1..1) = a*(f(-1) + f(1)) + b*(f(-xi) + f(xi));

A := f →
∫ 1

−1
f(t) dt = a (f(−1) + f(1)) + b (f(−ξ) + f(ξ))

and require it to be exact for f(x) = 1, x2, and x4.
> solve({A(x->1), A(x->x^2), A(x->x^4)}, {a,b,xi});{

a =
1
6
, b =

5
6
, ξ = RootOf(5 Z 2 − 1)

}
.

If we would like to compute a Kronrod extension by adding three more points (by
symmetry, one of them will be 0), we stipulate

> A := f -> int(f(t), t=-1..1) = a*(f(-1) + f(1)) + b*(f(-xi) + f(xi))
> + c*(f(-1/sqrt(5)) + f(1/sqrt(5))) + d*f(0);

A := f →
∫ 1

−1
f(t) dt

= a (f(−1) + f(1)) + b (f(−ξ) + f(ξ)) + c

(
f

(
− 1√

5

)
+ f

(
1√
5

))
+ d f(0)

and require exactness for f(x) = 1, x2, x4, x6, and x8.
> seq(A(unapply(x^(2*i),x)), i=0..4);

2 = 2 a+ 2 b+ 2 c+ d,
2
3

= 2 a+ 2 b ξ2 +
2
5
c,

2
5

= 2 a+ 2 b ξ4 +
2
25
c,

2
7

= 2 a+ 2 b ξ6 +
2

125
c,

2
9

= 2 a+ 2 b ξ8 +
2

625
c

> solve({%}, {a,b,c,d,xi});{
ξ = RootOf(3 Z 2 − 2), b =

72
245

, d =
16
35
, c =

125
294

, a =
11
210

}
.

DERIVATION OF NUMERICAL METHODS 587

Thus our rule becomes∫ 1

−1
f(t) dt =

11
210

(f(−1) + f(1))

+
72
245

(
f

(
−
√

2
3

)
+ f

(√
2
3

))
+

125
294

(
f

(
− 1√

5

)
+ f

(
1√
5

))
+

16
35
f(0).

For a more elaborate treatment of generating Gauss quadrature formulas symbol-
ically, we refer to [7].

8. Generation of Explicit Runge–Kutta Formulas. In this section we show how
a computer algebra system can be used to derive explicit Runge–Kutta formulas. Such
formulas are used to solve systems of differential equations of first order. The solution
of the initial value problem

y′(x) = f
(
x, y(x)

)
, y(xk) = yk(8.1)

can be approximated by a Taylor series around xk, which is obtained from (8.1) by
repeated differentiation and replacing y′(x) by f

(
x, y(x)

)
) every time it appears.

y(xk + h) =
∞∑
i=0

y(i)(xk)
hi

i!

= y(xk) + hf
(
xk, y(xk)

)
+
h2

2

(
∂

∂x
f
(
x, y(x)

)∣∣∣∣∣
x=xk

)
+ · · ·

= y(xk)

+h
(
f
(
xk, y(xk)

)
+
h

2

(
fx
(
xk, y(xk)

)
+ f

(
xk, y(xk)

)
fy
(
xk, y(xk)

))
+ · · ·

)
︸ ︷︷ ︸

Φ(xk, y(xk), h)

.(8.2)

The idea of the Runge–Kutta methods is to approximate the Taylor series (8.2)
up to order m by using only values of f

(
x, y(x)

)
and none of its derivatives. The

general form of an s-stage explicit Runge–Kutta method is

k1 = f(x, y),
k2 = f(x+ c2 h, y + h a2,1 k1),

...

ks = f

x+ cs h, y + h

s−1∑
j=1

as,j kj

 ,

Φ(x, y, h) =
s∑
i=1

biki,

yk+1 = yk + hΦ(xk, yk, h),(8.3)

where s is the number of “stages” and ai,j , bi, and ci are real coefficients.
To derive the coefficients of such a method, the series expansions of (8.2) and

(8.3) are equated. This leads to a set of nonlinear equations that must be solved for
the parameters ai,j , bi, and ci.

588 WALTER GANDER AND DOMINIK GRUNTZ

For this derivation we must compute the Taylor series expansions of (8.2) and
(8.3). Maple knows how to expand a function with two parameters that both depend
on x, but we have to inform Maple that y′(x) is to be replaced by f

(
x, y(x)

)
whenever

it appears. We do this by overwriting the derivative of the operator y.
> D(y) := x -> f(x,y(x)):
> taylor(y(x+h), h=0, 3);

y(x) + f(x, y(x))h

+
(

1
2
D1(f)(x, y(x)) +

1
2
D2(f)(x, y(x)) f(x, y(x))

)
h2 + O(h3).

In this result, D1(f)(x, y(x)) stands for the derivative of f with respect to the first
argument, i.e., fx

(
x, y(x)

)
. In order to make the result more readable, we define some

alias substitutions.
> alias(F = f(x,y(x)), Fx = D[1](f)(x,y(x)), Fy = D[2](f)(x,y(x)),
> Fxx = D[1,1](f)(x,y(x)), Fxy = D[1,2](f)(x,y(x)),
> Fyy = D[2,2](f)(x,y(x))):

We are now ready to derive the parameters of a Runge–Kutta formula for s = 3,
which is of order m = 3.

> m := 3:
> taylor(y(x+h),h=0,m+1);

y(x) + F h+
(

1
2

Fx +
1
2

Fy F
)
h2

+
(

1
6

Fxx +
1
3
F Fxy +

1
6
F 2 Fyy +

1
6

Fy Fx +
1
6

Fy2 F

)
h3 + O(h4),

> TaylorPhi := normal((convert(%,polynom) - y(x))/h);

TaylorPhi := F +
1
2
hFx +

1
2
hFy F

+
1
6
h2 Fxx +

1
3
h2 F Fxy +

1
6
h2 F 2 Fyy +

1
6
h2 Fy Fx +

1
6
h2 Fy2 F.

The variable TaylorPhi corresponds to Φ in (8.2).
For the Runge–Kutta scheme we get the following Taylor series. Note that we

keep the parameters ai,j , bi, and ci in symbolic form. RungeKuttaPhi corresponds to
Φ in (8.3).

> k1 := taylor(f(x, y(x)), h=0, m):
> k2 := taylor(f(x+c[2]*h, y(x)+h*(a[2,1]*k1)), h=0, m):
> k3 := taylor(f(x+c[3]*h, y(x)+h*(a[3,1]*k1+a[3,2]*k2)),h=0, m):
> RungeKuttaPhi := convert(series(b[1]*k1+b[2]*k2+b[3]*k3,h,m),polynom);

RungeKuttaPhi := b1 F + b2 F + b3 F

+(b2 (Fx c2 + Fy a2, 1 F) + b3 (Fx c3 + Fy a3, 1 F + Fy a3, 2 F))h

+
(
b2

(
1
2

Fxx c22 + c2 Fxy a2, 1 F +
1
2
a2, 1

2 F 2 Fyy
)

+b3

(
1
2

Fxx c32 + c3 Fxy a3, 1 F + c3 Fxy a3, 2 F +
1
2
a3, 1

2 F 2 Fyy

+a3, 1 F
2 Fyy a3, 2 +

1
2
a3, 2

2 F 2 Fyy + Fy a3, 2 Fx c2 + Fy2 a3, 2 a2, 1 F

))
h2.

DERIVATION OF NUMERICAL METHODS 589

0
2
3

3 b3 c32−1
2 b3 c3−1

2
3

3 b3 c32−1
2 b3 c3−1

c3
1−6 b3 c3+12 b32c3

3

4 b3 (3 b3 c32−1)
2 b3 c3−1

4 b3 (3 b3 c32−1)

12 b3 c32−1+4 b3−12 b3 c3
12 b3 c32−4

3
4

(2b3 c3−1)2

1−3b3 c32 b3

Fig. 8.1 Three-stage Runge–Kutta methods of order 3 (first solution).

0
2

9a3,2

2
9a3,2

2
3

2
3 − a3,2 a3,2

1
4 0 3

4

Fig. 8.2 Three-stage Runge–Kutta methods of order 3 (second solution).

The difference d between the two polynomials TaylorPhi and RungeKuttaPhi
should be zero. We consider d to be a polynomial in the unknowns h, F, Fx, Fy, Fxx,
etc., and set the coefficients of that polynomial to zero. This gives us a nonlinear
system of equations that must be solved.

> d := expand(TaylorPhi-RungeKuttaPhi):
> eqns := {coeffs(d, [h,F,Fx,Fy,Fxx,Fxy,Fyy])};

eqns :=
{
−b2 c2 − b3 c3 +

1
2
, −1

2
b3 c3

2 − 1
2
b2 c2

2 +
1
6
,

−b3 a3, 1 − b3 a3, 2 − b2 a2, 1 +
1
2
,

1
6
− 1

2
b2 a2, 1

2 − b3 a3, 1 a3, 2 −
1
2
b3 a3, 2

2 − 1
2
b3 a3, 1

2,

−b2 c2 a2, 1 − b3 c3 a3, 2 +
1
3
− b3 c3 a3, 1, 1− b2 − b3 − b1,

1
6
− b3 a3, 2 c2,

1
6
− b3 a3, 2 a2, 1

}
,

> solve(eqns, indets(eqns));{
b3 = b3, a3, 2 =

1
4

2 b3 c3 − 1
b3 (3 b3 c32 − 1)

, c2 =
2
3

3 b3 c32 − 1
2 b3 c3 − 1

,

b1 =
1
4

12 b3 c32 − 1− 12 b3 c3 + 4 b3
3 b3 c32 − 1

, b2 = −3
4

4 b32 c3
2 − 4 b3 c3 + 1

3 b3 c32 − 1
,

a3, 1 =
1
4
−6 b3 c3 + 1 + 12 b32 c3

3

b3 (3 b3 c32 − 1)
, a2, 1 =

2
3

3 b3 c32 − 1
2 b3 c3 − 1

, c3 = c3

}
,{

a3, 2 = a3, 2, b3 =
3
4
, b2 = 0, a3, 1 =

2
3
− a3, 2, a2, 1 =

2
9

1
a3, 2

,

c2 =
2
9

1
a3, 2

, b1 =
1
4
, c3 =

2
3

}
.

For s = 3, we found two (parameterized) solutions which can be represented by
the coefficient schemes shown in Figures 8.1 and 8.2. Note that in the first solution,

590 WALTER GANDER AND DOMINIK GRUNTZ

the unknowns c3 and b3 are free parameters; i.e., they can take on any value. This
is indicated by the entries c3 = c3 and b3 = b3 in the solution set. For the second
solution, a3,2 is a free parameter. From this solution we get Heun’s method of third
order if we set a3,2 = 2/3. For further information on this topic, we refer to [4].

9. Methods of Ritz and Galerkin. This section shows an example in which the
computer algebra systems take over the hard manual work and the students can
understand the general steps of the method. Consider the boundary value problem

D(u(x)) = −u′′(x) + 2u(x) = f(x), u(0) = 0, u′(π) = 0.(9.1)

For f(x) = 17
4 sin(3

2 x), the solution is
> DG := u -> -D(D(u)) + 2*u - f:
> f := x -> 17/4*sin(3/2*x):
> dsolve({DG(u)(x)=0, u(0)=0, D(u)(Pi)=0}, u(x));

u(x) = sin
(

3
2
x

)
,

> assign(%):

Equation (9.1) is obtained if we want to minimize the functional

L =
∫ π

0
u′(x)2 + 2u(x)2 − 2f(x)u(x) dx.(9.2)

In the method of Ritz the solution u is approximated by a linear combination of
known functions φj(x):

y(x) =
n∑
j=1

cjφj(x).(9.3)

Introducing y(x) in (9.2) we obtain a quadratic form in the unknown coefficients cj .
Minimizing this quadratic form gives us values for cj and an approximation y(x).

The principle is easy to describe, but to compute a concrete example is rather
tedious, even if we choose only n = 2, φ1(x) = x− x2

2π , and φ2(x) = x exp(− x
π). Both

functions satisfy the boundary conditions.
With Maple we can compute and plot the approximation with the following state-

ments:
> y := x -> c1*(x-x^2/(2*Pi)) + c2*x*exp(-x/Pi):
> L := int(diff(y(x),x)^2+2*y(x)^2-2*f(x)*y(x),x=0..Pi):
> evalf(L);

9.315538005 c12 + 5.69163633 c22 + 14.5140300 c1 c2− 1.582748541 c2
− .8016693429 c1,

> v := linalg[grad](L, [c1,c2]):
> solve({v[1],v[2]}, {c1,c2}):
> evalf(%);

{c2 = 12.52353174, c1 = −9.713086137},

DERIVATION OF NUMERICAL METHODS 591

> assign(%);
> plot({y(x), u(x), y(x)-u(x)}, x=0..Pi, color=black);

y(x)-u(x)

u(x)

y(x)

-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5 3
x

Not every differential equation minimizes a functional. In the Galerkin method
one tries to solve (9.1) also by a linear combination of the form (9.3). The goal is to
choose the coefficients cj such that the residual r(x) = Dy(x) − f(x) becomes small
in some sense. For this we have to choose another set of functions {ψj(x)}. The
coefficients cj are now computed in such a way that the residual is orthogonal to the
space spanned by the functions ψj(x):∫ π

0
r(x)ψj(x) dx = 0, j = 1, . . . , n.(9.4)

Thus we again obtain a system of linear equations for the coefficients cj .
> c1 := ’c1’: c2 := ’c2’:
> psi1 := x -> sin(x):
> psi2 := x -> cos(x):
> eq := {int(DG(y)(t)*psi1(t), t=0..Pi), int(DG(y)(t)*psi2(t), t=0..Pi)}:
> evalf(eq);

{−1.038400155 c2− 5.100000003− 2.000000001 c1,
5.051451973 c1− 3.400000002 + 4.146353669 c2},

> solve(eq, {c1, c2}):
> evalf(%);

{c1 = −8.098032911, c2 = 10.68573206},

> assign(%);
> plot({y(x), u(x), y(x)-u(x)}, x=0..Pi, color=black);

592 WALTER GANDER AND DOMINIK GRUNTZ

y(x)-u(x)

u(x)

y(x)

-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5 3
x

10. Conclusions. In this paper we have given some examples of how we use
computer algebra systems in our scientific computing courses. Many numerical meth-
ods and classical proofs can be developed with only a few statements in a computer
algebra system.

However, it might be difficult sometimes to find the right ones, so this method
is in general still restricted to the reproduction of classical results. The use of a
computer algebra system also requires much experience, as it is not always easy to
find an elegant way to obtain the result one expects.

We have also observed that it may be particularly complicated to convince a com-
puter algebra system to perform a specific task. As an example, take the convergence
analysis in section 3. We came across the expression (ap)p/ap/a and were interested in
what the exponent would be if this expression were written as ab. How is b obtained?
Right—by taking the logarithm to the base a. The result, however, does not simplify,
even after using the simplify command.

> b := log[a]((a^p)^p/a^p/a);

b :=
ln
(

(ap)p

ap a

)
ln(a)

,

> simplify(b);

ln
(
(ap)p a(−p−1)

)
ln(a)

.

What is the problem? Maple does not know as much as we do. Maple cannot simplify
this expression, as it assumes a and p to be complex numbers. Obviously, a and p are
real and positive in our context, but Maple has to be informed about this fact using
the assume facility. This can be done directly in the simplify command for all the
indeterminants that appear in the expression to be simplified or for each unknown
with the assume command. The symbol ˜ signals that assumptions have been made
on a variable.

DERIVATION OF NUMERICAL METHODS 593

> simplify(b, assume=positive);

p2 − p− 1,

> assume(a > 0); # a is assumed to be real and positive
> assume(p, real); # b is assumed to be real
> simplify(b);

p˜2 − p˜− 1.

Consider also the discussion of discretization errors in section 6. We have com-
puted a series expansion of an expression comparable to the following

> f(x+h) - f(x) - h*diff(f(x), x);

f(x+ h)− f(x)− h
(
∂

∂x
f(x)

)
.

Which leading term do you expect if this expression is expanded into a series? Maple
gives you the following answer:

> series(%, h, 2);(
D(f)(x)−

(
∂

∂x
f(x)

))
h+ O(h2).

This result may be surprising for a student. The leading coefficient is indeed zero,
but Maple does not recognize this zero automatically. In general, it is particularly
difficult to recognize zeros, but in this example the above result can be simplified
using a special option to the command simplify.

> simplify(%, diff);

O(h2).

Computer algebra systems still need to progress further. They are not yet a
replacement for paper and pencil. We must also admit that computer algebra systems
still have bugs and sometimes produce erroneous results or results that are valid
only under some assumptions. It is also very important to demonstrate this fact to
students. Students should learn that results cannot be trusted blindly. Whenever a
numerical method is derived, the result must be compared with one’s expectations.

Nevertheless, as many examples in this article have demonstrated, a computer
algebra system is a very powerful tool for use in teaching numerical methods. Further
examples of the use of computer algebra systems can be found in, e.g., [2, 3, 5].

REFERENCES

[1] W. Gander and W. Gautschi, Adaptive Quadrature—Revisited, Research Report, Computer
Science Department, ETH, Zürich, Switzerland, 1998.

[2] W. Gander and D. Gruntz, The billiard problem, Internat. J. Math. Ed. Sci. Tech., 23 (1992),
pp. 825–830.

[3] W. Gander and J. Hřeb́ıček, eds., Solving Problems in Scientific Computing Using Maple
and Matlab, 3rd ed., Springer-Verlag, Berlin, 1997.

[4] D. Gruntz, Symbolic computation of explicit Runge–Kutta formulas, in Solving Problems in
Scientific Computing Using Maple and Matlab, W. Gander and J. Hřeb́ıček, eds., Springer-
Verlag, Berlin, 1997, pp. 281–296.

[5] D. Gruntz, Automatic differentiation and bisection, MapleTech, Maple Technical Newsletter,
4 (1997), pp. 14–19.

[6] E. Stiefel, Einführung in die numerische Mathematik, Teubner, Leipzig, Germany, 1976.
[7] U. von Matt, Gauss Quadrature, in Solving Problems in Scientific Computing Using Maple

and Matlab, W. Gander and J. Hřeb́ıček, eds., Springer-Verlag, Berlin, 1997, pp. 251–279.

