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Interval arithmetic techniques such as VALENCIA-IVP allow calculating guaranteed enclosures of all reachable states of
continuous-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Consid-
ering the fact that, in naive implementations of interval algorithms, overestimation might lead to unnecessarily conservative
results, suitable consistency tests are essential to obtain the tightest possible enclosures. In this contribution, a general
framework for the use of constraints based on physically motivated conservation properties is presented. The use of these
constraints in verified simulations of dynamical systems provides a computationally efficient procedure which restricts the
state enclosures to regions that are physically meaningful. A branch and prune algorithm is modified to a consistency test,
which is based on these constraints. Two application scenarios are studied in detail. First, the total energy is employed
as a conservation property for the analysis of mechanical systems. It is shown that conservation properties, such as the
energy, are applicable to any Hamiltonian system. The second scenario is based on constraints that are derived from decou-
pling properties, which are considered for a high-dimensional compartment model of granulopoiesis in human blood cell
dynamics.
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1. Introduction

VALENCIA-IVP is a verified solver for sets of ordinary
differential equations (ODEs) that allows for bounded
uncertainties in the initial states and system parame-
ters (Rauh et al., 2007). The uncertainties are consid-
ered through the use of interval arithmetic, the advantage
hereby being that calculations always result in guaranteed
enclosures (Moore, 1964). In naive implementations, the
enclosures might be too conservative. All reachable states
of a dynamical system which are subject to the above men-
tioned uncertainties are guaranteed to be included in en-
closures calculated by VALENCIA-IVP. In order to ob-
tain an enclosure which is less conservative, overestima-
tion has to be detected and reduced. The difficulty of deal-
ing with overestimation is a problem that is also addressed
by other verified ODE solvers, e.g., by preconditioning
strategies implemented in VNODE or by the Taylor model
arithmetic used in COSY VI (Nedialkov, 2007). In this pa-
per, a tighter enclosure of the exact solution is achieved by

defining physically motivated constraints which identify
regions in the state space that are meaningless. Any enclo-
sure that spreads into these regions can be reduced since
it is caused by overestimation. A basic approach which
identifies constraints to reduce overestimation in verified
simulations of sets of ODEs was published in (Singer and
Barton, 2006).

In order to implement an approach which is appli-
cable to a large class of dynamical systems, a general
framework for the identification of constraints has to be
defined. For applications in mechanics, this framework
is based on the Hamiltonian system formulation (van der
Schaft and Maschke, 2003), using the conservation law of
energy as its basic principle. These constraints are used
to identify which parts of the state enclosures are caused
by overestimation. In this paper, a branch and prune al-
gorithm (Clausen, 1999; de Figueiredo et al., 1997) is de-
veloped and implemented in VALENCIA-IVP as a con-
sistency test that confines the state enclosure with the aid
of the constraints to physically meaningful areas. It aims

m.freihold@web.de, eberhard.hofer@uni-ulm.de


486 M. Freihold and E. P. Hofer

at enclosing the exact set of solutions under consideration
of all uncertainties of initial conditions and parameters as
precisely as possible.

The applicability of the branch and prune algorithm
is demonstrated on two dynamic systems with uncertain-
ties. The first one is a double pendulum. In this case,
the constraints are based on the law of conversation of
energy. As an example of a high-dimensional dynami-
cal system, a biomathematical model of blood cell growth
according to Fliedner and Steinbach (Hofer et al., 1991b)
is analyzed as a second application. The constraints are
based on the decoupling of cell compartments, such that
the internal exchange of cells does not influence the in-
put and output variables explicitly. The complexity and
the high dimensionality of these two models manifest that
VALENCIA-IVP and the newly implemented branch and
prune algorithm are applicable to a wide class of mechan-
ical and biomathematical problems.

This paper is structured as follows: A general
overview of VALENCIA-IVP is given in Section 2. Pos-
sible constraints and how they can be applied to Hamil-
tonian systems are discussed in Sections 3 and 4. The
branch and prune algorithm is modified to a consistency
test in Section 5. Two applications are studied in detail to
highlight the use of the newly implemented consistency
test in VALENCIA-IVP in Sections 6 and 7. Finally, the
paper is concluded with an outlook on future research.

2. VALENCIA-IVP

VALENCIA-IVP is a verified solver for initial value prob-
lems (IVPs) for ODEs (Rauh, 2008; Rauh et al., 2007). It
has the ability to work with interval variables which result
from the propagation of uncertain initial conditions and
uncertain parameters. The stipulation for VALENCIA-
IVP, as with all other verified ODE solvers such as
VNODE, VSPODE, or COSY VI, is that guaranteed
bounds for the initial conditions and for all uncertain pa-
rameters are known. In VALENCIA-IVP, interval arith-
metic techniques are applied to determine the worst-case
influence of selected parameters on the state variables.
Calculations with intervals can lead to overestimation, and
VALENCIA-IVP has several mechanisms implemented
which are able to detect and reduce overestimation.

2.1. Systems under consideration. VALENCIA-IVP
has been developed for systems of continuous-time ODEs,

ẋs(t) = fs(xs(t), p(t), t), (1)

with the state vector xs(t) ∈ R
ns , the vector p(t) ∈ R

np

of system parameters, and the nonlinear state-space rep-
resentation fs : D �→ R

ns , D ⊂ R
ns × R

np × R
1. In

the equation (1), the vector p(t) may be time-varying. In
this case, parameter variations are expressed by additional

ODEs,
ṗ(t) = Δp(t), (2)

with Δp(t) ∈ [Δp; Δp
]

and p(t) ∈ [p; p
]
. The definition

of an extended state vector

x(t) :=
[
xs(t)
p(t)

]
(3)

leads to the time-varying dynamic system model

ẋ(t) = f(x(t), t), (4)

which is studied in the following. In VALENCIA-IVP, the
systems under consideration only have to be continuously
differentiable up to the order 1 in contrast to other solvers
such as VNODE, which demand differentiability up to the
order of the interval Taylor series expansions applied.

2.2. Calculation of guaranteed state enclosures. The
guaranteed state enclosure

[xencl (t)] := xapp (t) + [R (t)] for t ∈ [t0; tf ] (5)

that is calculated in VALENCIA-IVP is generated via a
two-stage approach. First, a suitable approximate solu-
tion xapp(t) is computed using arbitrary non-verified ODE
solvers, e.g., relying on explicit/implicit Euler methods or
Runge-Kutta methods. Then, verified error bounds [R (t)]
are determined using an iteration procedure which can be
derived using Banach’s fixed-point theorem. A detailed
explanation of this two-stage approach together with its
proof can be found in (Rauh, 2008; Rauh et al., 2007).
For further information, see also (Rauh et al., 2009).

3. Constraints

Physical constraints derived from dynamic system mod-
els provide additional information about the reachability
of certain regions in the state space. This information is
used to restrict the solution space to feasible regions of
the state space, in other words, to detect overestimation.
The goal of consistency tests is to reduce the overestima-
tion that is encompassed by the guaranteed state enclo-
sure [xencl (t)]. In the following subsections, examples of
physically motivated constraints relevant to the applica-
tion scenarios considered in this paper are summarized.

3.1. Energy as a constraint. Conservation laws ac-
count for physically measurable properties in a closed sys-
tem such as the energy, the momentum, or the electric
charge through balance equations. In mechanics, the to-
tal energy

E = Ekin + Epot (6)

of a closed system is constant if the system is subject
neither to energy dissipation nor to external gain of en-
ergy. Overestimation can be detected due to the violation
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of constraints and eliminated in suitable consistency tests.
It is known that all admissible solutions, and thus also the
exact solutions, are restricted to physically meaningful ar-
eas.

3.2. Generalized coordinates. In mechanical system
models, generalized coordinates are a suitable coordinate
system to describe the equations of motion. The general-
ized coordinates in which the constraints are defined are
denoted by qi with i = 1, . . . , s, where s is equal to the
degrees of freedom in the system model. The general-
ized coordinates have to be independent of each other,
representing the location of each body in a mechanical
system model. They are widely used in modeling multi-
body dynamics using the Denavit-Hartenberg conventions
(Pfeiffer and Reithmeier, 1987).

3.3. General constraints. Hamiltonian system formu-
lations can also be derived for electrical as well as electro-
mechanical applications. Using these formulations, the
class of systems can be extended and conservation prop-
erties can be derived and applied to detect and reduce
overestimation in verified simulations. Furthermore, Port-
Hamiltonian system representations (van der Schaft and
Maschke, 2003), which are a generalization of energy-
based system models, can be considered. Since Port-
Hamiltonian formulations are the basis for several modern
approaches for stability-based control of nonlinear sys-
tems, the corresponding mathematical models are often
readily available to be applied to analyze the influence
of parameter uncertainties using interval arithmetic tech-
niques for the systems’ open-loop as well as closed-loop
dynamics.

4. Hamiltonian systems

The Hamiltonian mechanism is a re-formulation of classi-
cal mechanics which describes the motion of objects with
the aid of Newton’s laws. The Hamiltonian

H = Ekin + Epot (7)

is equal to the total energy of a closed system, with the
kinetic energy Ekin =: K and the potential energy Epot =:
P . The advantage of using the Hamiltonian formulation
is that it allows us to describe complex dynamic systems
systematically. The Hamiltonian is defined in terms of the
generalized coordinates q.

4.1. Aim of the Hamiltonian system. This section de-
scribes the derivation of the expression for the Hamilto-
nian for a given mechanical system. The Hamiltonian sys-
tem representation is applied to exploit conservation con-
straints and balance equations. The goal is to generate a

three-stage sequence

q , q̇ , M
︸ ︷︷ ︸

Step 1

−→ K , P
︸ ︷︷ ︸
Step 2

−→ H , Ḣ
︸ ︷︷ ︸

Step 3

(8)

in order to derive constraints automatically such that they
can be applied in VALENCIA-IVP to detect and reduce
overestimation. Step 1 is the description of a dynami-
cal system using generalized coordinates out of which an
expression for the energy (Step 2) and its time derivative
(Step 3) can be formed.

The Hamiltonian H and the integration of its time
derivative Ḣ that are obtained in Step 3 are physically
identical. The different mathematical representations of
their calculation introduce different types of overestima-
tion that are caused by the use of interval arithmetic.
This information is used for a consistency test based on
a branch and prune algorithm. In the following, the con-
straints are denoted by H(x). The two different ways how
the constraints are calculated in VALENCIA-IVP are out-
lined. The first one is through the solution of additional
ordinary differential equations for H(x(t)) with

H(x(t)) = H(x(0)) +

t∫

0

Ḣ(x(τ)) dτ , (9)

by verified integration of the time derivative Ḣ(x(t))
of the Hamiltonian. The term H(x(0)) is determined
for the given enclosure [x(0)] of the initial states x(0).
This constraint is referred to as the VALENCIA-IVP con-
straint HV . The second way is the calculation of the
Hamiltonian H(x(t)) directly as a function of the state
vector as its basic principle. This constraint is also cal-
culated in VALENCIA-IVP for the verified enclosures
[xencl(t)] and is called the Hamiltonian constraint HH .

4.1.1. Calculation of Step 1. Through the use of phys-
ically motivated techniques, the generation of an energy
equation should be applicable to any mechanical system,
as long as the state equation (4) is given in terms of a
dynamic system model consisting of a symmetric and
positive definite mass matrix M(q) ∈ R

s×s, general-
ized coordinates q, q̇, q̈, and a generalized force vector
τ = [τ1, . . . , τs]

T . It is necessary that the mass ma-
trix be both positive definite and symmetric, such that
M(q) = MT (q) and M−1(q) = (M−1(q))T hold. How-
ever, it may be an arbitrary function of q.

4.1.2. Calculation of Step 2. The kinetic energy K
and the potential energy P in Step 2 are calculated by the
results of Step 1 with the use of the Hamiltonian equations
of motion. These equations consist of

q̇ =
∂H(q, p)

∂p
= M−1(q) · p, (10)
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and

ṗ = −∂H(q, p)
∂q

+ τ, (11)

which form a set of coupled ODEs for the general-
ized coordinates q and the generalized momenta p =
[p1, . . . , ps]

T . The expression for the kinetic energy

K(q, q̇) =
1
2
· q̇T · M(q) · q̇ (12)

results directly from the information obtained in Step 1.
The derivation for the equation of the potential energy is
far more complex, if it is not given analytically. For the
derivation of the potential energy, the kinetic energy (12)
needs to be defined in terms of the generalized momenta p
and the generalized coordinates q resulting in

K(q, p) =
1
2
· pT · M−1(q) · p, (13)

with
p = M(q) · q̇. (14)

With these definitions, the Hamiltonian for the
derivation of the potential energy is given by

H(q, p) =
1
2
· pT · M−1(q) · p + P (q), (15)

explicitly depending on q and p. The time derivative of the
generalized momenta determined from (14) is set equal to
the expression (11). The expression (15) for the Hamilto-
nian is substituted for H in the equation (11) leading to

ṗ = − ∂

∂q

(1
2
·pT ·M−1(q)·p+P (q)

)
+τ

!=
d
dt

(
M(q)·q̇

)

(16)
and solved for the partial derivative ∂P (q)

∂q of the potential
energy P (q) according to

∂P (q)
∂q

= − ∂

∂q

(1
2
·pT ·M−1(q) ·p

)
+τ− d

dt

(
M(q) · q̇

)
.

(17)
The integral of (17) provides the missing expression for
the potential energy according to

Pi(q) =
∫ (

− ∂

∂qi

(1
2
· pT · M−1(q) · p

)

+ τ − d
dt

(
eT

i · M(q) · q̇
))

· dqi

=
∫ (

1
2
· q̇T · ∂M

∂qi
· q̇

+ τ − d
dt

(
eT

i · M(q) · q̇
)
)

· dqi

(18)

with i = 1, . . . , s. In (18), each expression Pi(q) repre-
sents the potential energy except for terms depending only

on q1, . . . , qi−1, qi+1, . . . , qs. Each Pi needs to be calcu-
lated in order to be able to determine the corresponding
integration constants except for arbitrary additive terms
which do not depend on any qi. The combination of all
Pi, i = 1, . . . , s, results in a complete representation of
the potential energy P (q). In general, Step 2 can be eval-
uated with (13) and (18).

4.1.3. Calculation of Step 3. From Step 2, the con-
straints H and Ḣ that are used in VALENCIA-IVP can
be computed. The interval evaluation of physically iden-
tical constraints is used to detect overestimation that is
caused by the different mathematical evaluations. The im-
plemented consistency test in Section 5 can use the con-
straints to detect overestimation.

4.2. Internal and external influence on the systems.
For a closed system, meaning that there is no internal or
external loss or gain of energy (τ = 0), the time derivative
of the energy balance

d
dt

H(q, p) =
∂T H(q, p)

∂q
· q̇ +

∂T H(q, p)
∂p

· ṗ

=
∂T H(q, p)

∂p
· τ = q̇T · τ

(19)

results in
d
dt

H = 0. (20)

This can be used as additional information for formulating
the constraints. In the general case the time derivative of
the energy of an open system (τ �= 0) is usually not equal
to zero.

4.3. Further consistency tests. The consistency test
that is based on a branch and prune algorithm, see Sec-
tion 5, can reduce the overestimation that is identified
by the constraints. However, it can only detect overesti-
mation that occurs in the state variables that are consid-
ered in the constraints. That is the reason why the back-
ward integration consistency test that is implemented in
VALENCIA-IVP still needs to be used (Rauh, 2008; Rauh
et al., 2007). The backward integration of subintervals is
computationally more expensive than the consistency test
described in the following. It is therefore beneficial to re-
duce overestimation as much as possible beforehand with
the branch and prune consistency test.

5. Branch and prune algorithm

A modified branch and prune algorithm is implemented as
a consistency test in VALENCIA-IVP in order to detect
and reduce overestimation.
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5.1. Background information. Branch and bound al-
gorithms are general numerical techniques for solving
box-constrained global optimization problems (Kearfott,
1992). Given is a box Ω with n dimensions, correspond-
ing to the dimension of the problem (Boyd et al., 2003).
The branch and bound method consists of two parts. The
branching is the subdivision of Ω into smaller subregions
and the bounding is the computation of the lower and up-
per bounds of the global minimum of a cost function. The
branch and bound algorithm is often compared to a dy-
namically growing tree (Boyd et al., 2003) in which the
original box is the root and each subregion of Ω belongs to
a branch further into the tree. The goal is to narrow down
the region in which the global optimum lies while discard-
ing large subregions which cannot contain the global opti-
mum. This procedure is called pruning as those branches
are not further explored. The branches that are still up for
further investigation are written in a list L, so that at any
time the list L contains a verified solution of the problem
(de Figueiredo et al., 1997).

5.2. Application. The branch and prune algorithm that
is implemented in VALENCIA-IVP is not used to find a
global minimum. It rather finds intervals that conform to
the constraints motivated in Section 4. The constraints
can be viewed as an optimization function. If an interval
conforms to the VALENCIA-IVP constraint HV , then it is
an “optimal” interval. If it does not, then it either has to be
split up into smaller intervals according to a subdivision
strategy or it can be discarded.

Based on dichotomic branching, each branch gener-
ates two new branches. The evaluation of the Hamilto-
nian constraint HH tests if each branch is either within
the bounds, partially outside, or completely outside the
allowed range which is given by the guaranteed enclo-
sure of the VALENCIA-IVP constraint HV . These inter-
vals are distinguished as true, undecided, or false
branches. A false branch corresponds to a pruned
branch in which the optimum does not lie, see the re-
duction area in Section 5.4. In Fig. 1, an example tree
is drawn for three stages. For each branch in each stage,
the Hamiltonian constraint HH has to be calculated and
compared to the VALENCIA-IVP constraint HV . Fig-
ures 2 and 3 illustrate the relationship between the inter-
vals true, undecided, and false and the constraints.
A false interval is a branch that is pruned because it lies
completely outside the VALENCIA-IVP constraint HV .
It is not further investigated.

The rest of the branches are written in a list L, which
contains all branches that representundecided or true
intervals. The undecided intervals are further branched
until they either yield decisive results or a stopping crite-
rion has been reached.

In the case of multiple constraints, i.e., m > 1, a
branch is discarded if at least one constraint leads to a

false interval. It is classified as an undecided inter-
val if the constraints represent a mixture of true intervals
and at least one undecided interval but no false ones.

root
[x] : =

undecided

truefalse

false false trueundecided

stage 2

stage 3

stage 1undecided

undecidedundecided

Fig. 1. Example tree in which each branch is tested for consis-
tency.

H constraint
V

H
H

constraint

undecided

undecided

undecided

Reduction Area

Fig. 2. Undecided intervals can have a smaller infimum or
a larger supremum (or both) than the VALENCIA-IVP
constraint HV .

true

false

true

false

H constraint
V

H
H

constraint

Reduction Area

Fig. 3. True intervals lie completely within the VALENCIA-
IVP constraint HV . False intervals do not intersect
with the VALENCIA-IVP constraint HV .

5.3. Subdivision strategies. In VALENCIA-IVP, six
different subdivision strategies are implemented. The user
can choose an appropriate strategy according to the sys-
tem under consideration. The overall goal is to split
branches efficiently into two new subregions. The subdi-
vision occurs at the midpoint for a single component xj∗ ,
j∗ ∈ {1, . . . , n}, of the state vector x. All other compo-
nents are identical to the original box. The component xj∗

is the one that maximizes the criterion of the subdivision
method and it is split into two new regions,

[xi,low] :=

{
[xi] for i �= j∗,
[inf([xj∗ ]); mid([xj∗ ])] for i = j∗,

(21)
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and

[xi,upp] :=

{
[xi] for i �= j∗,
[mid([xj∗ ]); sup([xj∗ ])] for i = j∗.

(22)
The preceding section only considered the scalar case,
m = 1. For multiple constraints, the terms Hl, l =
1, . . . , m, are distinguished, where m equals the number
of constraints. The following subdivision strategies aim
at improving the splitting direction by taking into account
the variation of the constraints in all components of the
state vector.

5.3.1. Strategy 1: Subdivision along the longest edge.
The component

j∗ = arg max
i=1,...,n

(
diam

{
[xi]
})

(23)

of the state vector with the largest width is chosen for
splitting. The subdivision strategies 2–6 aim at improving
the splitting direction by taking into account the variation
of the constraints in all components of the state vector.

5.3.2. Strategy 2: Subdivision along the largest
change of the derivative w.r.t. the state variables. The
Jacobian matrix

[J ] :=

⎡

⎢
⎣

∂H1
∂x1

. . . ∂H1
∂xn

...
. . .

...
∂Hm

∂x1
. . . ∂Hm

∂xn

⎤

⎥
⎦

∣
∣∣
∣
∣
∣
∣
x=[x]

(24)

of the constraints Hl, l = 1, . . . , m, is determined for
the state vector, using automatic differentiation provided
by FADBAD++ (Bendsten and Staunting, 2007). Each
row of the Jacobian matrix corresponds to one of the con-
straints HH,l, and the columns amount to the number of
components of the state vector. The decision is based on
the diameter

diam

{[
∂Hl

∂xi

]}

· diam {[xi]} , (25)

for l = 1, . . . , m and i = 1, . . . , n of each entry of the Ja-
cobian matrix. Scaling with the diameter of the state vari-
able xi prevents bias towards a state variable with negligi-
ble width. This helps to avoid a situation when the same
state variable would be chosen numerously. The argument
that maximizes the corresponding component

j∗ = arg max
i=1,...,n

(

max
l=1,...,m

{
diam

{
[Jl,i]

}
· diam

{
[xi]
}
})

(26)
of the state vector gets chosen to be split. This is the
component of the state vector with the greatest sensitiv-
ity based on the entire interval.

5.3.3. Strategy 3: Subdivision in the direction deter-
mined by the largest change in the center of the state
enclosure. In this subdivision strategy, the Jacobian ma-
trix is evaluated for the midpoint of the state enclosure

[M ] :=

⎡

⎢
⎣

∂H1
∂x1

. . . ∂H1
∂xn

...
. . .

...
∂Hm

∂x1
. . . ∂Hm

∂xn

⎤

⎥
⎦

∣
∣
∣∣
∣
∣
∣
x=mid([x])

(27)

yielding a point matrix instead of an interval matrix like
before. Instead of forming the diameter of each entry, the
absolute magnitude for a scalar interval [x] is calculated
which is defined by

abs {[x]} := max {|x| ; |x|} (28)

in the PROFIL/BIAS V 2.0.4. (Keil, 2007). This is the
definition that is used for the absolute magnitude in this
paper. This definition is applied component-wise to vec-
tors or matrices. Note that the standard definition of the
absolute magnitude for interval variables is as follows:

abs {[x]}

:=

{
[0; max{|x| , |x|}] for 0 ∈ [x] ,
[min {|x| , |x|} ; max {|x| , |x|}] otherwise.

(29)

Each entry of the matrix is scaled with the diameter of
the corresponding state variable to avoid bias. The largest
entry

j∗ = arg max
i=1,...,n

(

max
l=1,...,m

{
abs
{

[Ml,i]
}
· diam

{
[xi]
}
})

(30)
now represents the direction of the largest change out of
the center of the interval box.

5.3.4. Strategy 4: Subdivision based on the magni-
tude of the change of the state variables. The Jaco-
bian matrix is calculated again for the complete state en-
closures. The maximizing component

j∗ = arg max
i=1,...,n

(

max
l=1,...,m

{
abs
{
[Jl,i]

}
· diam

{
[xi]
}
})

(31)
is determined for each state variable in all Hamiltonian
constraints. It is scaled with the corresponding diameter
of the state enclosure with the definition of the absolute
magnitude in the equation (28). The state variable cho-
sen for splitting is the one with the largest magnitude of
change.

5.3.5. Strategy 5: Subdivision based on each individ-
ual edge, along the edge with the largest change. This
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X :=

⎧
⎨

⎩

[
x1, x2, . . . , xi−1, [xi] , xi+1, . . . , xn

]
entry α = 1[

x1, x2, . . . , xi−1, [xi] , xi+1, . . . , xn

]
entry α = 2 . . .

[x1, x2, . . . , xi−1, [xi] , xi+1, . . . , xn] entry α = n · 2n−1
(32)

j∗ = arg max
i=1,...,n

(

max
l=1,...,m

{
max

α=1,...,n·2n−1

{
diam

{[
Jl,i

∣
∣∣
x=Xα

]}
· diam

{[
xi

∣
∣
x=Xα

]}}}
)

(33)

j∗ = arg max
i=1,...,n

(

max
l=1,...,m

{
max

α=1,...,n·2n−1

{
diam

{[
Jl,i

∣
∣
∣
x=Xα

]}
· mid

{[
xi

∣
∣
x=Xα

]}}}
)

(34)

subdivision method is the most elaborate one. The Jaco-
bian matrix is now evaluated for each edge of the state
enclosure [x], corresponding to an n-dimensional hyper-
cube. Thus an n dimensional problem has n · 2n−1 edges,
meaning that this number of computations has to be car-
ried out in order to determine j∗. The index α denotes a
single edge with α ∈ {1, . . . , n · 2n−1

}
. This subdivision

method should be carefully chosen and is not suited for
high-dimensional problems. An edge of the hypercube is
defined through one of the state variables being an interval
variable and all other state variables being point intervals.
For all possible combinations in (32) with i = 1, . . . , n
and α = 1, . . . , n ·2n−1, the Jacobian matrix is evaluated.
It is then scaled with the diameter of the corresponding
edge. The index determined in (33) denotes the state vari-
able with the largest change on its edge.

5.3.6. Strategy 6: Subdivision based on each individ-
ual edge, scaled with the midpoint of the state enclo-
sures. This method uses the same algorithm as Strat-
egy 5. The only difference is that instead of scaling the
Jacobian matrix with the diameter of the corresponding
edge, it is scaled with the midpoint of the edge. The in-
dex determined in (34) denotes the state variable with the
largest change on its edge.

5.4. Reduction area. The subdivision strategies have
been introduced. The goal is to find a time instant t∗ ∈
[t0; tf ] at which the branch and prune algorithm is applied
in order for the optimal amount of overestimation to be de-
tected and reduced. The intersection of the VALENCIA-
IVP constraint HV and the Hamiltonian constraint HH

is the tightest possible enclosure of the exact solution,
since they are physically the same. If at least one in-
terval bound of the VALENCIA-IVP constraint HV is
tighter than the Hamiltonian HH constraint, the area that
is within the Hamiltonian constraint HH but outside the
VALENCIA-IVP constraint HV can be eliminated, since
the constraints are always computed in a guaranteed way.
This area is called the reduction area

RA(t) := diam {[HH(t)]}

− diam {[HH(t)] ∩ [HV (t)]} !≥ 0.
(35)
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Fig. 4. Arbitrary example to illustrate the reduction area RA.

Figure 4 shows the possible reduction area RA for an
arbitrary example. The behavior of the constraints does
not need to be symmetric, meaning that inf([H ]) does
not need to be symmetric to sup([H ]). The only impor-
tant property is the relation between the Hamiltonian con-
straint and the VALENCIA-IVP constraint such that a re-
duction area RA exists. The relation

[HH ] ∩ [HV ] �= ∅ (36)

always holds since the constraints are both guaranteed en-
closures of the exact solution. The point of time t∗ is cho-
sen such that the reduction area RA in (35) is maximized
according to

RA∗ = max
t∈[t0;tf ]

{RA(t)} . (37)

To simplify the optimization problem, the condition (37)
is replaced with a search for the first local maximum in
[t0; tf ]. The optimal point of time t∗ can be subject to
further restrictions that are specific for the system under
consideration.

6. Double pendulum

The use of physically motivated techniques to detect and
reduce overestimation is illustrated for a double pendulum
as an example of mechanical systems. The constraints for
this model are defined over its total energy. The double
pendulum represents a system assuming ideal conditions.
As illustrated in Fig. 5, the double pendulum is composed
of two point masses m1 = m2 = 1.0 kg and two massless
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ẋ(t) =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 (m1 + m2) · l1 m2 · l2 · cos(x1(t) − x2(t))
0 0 m2 · l1 · cos(x1(t) − x2(t)) m2 · l2

⎤

⎥
⎥
⎦

−1

·

⎡

⎢
⎢
⎣

x3(t)
x4(t)

−g · (m1 + m2) · sin(x1(t)) − m2 · l2 · sin(x1(t) − x2(t)) · x2
4(t)

−g · m2 · sin(x2(t)) + m2 · l1 · sin(x1(t) − x2(t)) · x2
3(t)

⎤

⎥
⎥
⎦.

(38)

m

l

l

m

φ
1

2

φ
2

2

1

1
x

p

y
p

Fig. 5. Double pendulum with masses m1, m2, lengths l1, l2,
and angles ϕ1,ϕ2.

arms with the lengths of l1 = l2 = 1.0 m. The angles
are denoted by ϕ1, ϕ2 and the gravitational constant by
g = 9.81 m/s2. A double pendulum has s = 2 degrees
of freedom, and the generalized coordinates are chosen to
be the two angles q1(t) := ϕ1(t) and q2(t) := ϕ2(t). The
state-space model is given in (38), which results from the
state vector

x(t) =

⎡

⎢
⎢
⎣

x1(t)
x2(t)
ẋ1(t)
ẋ2(t)

⎤

⎥
⎥
⎦ :=

⎡

⎢
⎢
⎣

q1(t)
q2(t)
q̇1(t)
q̇2(t)

⎤

⎥
⎥
⎦ , (39)

with the angular velocities x3(t) = ẋ1(t) and x4(t) =
ẋ2(t).

The potential energy of the double pendulum is cal-
culated with the reference potential at the px-axis. In gen-
eral, the reference axis can be chosen arbitrarily since it
only affects the energy through a constant additive term.
The total energy

HH = K(q, q̇) + P (q) (40)

is expressed as the sum of the kinetic energy

K(q, q̇) =
1
2
m1 ·

(
(l1 cos(q1)q̇1)2 + (l1 sin(q1)q̇1)2

)

+
1
2
m2 ·

(
(l1 cos(q1)q̇1 + l2 cos(q2)q̇2)2

+ (l1 sin(q1)q̇1 + l2 sin(q2)q̇2)2
)

(41)

and the potential energy

P (q) = m1g ·
(
− l1 cos(q1)

)

+ m2g ·
(
− l1 cos(q1) − l2 cos(q2)

)
.

(42)

For simplicity, in the notation of the energy of the
double pendulum the variables such as the generalized
coordinates are not explicitly denoted as time-dependent.
The consideration of a closed system, meaning a lack of
both energy dissipation and external energy gain, leads to
an additional constraint, resulting from the time derivative
of the energy

ḢV :=
dE

dt
=
(

∂E

∂q

)T

· q̇ +
(

∂E

∂q̇

)T

· q̈ = 0, (43)

giving

HV = HV (t) := HV,0 = const for t ≥ 0. (44)

With this knowledge, certain areas in the state-space can
be defined as physically meaningless in interval sim-
ulations of dynamical systems. In calculations with
VALENCIA-IVP, overestimation that spreads into these
regions can be detected and reduced. Even if it is not pos-
sible to symbolically simplify the time derivative of the
energy in (43), the result can still be used as a constraint.
In that case, the value zero is contained in the interval
enclosure of the time derivative of the energy such that
0 ∈ [ḢV

]
holds.

6.1. Simulation results. The implemented branch and
prune algorithm has several settings that are analyzed and
adjusted to the double pendulum. A pseudo-volume

Vtotal =
n∏

i=1

diam {[xi]} (45)

is introduced in order to compare these simulation
results. With this pseudo-volume, the percentage
Ptrue, undecided of the volume of the intervals that are
true or undecided can be given by

Ptrue, undecided =
Vtrue + Vundecided

Vtotal
· 100%. (46)
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A small percentage Ptrue, undecided of the volume that
is kept for further calculations at t > t∗ is the desired
result. If the percentage Ptrue, undecided is small, then
a large amount of overestimation is detected and reduced
from further calculations.

For further calculations it is beneficial if the number
of the remaining intervals is reduced. This is achieved
by merging subintervals. If no means for the limitation of
the number of subintervals is used, the number of intervals
inevitably grows to the point that a simulation of a dynam-
ical system cannot be calculated anymore (Rauh, 2008).

The simulation results are compared at t = t∗ =
0.45s. This is the point of time at which the branch and
prune algorithm and the merging routine of VALENCIA-
IVP have been applied. Based on the pseudo-volume and
the point of time at which the simulations are compared,
the results can be discussed. For all the simulations the
step size is 0.0002.

6.1.1. Optimal subdivision strategy and the opti-
mal number of subdivisions. Six different subdivision
strategies can be chosen from for the system of the dou-
ble pendulum. Each subdivision strategy is applied 100,
1000, and 10000 times in order to compare the effect of
the number of subdivisions. In the case when all subin-
tervals are classified as either true or false, the sub-
division process stops. As long as at least one subinter-
val is an undecided interval, the subdivision process is
continued until the maximum number of subdivisions has
been reached. In Table 1, the results are listed for an initial
enclosure of

[x(0)] =

[[
0.99 · 3 · π

4
; 1.01 · 3 · π

4

]
, [0.6; 0.6] ,

[0.4; 0.4] , [0.7; 0.7]
]
.

Strategies 1 and 6 are not listed since they did not detect

Table 1. Different subdivision strategies are compared on the
basis of the percentage Ptrue, undecided.

Subdivisions Strategy 2 Strategy 3 Strategy 4 Strategy 5

100 81.15% 90.63% 73.44% 77.74%
1000 65.59% 70.02% 60.04% 63.00%

10000 55.28% 57.96% 52.34% 53.88%

overestimation for the double pendulum. The comparison
of the different strategies shows that Strategy 4 is the best
subdivision method for the double pendulum. It is able to
detect and reduce the largest amount of overestimation for
a given number of subdivisions compared with the other
strategies. Strategies 5 and 2 are second and third best
yielding similar results.

In general, a larger number of subdivisions results in
a larger area that is discarded. VALENCIA-IVP is able

to detect more overestimation if more subdivisions take
place. An increase in the number of subdivisions affects
a decrease in the size of the true and undecided re-
gions. This can be explained as follows. The chance that
a smaller interval conforms or does not conform to the
VALENCIA-IVP constraint is higher than that of a larger
one. However, the use of a larger number of subdivisions
results in a longer computing time and a compromise has
to be found. For the double pendulum, a setting of 10000
subdivisions combined with the use of Strategy 4 is a suit-
able choice.

6.1.2. Variation of the initial enclosure [x2,0]. For
the following simulations, the effect of different uncer-
tainties for x2,0 is analyzed and discussed. The remaining
initial state enclosures are identical to Subsection 6.1.1.
Subdivision Strategy 4 is used with 10000 subdivisions.
These settings are kept constant for the remaining simula-
tions.

The results can be seen in Table 2. The uncertainty
of the initial enclosure of x2,0 is increased with each sim-
ulation in order to be able to analyze the impact of the size
of uncertainty for initial values. The different percentages
Ptrue, undecided are calculated and recorded for an iden-
tical t = t∗. In Table 2, the initial enclosures of x2,0 with

Table 2. Comparison of the effect of differing uncertainty in the
initial enclosure [x2,0].

[x2,0] Ptrue, undecided

[0.61000; 0.61001] 52.31%
[0.6100; 0.6101] 52.32%
[0.610; 0.611] 52.43%
[0.61; 0.62] 53.37%
[0.6; 0.8] 50.22%
[0.6; 0.9] 42.62%

sufficiently small uncertainty yield similar results. A cho-
sen increase in uncertainty shows that VALENCIA-IVP
and the newly implemented branch and prune algorithm
are capable of detecting and reducing a large region of
overestimation. For x2,0 = [0.6; 0.9] the largest overesti-
mation region is detected. Figure 6 shows the state enclo-
sure [x(t∗)], the black box, obtained before the branch and
prune algorithm. The smaller interval boxes are calculated
by the subdivisions and they are the new state enclosure
after the application of the consistency test. The corre-
sponding state enclosure of x3(t) can be seen in Fig. 7. At
t = t∗, the branch and prune algorithm is applied and this
results in a tighter state enclosure for t > t∗.

With the previously determined settings, the sim-
ulation results of the double pendulum for the entire
VALENCIA-IVP algorithm are analyzed. For an easier
comparison of the simulations of the double pendulum
with and without the branch and prune algorithm, the vol-
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Fig. 6. Reduction area after projection into the (x1, x3)-plane
with x2,initial = [0.6; 0.9].

Fig. 7. Enclosure of x3.

Fig. 8. Pseudo-volume of the state enclosures for simulations
with and without the branch and prune algorithm.

umes of the corresponding state enclosures according to
the equation (45) are depicted in Fig. 8. The volume of
the simulation with the branch and prune algorithm shows
a reduction of approximately 90% at t = 0.55 s compared
with the simulation without the branch and prune algo-
rithm. This detection and reduction of overestimation en-
ables the simulations in VALENCIA-IVP after t > t∗ to
work with a tighter enclosure of the exact solution set.

6.2. Summary. For the mechanical system of the
double pendulum, the Hamiltonian constraints are imple-
mented in order to detect physically meaningless areas. It
has been illustrated that VALENCIA-IVP is able to de-
tect and reduce overestimation regardless of the uncer-
tainty of the initial conditions. The double pendulum is
a complex system that can show chaotic behavior which
is not asymptotically stable. VALENCIA-IVP has been
successfully used for detecting and reducing overestima-
tion for this application.

7. Human blood cell dynamics

The next system that is investigated is the biomathemat-
ical model of granulopoiesis, a dynamical model for the
human blood cell system. The model can be used to as-
sess the damage to the blood renewal system that is caused
by several illnesses such as leukemia or when the patient
has been exposed to radioactive material, e.g., during ac-
cidents in nuclear power plants such as in the Chernobyl
accident. The quantification of the damage can help to
assist medical doctors in the classification of the damage
(Hofer et al., 1991a). A prerequisite for this model is a
suitable parameterization.

7.1. Fliedner and Steinbach model. Fliedner and
Steinbach came up with a model for granulopoiesis con-
sisting of a set of nonlinear coupled ODEs. Granu-
lopoiesis is the renewal of granulocytes, which make up
about 70% of the white blood cells. The renewal process
can be viewed as a dynamical system in which the cells
undergo several changes in order to develop into granulo-
cytes. All blood cells originate from the pluripotent stem
cells (S), from which the cell grows until it reaches the cir-
culating blood, represented by the function compartment
(F). The stages in between are the compartment bone mar-
row (CBM) and the compartment blood (CBL), then the
precursor (P), the mature (M), and the reserve cells (R)
(The American Heritage Medical Dictionary, 2007). The
schematic set up of granulopoiesis leads to the Fliedner
and Steinbach model, which is depicted in Fig. 9, express-
ing granulopoiesis in terms of cell and information flow.
The mathematical description of granulopoiesis is intro-
duced in the following. Each of the compartments CBL,
CBM, and P is subdivided into 10 subcompartments, each
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Fig. 9. Model of granulopoiesis according to Fliedner and Steinbach.

without direct medical or biological meaning. The state
variables

x1 = S,

x2 = CBM 1 , . . . , x11 = CBM 10,

x12 = CBL1 , . . . , x21 = CBL10,

x22 = P1 , . . . , x31 = P10,

x32 = M,

x33 = R,

x34 = F,

x35 = RegI ,

x36 = RegII

(47)

represent the seven different compartments of the gran-
ulopoiesis modeled according to Fliedner and Steinbach,
as well as the two hormonal regulators RegI and RegII
(Hofer et al., 1991b). After introducing the abbreviations

ua = −ν2 · (x2 + · · · + x11 + x22 + · · · + x33),
u1 = γ1 exp(−ν1x1) + γ2 exp(ua) + γ3,

u2 = γ4 − γ5 exp(−ν3x35),
u3 = 2(1 − ρ)u1x1,

u4 = β,

u5 = λcx11,

u6 = γ6 − γy exp(−ν4x35),
u7 = λpx31,

u8 = γ8 − γ9 exp(−ν5x36),
u9 = u8x33,

ub = g2 · (x2 + · · · + x11),
uc = g3 · (x22 + · · · + x34),

u10 = γ10 exp
(
− ν6 ·

(
g1x1 + u10b + u10c

))
,

u11 = γ11 exp(−ν7x34),

(48)

the state-space model can be derived. The set of coupled
nonlinear ODEs

ẋ1 = (2ρ − 1)u1x1,

ẋ2 = u3 − λcx2 + u2x2 − u4x2 + Φx12,

ẋi = λcxi−1 − λcxi + u2xi − u4xi + Φxi+10,

for i = 3, . . . , 11,

ẋi = u4xi−10 − Φxi for i = 12, . . . , 21,

ẋ22 = u5 + u6x22 − λpx22,

ẋi = λpxi−1 + u6xi − λpxi for i = 23, . . . , 31,

ẋ32 = u7 − λMx32,

ẋ33 = λMx32 − u8x33,

ẋ34 = u9 − λF x34,

ẋ35 = u10 − λRegIx35,

ẋ36 = u11 − λRegIIx36

(49)

describes the time evolution of the cell count in each com-
partment. The list of system parameters and a detailed
description of the model according to Fliedner and Stein-
bach can be found in (Hofer et al. 1991a; 1991b).

7.2. Constraints. For the system of granulopoiesis, the
energy conservation law as in Section 6 cannot be used
as a constraint. Instead, a decoupling of compartments
is considered. The two compartments CBL and CBM
are coupled directly, see Fig. 9. The state equations (49)
which represent these compartments can be rewritten as

ẋ2 =u3 − λcx2 + u2x2 − u4x2 + Φx12,

ẋl+2 =λcxl+1 − λcxl+2 + u2xl+2 − u4xl+2 + Φxl+12,

ẋ12 =u4x2 − Φx12,

ẋl+12 =u4xl+2 − Φxl+12 (50)

for l = 1, . . . , 9. The decoupling of the CBL and CBM
compartments results in physically motivated constraints.
The implementation of the constraints for the blood cell
system in VALENCIA-IVP is mathematically the same as
for the double pendulum. The constraints are therefore
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also denoted by HH and HV in the following. The con-
straint

HH,l := xl+1 + xl+11 (51)

for l = 1, . . . , 10 can be expressed in terms of the state
variables. The VALENCIA-IVP constraints

ḢV,l :=

{
u3 − λcx2 + u2x2 for l = 1,

λcxl+1 − λcxl+2 + u2xl+2 for l = 2, . . . , 10
(52)

are calculated by integrating the corresponding time
derivatives. The simulations will investigate the use of
up to m = 10 constraints and the influence of the number
of constraints on the detection and reduction of overesti-
mation.

7.3. Simulation results. For the dynamic system of
granulopoiesis, different settings and their effects on the
state enclosures are investigated. For the initial enclo-
sures of the components of the state vector x, the values
of Table 3 are used. For all of the simulations, the optimal

Table 3. Initial values for the state variables of the granu-
lopoiesis model according to Fliedner and Steinbach.

State Variable i Initial Value

i = 1 1.2 · 109

i = 2, . . . , 11 8.27 · 108

i = 12, . . . , 22 7.52 · 105

xi i = 23, . . . , 31 1.24 · 1010

i = 31, 32 2.24 · 1011

i = 34 4.0 · 1010

i = 35, 36 10.0

time t∗ is calculated to t∗ = 6.0 h and the total volume
is Vtotal(t∗) = 7.7864 · 10220. The step size is set to 0.1.
The comparisons are made at t = t∗, after the branch and
prune algorithm has been applied and the intervals have
been merged.

7.3.1. Optimal subdivision strategy and optimal num-
ber of subdivisions. For the dynamic system of granu-
lopoiesis, Strategies 5 and 6 are not applicable because of
the high dimensionality n = 36 of the system. For that
reason, only Strategies 1 through 4 are evaluated for the
blood cell system at t = t∗. With Strategies 1 and 3,
no overestimation could be detected, whereas Strategies 2
and 4 detected an equally large reduction area. In order
to be able to compare the efficiency of VALENCIA-IVP
for different systems, Strategy 4 is used for the blood cell
model, since it was also the most efficient one for the dou-
ble pendulum.

The effect of the number of subdivisions on the rel-
ative reduction area and the computing time are analyzed

and the results are recorded in Table 4. An increase in
the number of subdivisions causes an increase not only in
the relative and absolute reduction areas, but also in the
computing time. The simulations have been performed
on a standard PC, Intel Pentium 4, 2 GB RAM, hyper-
threading enabled, using SuSE Linux 10.3 as the operat-
ing system with the compiler gcc 4.3.1. For the granu-

Table 4. Comparison of the process times and the percentage
Ptrue, undecided for different numbers of subdivisions
for Strategy 4.

Subdivisions Computing time Ptrue, undecided

100 28 s 50.84%
1000 30 s 43.64%

10000 302 s 44.47%
100000 67452 s (*) 42.55%

(*) This time is mostly caused by the merging routine.

lopoiesis model, 1000 subdivisions are used as the set-
ting for further simulations. The maximum number of
subdivisions, 100000, did have the smallest percentage
Ptrue,undecided, but also the largest computing time.

7.3.2. Effect of the number of constraints. The blood
cell model can be simulated with up to m = 10 con-
straints. The previous examinations were for the con-
straint m = 1, see the equations (51) and (52). In Ta-
ble 5, the results for simulations of the blood cell model
with different numbers of constraints can be seen for sub-
division Strategy 4 with 1000 subdivisions. The percent-
age Ptrue, undecided of the area that is true or undecided
increases with an increase in the number of constraints.
One would expect the opposite, i.e., that an increase in
constraints would supply more information and therefore
a decrease in the percentage Ptrue, undecided. The rea-
son why that is not true is as follows. The subdivision
strategies are implemented so that they are not biased to-
wards any component of the state vector. An increase in
constraints results in a decrease in the number of subdi-
visions for each specific component of the state vector.
The decrease in subdivisions means that the intervals are
larger and therefore the chance that they are outside the
VALENCIA-IVP constraints HV,l is smaller. The state

Table 5. Comparison of the number of constraints according to
the percentage Ptrue, undecided.

Constraints Vtrue,undecided Ptrue, undecided

1 3.3976 · 10220 43.64%
2 3.5449 · 10220 45.59%
3 4.3343 · 10220 55.67%
4 4.5489 · 10220 58.42%
5 6.3210 · 10220 81.18%

x12(t) is included in the constraints. Its enclosure can be
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seen in Fig. 10. The branch and prune algorithm is applied
at t = t∗, resulting in a tighter state enclosure for t > t∗.

Fig. 10. Enclosure of x12 for one constraint.

7.3.3. Seven constraints and a varying number of sub-
divisions. The previous simulations showed that an in-
crease in the number of constraints for a fixed number
of subdivisions resulted in an increase in the percentage
Ptrue, undecided due to a reduced number of subdivisions
per component of the state vector. The following is an
investigation of the effect of an increase in the number
of subdivisions on the simulations with the use of multi-
ple constraints. Subdivision Strategy 4 with seven con-
straints is used as a setting for these simulations. Table 6
records the simulations results. An increase in the num-
ber of subdivisions results in a decrease in the percentage
Ptrue, undecided. For 1000 subdivisions, the branch and
prune algorithm was barely able to detect any overestima-
tion. However, it was able to reduce about half of the state
enclosure for 100000 subdivisions. This underlines that a
larger number of subdivisions results in smaller intervals,
which have a higher chance of being detected as false.
The corresponding total volumes Vtotal of the state enclo-
sure are illustrated in Fig. 11. The total volume of the sim-
ulation with 100000 subdivisions is approximately 36% of
the total volume with only 1000 subdivisions.

Table 6. Effect of an increase in the number of subdivisions on
a simulation using seven constraints.

Number of subdivisions Ptrue, undecided

1000 99.91%
10000 90.16%

100000 55.42%

An increase in the number of constraints should be
realized with an increasing number of subdivisions in or-
der for the branch and prune algorithm to work efficiently.
The quality of constraints, meaning that they are most sen-
sitive with respect to the variables that cause overestima-

Fig. 11. Total volume Vtotal over the time for simulations with
1000, 10000 and 100000 subdivisions.

tion, is more important than an abundant number of con-
straints.

7.4. Summary. The investigation of the blood cell
model showed that VALENCIA-IVP is applicable to non-
linear, high-dimensional problems. A general approach
to find settings that are suitable for the system under
consideration can be formulated. First, a mathematical
expression for the constraints based on physically moti-
vated techniques needs to be determined. Then, a suit-
able choice for the subdivision strategy and the number of
subdivisions has to be determined, via several simulations
with varying settings.

8. Conclusion

In the preceding sections, newly implemented physically
motivated techniques for the detection and reduction of
overestimation in interval simulations of dynamic systems
with uncertainties were introduced, analyzed, and dis-
cussed. VALENCIA-IVP is extended with a branch and
prune algorithm which is based on physical constraints
that can be evaluated in a computationally efficient way.

A method was illustrated with which constraints can
be derived for any mechanical system if it is represented
in generalized coordinates and if the positive definite and
symmetric mass matrix, the time derivative of the gener-
alized coordinates, and the generalized force vector are
given. Using this information, the Hamiltonian equations
of motion can be obtained for any mechanical system. The
Hamiltonian itself is equivalent to the total energy of the
mechanical system. Since a mechanical system is sub-
ject to the conservation law of energy, the constraints can
be used to distinguish between areas which are physically
meaningless and meaningful. The branch and prune algo-
rithm uses these constraints to detect and reduce regions
that are caused by overestimation. It subdivides a priori
state enclosures into smaller regions until the region either
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conforms to the constraints or not.
The two dynamic systems discussed are a double

pendulum and a model of granulopoiesis according to
Fliedner and Steinbach. The double pendulum is a clas-
sical example of a mechanical system. For the granu-
lopoiesis model, the decoupling of compartments of the
cell forming stages were the constraints of the system.
The granulopoiesis model is a nonlinear high-dimensional
problem. With these two different examples, it was illus-
trated and underlined that VALENCIA-IVP and its addi-
tions are applicable to a variety of real-life problems.

The general framework provided allows the user to
generate appropriate constraints based on Hamiltonian
system representations. Based on this general founda-
tion, the Hamiltonian can be used as a candidate for Lya-
punov functions, which are applicable in tools for con-
troller design. In (van der Schaft, 2005; van der Schaft
and Maschke, 2003; Maschke and van der Schaft, 2000),
the authors demonstrate such a procedure for a more gen-
eral formulation of Hamiltonian equations leading to Port-
Hamiltonian systems.

In future work, interval arithmetic routines will be
implemented to perform stability-based design and analy-
sis of controllers in a verified way.
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