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Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model
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Permeation of ions from one electrolytic solution to another, through a protein channel, is a biological
process of considerable importance. Permeation occurs on a time scale of micro- to milliseconds, far longer
than the femtosecond time scales of atomic motion. Direct simulations of atomic dynamics are not yet possible
for such long-time scales; thus, averaging is unavoidable. The question is what and how to average. In this
paper, we average a Langevin model of ionic motion in a bulk solution and protein channel. The main result
is a coupled system of averaged Poisson and Nernst-Planck equé@Bh® involving conditional and
unconditional charge densities and conditional potentials. The resulting NP equations contain the averaged
force on a single ion, which is the sum of two components. The first component is the gradient of a conditional
electric potential that is the solution of Poisson’s equation with conditional and permanent charge densities and
boundary conditions of the applied voltage. The second component is the self-induced force on an ion due to
surface charges induced only by that ion at dielectric interfaces. The ion induces surface polarization charge
that exerts a significant force on the ion itself, not present in earlier PNP equations. The proposed CPNP system
is not complete, however, because the electric potential satisfies Poisson’s equaticongitional charge
densities, conditioned on the location of an ion, while the NP equations contain unconditional densities. The
conditional densities are closely related to the well-studied pair-correlation functions of equilibrium statistical
mechanics. We examine a specific closure relation, which on the one hand replaces the conditional charge
densities by the unconditional ones in the Poisson equation, and on the other hand replaces the self-induced
force in the NP equation by an effective self-induced force. This effective self-induced force is nearly zero in
the baths but is approximately equal to the self-induced force in and near the channel. The charge densities in
the NP equations are interpreted as time averages over long times of the motion of a quasiparticle that diffuses
with the same diffusion coefficient as that of a real ion, but is driven by the averaged force. In this way,
continuum equations with averaged charge densities and mean-fields can be used to describe permeation
through a protein channel.
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[. INTRODUCTION current-voltage response of narrow channels over a wide
range of salt concentrations in the bath. However, many phe-
The Poisson-Nernst-PlandiPNP equations have been nomena, usually associated with single filing of ions, are
used for the description of macroscopic properties of electromissed by the PNP systel8]. The record of current vs time
chemical systems, usually without current flow, and also forof a single channel in patch clamp and bilayer experiments
the description of currents in semiconductor devite®].  [7] ranges from noisy to very noisy, depending on the type of
These equations have been also quite successfully applied ¢dannel. Although this noise is not captured by the PNP sys-
the description of ionic currents in protein channels of bio-tem at all, still the average net currents predicted by PNP in
logical membrane$3—6]. The state variables in the PNP an open channel are quite accurately reproduced in several
equations are the electrostatic potential and the charge deg@hannels of known structuié].
sities of the different ionic species. The PNP equations are The partial success and partial failure of the PNP system
usually derived from conservation laws of a continuum for-Poses the question why? Which results of the PNP model can
mulation[2]. be accepted and which cannot? The purpose of this paper is
The application of the PNP equations inside narrow chanto partially answer these questions by deriving the PNP equa-
nels that can contain 0n|y a small number of ions at a timegions from a molecular model of ionic motion in both a bath
or in channels where the ions are arranged in a single fileand a channel. As discussed below, the resultigcy PNP
raises interesting conceptual and mathematical problems. Fgfuations differ from the standard ones used so far.
example, what is the meaning of concentration in such a The point of departure for our derivation is the classical

context? The PNP equations predict quite accurately th¥iew that ionic motion in solution is governed by electro-
static forces and thermal fluctuations of the solMé&jt The

fluctuations give rise to the diffusive motion of ions in the

*Electronic address: schuss@math.tau.ac.il bath as well as inside the channel. The prediction of macro-
"Electronic address: nadlebo@math.tau.ac.il scopic properties of ionic solutions from the microscopic
*Electronic address: beisenbe@rush.edu Brownian motion of their components raises interesting
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mathematical issues illustrated here with a primitive Langeing, single filing, noise and so di’]—still the average net
vin model of ionic motion. In this model the electrostatic flux is preserved. The average net flux is a measure of the
forces acting on the diffusing ions consist of the Coulombicbiological function of most channels.

interactions between the ions, the permanent charges, such as

charges on molecules immersed in the solution, induced sur-

face charges on dielectric boundaries, and the effects of an Il. FORMULATION

external field. Qur simple model of lonic motion assumes \ye consider an electrostatically neutral binary solution
that the fluctuating force exerted on an ion by the solvent can.tned in a finite volume. between electrodes and impen-

be represented as friction and a zero-mean Gaussian statiofkaple hard walls. The two electrodes are connected to a
ary force (noise satisfying Einstein's (generalizell  foaqhack apparatus, external to our model, that maintains
fluctuation-dissipation principle, and that noises acting onyonsiant average voltage and concentrations at the elec-
different ions, are independent of each other. trodes. The feedback mechanism achieves this by removing

Our derivation follows traditional methods of statistical 4, feeding back ions as current flows through the system.
physics, where continuum equations for densities are de”Ve‘Fhus, on average, the number of ions in the solution is con-

from lmicroscopic laws (gjm;]erning the motion of individual giant |n reality, the voltage, concentrations, flux, and the
particles(see Ref[9] and the more recent Reffl0]). The  \,,mher of jons are not constant but rather fluctuate in time.

;:ase at hqndhdiﬁers from tr;e standard models in that thpese fluctuations are caused by the random motion of the
orce term in the equatlo;:s of motion is governed by a Sepajyng the deterministic and random time delays of the feed-
rate Poisson equation. The assumptions on the independengg . mechanisms, the finite precision of the measuring de-
of the noises in the Langevin equations and on the represety;.as and so on

tation of the solvent as a dielectric constant in Poisson’s | ihis paper, we neglect these fluctuations and assume
equation need further examination in concentrated solutiong 4 the numbe,r of both positive and negative ions in the

apd |r1I mILJIt|pIy occupied protek:n chaln”els- For other theoriegytion is constant at all times. In particular, we assume that
of multiply occupied narrow channels see Réfl and refer- o feedback mechanism is instantaneous, that is, when an

ences therein, and the more recent pdféf. jon reaches one electrode, it is immediately injected at the

The results of this paper are the derivation of a coupleyher electrode. Thus, the total flux of particles on the bound-
system of NP equations for the charge densities and Pmssgj{;y of the system vanishes at all times. This approximation
equations for averaged electric potentials, from a LangeviRaqces the resolution of our analysis but is a reasonable
model of ionic motion. The force in the NP equations has;enresentation of the typical experimental situation. These
two components, the gradient of an electric potential, and §,,ctyations are indeed negligible for an experimental system

self-induced force on an ion produced by surface chargeg, yhich the electrodes are placed far away from the region

induced by that ion at dielectric interfaces. The latter com-y¢ pio|qgical or chemical interest. Fluctuations are significant

ponent in the NP equations seems to be new, although thg compuyter simulations, in which the total number of ions is

existence of such a force has been considered in simulatiorllgh,cmvmy small, and thus must be taken into accdadi.
[12]. The proposed PNP system, however, is not complete \ye consider a solution containifgpositive andN nega-

(i.e., “closed”), since the electric potential depends@n- e ons. We denote the coordinates of a point ky
ditional charge densities, given the location of an ion, whlle:(X y,2). We number the ions in the solution at tire 0
the NP equations contaimconditional densities. Closure re- and denote the vectors of coordinates and velocity of the

lations, mainly applied to equilibrium Poisson Boltzmann = . by x P dxP .
systems, have been the subject of extensive study in the [ROSItVe ion at timet by x j(t) andx j(t), respectively, and

erature[13,14,8,15, and references therein. The proposedthose of thekth negative ion byc(t) andxg(t). The coor-
theories are based on various physical and excluded volunfénate vector of all ions in theM-dimensional configuration
assumptions, and sometimes lead to different results. Closuepace is denoteck=(x?, ... xR.,xI, ... x%), while in

relations for nonequilibrium systems, e.g., for systems Carryénalogy, the vector of all velocities is denotedkasr 5. For

Ing a steady current, are still not k”O_W”- In this paper Weuture reference, the vector of coordinates of &l21 ions,
consider a closure relation for the particular case of an elec-

trolytic solution in the presence of a dielectric interface. In€xcluding thejth positive ion is denoted .
this closure relation the conditional charge densities are re-
placed by the unconditional ones, and the self-induced force
in the NP equation is replaced by an effective force.

Our derivation of PNP equations is essentially an averag- lonic solutions nearly always contain many more water
ing procedure of a finite but large discrete system. Themolecules than ions, even when they are nearly saturated, at
charge densities in the NP equations are interpreted as tintbeir solubility limit. For example, there are about 55 water
averages over long times of the number of particles per unimolecules per iomi a 1 Msalt solution, and at the biological
volume in the discrete system. This interpretation givesconcentration of 100 mM, there are about 550 water mol-
meaning to densities even in narrow channels that can corecules per ion. Thus, the collective motion of only the ions
tain at most one or two ions at a time. Although in the aver-(without the wateris a lower-dimensional projection of the
aging procedure all microscopic phenomena in a narrowoint motion of all water and salt molecules in the solution,
channel may be lost—including finite size of the ions, block-that can be approximated by a system of generalized Lange-

A. Equations of motion
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vin equationg 16]. These equations assume that the thermal

motion of ions is due mainly to the thermal motion of the T '
surrounding water molecules. There is of course another con reflecting 5
tribution to the diffusive motion of each ion, from its inter- boundaries
actions with the other ions, as in an ionic plasma. This effect membrane
decreases as the solution becomes more dilute.
The generalized Langevin equations involve a friction
memory kernel and correlated noise, satisfying a generalizeg ionic ionic
fluctuation-dissipation principl€l6]. The motion of ions in , channel .
SR . : solution solution
solution is strongly overdamped, and so the correlation time
of the noise is much shorter than the characteristic diffusion
time scale considered in this paper. On a sufficiently coarsg
time scale, much longer than the relaxation time of the solu-
tion, memory effects can be neglecteld]. Thus, our point. . elecirode electrode
of departure is the memoryless system of Langevin equations
P(X P(x P
if+yp(x}’)k}’=f'(X)+ [2y (x,)kBT\.ij’ . . . .
mP mP FIG. 1. A typical experimental setup. The regifnconsists of
two baths separated by an impermeable membrane, with a possible
. channel embedded in it. The electrodes immersed in the two baths
(1=12,... N), are connected to an external feedback mecharfissh shown in
2.1 figure) that maintains a constant voltage difference between the
) . fi?&) 29" (xkgT . electrodes, and constant concentrations in the baths.
Xg+y "X = + W, : . o N
m" m" which consists of all points in the N-dimensional space,
where at least one of theN2components is on the boundary
(k=12,...N), of the corresponding regiof}; .

The boundary behavior of the random trajectories of the
) ) - ) Langevin equation§2.1) reflects the physical boundary con-
whgre a doi on avanflble denotes d|ﬁerent|at|(?n with respecitions imposed on the system at the boundasy. Every
to time, fP(x) andf(x) denote the electrostatic forces act- trajectory that reaches an electrode is instantaneously in-
ing on thejth positive ion and on th&th negative ion, re- jected at the opposite one. Trajectories that reach other
spectively, y °(x) is the location dependent friction coeffi- boundaries of the domain are reflectg18]. The fluctua-

cient per unit mass of the ionic species of typéc=p,n),

and\}vjC are, by assumption, independent standard Gaussi

white noises. The parametes is Boltzmann’s constant, is
the absolute temperature, amd is the effective mass of an
ion of typec.

In addition we assume that positive and negative ion
have radiia, anda,, respectively, and that there are hard
wall potentials between ions, preventing oppositely charge

ions from collapsing into each other.

The physical three-dimensional domain in which our sys

tem is confined, called}, is shown in Fig. 1. Its boundary

tions removed by this idealized electro@eoltage clamp

Jpundary condition will be studied elsewhere.

B. The electrostatic forces
As stated in the introduction, we assume that the electro-

éytic solution is afast bath namely, that the relaxation time

of the solvent water is very fast so that the dielectric coeffi-
ient of the pure solvent is time independent. We also assume
at the potential in the bath can be represented as the solu-

tion of Poisson’s equation, and not of the time dependent

‘Maxwell equations. The effects of displacement current and

possible radiation will be examined elsewhere. The electro-

€1, consists of two parts. One is the electrodes, and thgagic force acting on an ion is then computed from the elec-

other one is impermeable walls. ThéN@imensional con-
figuration space of the trajectories of alN2particles in the
Langevin systent2.1) is confined to the domain

where X denotes Cartesian product, af is the three-
dimensional physical domain of ttj¢h particle, identical to

Q. The boundary of the domaift is

2N
90 =U QX QX+ X Q1 XX Q41X -+ Qo
j=1

trostatic potentiakp(x), a solution of Poisson’s equation

1
Ap(x)=—

€0

epperm(X) + e; 5(X_XJP)

—e; S(x—x) | +V-P(x), (2.2

wherep,qer(X) is the permanent charge density, d&(c) is

the polarization field, that describes the charge induced by
the electric field in matter that otherwise would be charge
neutral[19]. In an isotropic medium with linear response, the
polarization field is connected to the local field by

P(X)=xE(X)=—xV ¢(x), (2.3
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where y(x) =e(x) —1 is the dielectric succeptibility of the ~
medium[19]. Combining Eq.(2.3 and Eq.(2.2), we obtain ~ Vx-8(X) V¢ P(x,x])=
the familiar form of Poisson’s equation

epperm(x)+ez 5(X_ijr)
I'#]

€0

—eEk S(x—x |, (2.6)

V. e(X)Vp(x)=— !

€0

epperm(x) + e; O(X—X ]p)

with the same boundary and continuity conditions mentioned
. above, for the potentiap(x). Here V, denotes the gradient
with respect to the variable,

— e; S(x—xP)

In addition, the potentialp(x) satisfies boundary conditions Jd d 4

on the electrodes and the standard continuity conditions of V= 5’@'5)'

the electric displacement vector across surfaces of disconti-

nuity of the dielectric coefficientl9]. In terms of this potential, the first component of the force
The electrostatic force on theh positive ion at position fJP({(,p), is given by

x}, denotedf?, is calculated from the potentiab(x) as _ _

follows: fjp(x,P):—eVX¢}J(x,xJP)|X:X=). (2.7

1 1
5 5 . (2.9
4mege(X]) [x—x| e P

i b b 1 e
fo(X}7)=—eV,| dp(X,X])—
_ ) 471'8(ij)80 |X—X]p|
The last term on the right-hand side of Eg.4) removes the ]
singularity of the potentialp(x) at the location of the ion (2.8
(see Appendix A for detai)s
This force, which in general depends on the coordinat

DY e i
tP=—eV| ¢(x) - The second component of the forzg(x}), is given by

x=xP

evvhere¢D(x,y) satisfies Poisson’s equation

vectorx of all the charges in the system, can be decomposed e
into two components, Vi e(X)Vyidp(Xy)=— 8—05(X—y), (2.9
przf F&' P) +fD(ij). (2.5 with zero potential boundary conditions at the electradegs

Appendix A for derivation.

The first componenitjp(T(, P), includes the interaction forces lll. DERIVATION OF THE PNP EQUATIONS

of the jth positive ion with all other ions in the solution, the ) ) ) ] ]
permanent charge, the charges on the electrodes that main- Equations(2.1)—(2.4) form a discrete high-dimensional
tain a fixed applied voltage, and the surface charges inducetyStém of coupled stochastic and partial differential equa-
by these charges. The second comporigoxjp), is a self-  tions that descnbe the tlme evolution of this many partlc!e
induced force produced by the surface charges induced at fystem. We derive a simplified, though approximate, descrip-

dielectric interfaces by the ion axtf . If there are no dielec- E:gﬂu?; éulasr Sgséirr?siltri]e;vhllr?rlhli(; nz arr?)xri?npar"[eigﬁnttr?: cciinggcri i
tric interfaces, this induced force is zero. Note that this forc 9 ’ PP P

component is proportional to treguareof the ion's charge, Sion of the system is reduced to averaged charge densities

regardless of its sign. For example, it is equal for monovalen"f‘nd electric potentials governed by Nernst-Planck and Pois-

/ ) . . son equations.
anions and cationésee Appendix A for detai)s . o .
While the first component depends on the locationalbf The outline of the computation is as follows. First, the

charges in the system, the second component depends Or‘g?;;::,i?ron :)oet:\évbei(laitn Z‘;ng?s']fsjvne(;t'ggpggngfegt;?rt:Olr; ié:)nnd the
on the location of thgth positive ion, and is independent of y P y y 9 '

the location of all the other charges in the system, and ir'1S derived in Sec. llA. In Sec. 1IIB, the Fokker-Planck

particular, of the applied voltage. The computation of thisequation for the joint pdf of all ions in the system is formu-

self-induced force component is described in Appendix A'gﬁgd-Il-aheinri:aoazggllgyo???%ir?: a d?lg\%? t%(;s'tlr:/;sg)g '2C(;b;)f
The decomposition(2.5) of the total force into these two y 9 J P P P

components. is particularly important in the averagin ro_aII ions, excluding a single positive ion. This procedure re-
P S, 1S P y 1mp 9ING PrO°gits in a Fokker-Planck type equatiORPE) for the pdf of
cess described below. . i . .
i D~ ) _ the phase-space coordinates of a single ion. The resulting
The first component of the forcg/(x,P), is obtained  eqyation, however, is not a standard FPE because it contains
from the solution of Poisson’s equatié2.2), with the charge g qverage force term that depends on the probability density
of the jth positive ion removed from the right-hand side. We of aJ| other ions. Since this probability density depends on
denote the resulting electric potential Iag/lp(x,xjp), deter-  the unknown solution of the full FPE for all ions, the force

mined from term in the FPE equation is in general unknown. In Sec. Ill D
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we consider the large friction limit of this FPE, resulting in a tion x is the same as that of finding any other positive ion
reduced Smoluchowski equation for only the pdf of the lo-there. Thus, the probability densip(x) is independent of

cation of the ion, with a still unknown force function. Ac- the index;j, and we denote it simply bp(x). Hence, in the
cording to the results of Sec. Il A, this Smoluchowski equa-|imit [Ax|—0,

tion turns into a Nernst-Planck equation for the averaged
charge density.

The average force appearing in these equations, which Cp(x)=Np(x). 3.
depends on the probability density of all other ions, is evalu-
ated in Sec. IllE. We separate the average force into twqhys, the densitg,(x) is N times the stationary pdf of the
components. One is the self-induced force that an ion exertgh positive ion. Similarly, the charge density of negative
on itself arising from the charge induced by the ion at boundipnsc,(x) is N times the stationary marginal, i.e., integrated
aries between regions of different dielectric coefficient. Itpdf of thekth negative ion. These densities are independent
might be called a dielectric boundary force. The other comxyf the indicesj andk, respectively. The density,(x) is the
ponent is an average force due to the interaction of the ioRhysical density of positive ions and it integrates to the total
with all other charges in the system, e.g., the permanentymper of positive ions in the solution.
charge on the protein, the ions in the bath, and the charges on |, mixed solutions, for example, Na C&", and CI', the
the electrodes that maintain the voltage clamp boundary conynalog of Eq.(3.1) holds for each species separately. This
dition. The second term can be written as the gradient of agj| jead to different Nernst-Planck equations for each spe-

averaged potential, described by an averaged Poisson equdas and other complexities in the analysis, as discussed later
tion. The averaged Poisson equation, however, cont@ins g

ditional charge densities, rather than the unconditional
charge densities present in the Nernst-Planck equation just o . .
described. This key result is a direct consequence of the av-  B. The multidimensional Fokker-Planck equation

eraging procedure, and is not an assumption. Thus, the re- gquation(3.1) shows the connection between the station-
sulting system, denoted CPNP, is not closed, i.e., it is incomgry PDF of a single positive iop(x) and the macroscopic
plete. In Sec. llIF, we examine one specific closure relation:parge densitg,(x). Therefore, we can now derive an equa-
and its consequences. This closure relation replaces the cofgn for p(x), which by relation(3.1), readily turns into an
ditional charge densities by the unconditional ones, neglectsquation forc,(x). We start from an equation for the station-
ing the finite size of ions. This approximation leads to aary joint probability density ofll ions, and integrate it over
(_closed PNP-type system of equations, but with an addi-the phase-space coordinates of all ions, excluding a single
tional effective induced force term in the NP equations.  positive ion, to obtain an equation for the marginal, i.e., in-
tegrated, density of this ion.
A. Charge density and probability density The joint transition probability density of all ions is de-

We usec,(x) to describe the time-averaged steady-statdined as
charge density of the positive species at locatignand ~~ i~ ~ ~ o~ ~ o~ ~ o~ ~
pP(x), j=1,... N, to define the stationary probability den- P(Xv,t| &35)=PrRX() =xv()=v |X(s) =& v(s) :(g}é)
sity function (PDF of the location of thgth positive ion. '
These two quantities are related as follows. By definition,
for a small volumeAx around the pointx, the product whereZ and7 are the phase-space coordinates of all ions at
Cp(X)Ax denotes the time-averaged number of ions in thissome initial times. The stationary PDF of all ions is defined
volume. We introducey(x,Ax) as the indicator function of as the long-time limit of the transition PDB.2),
the volumeAx,

|1 xeax p(x,v)=1lm p(x,v,t| &), (3.3
XA =1 otherwise. o
We abbreviatey;= x(x (t),Ax). By definition, and is independent of the initial valués 7 at times.
The motion of all ions is governed by the Langevin sys-
Cp(AX=2 E{xj}=> PAX[XP(1),Ax]=1}, tem (2.1), so the stationary PDF3.3) satisfies the multidi-
i ]

mensional stationary Fokker-Planck equati@n]

whereE{-} denotes the expected value operator.
In th f Il vol
n the steady state, for small volumAsx Ozzj: cP p+§k: Llp, (3.4

PHX[xP(t),Ax]=1}=pP(x)Ax+O[ (Ax)?].

Moreover, for a stationary system in steady state with avhereL? and Ly are the Fokker-Planck operators acting on
single species of positive ions, from symmetry considerthe phase-space coordinates of ftiepositive anckth nega-
ations, the probability of finding thgth positive ion at loca- tive ion, respectively. They are given by
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Last, but not least, the hard wall potentials at a finite
p distance from the center of each ion also transform into re-
flecting boundary conditions for the fluxes of other ions, thus
preventing the collapse of positive and negative ions onto
each other.

fe
Lip==0{-V,ep+V,e ( Yo ——
] ] m°

C/yC
Y(Xj)keT
Ay————p, (c=p,n),
I m
C. The probability density of a single ion
where 'the o.peratorﬁx and Ay denote the gra@ent and the We now consider the probability density of thth posi-
Laplacian with respect to the variabie respectl\iely;Equa- tive ion. This is themarginal (integratedl density of the joint
tion (3.4) is defined in the 18 dimensional regiox e () and probability density of all ions,
veRN.
The FPE(3.4) can be written as a conservation law (xPoP)= (X,7)d%P doP 3.9
R a]pxReNf3p , y avys '

0=—(V3.V)- (3. %,

(3.5 whereﬁ]P is the configuration space of all ions i, except
the jth positive ion andR®N~2 is the space of velocities of all
ions except th@th positive ion. That is, the right-hand side
contains an integration over the N2 6 positions and ve-

- _ - . locities of all particles, excluding thgh positive ion.

where J; _(J”JP’J”E)’ and Jx_(JX})’JXE)' (i=1,...N.k To obtain an equation fop(x?,vf), we integrate equa-

tion (3.5 with respect to the phase-space coordinates of all

ions except those of thgh positive ion

i=T.N,
c=p,n

== (va‘]vf—’—vxf‘]xf)x

=1,...N), are N -dimensional flux density vectors whose
components are the three-dimensional flux densities

Joc=— C(C c_fic(;(’;) ~ o~ _ v ~ o~ d~pd~p
v}:_ Y (Xj)v] mc p(xav) 0=- ()JP><R6N*3 'J(X,v) XJ vj . (31@
Lo YOXDkeT 2 e separate the integrand- J(x,v) into the component of
v} c p(x.v), 36 the jth positive ion, and to the remainind\2- 1 other com-

ponents. For theseN>—1 components, we apply the diver-
gence theorem in the N2~ 6 dimensional phase space of the
integration. First, we consider the velocity flux components

) ) , J,c. For these components, the integration is over all possible
These three-dimensional components of the flux density vec- |

tor represent the probability flux densities of the individualveIOCities' These terms vanish after the application of the

Je=vfp(Xp).

ions[21] divergence theorem because the velocity flux decreases ex-
The boundary conditions for the FRE.4) are determined ponentially fast for large absolute velocities, simplifying Eq.
from the boundary behavior imposed on the trajectories of3-10 to

the Langevin equation&.1) and can be expressed in terms

of the three-dimensional components of the flux vecior 0= —j ﬁ (Vyp-Jpp+Vyp-Jy p)d?(‘]? d?}‘}
=(J;,J;). Specifically, on the insulatingreflecting part of OpxRONTE T b

the boundary, where particle trajectories are reflected, the

following condition holds: —2 f J pr(§,5)~n(xip)ds<pd5?
] JOPXRON=3 i
3e(60) - Nyt 50,08 n=0 =~ He(X,0) Ny g2 0.n= o »
J J J ' (3.7) - f f Jen(X,0)-n(xp)dScndog,
’ K QX RONT3 Tk k
wheren denotes the unit normal to the boundary. (3.11)

On the electrode boundaries, where particles are recycled
and the electric potential is controlled, the boundary condiwhereJ,r andJ,p are given by Eq(3.6) andd&a denotes

tion specifies that the influx at one electrode equals the efﬂu?htegratién over the surface of the boundary. By definition,

on the other, for each component of the probability flux dentne |ast two terms in Eq3.11) are the total probability flux
sity. Therefore, the total flux on the boundary vanishes fory the boundaryQ) of all ions besides th¢th positive ion.

each one of the 8 components of the flux vectar, Due to the specified boundary conditiori8.7) for the
Fokker-Planck equation, the total probability flux of each ion
f Je-ndS=0, (3.9 on the bound_ary is zero, E3.8), so the last two terms in
a0 Eq. (3.1) vanish.

Consider the remaining first term on the right-hand side of
wheredS is a surface element on the boundary. Eq. (3.1)). Inserting Eq.(3.6) into Eq.(3.11) gives
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£P(%) P(x)
0=f J~ Voo | ¥PXPof——— 0=—v-V,p(x,0)+V,-| yP(X)v - p(X,v)
QPxRONT3 T mP
P(xP)kgT —— ¥ P()ksT
L0 g p(%n) dX PP 4,70 ). (3.15
mp j mp
+f faFXRﬁN_SVx})' vP p(x,v) dxPdo . Equation(3.15 is a Fokker-Planck equation for the probabil-

ity density of a single positive ion. It contains an average

_p . .
Note that since integration is over the phase-space <:oord];prCEf (x,0) whose calculation, according to (.14,

nates of all ions excluding thigh positive ion, the differen- depends on the conditional probability density of all ions,

L given the phase-space coordinates of ke positive ion.
tiation operator,» andV,p, as well as all other terms that However, this conditional density depends on the solution of

J J i .
depend only o orv?, can be taken out of the integration. the full Fokker-Planck equatio8.4). Therefore all of these

Using definition(3.9), we obtain quantities are coupled, and the Fokker-Planck equation for
the stationary probability density of a single ion cannot be
0=V, p- yp(xjp)vlpp(xf,vf) solved independently of the full Fokker-Planck equation of
. all other ions. Obviously, Eq(3.15 is not very useful as
flp&) o long as its force term is not known. Note that although the
_va'f fﬁPxRGN—3 P p(x,v) dxfdo} forcing functionf P(x,v) is not known, Eq(3.15 is exact
]

C
. Y p(Xj kT D. The overdamped limit

p Avpp(xravjp)_vfprp(xrivjp)
m . . We consider the Smoluchowski limit of large friction, be-
(3.12  cause the motion of a single ion is strongly overdamped. The

first approximation assumes théh this limit) the condi-

The only term for which the marginal PDF of tith positive tional probability density of the locations of all ions, exclud-
ion p(xP,vP) could not be recovered from the integration, is ?g th%jth FI’OSitiVi ion, given :ctshphase—szace coordinaltes,

. ~ e~ epends only on the position of the ion and not on its veloc-
the mixed ternf P(x)p(x,v). To recover the PDp(x ! ,vl) P y P

b ity,
from this term as well, we denote hy(xP,vP[xP,0f) the
conditional PDF of all ions excluding thgh positive ion, p(?(})|xjp,v}’)=p(;<f|xjp). (3.1
given the phase-space coordinates ofjtiiepositive ion. We
write —
This approximation makes the foré& in Eq. (3.14) depen-
p(x,0)= p(;‘(Jp,;Jp | XJp ,v]p) p(XJp ,v]_p), dent only on the location of the ion, and not on its velocity,
and set

ﬁ(x)=f P p(x P xP=x)dx?, (3.17

Pogep= [ | RGP opd] d .
fPxRON-3 ~
' (3.13 wherep(x ]| x=x) is the stationary margindintegrated
conditional density of the locations of all ions, excluding the
. . ) ~ jth positive ion, given it is located at
In Eq. (3.13, the integration over the velocity vectof can With this approximation, the stationary PDF of the phase-
be carried out since the ford¢ depends only on the loca- gpace coordinates of a single positive iqx,v), satisfies
tions of the ions, and not on their velocities. This simplifieshe FPE(3.15 with a forcing function that depends only on
the last equation to the location of the ion. In this case — in the limit of large
friction — the marginal PDF of the ions’s locatig{x) sat-

f_p(xjp ’v]p): fﬁp ff&)p&m XJP,va)d;(}’, (3.14 isfies the Smoluchowski equati¢h8|
j

fP(x)

wherep(xP|x °,vP) denotes the conditional density of the 0==V-J(X)==V| ——"—p(x)— %VP(X) ,

locations of all other ions, excluding thigh positive ion, mey B(x) m=y *(x) (3.18

given the location and velocity of thgh positive ion. '
With these definitions, and suppressing the inglekq.

(3.12 becomes while the full PDFp(x,v) has the form
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(X0)= 27kgT _3/2ex _ﬂvz (X)+m_p3(x).v p(xf|xp=x)=fp(;<5’|x-p=x) IT  dx..
p ! mp 2kBT p kBT ] ] ) xk;txJPY xic
L0 1 ) Performing these integrations in E@.17) yields
r2) |’ —
fp(x):fD(X)_eVy ‘/’perm(y)|y:x
whereJ is the flux defined by the Smoluchowski equation o olup 0
(3.18 andT is a measure of the friction. —ev, g; de’D(yyXi )p(xP [ xP=x)dx]|
Relation(3.1) converts Eq(3.18 for the PDF of a single ' y=x
particle into a Nernst-Planck equation for the macroscopic
positive charge density,(x), depending on the yet undeter- +eVy{ EK JQ¢>D(y,xﬂ)p(xE | xjp=x)dx2] ,
mined average forcéP, y=x
_ (3.21
fP(x) kgT ; :
0=—V.| ———c,(X)—————Vc,(x) |. whereV, denotes the gradient with respecttdn the steady
mPy P(x) mPy P(x) state, all positive ions of the same species are indistinguish-

(3.19 able and thereforinterchangeablgeso the conditional PDF's

of the different positive ions, given the position of thih
Equation(3.19 depends on the approximatié8.16—(3.17  positive ion, are all equal. The same property holds, of
but is otherwise exact. Obviously, a similar equation holdscourse, for the negative ions as well. Thus, we conclude that
for the negative charge density(x), albeit with a different  all terms in the first sum in Eq3.21) are equal to each other,
forcef"(x), and the respective friction and mass coefficientsand so are the terms in the second sum.
Y'(x) andm". We denote byc,(y|x) and c,(y|x) the positive and

negative conditional charge densitiesyagiiven that a posi-

tive ion is located ak. Arguments similar to those in Sec.
E. The averaged force

Il A show that
The Nernst-Planck equatio3.19 for the stationary
charge density of the positive ions contains a yet undeter- Co(y[ x)=(N=1)p(xP=y]| xjp=x),
mined average forcéP(x), given by Eq.(3.17). This force (3.22
can be simplified considerably by noting that the force term (Y| x)=Np(xg=y]| ij=X)-

fjp(;() can be represented as a sum of two tefp(x J-p) and

fP(x,P), according to Eq(2.5). The latter term can be de-
composed, even further, as follows:

In terms of these quantities, the total force can be written as

f_p(x) =fo(X)— evxd’perm(x) - evz{ JQ ¢D(21Y)[Cp(y|x)
fP(X) = fp(xP) +1P(x,P)=fp(xP) - evx( Gperm(X)
(3.23

—cn(yIX)]dy]
, (3.20

+3 doxx]) -3 ¢D<x,xp))
= We define a potentiahP(z| x) by

wherefD(xjp) is the self-induced force of the ion, given by _

EQ. (2.8), ¢pem(X) is the potential ak created by the per- BP(2| X)= dpernl(2) + Q<l5|3(2,y)[0p(y|><)—Cn(y|><):|dy-
manent charge and the applied voltage, @yix,y) is the

potential atx created by a positive ion located ygtwith o gjnce bp(y,x) satisfies Eq.(2.9), it follows that gp(z| X)

applied voltage. The potentiabp(x,y) satisfies Poisson’s gaiisfies the Poisson equation
equation(2.9).

We now insert decompositiori3.20 of fJP, into Eq. _ e
(3.17). The first two terms in Eq(3.20 depend only on the V- [e(y)VydP(y|x)]=— ;[pperm(y)+cp(y| X)
location of thejth positive ion and are thus constant with 0
respect to the integration variables. Furthermore, each one of —cu(y|x)1, (3.29

the remaining terms in the two sums is a function of oo

of the integration variables. Thus, integration with respect tovith the applied voltage conditions on the electrodes. Obvi-
the other variables can be performed. This integration regusly, the average fordg'(x) appearing in the NP equation
duces the conditional PDE(}}’ | xP=x) to the marginal  for the negative charge densities can be written as the sum of
(integrated conditional PDFp(x’ | xJP=x) of the variable the seh‘_—force and the gradient of an analogous electric po-
not integrated so far, tential ¢"(y| x).
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To conclude, the averaging procedure described in Secsften rather complicated;losure relationbetween the con-
IIA-IIID shows that the macroscopic charge densitiesditional and the unconditional charge densities. Applying ei-
Cp(X) andc,(x) satisfy the following Nernst-Planck equa- ther one of these existing theories to the CPNP system yields
tions a closed system of Poisson and Nernst-Planck equations that
can be solved simultaneously, at least in principle. In this

B - way, our paper can relate to the substantial literature of sta-
0=V, Py (%) Co()[EVy Py X)|y=x—fo(X)] tistical mechanics of ionic solutions and to their recent ap-
plications to channelg22,23.
KaT The pair-correlation functions, or equivalently, the condi-
B . e . . .
vacp(x) , tional charge densities present in the Poisson equations, con-
mPy P(x) tain within themexcluded volumeffects. The simplest and

most crude approximation, however, is to neglect these ef-
fects and replace the conditional charge densities in Eq.
(3.24 by the unconditional charge densities. This approxi-
mation leads to the standard Poisson equation

1 _
ch(x)[—eVy¢“(yl X)|y=x—Tfo(x)]

kgT

—Van(X)
m"y"(x)

, (3.29

Ve (0V, B(x)=— So[ppemwcp(x)—cn(x)].

with averaged mean-field potentials that satisfy Poisson (3.26
equations withconditionalcharge densities, and with the ad- _ _
ditional self-force termfp(x). The charge densities in the Equations(3.29—(3.26, with ¢°(y|x) replaced byg(y),
Poisson equation are different from the unconditional chargé@re the standard Poisson-Nernst-Planck m¢8klbut with
densities in the NP equations. We denote the resulting systean additional self-induced force termip(x).
(3.24—(3.25 as the CPNP system. This system differs from More refined theories attempt to compensate for the error
the standard PNP system, beca(i$ét containsconditional  in the evaluation of the net force introduced in the above
potentials satisfying Poisson equations with conditional@pproximation. We consider this compensation in a typical
charge densities, an) it contains the self-induced force. bath-channel-membrane setup. First, we consider the net
Note that there are different conditional Poisson equation&rce on an ion located at in the bulk solution far away
for the positive and negative species. For a mixed solutionfmany Debye lengthgs]) from the membrane and channel.
we would have a separate NP equation and a separate cofle assume that this region of the solution is approximately
ditional Poisson equation for each ionic species. in equilibrium, and thus approximate the conditional charge
Finally, we note that calculations with conditional chargedensitiesc(y| x) by the simple Debye-Hikel theory[8].
densities play a central role in statistical mechanics of liquids This leads to an isotropic displacement of the ionic atmo-
[14,8]. Our paper shows that conditional densities arise insphere, i.e., the charge cloud around the ion. According to
evitably in a stochastic analysis of averaged macroscopithe well-known sum rule, the total charge of the cloud equals

charge densities. the opposite charge of the fixed ion mt[14]. Since this
displacement of the charge of the ionic atmosphere is isotro-
F. Conditional and unconditional charge densities pic, the direct Coulomb force on the ion, due to this cloud, is

- » zero. The charge displacement of the ionic atmosphere, how-

To solve Egs(3.29 for the unconditional densities,(X)  ever, acts on the ion not only through the direct Coulomb
andc,(x) it is necessary to solve Poisson's equatiBr24  force, but also through the surface charges induced at dielec-
for ¢P and a similar equation fo$". However, these equa- tric interfaces by the charge displacement. Since the spheri-
tions contain the conditional charge densit'cgf{y| x) and  cally symmetric cloud centered at the ion has an equal but
cn(y|x) so that the CPNP systerfB.24—(3.25 is not  opposite charge as that of the ion, the spherically symmetric
closed. These conditional charge densities at locajipn cloud induces equal and opposite surface charges at the far
given a positiveor negative ion at locationx, are in general away dielectric interfaces. Therefore, the effect of the dis-
differentfrom the unconditional charge densities at the samelacement cloud, or equivalently, of tmeaction fieldcom-
locationc,(y) andc,(y). Therefore, to close the CPNP sys- puted from the conditional charge densities, saacellation
tem, it is necessary to either derive an additional set of equasf the self-induced force on the ion, due to the charge in-
tions for the conditional charge densities, or to determineduced by the ion at dielectric boundaries. That is, the dis-
closure relationsbetween the conditional and unconditional placement cloudscreensthe self-induced force of the ion
charge densities. [see Fig. Pa)].

At this point, we note that according to E(.22), the The replacement of the conditional charge densities with
conditional charge densities are related to the well-studiedinconditional densities in Poisson’s equati{@®4) changes
pair-correlation function§8], which are the conditional pdf, the distribution of positive and negative charges around the
p(y| x), of a positive or negative ion gt given a positive or ion located ak. While the conditional densities form a cloud
negative ion aix. There are several theories for computing around the ion, as described above, the unconditional densi-
the pair-correlation functions under various assumpt[@hs ties do not. Thus, in a bath with an ionxaand unconditional
The outcome of each of these theories is a different, andensities around it, the surface charge induced by the ion at
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O =0 Sing” © Outside the channel, there is perfect screening of the self-
membrane membrane bath induced force by the conditional densities, so their replace-
S G ment with unconditional ones makes the effective induced
9| @ force zero. Inside the channel there is almost no screening so
| the effective induced force approximately equals the self-
image induced force. In the intermediate region, between the mem-
charges brane and the bulk solutiofseveral Debye lengths away

(@) ) from the membrane the situation is more complicated and
FIG. 2. (a) The displacement cloud around an ion located manyhas to be calculated from a more detailed theory.
Debye lengths from a membrane, dibgaround an ion located near
a membrane. IV. QUASI-IONS AND SIMULATION OF PERMEATION

dielectric boundaries is not compensated by a surface charge A different approach to the study of the permeation pro-
induced by a displacement cloud. This means that there is €SS through the channel uses Langevin simulations instead
differencein the net force acting on the ion between a bathof closure relations. In Sec. IlIC we have shown that the
with conditional densities, and a bath with unconditionalStationary probability density functiop(x,v), for the phase-
densities. Specifically, in a bath with conditional densities,sPace coordinates of a single positive ion is governed by an
the self-induced force due to the induced surface charges [GPE type equation3.15. This FPE corresponds to the
screened and decays exponentially fast with distance frorh@ngevin equation

dielectric boundaries. In contrast, in a bath with an iox at o

and unconditional densities, the induced force is not screened . . fP(x) 2yP(x)kgT .

and is therefore long range, decaying as the inverse square of X+ yP)x= mP + TW' (4.)

the distance to the dielectric boundary.

Thus, for ions quated far away fron_1 dielectric interfaces,yith the additional approximatiof8.16—(3.17) so that the
the (long-rangé self-induced forcép(x) in Eq. (3.25 has to forceTP(x) d d | Note that this L . i
be eliminatedto compensate for the replacement of the con-0'ce () epends only oi. INote that this Langevin equa
ditional charge densities with the unconditional ones. RelateHon does not def|_ne th? trajectories ofa rgal positive on, but
phenomena involving screening in ionic solutions, is seen ir{ather defines trajectories oflquiasi-ion that is driven by the

both modified Poisson Boltzmann theories and simulationgveraged forcé P(x), and not by the real fluctuating force
[24,25. that drives a real ion. Yet, according to our analysis, the
As the ion approaches the dielectric interface, the isotropyverage flux computed from the trajectories of this quasipar-
of the displacement cloud is broken, so that the direct Couticle, equals the averaged flux of real ions. Note also that the
lombic force of the cloud on the ion no longer vanishes, and*oundary behavior of the trajectories of this quasi-ion is the
the induced surface charges of the screening cloud do ng&me as those of the real ions — reflection at hard walls and
cancel the induced surface charges of the[sme Fig. 2b)]. immediate recycling at the opposite electrode of ions reach-
These complexities also affect ions approaching the mouth dig & given electrode. The idea of a quasi-igalled a per-
the pore, where the flux may not be considered negligible, s@nion) has been mentioned before in the permeation literature
the ionic cloud may not be considered spherically symmetri({28]-
[26]. The permeation properties of a channel can thus be stud-
The situation inside the channel is opposite to the situaled by simulating trajectories of quasi-ions, according to Eq.
tion in a bulk solution. Inside the channel there is usually(4.1), once the forcd P(x) has been evaluated. One possible

only one mobile i(_)n. Therefore, we expect that ther_e v_viII beprocedure for approximating the foré@ is to fix the quasi-
almost no screening of the self-induced force on this ion byon at various locationg, and for every such location, com-
the conditional charge densities in the bE2fd]. In replacing  pute the average force exerted on it, either by some theory or
conditional charge densities by the unconditional ones, thgy a simulation in which the force is approximated by an
self-force must be retained inside the channel. ensemble average. In the latter method, for every system
_To conclude, the replacement of conditional charge dengyithin the ensemble, the quasi-ion is kept fixed at its loca-
sities by unconditional ones has an effect on the net forc§on, and the other ions are allowed to relax to a random
acting on the ion. This effect can be compensated by replaggajization of their stationary distribution. This procedure is
ing the self-induced forcép(x) by an effective induced only an approximation of the force, because keeping the

forcef §'(x), so that the net force in the NP equations for theguasi-ion fixed is not strictly consistent with the flux of the

positive and negative ion®f valence ongis given by quasi-ion. However, the mean velocity of the quasi-ion asso-
_ _ ciated with this flux is small compared to its thermal veloc-
fP(x)=—eVp(x) +15"P(x), ity, so this procedure is a reasonable first §te]. Once the
o o force is known, a simulation of E@4.1) can be carried out.
f(x)=+eV p(x)+fM(x). Now consider the case of a channel that can contain more

than one ion at a time. In this case, it might be necessary to
Note that if the positive and negative ions have the samagimultaneously simulate two or more ionic trajectories at a
diameter and valence, then the effective forces are equal. time. In analogy to the case of a single simulated quasi-ion,
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a simulation of the motion of two ions leads to forces of theinterionic repulsion and attraction forces, and in particular
form f_(xl,xz) which depend on the locations of the two excluded volume effects. This difference renders the result-
simulated quasi-ions, and on the conditional charge densitie#)g CPNP system incomplete. As in the theory of fluids, a
but conditioned now on the locations lodthions. In order to  closure relationbetween the conditional and unconditional
proceed in this direction, a theory must be derived or a simucharge densities and between the conditional and uncondi-
lation carried out to compute these forces. tional potentials is needed to complete the system. With a

There are, however, quite a few issues to be resolved beslosure relation, all the equations in the CPNP system are
fore a practical simulation of a quasi-ion can be carried outcoupled to each other. One of the simplest closure relations is
The first issue involves approximating the full phase-spacéhe mean spherical approximati@MSA) closure which ex-
coordinates X,v) with only the spatial coordinatg. This  presses the excluded volume of ions of finite size. MSA-type
approximation enables a simpler and faster simulation of thelosure relations are quite successful in describing properties
quasi-ion but is problematic because in simulating only theof free solutiongwith no dielectric interfaces and no narrow
location of the ion and not its velocity, there is no way to channel$[8]. These closure relations have recently been ap-
distinguish between incoming and outgoing trajectories aplied to ionic permeation in protein chann¢2,23,29.
the electrodefl8]. Thus, the recycling mechanism of ions at  In this paper, we examine a specific closure relation, that
the electrodes has to be revised in this limit. Another issue iseplaces the conditional charge densities in the Poisson equa-
the size of the domain. In our formalism, the dom&inin tions by the unconditional ones, and also replaces the self-
which the solution was confined is assumed large enough goduced force in the NP equations by an effective induced
that density fluctuations are neglected and the instantaneorﬁs’cef%”. The exact form of the effective induced force in
recycling mechanism at the electrodes is assumed. Howevehe access region needs to be resolved by a higher resolution
running a simulation in such a large domain may prove to baheory; but far away from channel and membrane, the effec-
too slow. Thus, ideally one would like to simulate a quasi-iontive induced force is approximately zero, as we have dis-
in @ much smaller domain surrounding the protein channelcussed, and near dielectric interfaces—in particular inside
However, in this domain, the density fluctuations in the origi-the channel—there is hardly any screening so the effective
nal formulation of the problem may not necessarily be neginduced force approximately equals the self-induced force.
ligible, and thus automatic reinjection of quasi-ions at theWe note that the proposed closure relation is not based on the
electrodes needs to be reconsidered. These issues require fBoltzmann distribution, and therefore may be also applied in
ther investigation not covered in this paper. nonequilibrium systems.

The replacement of conditional densities by unconditional
ones leads to the PNP system, with the additional effective
induced force termf efo_ This replacement represents the

In this paper, an averaging procedure of a Langevin moddinite-sized ions as point charges. Thus, excluded volume
for the coupled motion of many interacting ions in an elec-effects arelost in this description, and all the related phe-
trolyte solution is described, that results in an approximateomena of channels, such as single filing and flux saturation,
description of the solution with averaged charge densitiesannot be recovered by the PNP system.
and mean electric fields. The result of the averaging proce- A different approach to include the finite sizes of the ions
dure is a CPNP systern8.24—(3.25 containing a set of into an averaged PNP description introduces Lennard-Jones
conditional Nernst-Planck and conditional Poisson equaforce terms between the individual ions in the Langevin sys-
tions. The average charge density of each ionic species in them (2.1). Then, in the averaging procedure, an additional
solution is described by a separate Nernst-Planck equatioaveraged conditional Lennard-Jones force term appears in
coupled to a separate Poisson equation for its conditionghe resulting Nernst-Planck equations of the CPNP system.
electrostatic potential. The force in each NP equation is th&he specific closure relation that replaces conditional densi-
sum of two terms; one is the self-induced force on an ion oties by unconditional ones, must also evaluate this averaged
that species, and the other is the gradient of the correspondlennard-Jones force, thus leading to a PNP description with
ing conditional electrostatic potential. This potential is de-excluded volume effects. Note, however, that when short-
scribed by a Poisson equation tliat depends on theondi-  range Lennard-Jones forces are present, in particular inside a
tional charge densities of all the ionic species, conditionedmultiply occupied channel, the assumption of independent
on the location of an ion of that speci€®) depends on the noise terms in the Langevin equations of different ions
permanent charge, an@) depends on the applied voltage should be re-examined. Last but not least, other closure re-
boundary conditions. In a bi-ionic solution, the CPNP systemiations, not necessarily leading to a PNP description of the
consists of a total of four equations: two NP equations for thesystem, are also possible, and should be examined.
charge densities of the positive and negative ions, and two In the derivation presented in this paper, the CPNP system
Poisson equations for the conditional potentials, each corrg3.24—(3.25 can be considered as the result of ensemble
sponding to one of the NP equations. averaging over many independent realizations of the stochas-

In equilibrium, the conditional charge densities appearingic system(2.1)—(2.2). Obviously, for a rigid channel, in
in the Poisson equations are closely related to the paiwhich the permanent charge does not move at all, the per-
correlation functions in the theory of fluid8]. The condi- manent charge densipy,.(X), the dielectric constant(x),
tional densities arelifferentfrom the (unconditional densi-  and the boundary conditions remain unchanged in the aver-
ties in the NP equations, and their difference is a measure afging process. If, however, the permanent charge fluctuates

V. DISCUSSION
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around a fixed position, then the dynamics of the permanenheir induced surface charges treated separatelee Eq.
charge need to be described and coupled to the full Langevif2.5)]. The presence of the charge mf induces surface
system(2.1). The averaging procedure will result ircandi-  charges at all the boundarié$);, separating regions of dif-
tional permanent charge distribution appearing in the condiferent dielectric media. These surface charges, in turn, exert
tional Poisson equations. a force on this charge, which we denote By,4(rg). The

In this way, the geometric and electrostatic properties of dollowing lemma states the connection between this force
channel carry over to the averaged system. However, thand the electric potentiad(r), in the entire space.
fluctuating state of the system with tlfeandom locations Lemma. Letb(r) denote the electric potential at cre-
and velocitiex(t) ando(t) of all the ions is replaced in the ated by a point charge aty, and let Fi,q4(ro) denote the
averaged system by the nonfluctuating averaged charge def@sulting net force on that point charge, the dielectric bound-
sitiescy(x) andcy(x). Thus, potential fluctuations are lost in ary force. Then
the PNP system. In steady state, these charge densities can be
viewed as averages over many snapshstmples of a _ _ _;)

. . . .. Fmd(ro) qu CI)(r) _
single system, taken at different times, sufficiently far apart Amegeq|r—rol
for all correlations to vanish. In this view, the charge densi-
ties appearing in the NP equations are time averages of dis- In other words, the dielectric boundary force acting on the
crete ionic concentrations, over times much larger than theharge can be computed by subtracting from the total electric
relaxation time of the system. This view defines a continuunpotential the singular Coulombic term produced by the
description of the discrete contents of an ionic channel. Thigharge, and then computing the gradient at the charge’s lo-
continuum description results from averaging over timescation.
much longer than the passage time of a single ion through a Proof. The potentiakP(r) satisfies Poisson’s equation
channel, so that all unidirectional fluxes meld into a single
averaged net flux and lose their individual identity.

Finally, note that ion specific excess chemical potentials
included in the Langevin model apgeservedy the averag-
ing process, and appear in the effective NP equations. Sudhith the standard jump conditions of the normal field at di-
excess chemical potentials might arise from a more detaile@lectric interfaces
atomic model, describing “chemical” interactions of an ion
(in the bulk phasewith its hydration shell, and of an iofin [e(V(r)- n]|d'9i:0’ (A2)

the channelwith its solvation shellof atoms of the protein ) , . N
as well as channel water wheren is a unit vector in the outer normal direction to a

Note added in proofRosalind Allen, Jean-Pierre Hansen, Surface element oa();, and the square brackets denote the
and Simone Melchionna have recently treated a similar prc)b(jlf'ference in the variable enclosed within them, between the
lem by variational methods in a paper submitted to Physicay@/ue outside the regiof2; and inside it. Note thab(r) also

Chemistry Chemical Physics. vanishes agr|— . . .
The presence of the point charge rgtinduces surface

chargesgi,q, at the dielectric boundaried);, given by

r=ryg

V~s(r)V<I>(r)=—§6(r—ro), (A1)
0
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APPENDIX A: THE SELF-INDUCED FORCE FROM location,

DIELECTRIC BOUNDARIES

Find(ro)=—qV®;,q(r)|;=; .. A4
Consider the three-dimensional sp&fedecomposed into ind(T0) = =GV PinalDlr=r A4

an arbitrary number of dielectric regions of arbitrary shape
;. We assume that in each regifhy, the dielectric coef-

ficient is constant, with respective valug., and jumps already been taken into account in the computation of the
abruptly only at the boundarie#}; separating regions of ;-4 -ad surface charges via EqA1)—(A3), the potential
different dielectric coefficients. Consider a point charge ofg,

. o . ) ing(r) satisfies Laplace’s equatiomithout a dielectric co-
sfcrengthq Ioca_ted atrqeﬂl, a region with dielectric goefﬂ— efficient, i.e., withe(r)=1 throughout whole space
cient 4. In this section we consider only the self-induced
force on this point charge, due to the presence of dielectric AD;,4(r)=0. (A5)
boundaries, so we assume no other fixed or mobile charges
are present in the system. As explained in the text, the inteftn addition, as with®(r), the potentiatb;,4(r) also vanishes
action forces of this point charge with the other chargesl  as|r|—o. No point charge is present gtin Eq. (A5), since

SVe now consider the equation that the poterg|y(r) sat-
isfies. Since the polarization of the different regidias has
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the potential®;,4 is produced only by the surface charges q
induced on the dielectric interfaces. A[®ing(n—@(N)]=+ _——5(r=ro)
While there are no dielectric boundaries for the potential o=t
Dinq(r) [e(r)=1 everywherg there are surface charges,
given by (A3), located at these boundaries. This amounts tovithout any jump conditions at the boundarie€;. The
the following jump conditions, solution to this equation, with a plus sign in the right-hand
side, is of course the free space potential created by a point
[V®ing-n]ls, = Tindlso,- (A6)  charge of strength-qg/e, atr,

The key point in the proof of the lemma is the observation

that the potentiadb (r) created by the point charge rgt that B, g(r)— D(r) = — 1 a (A9)
satisfies Eqgs.(A1)—(A2), equivalently satisfies Poisson’s ind Amregeq |r—ro|”

equation with a constant dielectric coefficient(r)=¢,

throughout space, Combining Eq.(A9) with Eq. (A4) concludes the proof of

q the lemma.
AdD(r)=— 8(r—rq), (A7) Note that the potentiab(r) is proportional to the charge
€180 g atry. Thus according to EA3) and Eqs(A5)—(A6) both

but with jump conditions acros®ow nonexistentdielectric ~ the induced surface charges and the potedtigl, are also

boundaries that depend on the induced surface charges fouREPPortional toq. This renders the self_-inducedz dielectric
there, boundary force, given by E4A4), proportional tog. Thus,

the force vector has theamedirection and magnitude re-
[V(IJ-n]|(,Qi:aind|(7Qi. (A8)  gardless of the sign of the chargerat
Note also that for the same problem in a finite dom@in
This equivalent representation a@f(r) follows from the  with homogeneous boundary conditions 6f (grounded
textbook pillbox treatment of Gauss’ law at dielectric bound-metal electrodes at the boundarthe lemma does not hold.
aries[19]. Note also that these jump conditions are exactlyThis is because the solution of EGA9) in a finite domain
the same as those thdt, satisfies. with zero boundary conditions, is not exactly the Coulomb
To prove the lemma, we subtract the two potenti|sy  term, but rather contains boundary effects as well. However,
and ®. Both potentials satisfy the same jump conditions,in terms of the force on the ion, these effects decay as the
Egs.(A6) and (A8). Then, according to Eq$A5) and(A7),  square distance from the outer boundf3@], so for many
their difference satisfies the following Poisson equationpractical purposes, for an ion located far away from the outer
throughout space boundaries of the domain, the lemma is still valid.
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