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ABSTRACT 

In preparation for beginning the design of the Nation Ignition Facility (NE) in the United States and the 
Laser Mega-Joule (LMJ) in France, we are in the process of deriving new specifications for the large optics 
required for these facilities. They are currently being evaluated through modeling and experimentation. 
These specifications will be ready for general release by the end of the year. 

Traditionally, specifications for transmitted wavefront and surface roughness of large ICF optics have been 
based on parameters which were easily measured during the early 19SO's, such as peak-to-valley wavefront 
error (PV) and root-mean-square (Rh4S) surface roughness, as well as wavefront gradients in terms of waves 
per cm. While this was convenient ffom a fabrication perspective, since the specifications could be easily 
interpreted by fabricators in terms which were understood and conventionally measurable, it did not 
accurately reflect the requirements of the laser system. I n  some cases, optics which were not adequate for a 
given application which was particularly sensitive to periodic errors, \yere fabricated acceptably in terms of 
the optics specifications. For the NIF and LMJ laser systems, we have availed ourselves of advances in 
metrology and interferometry and an enhanced understanding of laser system performance to derive 
specifications which are based on power spectral densities (PSDs.) Such requirements can more accurately 
reflect the requirements of the laser system for minimizing the amplitude of mid- and high-spatial 
frequency surface and transmitted wavefront errors, while not over constraining the fabrication in terms of 
low spatial frequencies, such as residual coma or astismatism, which are typically of a very large amplitude 
compared to periodic errors. 

In order to study the effect of changes in individual component tolerances, it is  most useful to have a 
model capable of simulating real behavior. The basis of this model is discussed in this paper, outlining 
the general approach to the "theoretical" study of ICF optics specifications, and an indication of the type of 
specification to be expected will be shown, based upon existing ICF laser optics. The problem of 
specifying optics for high energy lasers is more difficult than for "classical" optical systems for-many 
reasons, which is discussed as well. 

Keywords: ICF, high energy lasers, optical components, specifications, power spectral density, PSD. 

1. SPECIFICATIONS IN GENERAL 

Specifying optics for ICF lasers, or any optical system, is the task of reducing the cost of optics while 
maintaining quality. In order to do this, it is necessary to have knowledge of two quantities: the cost of 
optical components versus quality, which depends on the capability of suppliers, and the actual laser 
requirements. 

Also, it is essential that the specifications have the two following qualities in order to be applicable: 

a. Simplicity: they must be easy to understand and to apply in the workshop. 
b. Accuracy: they must reflect the desired quality exactly. 



These two requirements are, of course, contradictory. The usual specification for ICF optics (NOVA and 
Phebus in the 198O's, etc.) was to specify distortion of the transmitted wavefront of the component in 
terms of the Peak-to-Valley (in waves) and of the gradient (in waves-per-cm) The values for these 
specifications were selected based on 'rules of thumb' and experience. Given the metrology capabilities of 
the time, this approach was the most logical. Today, however, with advances in metrology and changes in 
finishing processes, it is both possible and necessary to apply more accurate specifications which can be 
remain relatively simple through the application of existing metroIogy tools and commercially available 
software. 

2. DLFFERENCE BETWEEN ICF OPTICS AND CLASSICAL OPTICS 

The main differences between the specifying of ICF optics and that of classical optics are the following: 

a. ICF components are large, typically 400 to 800 mni. Therefore, the scate length of 

shape errors covers almost six decades ( 1  000 to 0.00 I mm). 

b. ICF lasers are long systems, typically tens to hundreds of meters. This, coupled with 

(a.) above, results in a wide range of Fresnel lengths which can fall within the sysiern, 
equivalent to feature sizes of 10 nun to 0.001 mm. 

c. 

amplification of spatial inhomogeneity. These ecfecfs can be quite dramatic.] 

ICF lasers are created using non-linear effects, which can result in power related 

d. ICF Lasers contain a wjde \.uric!,. uf co1nponei7~s, such as: silica aspheric off-axis 
focusing lenses, standadpolished laser glass slabs, fly-cut KDP frequency convertcrs, C ~ C .  

Thus, the expected cost versus qualiiy trade-off is different for different components. 

The various physical and optical phenomena encountered during the specifying of 1CF optics depend on 
such values as feature scale andor Fresnel length. Therefore, their behavior will be of a different nature in 
each scale range. 

3. ICF AMPLIFIER SECTION - A DESCRIPTION 

Figure 1 shows a simplified diagam of a typical amplifier section. The three basic components of the 
section are: 

a. Input filtering, including a collimating lens 

b. Laser amplifier slabs; there are between three and ten per section, tilted at Brewster's- 
angle. 

c. Output filtering, including focusing lens. 

The purpose of the filtering sections is to remove those higher frequencies that might experience high gain. 
The size of the holes is calculated so that the main beam may pass through without coming too near their 
edge, which would be fatal to the beam propagation. In the particular case of NIF and Mega-Joule, this 
size is equivalent to a ripple size of about 10 mm. 

The propagation mechanism is the following: An incoming beam focuses on the input filtering hole, is 
cleaned of its higher spatial frequencies which diffract outside the clear aperture. It then experiences energy 
amplification as it goes through the slabs. Irregularities in the wavefront are unintentionally amplified b)l 
non-linear processes, in a manner explained below. At the output filtering, the higher Frequencies will not 
pass the hole, as they diffract outside its clear aperture, but the lower frequencies will get through and will 
go on building up through the entire laser chain. 



1 Input filtering Non h e a r  components Output filtering 

Hole angular radius 100 prd approx., equivalent to ripple size 10 nini appros. 

Fig. 1. Simplified diagram of an amplifier section, including non-linear material. 
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Fig. 2. Summary of the basic model used in this paper. 



Suppose there is a penodic error in the phase of the laser, caused by an error in the transmitted wavefiont 
of, for instance, the collimating leas. That phase error will be converted to amplitude error through normal 
d&ction and amplified as discussed above. The reader unfamiliar with non-linear processes might ask to 
what extent these processes can be significant. An idea of their importance can be illustrated by the 
following occurrence: during operation on Beamlet (a test laser for National Ignition Facility), in which 
optical components are specified as in NOVA, unacceptabIy large modulation of intensity was present after 
two passes, and could not be accounted for. The problem was later traced to one laser slab, which showed 
ripple of spatial period 12 mm, and an exceedingly low amplitude, around h/100 Peak-to-Valley (P-V). 
When the offending optic was removed, the amplitude modulation did as well. Clearly, non-linear 
processes are important. 

4. SIMPLIFIED THEORY OF NON-LINEAR RIPPLE GROWTH 

4.1 Basics 

First, we will write the relation between beam power and index of refraction: 

where no is the index of refiaction of the material at zero beam power: y is the rion-linear parameter, and P 

the power density of the beam. It is customary to express P in  Watts/cm2, therefore y is in cni2/Watt. 

Classical numerical values for laser glass are: no = 1.j: y= 2 . 10-16 c n 1 2 / ~ .  \ , i t11  p = 5 GW/,-il12 

(appr9ximately the value at the last slab of NIF and i\il@ga-Joule), Ihc indes variation is: 

d n = y - P = I  1 I O - 6  (2) 

Propagating through a thickness of laser glass t, in a beam of wavelength A, produces a wavefront phase 
variation equal to: 

With values o f t  = 40 mm, h = 1053 nm, we have: 

d4 = 0.24 (radians) (4) 

This value is quite large: for ten slabs, a typical value for d@ will be 2.0 (the power density increases in 
one amplifier section to its maximum value computed above, so d@ does the same). This means the phase 
retardation of a plane wavefront will be 2 radians, or about U3. 

A final important parameter which will turn up later is the critical period, pc, defined as: 

(Znlp,) = 2 ~ k . (dn/no)’/2, 

or: pc = (1/2) - (Uno) . (dn/no)-Ii2 (5)  

where k = (21~) - n&, or the wave number. 

With the numerical values given previously, we find: 

pc = 0.43 mm. (6) 

4.2 Small Ripple Amplification (SRA) 

RippIe amplification mechanism is the following: a ripple (“parent“ ripple) launches near-field waves, 
which induce a periodic power variation of the main beam, which in turn impresses a periodic index 



variation in non-linear materials. Effectively, a hologram has been created- This hologram diffracts the 
main beam which, being powerful, gives rise to a "child" ripple, of same periodicity as the initial ripple, 
but with an amplitude which can be anywhere from zero up to tens of times that of the "parent" ripple, 
depending mainly on the spatial rippIe size. 

This process is "self-amplifying", ahd it is therefore not surprising to find that the maximum ripple gain 
depends exponentiaIIy on d4. Because of its importance, it is given a special symbol, B. 

B = C k t - dn (sum over beam path) (7) 

Figure 2 shows a summary of the parameters of significance in non-linear amplification. We will not 
attempt to demonstrate the derivation of the Small Ripple Amplification matrix formulation, as it is well 

documented elsewhere.:! Rather, we will derive from it the various equations relating directly to the 
subject of optics specifications. 

First, the notion of ripple amplitude must be clarified. A plane wave can be perturbed in two "orthogonal" 
ways : in amplitude and in phase. The former affects the power density in the beam, the latter affects the 
shape of the wavefront. However, both have the capability of diffracting light out of the main beam. if we 
expand the equation for the amplitude of a compound perturbation of a wave, we have 

where A is the resulting amplitude, Ao the unperturbed amplitude, u the relative amplitude variation, and v 
the phase variation. A first order expansion in the variables yields (assuming v is small): 

A = A o - ( I + u + i v ) = A o - ( I  + a )  where a = u + i v  (9) 

A combination of u and v is termed a mode. The perturbed term is (u + i . v), and the equivalence between 
mode amplitude (u) and mode phase (v) is evident. If we now suppose that the (complex) amplitude, Q, 

is the amplitude of a sinusoidal ripple of period p, and if the beam travels through one material, it can be 

shown2 that a. is transformed by a simple real-element 2 by 2 matrix : 

u = m i  1 - u o  + m i 2  - v o  

v = m21 . uo + m22. vo 
a = {MI . ao, or: 

The matrix elements, mi  1 to m22, depend only on  (p/pc) and B, defined in (5) and (7). If p is smaller 

than pc, the matrix elements are circular sine and cosine of parameters depending on B, and hence produce 

small gains. If  p is larger than pc, the matrix elements are hyperbolic sine and cosine, and hence can 

produce large gain, of the order of eB in amplitude, or in power. This will be illustrated in section 5. 
If the beam travels through alternating materials (such as airlglass), the global transformation matrix is, as 
expected, the product of the individual matrices of each material. 

5. STUDY OF ONE AMPLIFIER SECTION 

With the basic equations we have studied so far, we will now attempt to understand the behavior of one 
amplifier section, in terms of specification of optics. Because we are studying'wavefiont error, the input 
into the model will be a pure v vector, in which u (amplitude modulation) is zero. This is a reasonable 
assumption to first order, and greatly simplifies the mathematics, allowing more insight than retaining all 
4 matrix elements. 

The output of the model is threefold: 

a. We want to limit diffraction loss. This is characterized by the total mode power, (u2 

+ "2). 



b. We want to keep power moduIation down, to Iimit damage to the optics. This is 
characterized by the amplitude part of the vector, u. 

c. We want to limit wavefront distortion in the lower spatial frequencies; e.g. those 
that get through the filtering holes (see 3 3). This is characterized by the phase part of 
the vector, v. 

Figure 3 shows the gain curves for the three functions u2 t- v2 (labeled G-vP), u (labeled G-VU) and v 
(labeled G-vV). The x axis is ripple size p and the y axis is power gain (both log scale). As suggested 
above (9 4.2), the gain falls to low values when p becomes smaller than pc (0.43 mm). 

Five regions of interest have been marked off on the graph3 (for convenience, values have been rounded a 
bit): 

A. Ripples larger than 33 mm: diffraction is narrow, so these errors get through the filtering holes, and 
also fall on the target (angular radius 35 pad  approx., equivalent to 33 mm ripple). The gain function G- 
VV is almost unity: it is as if non-linearity were zero. Also, Fresnel lengths of such ripples are longer than 
1000 meters, so we are entitled to use geometrical optics (wavefront slope, etc.) in this region. 

3. Ripples between 33 and IO mm : diffraction is narrow, so they get through the filtering holes, but 
miss the target. The gain function G-VV is less than 2, asain almost unity. Fresnel length is between 100 
and I000 meters, almost identical to the laser length. Because of this, it is uncertain whether diffraction or 

geometric theory should be used3. 

C. Ripples between I O  and 1 mm: diffraction is larger than the filtering holes we've chosen for this 
model, so they cannot add through successive amplifier sections. The Sain functions suddenly increase to 
large values (more than 50), in a smooth way. We are concerned here with the two functions G-VP and G- 
VU only, since G-VV related to wavefiont distortion which does not get out of this amplifier section. In 
this region, it is to be expected that high loss and damage can occur. 

D. Ripples between I and 0.1 mni: the only difference with case C is the fact that the gain functions 
become apparently "chaotic". This is because Fresnel lengths for these ripples rapidly fall below the 1 
meter mark, the approximate distance between two consecutive slabs. Thus, maximum gain parameters are 
decorrelated between two consecutive slabs. We are still concerned with functions G-VP and G-VU, but the 
average value of G-vP (total power gain) becomes smaller, while peak values of G-VU remain at the same 
heights. 

E. Ripples smaller than 0.1 mm : gain functions have fallen to almost one, so this region can be treated as 
conventional scattering loss. 

6. SPECIFICATIONS 

In view of the behavior of laser systems as discussed in chapter 5 above, it seems obvious that the most 
appropriate language for specifying the source terns to the SRA process, is that of Fourier analysis. For 
this reason we are investigating specifying the transmitted wavefront in the frequency ranges of C and D, 
and possibly B, of each of the optics in the NIF and LMJ lasers in terms of power spectral density (PSD) 
and root mean square error (RMS), over the various frequency bands. We won't go over the properties of 

the PSD and RMS, as they are well known and described elsewhere4, but will show how these can be used 
in ICF optics specifications. 

In writing the first revision of the specifications, we chose to define those specifications based on currently 
avaiIable optics. Thus, in this section we will define a specification to obtain the same quality, in terms of 
the PSD, based on an existing PSD measurement. While this may sound like a specious exercise, it 
actually is not. The prototype optics used in the Beamlet demonstration project, with a few exceptions 
already mentioned, are believed to be acceptable for the full-scale production. In section 7, we will show 
the results obtained using essentially the same approach, to define the specification on a finished amplifier 

, 
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Fig. 3. Gain curves for a typical amplifier section ( I  0 slabs, B=2.0). 
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slab. The technology to be used to fabricate the optics for the larger laser system, must be substantially 
lower in recurring costs than the technology used to fabricate the Beamlet optics. Such a change in 
technoIogy can be expected to change the PSD of the resultant parts. Thus it is important at this juncture 
to defme a specification which will assure us of 'same quality' optics, to be used by the vendors in 
qualifying their new processes. The next step may be to begii loosening or tightening this specification - 

based on M e r  modeling or experimentation, or both. 

6.1 Specifying a PSD versus spatial frequency5 

In figure 4, we see a log-log plot of PSD versus spatial frequency. If we use a straight line to bound the 
values on this PSD, we effectively place a limit on the amplitude of modulations over a range of 
frequencies. The slope of the line which bounds the PSD will be determined by the process which created 
the optic. In the case shown in figure 4, the slope of such a bounding function is about -1. This means 
that the specification on the PSD is dropping at a rate of one decade per decade of frequency. Obviously 
such a bounding function need not be continuous; it  may make sense to have lines of different slopes over 
different regions of the frequency domain. 

Such a specification can be shown graphically or analytically, or both. For the example shown in figure 4. 

a bounding curve could be written as: 

PSD 5 A v -b for 0.08 mm-' 5 v 5 0.63 mm-l 

where A = 3 
b = l  

6.2 Caveats with a PSD specification 

Several other parameters need to be described explicitly in  the notation or understood through some other 

specification being applied6. By way of summary, i n  no particular order, the following parameters have 
been assumed in writing the above notation as a specification: 

1.) number of cycles required per measurement and number of data points per cycle. 
2.) specifications regarding scan length for each measurement (100 mm, 7.5 mm). 
3.) units of Fourier amplitude (nm). 
4.) units of the spatial frequency (mm-1). 
5.) Fourier transform routine to be employed. 

6.) I-D or 2-D calculation of the PSD. 
7.) number of line-outs averaged to obtain the PSD. 
8.) number of phase screens measured against this PSD requirement. 
9.) orientation of the iine-outs. 
IO.) the metrology tool to be used or the transfer fhction of the instrument versus 

fiequency.7 

6.3 Specifying RMS wavefront error versus frequency 

The above specification controls only the highly periodic functions present on the optic. If we were to use 
it alone, we could conceivably get the maximum PSD value at all points in the mid-spatial frequency 
spectrum, which is not our intent. The other key parameter for this specification is the area beneath the 

PSD curve which, as is described elsewhere4, is equivalent to the square of the RMS wavefi-ont error. It is 
necessary to describe such an RMS requirement in terms of specific frequency ranges. For instance: 

RMS I 1.6 nm for 0.08 mm-l S v 20.63 mm-l 

Since one can simply sum the values of the discreet PSD times the frequency increment and take the square 
root to determine the RMS error, an RMS wavefront requirement translates directly into an equivalent area 
beneath the curve of the PSD. One could draw another line, the square root of the area beneath which 
would be indicative of the Rh4S error, given in nm. The RMS error, in turn, can be converted into total 



scattered energy. By combining the gain curve with the power spectrum, one can calculate the amount of 
energy which is being transferred to the various spatial fiequency regimes for a high energy Iaser. 

Figure 5 shows both a peak PSD and an RMS specification versus fiequency in graphical form. Notice 
that we have drawn the line bounding the top of the area of the RMS specification to be parallel to the peak 
PSD line Erom section 6.1. As mentioned before, such a pictorial representation is sufficient; however 
adding the explicit notation shown in (1 I) and (12) is more precise, and avoids confusion. 

7. SAMPLE RIPPLE SPECIFICATION 

Thus we are prepared to write a specification for mid-spatial frequency errors in the transmitted wavefront 
to achieve a given PSD and RMS wavefront error. An example of such a specification is shown 
graphically in figure 6 .  A text section accompanying that figure could be as follows: 

Transmitted Wavefront (TWF). Finished Finished amplifier slab transmitted wavefront when measured at 

use (Brewster's) angle, shall be within the following PSD requirement, when measured and calculated per 
LLNL (or CEL-V) manufacturing and testing procedures. At least 3 cycles per measurement are required, 
as well as at least 8 samples per cycle. When plotted log-log, for spatial periods from 33 mm to 0.12 mm, 
the maximum value ofthe PSD shall be less than the line described.by the equation: 

PSD 5 A v -b for 0.03 nim-I I v I s.5 mm-i 

where A = I .05 
h = 1.55 

as shown graphically in figure 6. The RMS wavefront error, when calculated from the PSD over the 

spatial period range from 33 nini IO 2.5 mi1 (e.g. RMS I), will be less than 1 .S nm. When calculated over 

the spatial period range from 2.5 inm to 0.12 nini (e.2. RMS2), the RMS wavefront error will be less than 

1.1 nm. For demonstration, these RMS values are shown on figure 8 as the square root of the area 
beneath indicated lines. 

In addition, for scale lengths greater than 33 mm, the peak-to-valley (P-V) transmitted wavefiont, measured 
at use angle, shall be less than h/6, with wavefront gradients less than h/30/cm. For scale lengths less 
than 0.25 mm the surface roughness shall be less than 0.3 nm, RMS. 

8. CONCLUSION 

We have shown a simple method for generating a PSD specification to control mid-spatial frequency errors 
on a transmitted wavefiont. Power Spectral Density (PSD) has been around for many years now,-and is 

even part of a draft IS0 standard on roughness of optical components surfaces8. But its usefblness is 
heightened in systems such as ICF lasers, in which the complicated spatial frequency behavior cannot be 
mastered with just a few figures. Obviously, the same method can be used to specify any surface or phase 
function, such as reflected wavefront, as well. The PSD function is useful in understanding the properties 
of an optical element, especially with respect to high energy lasers. There is no magic to the calculation of 
a PSD, however care must be taken to properly average and normalize the data correctly. Indeed such 
calculations are automatic on most modem interferometric systems, however there are some caveats, noted 
in section 6.2. No simple specification, e.g. peak to valley, gradient, or RMS wavefront, can accurately 
control the mid-spatial frequency errors, common to large optics made using deterministic processes. The 
derogatory effects such wavefront errors have on high energy laser systems has been generally addressed. 
The use of PSDs for calculation of laser performance, and the verification of an optic versus a PSD 
requirement, are subjects for future talks. 
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