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Derivation of Reaction Theorems for Scattered Fields
Johan Malmström

Abstract—Two novel formulations of the reaction are derived.
The formulations decompose the electromagnetic fields in scattered
components based on the location of the sources of the scattered
fields. It is shown that some of the scattering components do not
contribute to the reaction. The novel formulations of the reaction
are derived by excluding these noncontributing components from
the classical reaction formulations. The correctness of one of the
formulations is verified with a numerical example. It is observed
from one of the novel formulations that the first-order scattered
fields do not contribute to the reaction. This result legitimizes the
approximation to neglect multiple scattering, which is a common
assumption when using reaction theorems. The novel formulations
are also important for a conceptual understanding of the reaction.

Index Terms—Antennas, electromagnetic scattering, electro-
magnetic theory, mutual coupling, mutual impedance.

I. INTRODUCTION

THE mutual impedance between antennas, and the closely
related mutual coupling, is of high importance when in-

stalling antennas for simultaneous transmission on platforms
[1]. A high mutual coupling means that much of the transmit-
ted energy leaks into the other antenna [2], something that can
severely degrade system’s performance.

The reaction is a measure of the interaction between two pairs
of electric and magnetic sources, carried by their corresponding
electromagnetic (EM) fields. The reaction, denoted by 〈2, 1〉, is
defined as [3]

〈2, 1〉 =
∮

S2

(E2 × H1 − E1 × H2) · n̂2 dS (1)

where fields E1 ,H1 are generated by Antenna 1 and E2 ,H2
by Antenna 2, as shown in Fig. 1. Integration surface S2 , with
normal n̂2 , must completely enclose one and only one of the
antennas (in this case Antenna 2). To be able to handle inho-
mogeneous regions, such as a platform or other structure, the
complex values ε(r), μ(r) depend on position r.

Reaction 〈2, 1〉 does not depend on the environment outside
integration surface S2 , when generating E2 ,H2 [4], which is
used in the generalized reaction [4]

〈2, 1〉 =
∮

S2

(E′
2 × H1 − E1 × H ′

2) · n̂2 dS (2)

where unprimed variables are from the original environment
and primed variables are from an alternative environment, as
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Fig. 1. Original reaction (1). (a) Antenna 1 transmits with a current I11 , while
Antenna 2 is open circuit. (b) Antenna 2 transmits with a current I22 , while
Antenna 1 is open circuit. The media is the same in (a) and (b).

Fig. 2. Generalized reaction (2). (a) Antenna 1 transmits with a current I11 in
the original environment with Antenna 2 open circuit. (b) Antenna 2 transmits
with a current I ′22 in an alternative environment. The media inside S2 must be
the same in the two environments but can differ outside S2 .

depicted in Fig. 2. The structure outside integration surface S2 ,
described by ε′(r), μ′(r), can be changed between the original
and alternative environments, but structure enclosed by S2 must
remain unchanged.

The reaction theorem relates the field quantities in (1) and
(2) with circuit quantities, i.e., currents and voltages defined on
the terminal of antennas, see Figs. 1 and 2. For example, it can
relate reaction 〈2, 1〉 with mutual impedance Z21 between two
sources or antennas

Z21 = − 〈2, 1〉
I11I22

. (3)

Terminal current I21 in Antenna 2, when Antenna 1 transmits,
is assumed to be zero, i.e., an open circuit. Terminal current I22
is replaced with I ′22 in the generalized reaction theorem (2).

The reaction theorem has been used for calculating mutual
impedance in several works recently [5]–[8]. It is observed that
multiple scattering is neglected in these works, to make the
reaction theorem applicable. It is hence interesting to investigate
the effects of multiple scattering on the reaction, which is a goal
of this paper.
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Fig. 3. Decomposition of fields E, H generated from an antenna in V + in
E+ , H+ and E−, H− based on source origin according to (5)–(8).

II. REACTION FOR SCATTERED FIELDS

A. Field Decomposition

We consider an antenna generating fields E, H that are scat-
tered on some objects, as shown in Fig. 3. We use a fictitious
surface to separate the transmitting antenna (if necessary, also
including parts of the platform) and scatterers in two disjoint
regions V + and V −, as shown in Fig. 3.

The fields from the antenna will induce a current J on the plat-
form and all scattering objects. We note that, from the method
of moment approach, given the induced current J and material
parameters ε(r), μ(r), fields E, H can be uniquely determined
[9]. Clearly, E, H are linearly dependent on J . Current J is
decomposed into two parts

J = J+ + J− (4)

based on the origin of the currents, so that

J+ = J , in V + (5)

J− = 0, in V + (6)

J+ = 0, in V − (7)

J− = J , in V −. (8)

Based on the superposition principle, we consider fields E+ ,
H+ to be generated by sources J+ and fields E−, H− by
sources J−, so that

E = E+ + E− (9)

H = H+ + H−. (10)

Scattering components E(n) and H (n) are denoted with their
scattering order n, i.e., the number of reflections they have been
undergoing, as illustrated in Fig. 3. Summing scattered com-
ponents with even scattering order produces fields E+ ,H+ ,
whereas summing components with odd scattering order pro-
duces fields E−,H−, i.e.,

E+ =
N∑

n=0,2,4,...

E(n) (11)

E− =
N∑

n=1,3,5,...

E(n) (12)

and equivalently for magnetic fields H+ ,H−. Consequently,
fields E+ , H+ are source free in V −, and fields E−, H− are

Fig. 4. Surfaces SR and S2 , enclose volumes VR and V2 , respectively. Vol-
ume VR \V2 is between the two surfaces SR and S2 .

source free in V + . The transmitting antenna is assumed to be in
volume V + . Hence, the direct components Ed , Hd

Ed = E(0) (13)

Hd = H (0) (14)

are included in E+ ,H+ .

B. Decomposing the Reaction

We apply decomposition (9), (10) to E1 ,H1 and E2 ,H2 in
(1) and let the surface that separates V + and V − coincide with
integration surface S2 in Figs. 1 and 2. Reaction (1) separates
into four terms

〈2, 1〉 =
∮

S2

(
E+

2 × H+
1 − E+

1 × H+
2

) · n̂2 dS (15)

+
∮

S2

(
E+

2 × H−
1 − E−

1 × H+
2

) · n̂2 dS (16)

+
∮

S2

(
E−

2 × H+
1 − E+

1 × H−
2
) · n̂2 dS (17)

+
∮

S2

(
E−

2 × H−
1 − E−

1 × H−
2

) · n̂2 dS. (18)

C. Radiation Condition

First, we will focus on the second of these four integrals, i.e.,
(16). Integral (16) depends on fields E+

2 ,H+
2 from Antenna 2,

and fields E−
1 , H−

1 from Antenna 1 that are scattered on objects
enclosed by S2 .

We let a sphere SR enclose a volume VR that includes both
antennas and surface S2 , see Fig. 4, and calculate reaction (1)
over surface SR . When radius r of the sphere goes to infinity
r → ∞, the radiated fields decay as r−1 and the cross products
as r−2 . Since the area of integration goes as r2 , the integral will
not obviously converge. We have to convince ourselves that the
reaction over the large sphere SR with the decomposed fields is
zero.

We assume that the medium far away from the antennas is
homogeneous and isotropic and that the sources are localized.
With these assumptions, the EM fields will propagate outwards
from the antennas and, asymptotically (i.e., infinitely far away),
form a locally plane wave.

For large but finite distances from the source, the wave will not
be perfectly plane. We consider the Silver–Müller radiation con-
dition, which gives information about the asymptotic behavior of



the fields far from the sources. In [10], the Silver–Müller radia-
tion condition is given as (with a omitted/normalized impedance
Z = 1)

lim
r→∞ r (H × n̂ − E) = 0. (19)

Using the little-o notation,1 the radiation condition (19) for a
large, but finite, r and a general impedance Z can be formulated
as a plane wave including a correction term as

E = Z(H × n̂) + o(r−1) (20)

in which it is understood that each field component goes as
o(r−1). Using (20), we can write the integrand in (16) as

E+
2 × H−

1 − E−
1 ×H+

2

= Z(H+
2 × n̂) + o(r−1)) × H−

1

− (Z(H−
1 × n̂) + o(r−1)) ×H+

2 =

= Z
(
H+

2 (H−
1 · n̂) − H−

1 (H+
2 · n̂) + (H−

1 − H+
2 )o(r−1)

)
.

(21)

Far from the source, the dominant parts of H−
1 and H+

2 are
orthogonal to the direction of propagation n̂. We know that
H−

1 , H+
2 , and (H−

1 − H+
2 ) all decay as r−1 for large r. Radial

components, H−
1 · n̂ and H+

2 · n̂, decay faster, so that H−
1 ·

n̂ = o(r−1) and H+
2 · n̂ = o(r−1). Hence, all terms in (21) are

o(r−2), and so is the whole integrand, i.e.,

E+
2 × H−

1 − E−
1 ×H+

2 = o(r−2). (22)

This relation implies that integral (16) over the large sphere SR

goes to zero when r → ∞∮
SR

(
E+

2 × H−
1 − E−

1 ×H+
2

) · n̂ dS = 0. (23)

Now, still with integral (16) in focus, we consider the region
VR\V2 between surface S2 and sphere SR (see Fig. 4)∮

SR −S2

(
E+

2 × H−
1 − E−

1 ×H+
2

) · n̂ dS. (24)

Recall that fields E+
2 ,H+

2 ,E−
1 , H−

1 per definition (see Fig. 3)
are source free, J−

1 = 0 and J+
2 = 0, in volume VR\V2 outside

S2 . By considering the integral form of the Lorentz reciprocity
theorem [12] in the source-free region VR\V2 , we immediately
see that integral (24) evaluates to zero∮

SR −S2

(
E+

2 × H−
1 − E−

1 ×H+
2

) · n̂ dS = 0. (25)

We know from (23) that the surface integral over the large
sphere SR is zero. Combined with (25), it follows that the

1For non-zero g(r), the little-o notation f (r) = o
(
g(r)

)
implies that

lim
r→∞

f (r)
g(r)

= 0.

Additionally, the little-o notation is related to the big-O notation. If a function
f (r) = o(r), it implies that f (r) = O(r) [11].

Fig. 5. Two high-scattering antennas, each consisting of a Hertzian dipole in
front of an infinite ground plane, facing each other.

integral over S2 , i.e., integral (16), must be zero∮
S2

(
E+

2 × H−
1 − E−

1 ×H+
2

) · n̂2 dS = 0. (26)

Changing our focus to the third integral (17) in the decom-
posed reaction, we see that fields E+

2 ,H−
1 ,E−

1 ,H+
2 are all

source free inside integration surface S2 . We can again consider
the integral form of the Lorentz reciprocity theorem [12], to see
that integral (17) evaluates to zero∮

S2

(
E−

2 × H+
1 − E+

1 × H−
2
) · n̂2 dS = 0. (27)

D. Resulting Reaction

Using (23) and (27), reaction 〈2, 1〉 can be formulated as

〈2, 1〉 =
∮

S2

(
E+

2 × H+
1 − E+

1 × H+
2

) · n̂2 dS

+
∮

S2

(
E−

2 × H−
1 − E−

1 × H−
2
) · n̂2 dS. (28)

Note that there is no interaction between fields (·)+ and (·)−
from the different antennas.

The generalized reaction (2) can also be separated into scatter-
ing components. It becomes especially simple if the alternative
environment where Antenna 2 transmits, as depicted in Fig. 2(b),
is chosen to be homogeneous (e.g., vacuum) outside integration
surface S2 . With this choice, there will be no scattering from
outside S2 , and hence, E+

2 =Ed
2 , H+

2 =Hd
2 , E−

2 =0, H−
2 =0,

using the notation introduced in (13) and (14) and Fig. 3. Fields
Ed

2 , Hd
2 , E−

1 , H−
1 have their sources within S2 and are source

free outside S2 . The same derivations as in the previous sections
can be repeated for the generalized reaction (2), resulting in the
following expression:

〈2, 1〉 =
∮

S2

(
Ed

2 × H+
1 − E+

1 × Hd
2
) · n̂ dS (29)

which is valid for an empty alternative environment. Note that
components E−

1 ,H−
1 , generated by Antenna 1 and scattered

inside surface S2 , do not contribute to the reaction.

III. VERIFICATION

We verify the results for a pair of Hertzian dipoles between
infinite ground planes, as depicted in Fig. 5. The configuration
will give strong multiple scattering. The EM fields can be deter-
mined using the method of mirroring and the analytically known
fields from a Hertzian dipole in free space [12].



Fig. 6. Mirroring of Dipole 1 with positive (up-pointing triangle) and neg-
ative (down-pointing triangle) Hertzian dipoles between two ground planes at
x = ±2 m. The vertical axis denotes scattering order n.

Fig. 7. z Component of electric field ReE1 (left) from Dipole 1 decomposed
in field ReE+

1 (middle), and left-propagating field ReE−
1 (right), illustrated

on plane x = [−2, 2], y = 0, z = [−4, 4].

Starting with Dipole 1, we determine the fields after
mirroring in the left ground plane. The resulting two Hertzian
dipoles in Fig. 6 with scattering order n = 0 produce fields
E

(0)
1 , H

(0)
1 in the region between the ground planes. Next, the

two Hertzian dipoles with scattering order n = 0 are mirrored
in the right ground plane. The resulting two Hertzian dipoles,
with scattering order n = 1 in Fig. 6, produce left-propagating
fields E

(1)
1 , H

(1)
1 between the ground planes.

By continuing the alternating mirroring on the two ground
planes, we get mirrored dipoles for higher scattering orders n,
as illustrated in Fig. 6. The sources will be farther away for
each mirroring and give weaker contribution to the fields in the
region between the ground planes. Referring to Fig. 6, we can
convince ourselves that summing the fields with scattering or-
der n = 0, n = [1, 2], n = [3, 4], . . . produces null-fields on the
left ground plane, whereas summing the fields with scattering
order n = [0, 1], n = [2, 3], . . . produces null-fields on the right
ground plane.

We let the integration surface S2 enclose the half-space x > 0
and use S2 is used to decompose E1 , H1 generated by Dipole 1
in scattering components E+

1 , E−
1 , and H+

1 , H−
1 , according to

(9), (10) and (11), (12).
The same procedure is repeated with Dipole 2, to decompose

fields E2 , H2 into E+
2 ,E−

2 and H+
2 ,H−

2 .
Based on fields E1 , H1 , E2 , H2 , and their decomposed

fields E+
1 , H+

1 , E−
1 , H−

1 , E+
2 , H+

2 , E−
2 , H−

2 , we evaluate two
formulations of the reaction; the original reaction (1), and the
reactions for scattered fields (28) derived in this letter. We use a
dipole separation distance D = 1.8 m, with each dipole placed
a = 1.1 m from the ground plane, and a wavelength λ = 1 m.
Scattering components up to order N = 12 are included. Field

Fig. 8. Mutual impedance magnitude |Z21 | calculated with the reaction as in
(1), and (28). For illustration, integrals (26) and (27) are also plotted. We see
that the agreement of (1) and (28) is excellent and that (26) and (27) are both
very close to zero.

E1 from Dipole 1, decomposed into fields E+
1 and E−

1 , is
depicted in Fig. 7.

The results, in terms of mutual impedance using (3), are
depicted in Fig. 8. We see that the agreement between the mutual
impedance calculated with (1) and (28) is excellent. The results
are also close to the mutual impedance calculated with a full
wave method. As expected, the reaction from the scattering
components (26) and (27) are very close to zero. The results
from this strong scattering case indicate that the derived relation
(28) for the reaction is correct.

IV. DISCUSSION AND CONCLUSION

Reaction theorems can be formulated in several ways,
where formulations (1) and (2) are well known. In this letter, we
derive two novel formulations of the reaction for scattered fields,
see (28) and (29). The derived formulations of the reaction are
expressed for fields decomposed in their scattered components,
where the decomposition is based on the location of sources.
It is shown that not all scattering components contribute to the
reaction.

The resulting reaction between sources must not change de-
pending on the chosen formulation of the reaction. The classical
formulations of the reaction, (1) and (2), include combinations
of scattering components that do not contribute to the reaction.

In (28), we see that scattered fields from sources on one side
of the integration surface only interact with scattered fields from
sources on the opposite side of the surface.

With formulation (29) of the reaction, we see that none of the
odd scattering components (H−

1 , E−
1 ) contribute to the reaction,

if the alternative environment where Antenna 2 transmits is
chosen to be homogeneous outside integration surface S2 .

If multiple scattering is neglected, as in [5]–[8], we see in
the novel formulation (29) that the lowest scattering component
that contributes to the approximation error is not of first but of
second order.
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