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The full amplitude equation (as introduced by Newell and Whitehead and Segel) is derived directly from the
hydrodynamic equations for both “free” and “rigid” upper and lower boundaries. The coefficients involved,
including the interaction parameter of nonparallel rolls, are explicitly calculated for both boundary conditions

and all Prandtl numbers.

I. INTRODUCTION

In their pioneering work, Newell and Whitehead' and
Segel’ demonstrated the advantages of using a single
differential equation for an order parameter ¥(r) de-
scribing the slow time and (transverse) spatial varia-
tion of the convective roll pattern close to the onset of
convection, The equation turns out to have the form of
a “time-dependent Ginzburg-Landau equation”

b= T (6F/by), (1)

with F a functional of § reminiscent of a Ginzburg-Lan-
dau free energy at a second-order phase transition
(specifically for a two-dimensional smectic).® Explic-
itly, the equation is

Tode=le- £3g - a0, - 2. gla,q,q",a")
949 Q
XU dar bam Savat, s (2)
where §,_ is the Fourier transform of the order param-
eter, g, the onset wave vector, and 7, £,, and g are
parameters to be calculated. It is convenient to nor-

malize  so that the convective heat flow, defining the
Nusselt number N, is given by

=15 =3 [y l?, 3)
(4 Q

where R is the Rayleigh number and R, is its value at
the onset of convection in a laterally infinite system.
The small parameter of the expansion is e=R/R,-1.
Note that as defined here ¥(r} is proportional to the
hydrodynamic fields, including the sinusoidal depen-
dence of the roll pattern, Equation (2) is very general,
containing both effects of a continuous spread of wave
vectors q about a particular onset wave vector ¢4,
(with g, a unit vector), and the interaction of order pa-
rameters around different onset wavevectors ¢.q;,

9oz, etc.

The parameters 7, £,, and g for the case of only one
wave vector (and its negative) have all been derived for
the case of stress-free upper and lower boundaries, and
the full expression for g has been calculated for this
case in the infinite Prandtl number limit.** On the
other hand, most experiments are performed with rigid
upper and lower boundaries (all fluid velocities are
zero here), and with finite Prandtl number fluids. The
main purpose of this paper is to derive the full ampli-
tude equation for this experimentally useful case. Wes-
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~ by which the pressure P may be eliminated.
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fried ef al.® evaluated 7, and £,, and for the special case
of single rolls in a rectangular'geometry g, for these
boundary conditions, by assuming the form of the am-
plitude equation and then calculating each coefficient in
turn. The coefficients can also be derived from the
work of Kelly and Pal.® Here, we first complement this
approach by formally deriving the amplitude equation
from the hydrodynamic equations for this case. This is
done by a very compact method valid for both rigid and
free boundaries, This formal derivation leads to ex-
pressions for 7, and &, and the full general expression
for g that is explicitly evaluated. In particular, the cal-
culation of T, seems particularly straightforward.
Rather than following the “method of multiple scales”
commonly used, we follow a more physical approach,
somewhat like that of Swift and Hohenberg.® This ap-
proach, I believe, makes the content of the amplitude
equation more evident. However, much of the detailed
working relies heavily on results proved by Schliiter
etal.”

Il. FORMAL DERIVATION OF THE AMPLITUDE
EQUATION

The equations of motion describing the evolution of
the velocity field (x,v,w)=(u,w) and the deviation of the
temperature 6 from the linear conducting profile be-
tween boundaries at z=+3 are taken to be the Boussin-~
esq equations. If distance, time, and temperature are
scaled by d, d*/«, and xv/agd®, respectively, where
d is the cell height, « and v the thermal and viscous
diffusivities, and « the thermal expansion coefficient,
the equations take the form?

2
ﬁ:a(v2+?az—§)u- (wl +u-V>u—VP,

9z
2

z;/—_—09+0<V2+—85>w-(wi+u'v>w—-a—-P, @

9z 9z 9z
. 2 82 9
6=Rw+ |V'+—=)6 - ({w— +u- V)6,

9z 9z

together with the continuity equation
Veut+2w=0 (5)
8z

In these
and all later equations V is the two-dimensional trans-
verse differential operator. Fluid properties are con-
tained in the Prandtl number 0=v/ k. The Rayleigh
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number R is the conducting temperature gradient,
scaled as prescribed here,

Defining a four-dimensional vector V= (6,u,w) and a
gradient vector 8=(0,V,3/82), these equations can be
summarized:

V=DV -8P+N(V,V), )
9.V=0, M
where D=D"+ 6D is the matrix operator with
- 9%
(Vz +—a—zT) 0 Rc T
o_ 2
b= 0 a(v2+—a—2) 0 , @®
9z
2, &
g 0 o{ve+
L (+32)

and 6D is the matrix with one nonzero element OR in the
place of R, in Eq. (8). Also N is the nonlinear term

NV, V)=—(V- V', (9)
First consider the linearized version of Eq. (6),
V=0V -2P. (10)

together with Eq. (7). The solution is the sum of eigen-
vectors with time dependences exp(1'’t) with A’ the
corresponding eigenvalue, where q is the transverse
wave vector and i runs over the discrete set of z eigen-
functions (satisfying the relevant boundary conditions)
for each q. For small Rayleigh numbers all eigen-
values are negative of order -1 (for these purposes ¢
is taken to be of order 1). However, as R passes
through R, a set of eigenvalues (i= 1 say, |q[ =gq,) pas-
ses through zero, For R just above R, a set of slow
modes exists

AP =0(e) - Olg - q,) . (11)

The amplitude equation is derived as the projection of
Egs. (4) and (5) onto these “critically slowed” modes,
just as the hydrodynamic equations are themselves the
projection of the microscopic equations of motion onto
the slow hydrodynamic modes. The velocity field may
be synthesized from these components. The compon-
ents projected onto the other modes are small, but can
be calculated, if required, as adiabatically following the
slow order parameter motion.

The actual procedure is vastly simplified by noticing’
that for vectors satisfying Eq. (7) the operator D° is
self-adjoint:

v, V)= ,0°V)*, (12)
where the inner product (V,V’) is defined as
[o6*6' + R fu* v’ +ww’)]_,

with [ ] signifying averaging over the layer. The con-
dition Eq. (12) will implicitly be assumed in all the fol-
lowing statements. It is true for both stress-free boun-
daries (6=08u/8z =w =0 at z=23) and rigid boundaries
(0=u=w=0at z=%3). The normalized plane wave
eigenvectors e'!’ and eigenvalues A of D then have
the following properties:
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(i) A&’ are real;

(ii) It is convenient to choose e
then, e!l’=e?'?;

o expli(q-r)], and

(iii) The eigenvectors eg’ form a complete orthonor-
mal set

V= V(i)e(”
§ q q
with
(n (e‘“ V). (13)

The projection of the differential equation onto the slow
modes is then given simply by the scalar product with

(n
eu

V=@, V)=(!,0°V +50V - 9P +N(V,V)). (14)

‘The order parameter ¥, is taken proportional to V:”
with the proportionality constant chosen so that the
normalization condition in Eq. (3) is satisfied.

The amplitude equation is now derived by treating each
term on the right-hand side of Eq. (14) in turn repeat-
edly using properties (i)-(iii).

The first term becomes
@, 0 W)=V, (15)

Furthermore, since by definition of R_,g = g, minimizes
the eigenvalue at zero, A" « (g —g,)* for ¢ close to g,.
This gives the coefficient £, of Eq. (2).

For the second term we find
e,00V)= Z(e(” 6pel) e’ , V)

~ (1) {1 {1
~ <eq1 60e )V, . (186)

The first equality follows from completeness and the
fact that 6D does not mix wave vectors. Since 6D al-
ready contains the small parameter ¢, to the accuracy
required it is sufficient to restrict the sum over i to
i=1 leading to the last expression. Then, in evaluating
", 0pel") ¢ may be set equal to g,. The eigenvector
‘“ for g =g, is known explicitly for both rigid and free
boundarles and this gives the linear growth rate of the
convection pattern for all cases very directly.

The third term disappears,
e, aP)=0, an
upon integrating by parts.

As might be expected, calculating the nonlinear coup-
ling coefficient g(g,q9’,q",q") presents the most difficul-
ty. To the accuracy required, it is sufficient to cal-
culate g with all wave vector arguments of magnitude
g, The first step is again to use the completeness con-
dition

@, NV, v)>~}: €W, Ned,eNHVWVY .  (18)

However, e!® and ekl’ cannot both be slow modes (lead-
ing to add1t10na1 quadratic terms in the amplitude equa-
tion), since the average over the layer involved in the

M. C. Cross 1728

Downloaded 25 Feb 2006 to 131.215.240.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



inner product vanishes (the integrand would be an odd
function of z). Thus, the amplitude of the fast compon-
ent, e.g., V:“ driven by the slow components must in
turn be calculated from its own equation of motion like
Eq. (14). To the order required, the time derivative
approximately A can be neglected with respect to the
fast eigenvalue A", i# 1 (the adiabatic following), 6D
may be neglected and in N only slow modes need be re-
tained:

0= AWYW 4 Z P, N(el¥, e ENHVHV .,

Q9" 1 %q

(19)

In principle, thlS result must be substituted for Vl(:“
and V:{ ) in turn giving two contributions to g. A con-
siderable simplification results from the result proved
by Ref. 7:

e (” ,N(V, e‘“)) 0 for g=¢' =gq, (20)

for any velocity field V that has zero vertical circula-
tion and satisfies Eq. (7). It is readily proved that e’
satisfies this condition.‘ This follows since, of the
eigenvectors of D, only the stirring modes with A

=-0(g® +4%) have a nonzero vertical circulation, and
these do not couple to the convection according to Eq.
(19).

Equation (18) and (19) can then be written in the com-
pact form

e, NV, V)
[Tlesnte,eenle i ]

: u ul

X V:}’*V:‘.?V‘qm e s (21)
where the relationship found by integrating by parts
Vi, NV, V)= -0N(VE, V), V), (22)
and
V‘“* (e(l’ V* = (e(],) V), (23)

for the actual velocity fields V, have been used for cos-
metic purposes.

To the accuracy required, all q in the brackets in Eq.
(21) may be assumed to be of magnitude g,. Taken to-
gether the conditions g=¢' =¢" =¢" =g, and q+q'=q"
+q” require the wave vectors to consist of pairs of an-
tiparallel vectors. Then, the derivation also shows that
2(@,4’;9”,4") depends only on the angle between q and
g’ (the same as the angle between q” and q”), i.e., g
=gd-4")

Thus, we arrive at the amplitude Eq. (2) with expres-
sions for all the parameters in terms of eigenvectors
and eigenvalues of p°.

ill. EVALUATION OF THE PARAMETERS

In this section we evaluate the parameter for the two
cases of free boundaries and rigid boundaries. First,
it is convenient here to calculate the proportionality con-
stant relating ¥, to V{"’. In terms of V" the Nusselt
number is given by
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- 1) 3 [0

(-]

(w3 8) ) . @

1
X(E [018,F + R, (o P+ o, )],

where the negligible approximation of replacing ¢ by ¢,
in the multiplying factor has been made, and eV has
been written in terms of (8,,u,,w,), the un-normalized

eigenvector. Thus, we define ¥ =cV{" with
1 (w*8,) 1/2 (25)
R, [0B,P TR (1, F + ;P ) °

The linear terms are, of course, given directly by
Eqgs. (14)-(16) without change from this renormaliza-
tion

F,= (0 + €, 60e 2Ny (26)

This immediately leads to the results for the coefficients
in Eq. (2), as will be listed.

The inner growth rate parameter is given by

T, le= (e:(l)),GDe:;)> , (27)
so that, explicitly,
— OR_(63w,) . (28)

o ~[olg,F+R (1u0|2+ lw, F)],,

which is easily evaluated in terms of the critical solu-
tion,

For free boundaries 64, Uy, and w, are known analy-
tically, and 7;'=3%#%0/(0+1), as found by Newell and
Whitehead.! For rigid boundaries the critical solution
is known in the form

3
OO:Z;OO,, coshg,z, (29)

with 6, and g, known only from numerical calculations.®
Using the values quoted by Schluter et al.” we find, for
rigid boundaries,

19, 650
-1__ LA 3
To =G 5117 ° (30)
The integrals involved are given in the Appendix., This

result has also been derived by Behringer and Ahlers®
(quoted in terms of a dimensionless time unit smaller
by a factor of 7%/4) and by Wesfried et al.’®

From the form proved for the amplitude equation it is
easiest to derive £2 directly as

a L

§o=_’Rc dgq 3

=R, (g) ,

a=q,

(31)

where R (g) is the critical Rayleigh number for the onset
of convection at wave vector ¢. Again for free boun-
daries R_(g) is analytically known, giving £2=8/37%,

For rigid boundaries R,(q) has been evaluated for a dis-
crete set of ¢,” and simple interpolation gives ££=0, 145
£0.003. More elegantly, Wesfried et al.® evaluated Eq.
(31) analytically to give the value 0.148,

From Egs. (2), (14), (21), and (25) the nonlinear coupling
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constant is found to be

g@-§)=1c" Zl(ef,i’,'N (e, e "))l (32)

ﬂ Q
where ¢ =¢’ =g,. Since all ?x:”, g#q, are positive, this
shows immediately that g is positive. For other pur-
poses, although, in principle, the eigenvalues and
eigenvectors of D° may be calculated, the infinite sum
involved makes the expression Eq. (32) unwieldy for
direct evaluation. Instead, it may be noticed that the
same infinite sum is also involved in the solution V,
of

DV, +N(el, ef) =0, (33)
namely,
V,= z: e(a) <e¢(,'+), ,N(e:”, :1)))“(:) ). (34)

This is also obvious from the derivation of Eq, (21). For
g¢=¢ =q, as required, Schluter et al. have directly
solved Eq. (33) for ¥,. In fact, from their expression
for J [their Eq. (7.31)], the full expression for g may
be written as

L(cos#, —cos8)
(018, F+R (lus F+ bwy D, °

where L is the function they tabulate and the denomina-
tor simply arises from their different choice of nor-
malization, Using the expressions for 7, and ¢ we fi-
nally arrive at the result

glcosf) =1, (35)

L -
glcost) = (cos8, —cos#)

TR (36)

For free boundaries, Schliiter ef al.” gave an explicit
form for L from which we find

1 (1 - cosb)?
8=3 (5 +cosh) —2L(1 +cosé

) [(5 + cos8)?

+9(1 + cos6)o™ + 3(1 + cosh)(5 + cosh)o™?] . (37

The infinite o limit can easily be seen to give the same
results as originally derived in the coefficient 8;; by
Newell and Whitehead.! For rigid boundaries Schliter
et al. calculate L numerically for certain values of
cosf. From their table we find

§=8o+ 8.0 +8.,07 (38)

with g,, g.,, and g_, functions of cosé as tabulated in
Table I.

IV. SUMMARY AND DISCUSSION

We have derived, very compactly, the amplitude equa-
tion for the evolution of the order parameter ¥, ¢=g,
describing the convection pattern near onset for both
“rigid” and “free” boundary conditions

¥, =le - E3(g - 0°1¥,

E glq- d)\p*\p v W Ogagy g g™

49" e

(39)

with the convective heat transport defining the Nusselt
number given by
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TABLE I. The parameters giving g(cosf) for the case of rigid
boundary conditions as a function of Prandtl number o [see Eq.
(38)1.

8x g2 g4(x) Zolx)
-8 0 0 0.6921
-7 0.0234 0.0350 0.5721
-6 0.0406 0.0557 0.4662
-5 0.0526 0.0659 0.3737
-4 0.0600 0.0684 0.2938
-3 0.0637 0.0657 0.2258
-2 0.0645 0.0596 0.1686
-1 0.0628 0.0515 0.1214
0 0.0595 0.0423 0.0832
1 0.0549 0.0330 0.0532
2 0.0495 0.0240 0.0306
3 0.0436 0.0157 0.0147
4~ 0.0376 0.0083 0.0049
5 0.0317 0.0021 0.0004
6 0.0262 ~0.0030 0.0009
7 0.0211 ~0.0068 0.0059
8 0.0166 ~0.0094 0.0148
2
—1)Rc_qu|de . (40)

The parameters are tabulated for rigid and free upper
and lower boundaries in Table II. This is not the place
to describe applications of this amplitude equation.
However, it may be useful to briefly show the relation-
ship of the parameter g(g-4q’) to already known quan-
tities for two simple cases: firstly, that of single rolls
at the critical wave vector, and then of the hexagonal
pattern, both in an infinite region. The latter is of in-
terest since small perturbations, such as non-Boussin-
esq effects or anonlinear conducting profile, whichmay be
readily included in the formalism, lead to an additional
quadratic term in the amplitude equation that favors the
hexagonal pattern.

For single rolls at wave vector q, =¢.q, We may write

wq:—%(aml +0, ¢,) s (41)
with A the amplitude of the roll pattern. This leads to

ToA=(c —gADA; (N-1)R/R)=4A, (42)
where

z=3g(+1)+2g(-1)]. (43)

The static solution gives the linear dependence of the
convected heat transport on ¢ as found previously.™?

For the hexagonal pattern we may write

‘I’uz\/_g'(ou. o’ Oguay ¥ Ou ez

+6 +6  +6_ . ) (44)

[ O ) ¢ ay @ ez’ ?

where 4,3 4,, and §, are mutually at 120°. The equation
for the amplitude A of the hexagonal pattern is
T, A=(e-gANA; (N-1)R/R,)=A%, (45)

where
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TABLE II. The parameters of the amplitude equation for free and rigid boundary conditions.

Free Rigid
I 3t o 19.65¢
To 2 o+1 o+ 0.5117
8
2 —
£} T 0.148

1 a-x?
£t 26+2° =T+

x [(6 + 2 + 9(1 + x)o 1 + 3(1 + 2)(5 + x)o?]

g+ g0l + g0
(see Table I)

g=4[g(1) +6g(-1) +4g($) + 4g(-4)]. (46)
Again, the static result is readily seen to be the same
as previously calculated for both free® and rigid’ boun-
daries.

APPENDIX

For rigid boundaries the solutions at the onset wave
vector q, (the critical solutions) are

expliq, r1[6,(2),uy(2),wo(2)]
with’
6,(2) =650, 68 cosh(i3.974z) + {(39.277
+0.433) cosh[(5.195 - i2.126)z] +c.c.},
u,(2) = 3.1173{3. 974: sinh(;3. 9742)
+[(5.195 — 52, 126)(-3.076 x1072 + {5, 194 x107?)

xsinh[(5.195 - i2.126)z] +c.c.]},
wo(z) = (3.117)*{cosh(s3. 9742)
+[(-3.076 x107% +45.194 x1072)
xcosh[(5.195 —-42.126)z]+c.c. ]},
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with the boundaries at z=%3. The critical Rayleigh
number is R,=1707,762. These give for the averages:

(16,]2),=2.524 x10°,
R(lu,|?, ="7.123x10*,
R (|w,|?_=5.791x10%,
R}/ *(w%6,) =1.200x10°.
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