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Abstract Pulses propagating in a non-linear dispersive (glass) fibre can be described by the 
non-lineas Schrodinger equation il the pulse is longer than a picosecond; for shorter pulses, 
this equation must be extended In this paper we systematically derive this extended equation 
using the method of multiple scales. By using an inherent freedom in the method of multiple 
scales, a technique is developed such that perturbation terms are greatly simplified. The 
limits of validity of the derived equation are discussed. It is shown to be valid for pulses 
longer than 30 fs. 

1. Introduction 

When one wants to propagate short pulses over long distances along fibres, pulse 
spreading because of group velocity dispersion becomes significant. However, this can 
be counteracted by non-linear dispersion. When both are present, the envelope of the 
pulse is governed by the non-linear Schrodinger equation (NLS). This equation has 
soliton solutions, that is, it has stable solutions that will propagate undeformed. 

The soliton ‘industry’ started in 1967 when Gardner et al [ll] discovered the inverse 
scattering method for solving the Korteweg-de Vries equation. Subsequently Zakharov 
and Shabat [30] extended the method and solved the non-linear Schrodinger equation 
(NU) with it. Nowadays there are plenty of introductory texts on solitons, e.g. [7,9, lo]. 

In 1973, Hasegawa and Tappert found that pulses in non-iinear dispersive fibres 
could be described by the NU. both in the case of anomalous dispersion [I61 and in the 
case of normal dispersion [17], which meant that the fibres should be able to support 
soliton pulses. This was experimentally verified (in the case of anomalous dispersion) 
by Mollenauer, Stolen and Gordon in 1980 [25]. 

The NLS describes a pulse excellently for a pulse longer than a picosecond. For 
shorter pulses, atomic and molecular processes can no longer be considered to be 
instantaneous, and higher order terms become important. Most important of these is 
the stimulated Raman scattering (SFS) term, which leads to a down shift in the 
pulse frequency, as discovered by Mitschke and Mollenauer [22] and explained by 
Gordon [12]. 

Usually, the extended NLS, including these higher order terms, is derived making 
ad hoc assumptions (often, the second order derivative of the amplitude with respect to 
the propagation coordinate, Azz,  is neglected, like in [L  211; however, careful analysis 
shows that the first order contribution to A,, is not negligible, but cancels with another 
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neglccted term). But it is possible to derive the extended NU in a consistent manner, 
by using the method of multiple scales, in optics literature also known as the slowly 
varying envelope (or amplitude?) approximation or as the rotating wave approximation. 
Kodama and Hasegawa [IS, 191 were the first to give a proper derivation with the 
higher order terms included. 

In this paper, the derivation of the propagation equation for the envelope of the 
pulse is presented, following (and extending) an approach of Newell and Moloney [27]. 
In this approach, functions of the frequency are not used at the centre frequency, but 
they are expanded like f (U) + f(q) + i.sf’(wl) a, + ’ .. This expansion will be 
applied both to terms linear in the pulse amplitude. and to terms non-linear in 
the amplitude. It will be shown that this will lead to an automatic cancellation of some 
of the arising perturbation terms. 

This technique should make it possible to apply the method of multiple scales 
rigorously and still leave parts of the propagation, notably the Raman part (see below) 
in an integrodifferential form. 

A secondary advantage of the method presented in this paper is that one gets 
expressions for the perturbation to the transverse profile of the field almost for free. So 
in the case of a pulse in a slab or fibre, one can also see how the shape of the profile 
will differ from the shape of the linear mode. 

Still, it turns out that for pulses of the order of ten femtoseconds, the term 
corresponding to the stimulated Raman scattering cannot be properly incorporated in 
a single partial differential equation for the envelope of the pulse. For such short pulses, 
the SRS term has to be taken into account either as a convolution product, leaving 
an integrodifferential equation [6, 213, or as a separate differential equation, leaving 
a system of differential equations, e.g. [l, 141. These equations can be derived in a 
similar way. 

General books on solitons in fibres are [2,3,15]. A general book on shorter pulses 
(femtosecond) is [4]. 
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1.1. Assumptions 

In general, a rigorous analysis of the propagation of a pulse through a slab or fibre is 
too difficult, so one has to make some assumptions. 

First of all, the polarization is supposed to be local. That is, the polarization is 
allowed to depend on the past of the electric field, but it may only depend on the electric 
field at the same position. 

Secondly, the material is supposed to be isotropic. Also, the fibre or waveguide 
should be single-mode and polarization-preserving. Without this assumption, mixing of 
modes could occur and one would have to consider coupled equations. 

Today, pulse lengths shorter than 1 ps are of interest. However, a lower limit on the 
pulse length is necessary, or the asymptotic expansion wiU break down. In section 6 it 
is shown that for the derived equation to be valid, the pulse length must be greater 
than 30 fs. 

The non-lmear polarization will be treated in the Bom-Oppenheimer approximation, 
i.e. the motion of the nuclei and the motion of the electrons will be treated separately. 
This simplifies the expression for the non-linear susceptibility. 

Gordon-Haus jitter [I31 or bandwidth limited amplification [5,23] have not been 
included in the derivation. 
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1.2. Notational conventions 

To keep in line with the most common convention, Fourier transform with respect 
to t is defined by & [ f ] (o)  = SzI. f ( t )  exp(iwt) dt and Fourier transform with respect 
to z is defined by 9% [f](k) = JZm f(z) exp( -ikz) dt. Therefore the inverse Fourier 
transforms are 

g(o) exp( - iot) dw s, F:;'[g](t) = ( 2 4 - 1  

and 

F;'[g](-.) = (274-1 j:m g(k) exp(ikz) dk 

respectively. Fourier transform with respect to t is also denoted with a hat accent, 
f(o) = e [f](o), and its inverse also with the check accent, i ( t ) .  

Convolution products over time, written as f a g ,  are defined by ( f * g ) ( t )  = 

A prime will always denote a derivative with respect to the frequency a, never any 
other derivative or a real or imaginary part; so f '  = df/dw etc. A dot over a symbol 
denotes a derivative with respect to time. 

The complex conjugate of a function'is per definition given by f*(z) 3 [f(z)]*. 
SI units are used throughout. 

Jz"m f(t - t i ) d t i )  dti. 

2. Physical background 

2.1. m e  Maxwell equations 

The starting point is the Maxwell equations in a medium without free charges or 
currents, 

V . D = O  V x E =  -8,B 

V . B = O  V x H = a , D .  

In paramagnetic and diamagnetic materials, the magnetic induction is proportional to 
the magnetic field. In good approximation B = p0H. The electric displacement D 
depends on the electric field as D = &,E i- P. The dependence of the polarization P 
on the electric field E will be discussed in section 2.2. This is where the non-linearity 
comes in. 

Two of the four Maxwell equations can be combined to yield 

-V x V x E = V Z E  - V ( V . E )  = p&D. (2) 

V - D  = 0 does not imply V . E  = 0, since the susceptibility does not have to be a constant. 

2.2. The polarization 

In general, the polarization at a certain time not only depends on the electric field at 
the same time, but also on the past of the electric field. However, the polarization is 
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supposed only to depend on the elecric field at the same position, and the material is 
supposed to be isotropic. 
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The polarization can be expanded in powers of the electric field, 

(3) p = p11, + p m  * pc3, + PI41 + . . . 
with PI"' homogeneous of degree n in E. If two fields E, and Eb satisfy E&) = AE.(t) 
for all t ,  then the corresponding polarizations 2':) and P p )  will satisfy Pp'(t) = A"P:l(t). 

In isotropic materials, so in amorphous materials in particular, all even orders in 
the polarization are missing. Namely, when the electric field reverses sign (for all t ) ,  the 
polarization has to do the same. 

Since each higher order of polarization is orders of magnitude smaller than the 
previous one, Pc5) and higher orders can usually be neglected. What remains is 

p P(l1 + P ( 3 ) ,  14) 
P c l )  is the linear polarization, and (only) PI3) will be called the non-linear polarization. 

2.2.2. Linear polarizurion. Classically the linear polarization can be modelled by a set 
of damped harmonic oscillators [20]. In co-domain, it is given by 

with 
P t 1 )  = Eo,p(w)E 

where A N /  V is the number of oscillators with frequency oj per volume, m is  the electron 
mass, and rj is a damping constant. This expression includes both purely electronic 
contributions, with time scales of the order of 0.1 fs (wj B 2 x 10l6 Hz), and contribu- 
tions involving nuclear oscillations, with time scales of the order of 10 fs (aj 2 x 

In the time domain, the polarization is given by a convolution product 
1014 HZ) ~21.  

c 

P " ' ( t , ~ ) = & ~ ~ ( ~ ) ( t , x ) * E ( t , x j  = c 0  ;i"'(tl,xjE(t-tl,x)dtl. (6) J 
In the following, the x-dependence of the fields and the susceptibility will be left implicit. 

2.2.2. Non-Iinear polarization. Of the non-linear polarization, part is purely electronic 
in nature and part is hybrid nuclear-electronic. The time scale associated with the 
electronic part is of the order of 0.1 to 0.3 fs [ 2 ] .  For pulses longer than 10 fs, this part 
of the non-linear polarization can be assumed to be instantaneous. As the medium is 
isotropic, this part must be of the form 

(7) pelstrOnic 13) = E~~x(~ ' (E(~) .E(~))E(~) .  

E is the fraction of the non-linear polarization that is instantaneous. 
Processes like stimulated Raman scattering, where the nuclear vibrations are 

involved, can be treated in the Born-Oppenheimer approximation, i.e. the motion of 
the nuclei and the motion of the electrons can be treated separately [SI. 

In the classical model of Placzek, this approximation is translated into the 
assumption that the motion of the nuclei enters into the polarization only through the 
polarizability [S, 291. This, and the assumed isotropy, implies that the nuclear 
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contribution to the non-linear polarization has to be of the form 

Ph3:,le.,(t) = E O ( ~  - 4 x W f )  g&,)(E(t - O E ( l  - tl)) dt,. (8) s 
Equations (7) and (8) can be added to give the total non-linear polarization, 

P ( t )  = E&([) 2'3)(tl)(E(t - t , ) .E(r  - t ,)) dt, (9) s 
where f ( 3 )  is the sum of an electronic part and a Raman part as given by Blow and 
Wood [SI, 

p ( t )  = x'3'.(a&t) + (1 - C()gR(t)). (10) 

If only one vibrational mode is important, with linewidth l /r2 and eigenfrequency l / ~ ~ ,  
the Raman response function gn is given by 

Blow and Wood [a by fitting experimental results estimate CL = 0.7, r, = 12.2 fs and 
T,  = 32 fs. 

In the w-domain, in principle the non-linear susceptibility is a function of three 
frequencies ,f3)( -we; w l ,  w2, w3);  here the notational convention of Butcher and Cotter 
[SI has been followed, according to which w, is the resulting frequency, w, = w1 + 
w2 + w3. 

However, by Fourier transforming (9), and comparing the result with the general 
expression for P, 

P 3 ) ( t )  = f ( 3 ) (  -ao; w l ,  w2, w 3 )  e-i(od&(w,)&(w,)&((03) dw, dw, d o 3  s 
one finds that 2") is a function of the sum of the frequencies only: 

, p - w ' . ;  wt, w2, w 3 )  = f(3)(w2 + w3) .  (12) 

It is conventional to write the susceptibility tensor in a symmetric form, thus instead of 
(12) one would have 

f3'(-w0; w l ,  w,, w3)  = + f ' 3 ' ( 0 ,  + w 2 )  + 4 f ' 3 ' ( 0 1  + CO3) + 4 p ( w 2  + 03). (13) 

However, this leads to the same expression for P3) once the integrations over wl. w2 
and w 3  have been carried out. Therefore it is more convenient to use the simpler 
expression (12). 

If f'3' is given by (IO) and (1 1). then 2'3'(w) is given by 

(14) 

(15) 

Now the total polarization is given by the sum of (6) and (lo), 

P = E O p *  E + EO(f'3'*  (E .E) )E .  
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Insert this in (2) and the equation to be solved is 
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3. The method of multiple scales 

We want to solve (16) using perturbation theory, treating the right-hand side as the 
perturbation. However, the simple iterative method, taking the first order solution plus 
perturbation terms, fails: secular terms appear which cause the perturbative corrections 
to grow linearly in time, which violates the (implicit) assumption that the perturbation 
terms give small corrections. 

In the method of multiple scales, the first-order solution is allowed to vary slowly, 
which makes it possible to eliminate the secular terms that came unbounded perturba- 
tions. The variant described below, called the derivative expansion method by Sturrock 
and Nayfeh, has been developed by, among others, Sturrock [28] and Nayfeh around 
1960. According to Nayfeh [26] ,  'the method of multiple scales is so popular that it is 
being rediscovered just about every 6 months'. In optics the method is also known as 
the rotative wave approximation or the slowly varying amplitude (or envelope) 
approximation. The method will be explained using the pendulum as an example. 

3.1. Example: the pendulum 

Consider the 'real' pendulum. given by 4 + w: sin q5 = 0. When the amplitude is small 
enough, q5 can be approximated by 4 = $a e-'"' + $a* e"l'. 

For finite amplitudes, simply trying 4 = &(;a e-"'* + ;a* eiorr) + c2q5(*) + c3q5@' + . . . 
does not yield a better approximation. Namely, if one Taylor expands sin q5, and 
demands that all orders oft are zero separately, at order e2 one finds E ~ ( $ ( ~ )  + w~q5~") = 0, 
the same equation as for +(". So one can take q5(2) to be zero (by replacing q5"' by 
q5'1' + &p). 

But at order 

&3(4(3) + ~ : 4 ( 3 )  - &$o:(a3 e-3imlt + 3aza* e-iml '  + C.C.)) = 0. 

So q5(3) = -&a3 e3in*r + &i[a12awLt ei"' + C.C. But the second term, the secular term, 
is linear in t. So it will become infinite as t + 00, whereas one would want the 
perturbation to remain small, or at least bounded. 

A way out is to allow a to vary slowly in time, da/dt must be expanded in E as well 

2 12' da 
dt - = Ef "'(a, a*) + E f (a, a") + . . ._  

Symbolically this is written as 

The variables T =  TI = Et ,  T, = sZt are the slow times. One must be aware that the T,s 
are not independent variables. In particular, the derivatives with respect to them do 
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not necessarily commute, d,,a,,a = a,,f") = f"'a f 

20s 

+ f"'*a,,f"' may differ from 

The perturbation terms @") can  contain^ terms with frequencies 0, w, ,  Zw,, up to 
a,,a,, = a , , p  = p a y l )  + p * a . , p ) .  
no,. To separate these, @"I is expanded again with respect to e-imL'. Thus 

1. 
1 = R~ $2) e - m i o i r  = - ($2) e-miorif + $2). e m i o > r  

m > 0  2 m>o 

At order E' one finds 

so here the compatibility condition, i.e. the demand that the secular term is zero, is simply 
au/aT1 = 0. 

Next, at order E' the equation reads 

+ -+o:/a/za - iw, e) e-lmll + C.C. = O(&). (17) ( a T2 

Note that though 4i3) and 4'3'' may depend slowly on t, their derivatives have heen left 
out, because they are of a higher order in E. One should solve one order of E at a time. 
The secular term in (17) will be zero if 

( -44$$3)  - 1w2a3)e-3'm~1 48 1 

Since this equation implies ajal'/aT, = 0, its solution is a(t) = a, exp(&iEZlaOIZw,t), 
whence q5L3) = -&a3 and 4i3] = 0. So 

(19) 4 = Eao e - ~ o ~ ~ l - ~ l ~ 1 6 ~ ~ z l ~ ~ l z ~ ~  - 1 3 3 - 3 ~ m ~ ~ l - ~ l / 1 6 ~ ~ * l ~ ~ l z l ~  + c,c, + q E 5 ) ,  
3 8 4 ~  a o e  

In figure 1 the linear approximation is given together with the 'real' solution as given 
by (19) for an amplitude of 0.5 rad. One can clearly see that though the frequency 
difference between the real solution and the linear approximation is only small, by just 

Figure 1. (a) The linear approximation &aOcos w I t  (dashed) and the exact solution $(t)  
(solid), for an amplitude ofO.5 rad. (b) The difference &t) - &a, cos w!(t) (solid), and the 
perturbation &34'3' ma@d 1M) times (dashed). 
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adding a perturbation term one cannot compensate for it; a small difference in phase 
leads to a large difference between the function values + ( t )  - &ao cos wit. 

J H B Nijhof er a1 

3.2. Asymptotic expansions of convolutions invo1i)ing slowly varying functions 

If a function A depends slowly on t ,  then a convolution product f* ( A  e-'"L') can be 
written as e-"!'f (w,  + i&aT)A(T). This can be shown by taking the Fourier transform 
of the convolution: 

v"*(A e-ialr)] = f(o)A^(w - w,) 

= (f(w,) + f'(w,)Q + !f"(w,)Q2 + '. . )A^(Q) (20) 

with Q = w - w,.  The inverse Fourier transform of Q&Q) is @A, and 8,A = d T A ,  so 
the inverse Fourier transform of the above expression is 

/*(A e-"") = e-'a~c(f(w,) + i&f'(o,)a, - $Ezff"(wl)a$ + ' .)A.. (21) 

Symbolically, this can be written as 

/*(Ae-'"') = e-""f(w, + i&)A 

This is exact as long as the series (20) converges. However, notice that while the given 
function f(w), often determined by the material, is expanded in a series, A is the quantity 
of interest. This means that Â  has to meet some requirements. In particular, where f(w) 
is singular, A (̂w) must be zero. Hence Â  must have a limited bandwidth, and therefore A 
cannot have a fast time dependence. 

Besides, at some stage in the calculations, the series will be cut off, so then from a 
certain n onwards, &V;A must be negligible. 

Similarly, if A depends slowly on z, the inverse Fourier transform of some function 
of k times %(A) can be written as 9 ; ' [ f ( k ) F Z  [ A ] ( k  - k,)] = e""f(k, - i&a,)A. 

3.3. Asymptotic expansion for a pulse in a waveguide 

Suppose E i s  roughly centred at frequency 0,. The wavenumber of the guided mode of 
the linear waveguide corresponding to this frequency is denoted by k,, see section 4. 

We separate the rapidly varying part of the electric field from the slowly varying 
part by writing E = $&E\') exp i(k,z - wit)  + C.C. + 0(e2). Abbreviate 

+ I k,z - w l t .  (23) 

In higher order approximation, higher powers of the phase factor eiO will occur as 
well, so E is expanded in powers of E and of e'+: 

(24) 

The upper index (n) denotes the order of E, the lower index m denotes the frequency, f, 
is the component off at frequency mu,. 
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The E t ' s  are supposed to depend slowly on t and z, they are functions of the slow 
variables T = Et and 2 = EZ. 

Notice that the epsilons used for scaling z, t and E are identical. One could have 
started with three different epsilons, E;, E= and E ~ .  But then to relate the time behaviour 
to thez-behaviour, theepsilonsmust be related to one another. It turns out that choosing 
all epsilons the same is the simplest solution. This is not the only solution; for instance, 
choosing E, = = E: works as well. In the end this would lead to the same results, i.e. 
in the end the same perturbation terms would show up, but they would appear at 
different orders of the perturbation parameter. 

As in section 3.1, it is necessary to asymptotically expand the derivatives of E'"'. 
However, only expanding one of 3, and aT further will do, for this will give a new term 
at every order of E, and at each order of E there will be only one compatibility condition 
to be satisfied. Expanding both a,+'") and aTF") would lead to an underdetermined set 
of  equations. It is more convenient to expand only dz any further, since the time 
dependence of the polarization is more involved than its spatial dependence. Namely, 
we do assume locality, while the polarization may depend on the past of  the electric field. 

So define Z, = E"Z and for a function F = F(T, Z )  let 

a,F = &FT and aZF = &FZ = &FZ, + &'Fz, + . . .. (25) 

4. The linear waveguide 

In a linear slab or fibre, the electric field satisfies 

1 1 
C 2  C- 

('6) 

The response function ,$" is assumed to be a function of the transverse coordinates .rl 
and of time, not of z .  i.e. the refractive index profile is assumed not to change along the 
propagation direction. 

$!E - V  x V x , ! - - @ ( E +  ?'''*E) = V 2 E -  V ( V . E )  - - ; -a:(E+ f ' " * E )  = 0. 

The Fourier transform of (26) with respect to t is 

o2 

CZ 
v2E - V(V.E) + - ( E  + p ( w ,  XL)E) = 0. 

The index of refraction n(o, xL) is defined by 

nyw, XI) = 1 + p y w ,  XI). 

Fourier transforming with respect to z as well, we find 

(obtained by simply replacing a, by ik). 
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The fibre or slab is assumed to be single-mode and polarization-preserving, so at 
each frequency there is only one mode. At frequency w this mode is denoted by U(w, xi), 
where U(w, x i )  and the corresponding wavenumber k(w) are both determined by 

9 ( w ,  k(w))U(w, X I )  = 0. (30) 

In other words, U(w, x,) eik(0)z-iO' IS ' a solution of (26). 
Assume for now, that n(w) is real, i.e. neglect the damping. This is allowed far from 

resonance. Later on the damping will be taken into account as a perturbation. If the 
damping is too large to be treated perturbatively, the pulse will not propagate anyway. 
Then it will simply die. 

With this assumption, .%'(U, k(w)) is a Hermitian operator for real o and k. Namely, 
define the inner product 

n 

(F,  C )  (F*-G) dx, J,, 
on the space functions for which (F,  F) < 10. Then the operator 9 ( w ,  k )  satisfies 
( F ,  9 ( w ,  k)C) = (.Y(w, k)F, C). In particular, every F satisfies 

( W w ) ,  9 ( w ,  k(w))F) = (.Y(w, k(w))U(w), F )  = (0, = 0. (32) 

This property will be used extensively in the following sections. 

shown as follows. When U and k satisfy 9 [ w ,  k(w))U(w) = 0, 
Also, k(w) is real, and k( - w )  = -k(w), and U(-w, xI) = U*(o,  xL). This can be 

kqw, ,$k(o)r-ar*) = 0 

Now since the operator .%' is real (in the space-time domain), this means that both 
the realpart and the imaginary p-art of E@,, z, t )  = U(w, x,) exp i(k(w)z - wt)  must 
satisfy 9 Re E(x,, z, t )  = 0 and .Y Im E(x,, z, t)  = 0 separately. So also the complex 
conjugate 

E*@,  , z, t )  = U*(w) exp i( - k(w)z + wt) 

satisfies pPE*(x,, z, t )  = 0. Fourier transforming this in time and z-domain then shows 
that 

9 ( - w ,  -k(w))L'*(w, XL) = 0. 

This concludes the proof. 
A related solution of (30) is { --w, k(w), U(o)}. This describes a wave propagating 

in the opposite direction. 
The wavenumber k is determined by the material dispersion and by the geometry 

of the waveguide. The inverse of k' = dkjdw is the group velocity, and k" is called the 
group velocity dispersion parameter. In fibre optics literature, the dispersion parameter 
D is used instead of k". It is defined by D = dk'/d?. % -(2xc/A2) k". 

For bulk silica, D is zero at AD = 1.312 l m .  In dispersion shifted fibres, this value is 
shifted, commonly to A = 1.55 pm, in order to be able to use the erbium-doped fibre 
amplifiers that operate at that wavelength c2, 241. For wavelengths greater than AD, 
D is positive and k" is negative. This is referred to as anomalous dispersion. 
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4.1. The first guess 

Consider a pulse with a 'carrig frequency' w, (the exact value of CO, does not matter). 
In first order E should satisfy 9OE=O, so E\') has to be something like U(w,, x,)A(Z. r). 
But the only demand for E\') is that ~ ( E E \ ~ )  e'@ + c.c.) = O(?), so to E\" we can add 
anything we like, as long as it is of order E or smaller. We can use this freedom to choose 
E\') such that some perturbation terms that will occur are accounted for automatically. 

It turns out that a convenient choice is [27] 
E\') = U(wl + id,) A(2, r )  (33) 

w 1  + id,)A*(Z, r).  (34) = Ell'* = U*( 
1 

The advantage of this choice can be seen by Fourier transforming (33) as described in 
section 3.2. One then finds that &E(') = &E(:) ei4 + C.C. satisfies the linear equation 
exactly, so additional terms in E are necessary only because of  the non-linear right-hand 
side of (16). 

U*(,) [u(z)]* 

kU(wl  + iea,)A eid + E ~ & E ~ )  ei+ + s3&Ef) ei+ + E ~ ~ E ' ~ '  3 e3i* + E ~ & E \ ~ )  &@ 

N.B. Since per definition 
U*(wl + id,) = u*(w,) - ieU;%?, - &*Ui;*a: + . . .. 

We wish to solve (16) up to order inclusive. This means we want to solve 

I + c4&ES4) e3im + C.C. 

1 
2 = - #((&E\') e'+ + &E(:) e'+ + c.c.) 

x ;i'3)*(~E\1)ei+ + . ..).(&/?:)e'+ + , . .)) + o(2). (35) 
The expansion of &&E',') = Re eei@(9u(wl + id,, k,  - i d , ) A  will be used up to 
order inclusive. The k-argument in $PEE\I) is k,  - id,, independent of w1 + id,, 
and the expansion of $PE\') wiU consist of all terms of the form ada:(9U)(i&a,)J( --iEaZ)'A. 

(36) 
which is a function of w only. It is identically equal to zero, so in particular 
;li(wl + i68,)A = 0. Therefore one can freely subtract $?mUV(wl + iea,)A + C.C. from 
9 E .  This will eliminate all terms with factors ad(9Lr), what is left of the expansions 
of E ~ E \ "  is: 
&(9U)(w1 + id,, k, - i&)A = &(9UU)(w1 + id,, k, - id,)A - ~ ~ l r ( w ,  + i&)A 

= @U)A + ieZ($PU)),8,A - ie2(gU)a,A - $ E ~ ( ~ U ) , , ~ $ A  

Now consider 
N ( w )  = 9 ( w ,  k(o))L'(w, xi) 

+ &3(~UU),ks~azA - 4E3(9u),,a$4 - &4(9U)3,,,a;A 
+ ~ E ~ ( Y U ) , , ~ ~ $ ~ , A  - &4(9U),kAara;A + & ~ E ~ ( ~ P ( / ) , , , @ A  

+ 2k;(9U),, + k'f(9Uikk + k'&PU)Ja+A + $E"C(~U),,, 
- E(YU)A - i&*[(9U)m + k;(YSPLl)k]a,A + $&3[(9U),, 

+ 3k;(9U),,k + 3kiz(9%k + ki3(9pu)kkk + 34(9U)mk 
+ 3k;k;(ywkk i- kp(9U)Ja;A + o(&') 

= - icz(gU)(a, + k; a,)A 
+ $e3(gU)k:a$A + &4k;'(glJ)a$A 
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+ +ic4k; - (%U)a;A d 
d o  

+ ~~[(=-YU),fiar - K9u),(az - k;a,)l(a,  + k;a,)A 

+ ic4[&w,,d$ - f(9U)wkkaT(aZ - 4 3 , )  

+ & ( s ? U ) k &  - k;a,a, + a2,)1(a, + k;a,)A + W5). (37) 
In the expanded form, 9, 9,, U, U,, etc are evaluated at w = o, and k = k , .  

To save on brackets later on, (Yok has been replaced by the equivalent expression 
9 k U  (U does not depend explicitly on k). 

5. Derivation of the amplitude equation 

5.1. Order E and E’ 

The non-linear right-hand side of equation (16) is of third order in E, so in first and 
second order, E has to satisfy the linear equation 2?E = 0. 

In the right-hand side of the expansion of &‘E\”, (37), the first term is of order 
E’. In this term, a,A must be expanded to &A = &,A + E&-~A + . . .. Then at order 
E ~ ,  for E\’) one finds 

(38) 

(39) 

-igU(k;a, + &,)A + 2 E : Z )  = O(c). 

-i(U,gU)(k;a, + & , ) A +  (U,9.E\2)) = O(8). 

Take the inner product with U = U ( q ,  xL). This yields 

The last term vanishes, since ( U .  YE\”) = (9U, El2’) = (0, El”)  = 0. One could 
interpret this as ‘the source terms must be perpendicular to the null space of 2”. 

Therefore &,A is given by 

k;a,A + a Z , A  = 0 ,  (40) 

i.e. the amplitude propagates at the group velocity uG = l/k;. Since E\’) then satisfies 
the same equation as E\’), it can be taken to be zero (by replacing .E\‘) by E\” + &E\’)). 

5.2. Do a,  and a,m commute? 

When working with the operators a,, a,, a,,, a,,, . . . , caution is needed. They function 
like derivative operators, but the 2,s are not independent, so the derivatives with respect 
to them do not have to commute. 

Since there is only one slow time scale, derivatives with respect to time are easy: 
for any f, a: f = &“a; f and a; f = &-“a:f. Higher order derivatives with respect to 
z are more involved. 

Per definition, a,/ = d,,f + cZaz, f t ’ ’. The way in which a, f is split up among 
the time scales is not given beforehand. At each order of &, a,/ is chosen in a certain 
way, where any choice that satisfies the compatibility condition at that order is allowed. 
Fixing these choices, the &“As become functions of A, A* and their derivatives with 
respect to time: & , A  z A,(A, A*, A,, AT,. . .), &,A &(A, A*, A , ,  A$, . . .) etc. Then 
the a,& are given by the complex conjugate of &“A, so &,A* = AT(A,. . .), etc. 
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For higher derivatives, what should mean, is clear: it is 

What a,.a,A should mean is less clear. So far, we only know how to apply 8,- to 
(functions of) A and A*. But we can just give aznarA the most intuitive definitio~ 
i.e. we can define it to be equal to a,&,A. Then per definition, 8," and a, commute. 

Now we can also calculate higher order derivatives with respect to z, namely 

It is obvious from this expression that SZBaz,A does not have to be equal to 8,aznA. 
But as we just saw in (40), A satisfies A,, = -k;A,; A* satisfies the same equation. 
And also for e.g. A,, 

a,,(AT) = ~ T A A , ,  = aT(-k;A,) = -kid#,) .  

So a,, f = - k;  a,f for any function f of A, A* and their derivatives with respect to 
time. Now since a, and 8," commute for all n, so will a,, and 

As a consequence, any function of A and A* and their derivatives with respect 
to Tand Z. will satisfy (a,, + k;a,) f (A,  A*. . . .) = 0. 

However, probably a,, and a,, will not commute anymore. 

5.3. Order c3 

After substituting A,, + k;A,  = 0 in (37), the left-hand side of (16) becomes 

P E  = &@(YU)(w,  + ia,, k ,  - ia,)A(Z, 7') + C.C. 

+ E ~ ~ E ' ~ '  + E ~ ~ % ' E ' ~ '  + O ( E ~ )  

= $&ei4[-ie2gU(a,~ +&)A + $E2k;5&Ud:A + iik;'c3&Ua;A 

+ C.C. + &'&'E"' + E ~ ~ E ' ~ '  + O(E') 

=&'e'@~U(-iA,, + ?k;ATT) + C.C. + &3&'E<3) 

d 
dw 

+ ~8 I 4 e i@ [5&U(-iA,, + iik:)ATTT) + - (gU)ar (dZt  + $k;a:)A] 
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since (az, + k;8,)&4 = a,,@,, + k;a,)A = 0. 

E is given by 
The right-hand side of (16) now comes into play. Expanded up to second order, 

E = ~ ( E U A  e'@ + ie'U'& e'@ + &*A* e-'+ - i&'U'*A*, e-*) + O(g3). 

v\3yo) -- [2(c7. ~*)c']i(yo) + (U. u ) ~ * , p y 2 ~ ) 1  

V\3'(30) E --(U. u)U,f(3)(2Ul) 

(43) 

Define 

(44) 
a 2  

4 2  

(45) 
90' 
4 2  

CO' 

2 2  
v\4yo) - ~ p 3 ) ' ( 2 ~ ) ( ~ .  mu* + , p 3 y 2 0 ) ( ~ . ~ ) ~ *  + , ~ ( 2 ~ ) ( c 7 .  vu* 

- pyo)(cr-  U*)U + ~ ~ ) ( O ) ( U ' - U * ) U  + 2 p y o ) ( u  u'*)u 
+ ~(~) (O) (U.U*)U ' I  (46) 

with U =  C7(o) and U* = U*(o)  = U(-a). Then the right-hand side of (16) is 
given by 

1 - af(Ef(3)*  ( E . E ) )  = 4c3 e'QY\3)[A[ZA + is3 e3'@VL3)A3 + $e4 e'+fl:)'aT(lA12A) 
C2 

+ $a4 e3'+VV:3)'a,(A3) + ;ic4 e'@f'fJAa,(lA[2) + c.c + o(2). (47) 

N.B. 
d d 
do d o  V:)' = - V$3)(o)[,,30,, not - V'2)(30)10,=m, 

Vi3) = V:l(ol), VL3) = f l $ ) ( 3 0 1 ) ,  etc. 
So at order E ) ,  

it3 ei+.5$U(-iaZz + ik;a',)A + $ E ~ Y E \ ~ )  e'+ + i&33'E$3L e3'+ 

(48) - - L 2~ 3 e i+y(31  IAI2A + 4c3 e3'+VY(,j)A3 + O(e4). 

For the compatibility condition look at the terms with phase factor e" and take the 
inner product with U. Then again, like in equation (39), will drop out since 
( U ,  YE\") = (YU, E\3J) = (0 ,  EP')  = 0. SO 

gU, .5$U)(-iaz2 +&@+)A -$<U, V\3'>IA12A = o(E). (49) 
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Then one can recognize the non-linear Schrodinger equation in (49): 

- tkYa2,A + yllA12A = 0. 

Equation (49) has to be satisfied up to O(E), so nothing prevents us from adding 
terms of order E. And like letting E;’) = U(w, + id,)A instead of U(w,)A automatic- 
ally took care of higher order linear terms, it turns out that higher order non-linear terms 
will be simplied if we replace y1 = l;(wl) by y(wl + id,), and let &,A be given by 

i&,A - ikY2;A - y(w, + i&)(lAIZA) = 0. 

E\3’ = Ui3’(m1 + iea,, k l  - ieaz)(lA12A). 

(51) 
For Ei3’ we make the ansatz 

(52) 
Substituting (52) and (51) in (48), we find that Ui3) has to  satisfy 

Y ( w ,  k)U‘:’(m, k xL) JT)(w, xL) - ~(w)-%(a, k(w))U(w, XL). ( 5 3 )  
The solution of this equation is not unique for k = k(w). Namely, since 

9(0, k(w))U(m) = 0, 

any multiple of U can be added to U\”(w, k(o)). However, limk-k(ml U(:)(w,k) is 
unique, and k-derivatives of that occur in the expansion of (52) will only make 
sense if this value is chosen for U\3’(0, k(w)). 

Note, however, that as far as an equation for A is concerned, until order c5 the 
quantity U\3’ itself is not needed. For the linear left-hand side of (16), we only need 
to know dpEi3’; and that quantity is fully determined by (52) and (53). And in the 
non-linear right-hand side of (16), the first term in which U\3) occurs is of order E ~ ,  

The equation for E\3’, following from the terms with phase factor e3i4 in (48), is 
simpler, 

where 
= US3’(3w, + id , ,  3k1 - iea,)A3 

9(3w. 3k)UL3)(30,  3k, XI) = V\3’(3~,  xI). 

(54) 

( 5 5 )  
This equation has a unique solution if k(3m1) # 3 k ( 0 1 ) .  If k ( 3 w 1 )  = 3k(w,), the 
effective indices of refraction are equal. Then this equation is secular too, since the 
homogeneous equation then has a non-trivial solution. and a second compatibility 
condition has to be imposed. In physical terms, this is the case of phase matching 
in which net long range effects are possible. 

We will not pursue this complication any further. 

5.4. Order c4 

Thanks to the choice of Eh3), after elimination of a,, and a,, by means of (40) and 
(51), all fourth-order terms with phase factor e’‘+ cancel, so Ei4’ = 0. This shows the 
convenience of the choice of (54). 
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After expanding (52) to give 

.YE\” = (.YU\3))(01 + iea,)(lA12A) 

= ( V(3’-y140,U)lA12A + i&(Vi3)‘ - y ; g U -  y(gu;)8r( lA12A)  + 0(~’)(56) 

and (51) to give 

(-i& + 4k;a;)A = yljAI2A + isy;ar(lAIZA) + O(2) (57) 

the left-hand side of (16), that was expanded already in (41), becomes 

&E = ~ ‘ & v $ ~ ) I A I Z A  + $E~~’+V’ ,~ ’ ’~ , ( JA~~A)  + e 3 ’ + ~ $ 3 ) ~ 3  + kie4 e3’@~$3)’a,(~J) 

+ 

gU(-ia,, + &ik;’a:)A + YE?’ = iV\4)AarlAIZ + O(E). 

ei9.YkU(-iaz, + &ikp:)A + $e4 e’4SfE\4) + C.C. + O(.$) (58)  

(59) 

and this should be equal to (47), so E?’ should satisfy 

The inner product of (59) with U yields a compatibility condition again, like in 

(60) 

equations (39) and (49), namely 

(U,gc‘)(-iaz, + giya;)~ - i(U, V:’>Aar(lAlz) = 0. 

Define the parameter q by 

then &,A is given by 

i&,A - &ik;’a&4 + itj(o, + iE8T)Aa,(lA12) = 0. ( 6 3  

(63) 

(64) 
If one only considers terms up to order .e4, one can replace q(o, + ida,)  and 

The perturbation term Ei4’ is given by 

and 
El41 , - - u14)(w + id,, k ,  - idz)(Aa,lAIZ) 

9(o, k)UCp)(o, k )  = iV’:)(co) - iq(o)xU(o, k(o) ) .  

U‘,41(o~1 + id,, k ,  - id , )  by q1 = ?(col) and U\41(01, k,).  

53. Collecting results 

So far, the ‘small parameter’ E has been left unspecified. But it has been assumed that 
the amplitude vanes slowly over the optical period of the light 27c/01. If To is the pulse 
duration, this means that w,T, must be much larger than unity. Therefore, let 
E = (w1T0)- ’ ,  and define a dimensionless time 7 in a frame of reference moving at group 
velocity 

A natural scale for the propagation distance is the dispersion length LD, defined by 
L,  = Ti/lkyl.  It is the distance over which group velocity dispersion leads to pulse 
spreading. For instance, for a Gaussian pulse. the pulse duration is proportional to 
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d m .  So define the dimensionless propagation distance i by 

In order to arrive at a dimensionless non-linear Schrodinger equation. it turns out that 
the amplitude EA must be scaled by a, so define a dimensionless amplitude a by 

a = = 

Now a,a is given by a,a = iaLD(az, + k;a,)a + iEZLDaz,a + is3LDa,,a. From (40), 
the first term is zero. From (57), if k; is negative, so in the case of anomalous dispersion, 

Y ;  
TOY 1 

iEzLDaZ,a = ~ ~ L , E ’ ~ , , A  = -+a, - 141% - - (la12a), 

and from (62), 

‘11 a, - i - (la12),a. i ~ ’ L ~ & a  = i ~ 

6 To[ k” 1 TOY 1 

k”‘ 

Define the dimensionless parameters S, and T, by 

. ‘11 
7,= -1- 

Toy1 

The parameter 6 indicates the relative size of the third order dispersion, is related 
to the self steepening and 7, is the Raman response time. The definition in (70) makes 
7, positive, possibly with a small imaginary part. 

Then the envelope a must satisfy 

iai + +a, + la/% + iSa,,, + i%hoek(lnlza), - rR(la12),a = 0. (71) 

5.6. Damping 

So far, the imaginary part of the linear susceptibility, corresponding to damping has 
been neglected. To keep 9 Hermitian, the damping must be taken into account as a 
perturbation, i.e. i t  must be brought to the right-hand side of equation (16). Thus, 
equation (48) will change to 

$2 e’@gU( - ia,, + &a$)A + 4s3diVE\”e’@ + 2 1&3diVE‘3’ 3 e3’@ 

c l  (72) 4 ‘* , I )  =4&’ e’@Y‘,’)IAl2A +?E’~”@@)A’ -$&-qimUAei@ + O ( E ~ )  
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where a{: is the imaginary part of the linear susceptibility at the central frequency wl, 
Z C  = Im %(wl, XI). 

The damping term in (72) seems to be of order E, not of order c3. However, a$k) was 
supposed to be small, and we must suppose it to be of order E’ or smaller. If it is not, 
dissipation will be too high and the pulse will not propagate. 

J H B Nijhofet al 

Define 

in which a factor &-2 is hidden in the factor L,. Then (72) means that equation (51) 
for &,A has to be replaced by 

i&A - +k;a%A + y(o, - iEc3,)lA12A + i(&’L,)-’TA = 0. 

iui + $U= + la[% + iba,, + i~hosk(Iu12u), - ~,(laI’),a = 0. 

(74) 

(75) 

Therefore equation (71) changes to 

6. Limitations 

As mentioned in the introduction, some assumptions have been made. Firstly, the 
polarization has been supposed to be local. Secondly, the material has been supposed 
to be isotropic. Also, the fibre or waveguide should be single-mode and polarization- 
preserving, in order not to have to consider coupled equations. Coupled equations would 
also arise in the case of phase matching, when k(3w1) = 3k(w,). Finally, the non-linear 
polarization has been treated in the Born-Oppenheimer approximation. All these 
assumptions seem to be justified, and are commonly made. 

To estimate for what pulse.duration To the derived equation (75) is valid, consider 
glass at i. = 1.55 pm, with group velocity dispersion either k; = -20 ps2 km-’ for a 
normal fibre or k;’ = -2ps2 km-’ for a dispersion shifted fibre. For the non-linearity 
take the non-linear refractive index n2, related to xC3’ by n2 = 3 ~ ‘ ~ ’ / 8 n ,  to be n2 = 
2.3 x mz V-’ (values taken from [Z]). This value of nz implies x ( 3 )  = 8.9 x 
10-11 m2 \,-I, 

First of all, in the derivation, the terms (U.U)UA3 e3jd and ( U . U * ) ( / I A f A  e‘+ have 
been supposed not to overlap in the w-domain. Therefore, for the validity of ( 7 9 ,  the 
spectral width of Â  must certainly he less than 4”. 

,!?(U) must be negligible at the resonance frequencies of the material. Glass has linear 
resonance frequencies at wavelengths of approximately 0.1 pm and 10 pm. Given a 
central frequency corresponding to i. = 1.5 pm, this means that &w) must be negligible 
at w = 0.850,; so To i> 1 fs. 

As for the non-linear perturbations, the most stringent limit on the pulse length is 
given by the stimulated Raman scattering. The stimulated Raman scattering has a 
rcsonance frequency corresponding to a time r, z 12 fs, see section 22.2. Therefore lE[’ 
cannot be allowed to have a spectral width larger than approximately loL4 Hz. This 
means that To must be much greater than 10 fs. The other perturbation terms involving 
time derivatives of the non-linear terms are all much smaller. 

To estimate the magnitude of the higher order non-linear perturbation terms, one 
needs to know the magnitude of the electric field. Since the longitudinal component of 
the modal profile, i.e. the z-component of U, is small, %U can be approximated by 
-2kU, see (29). If one inserts this approximation in the expansion of (67), one can see 
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that the electric field will be of the order of 

for a normal fibre and (1 fs&) x 1 x lo9 V m U 1  x la] for a dispersion shifted fibre. 
we also need to 

know x ' ~ ' .  It is hard to find a definite figure for this parameter, but we can make an 
estimate if there are no resonances. In that case, the nth order susceptibility is of 
the order of where E, is the interval field of order 3 x 10" V m - '  that binds 
the electrons to the ions [8 ,  203. So take x"' 

With this value of x"', the contribution of the fith order polarization to equation 
(75) is (0.02 f ~ ~ / T & ~ ~ a  for a normal fibre and (0.002 fs2/Ti)la14a for a dispersion shifted 
fibre. So for To much larger than a femtosecond, this will be negligible (la1 is assumed 
to be of order 1). 

is the term proportional to X'~'(E"')~E"'.  
After scaling, this contributes something of the order of k,~k;'JA,,,T~Z~aJ4a. For a fibre 
core area A,,,, of a normal fibre of 50 pm2, the scaled contribution would amount to 
something of the order of (1 f~~/i$)la1~a. For a dispersion shifted fibre with a core area 
of 3 pm' it would be of the order of (0.02 fs ' /~)~a]"u.  

All in all the lower limit of To is set by the time scale of the stimulated Raman 
scattering. To must be larger than 30 fs. However, probably a lower lower limit on To 
can be reached if the stimulated Raman scattering term is treated exactly, without 
expanding the convolution product of (9) asymptotically. 

To estimate the size of the tifth order polarization Pc51 = 

1 x m4 T4. 

Another perturbation term at order 
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