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DERIVATION OF THE HYDRODYNAMICAL EQUATION
FOR THE ZERO-RANGE INTERACTION PROCESS

By ENRIQUE D. ANDJEL AND CLAUDE KIPNIS
Universidade de Sao Paulo and Ecole Polytechnique

We first recall the concept of hydrodynamical equation of an infinite
particle system. We then prove that the equation associated to the zero-range
process is a first order nonlinear partial differential equation.

1. Introduction. In this paper we are interested in the hydrodynamical
equations for a particular infinite particle system, the so-called zero-range inter-
action process introduced by Spitzer [10]. In order to make contact with physics
we want to give a rigorous meaning to the following sentences:

“Consider a fluid in R¢ and look at a small volume around a point x. This
small volume is so large compared with the distances between molecules that it
contains an infinite number of them which are in equilibrium with given char-
acteristics (density, temperature, - --). Of course these parameters vary with x
(say p(x), T(x), ---). If we look at the system after a time ¢, the system will be
still locally in equilibrium with other local characteristics (p(x, t), T'(x, t), - --)
varying slowly in time although each particle individually moves very rapidly.
We want to derive the equation of evolution of these macroscopical parameters.”
However, it is surprising that this derivation is almost never based on the analysis
of the movement of the particles but rather on “conservation laws.” The limiting
procedure that we describe below has been used by various authors [2, 8] in
efforts to give rigorous treatment of the program alluded to above.

Consider a system of infinitely many particles in R? (or Z) moving according
to a deterministic or random motion (e.g. the Hamilton equation). Suppose that
this evolution has infinitely many extremal invariant measures v, (e.g. the Gibbs
states) characterized by p in a set of real parameters P (e.g. the inverse temper-
ature, the density, etc.). Let ¢ be a parameter which will later tend to zero and
consider a sequence of measures u° on the space X of configurations of particles
which satisfy:

(A) local equilibrium: There exists a function from R into P; x — p(x) such
that for every x in R? (all the limits considered in this paper are in the sense of
weak convergence of measures):

lim, o7,/ep® = vp)

where 7, denotes the shift by a induced on X by the translations of R (in Z*
one needs to look at 7(,/,u°, where [a] denotes the integer part of a—but we will
omit the symbol [ ] whenever it creates no confusion).
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Now let T, be the flow induced on the set of measures by our evolution. In
order to take care of the rapid macroscopic movement of the particles, we will
perform a time rescaling and we will say that we have conservation of local
equilibrium if

(B) There exists a p(x, t) such that for every x and ¢:
limchTx/cﬂeTt/c = Vp(x,t)-

Of course p(x, t) must satisfy p(x, 0) = p(x) and it is generally expected that
p(x, t) satisfies a partial differential equation, which will be called the hydrody-
namical equation of the process.

It is readily seen from this framework that the problem makes sense even if
the evolution is not of physical nature and also may be applied to random
evolutions.

In the past few years this problem has been intensively studied by several
authors and (B) has been proved to hold with various restrictions on the initial
condition p(x) and/or the seqeuence u° for the Euler [2; 9] or the Navier-Stokes
[2; 3; 5; 8] equation. In this paper we are interested in the one-dimensional
asymmetric zero-range process which can be described intuitively the following
way: At each site z of Z, we have a certain number of particles 5(z). Each of the
particles sitting at z moves to the right one unit at speed 1/5(z). Alternatively,
this system may be described by saying that every site z possesses an independent
bell that rings after exponentially distributed intervals and that when the bell
rings, one (if any) of the particles present at z is moved to z + 1. It can be proved
that there exists a unique Markov process taking values in NZ corresponding to
this description [7]. Its generator is defined on cylindrical functions by:

Lf(n) = Zrez Law=olf (") — f(n)]

where
n(y) if y#xorx+1
7*(y) = {n®) — 1 if y=x
npx+1)+1 if y=x+1.

Moreover, the set of its extremal invariant measures is the set of product measures
v, such that »,(n(x) = k) = p*(1 — p) where p is a constant belonging to [0, 1[.
(The proof in [1] does not cover the case we consider here but can be easily
adapted).

In this paper given p(x): R — [0, 1[ we always take the sequence u°to be a
sequence of product measures with

pe(n(x) = k) = p(xe)*(1 — p(xe)).

We prove that (B) holds in this case for several initial conditions, where p(x, t)
is the solution of the nonlinear P.D.E.:
ap ap
T =—(1-p2L.
o= 1P,

We must emphasize that we prove convergence to the v, with the correct



HYDRODYNAMICAL EQUATION OF THE ZERO-RANGE 327

parameter (which proves (B)), while the exact correct parameter was guessed via
the following intuitive argument:

Suppose that you a priori know that conservation of equilibrium takes place;
then, because of the form of the v, we must have:

plx, t)
1—plx, t)
P, (nye(x/e) = 1) = p(x, t).

And applying the generator to the function f(n) = n(x/e), we get:

g<pmw
ot \1 — p(x, t)

Eu‘ (nt/e (x/C)) =

1 0,
)=;@W—QQ—P@JD=—£-

Solving this nonlinear P.D.E. by means of characteristics, we can determine the
value of p(x, t), or characterize p(x, t) in terms of certain inequalities which are
used later to prove the convergence. However this equation is readily seen to
present shock-wave phenomena for increasing initial data. Since the jump con-
dition of the generalized solution [6] is not conserved by a change of variables
and also because the total number of particles in our system is a conserved
quantity, we rather choose to put it in terms of a conservation law after
performing the change of variables u = p/(1 — p) where the equation takes the
form:

a (A +u?ox’

We then prove that p(x, t) is the natural solution when p(x) is decreasing and
C! or an increasing step-function.

2. Hydrodynamical behavior for some increasing initial conditions.
In this section we want to define a coupling of two versions of the zero-range
process which will be essential in the sequel. The state space of the coupled
process is (N%)? and its generator is defined on cylindrical functions by

I_/f(ﬂ, ‘E) = Zx l(n(x)al)[f(rlx’ E) - f(rl’ E)] + 2 1(17(x)=0,£(x)21)[f(77’ Ex) - f(rl’ E)]'

Techniques similar to those of [7] prove the existence and uniqueness of this
process. It is easy to verify that the first coordinate 7 is itself a zero-range process
and that { =5 + ¢ (meaning componentwise addition) is also a zero-range process.
It has also a simple natural interpretation: When the bell rings at site x, particles
of 5 have priority and jump forward. When no particle of 7 is present, then one
of the ¢-particles is allowed to jump forward if any is present at x. We will denote
this priority of n over £ by the notation 5 F £ This coupling is useful to verify
some properties such as Lemma 2.1 below. First recall the definition of stochastic
order for measures on a partially ordered set X: if u and » are two probability
measures on X, we say that u is larger that » iff there exists a probability M on
X X X such that its first (resp. second) marginal is u (resp. ») and M is
concentrated on the (x, y) such that x = y. In our case we endow NZ% with the
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partial order defined by 5 = ¢’ iff for all x € Z, n(x) = 5’(x). From the definition
and the coupling of the processes defined above it is clear that if u = » then for
all t’s, u P, is larger than v P,. This and the observation that the semi-group
commutes with the shift on Z proves:

LEMMA 2.1. If u is a product measure such that the marginal law of n(x) is
monotone in x then for every t = 0, the marginal laws of n.(x) are also monotonic
in the same. order. ‘

We will also use the following lemma which can be deduced easily from Burke’s
theorem using finite approximations to our process. A proof of Burke’s theorem
can be found in Kelly [4].

LEMMA 2.2. Under P, , the successive instants when a particle jumps across a
given fixed bond (x, x + 1) is a Poisson process with intensity p.

In this section as well as in the next one, we give intuitive proofs for all the
theorems and formalize these arguments for the first theorem. The other proofs
can be made rigorous by using the same techniques.

We will now use Lemma 2.2 to prove the following two theorems which clearly
show, on the macroscopic scale, the existence of shock waves as predicted by the
integral form of the equation du/dx = —(1 — u)*(du/dt).

THEOREM 2.3. If0 < a <1 and uo.is a product measure with

o [n@ =k i z2<0
poa(n(z) = k) = 1ufi<n<z> —k) if 220

then:

Ivo if x<d-—oa)t

limc—»OTx/c/J'O,aTt/e = l" lf x> (1 _ Ol)t

REMARK. It should be noted that at the shock, i.e. at x = (1 — a)t, we do not
know whether we are in an extremal equilibrium state (and probably this last
property is not true at x = (1 — a)t!).

PROOF. In order to prove the theorem we will couple our initial uo . with »,
by completing at the left of zero with &-particles so that # has distribution g,
and 5 + £ distribution v, as follows. First choose independently for each x in Z
an integer p(x) with common probability P(p(x) = k) = a®(1 — ). Then define
n and £ by:

£(x) = p(x) and n(x) =0 ifx<O0
£(x) =0 and 7n(x) = p(x) ifx=0.

Clearly the distribution of 7 is uo . and that of n + £ is v,. Let now (n, £) evolve
according to the coupled process with n - £.
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We then have for all x and ¢:
(1) (Ez?.x Et(z) > 0) C (225,\:—1 ﬂt(z) = 0)

since this relation is true for ¢ = 0 by construction, and since no {-particle can
ever overtake an n-particle.

The formula (1) means that there is a sharp interface between £- and 7-
particles and that both types of particles can coexist at one site at most.

Denote now by v/ = supix: ¥.=, &(2) > 0} and v; = inf{x: X.<. n.(x) > 0}. By
(1) we have v/ < v;, and we now want to prove thatif 2> 1 — a:

limc_,olpuo,u('y;}e > z2.t/e) = 0.

By Lemma 2.2 we know that e/t 3.~0f,.(x) — a almost surely, and since 7, + &
has distribution v, it follows that:

C/t 20<y<zt/e nt/e(y) + Et/e(y) s za/l —a>a
in probability, hence ¢/t Y o<y<u/c 1:.(¥) > 0 with probability close to one so that:

P, (yy. < 2tfe) < P, (v < 2t/e) = 1.

Ho,a

To see that this implies the theorem, notice that by coupling we have for any
cylindrical f:

ale) = f f(0)7atserio, Tere(dp) = E(f (7arre[nese]))

and

ble) = ff(p)va(dp) = E(f(ralny. + &4.D).
Hence, if we denote by S(f) the finite subset of Z of those coordinates on which
f depends, we have:
la(e) — ble) | = sup|f| X P(Ju € S(f) + 2.t/ : &yp(u) > 0).
Taking now any Z such that 1 — o« < Z < z we have:
lae) = b(e) | =sup|f| - P(yi > 2-t/e) = 0.

A similar argument shows that if z < 1 — « the sequence 7,07/ converges
to Vo. 0

THEOREM 2.4. If u.s1s a product measure such that:

o frx) =R if x<0
hasln(x) = k) = |vs(n(x) = k) if x=0

with B > «a, then:

{Va if x<t(l-—a)1-8)

timeoriabesTivd = 10 i 2> 61— a)(1 = B).
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PROOF OF 2.4. We use the following coupling: n-particles are distributed
according to v,,, &-particles are added to the n-particles on all non-negative sites
in such a way that the distribution of # + £ is u.s. Finally {-particles are added
in such a way that the distribution of n + £ + {is vs.

We now couple 7, £ and ¢ by n + ¢ ¢ and so the generator of the process we
consider is:

Ef(ﬂ, E? g‘) = Ex l(ﬂ(x)al)[f(nx’ ‘E’ g‘) - f(ﬂ, ‘E? g‘)]
+ ¥ Low=ocwsolf(n, £, O — f(n, & O]
+ i Law=otm=0wm>0[f(n, & &) — f(n, & I

In this way the n-particles are in equilibrium. As before, there is a sharp interface
between { and ¢-particles. To determine the position «y of the interface note that
the rate at which {-particles enter the interval [1, ®] is 8 — a. This shows that

(B __« :
6”"‘(1—3 1—a>'7’

therefore y=1-81-«. O

3. Hydrodynamical behavior for decreasing initial conditions. In
order to study the general hydrodynamical behavior of decreasing initial condi-
tions, we will first need an upper estimate for the number of particles in an
interval (0, x/¢) for an initial distribution of the form u.o corresponding to the
function al_.g).

NoOTATION. (FOR A SEQUENCE X, of random variables and a constant ¢ we
write lim sup X, < ¢ for lim P(X, = c + 6) = 0 for all 6 > 0.)

LEMMA 3.1. (Rost [9]). The number of particles in the interval [0, x/¢] for
paoTy. called R.(t, x, ) satisfies:

a if 0<x<t(l— a)?
l—a
lim sup,.oe Re(t, %, @) <4 ot — (VE— V2)? if tl—a)?<x<t
at if t<ux.

PrROOF. Call N,(t, x, o) the number of particles that have passed x/e at time
t/e. Notice the identity:

R.(t, x, a) = N,(t, 0, a) — N.(¢, x, ).

On one hand, a coupling argument and the fact that each v, is an equilibrium
state shows that:

lim sup ¢ R.(t, x, a) < 2
1—«a
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On the other hand Lemma 2.1 implies that
lim,_0e N.(t, 0, a) = ot
so that

.
lim inf, e N.(¢, x, @) = (at g x) .

l1—«

But in the sense of stochastic order, N,(t, x, ) is increasing in « so that

+
lim inf,_,oe N.(¢, x, @) = suposﬁ5a<ﬂt 1 f 5 x)

which is the desired estimate.
REMARK. It is important to notice that if x > ¢t(1 — «)?, the number of
particles in [0, x¢ ] is strictly less than /(1 — ) xe~! with a probability close to

one. This fact will be crucial in the rest of the proofs.

THEOREM 3.2. For every x in R, Ty o T:-1 converges as e — 0 to vy, where

o if < (1-—a)t
px,t) =<3 1—+x/t if A-a)t=x<t
0 if t=<ux.

PROOF. Since 7,/cpta0Ti/e = Tre-tyettao Ty and p(x, t) = p(x/t, 1) it suffices to
show that Theorem for ¢t = 1.

We will first use a coupling to prove that we have 7,-1p. 0T, < vp,1). (This
is obvious for x < (1 — a)?, so take x > (1 — a)?). Now choose a > p > p(x, 1)
and couple », and u.o as follows: Let n + { have distribution .o, n have
distribution p,, and ¢ have distribution wu,,. Let (7, {, £) evolve according to the
process with generator

Lf(rh g" ‘E) = Er l(n(x)zl)[f(nx9 {, E) - f(rl’ g" E)]
+ Zx 1(n(x)=0;_{‘(x)21;£(x)21)[f(n’ §‘X9 Ex) - f(ﬂ, fy ‘E)]
+ Zx 1(n(x)=();§'(x)=0,£(x)21)[f(n’ g" gx) - f('l, g" E)]

+ 2 Lpw=ocwzne=0[f(n, & &) — f(n, §, O]

This means that » has priority on both { and ¢ and that ¢ and ¢{-particles jump
together whenever it is possible. From this we see that { + 5 represents u,and
its evolution and £ + 5 that of »,. It is easy to prove along the same line as in
Theorem 2.3 that for all x and ¢:

(§i(x) + n(x) > E(x) + n(x)) C (Tose-i18i(2) = 0).
But e/x Yo<o<i/c£17.(2) + m,.(2) converges in probability to p/(1 — p) and by the
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previous lemma lim sup e/x Yo<.<x. m/(2) is less than or equal to p/(1 — p).
Therefore for all p > p(x, 1) we conclude that every weak limit of 7,/.pa 0T}/, is
inferior or equal to v,. By monotonicity of v, as p decreases, we have the desired
inequality.

To prove the equality, we argue by contradiction: suppose that for a given x a
weak accumulation point of 7,/ T/, 18 strictly smaller than vy, (clearly 0 <
x < 1) and let ¢, be the corresponding sequence. Then

p(x, 1)
1-plx1)°

By Lemma 2.1, the integral above is nonincreasing in x for fixed n. Also,

p(y, 1)

for every y. Hence, for k large enough there exists a subsequence of ¢,, which will
be again denoted by ¢, such that

lim f 1(0) (7 tiao Tir,) = @ <

lim Sup f TI(O) d(Ty/enﬂa,OTl/c,,) =

lim f 1(0) d(ryyo paoTiy) exists forall y=2, j=1,--- k=1

and

\ L1 © ply 1)
(2) Zi=0£hm f 7(0) d(7(iskeitte0 Thse,) <J; T-pw D)

Note that if i = k&, the limit of the term in the left hand side is zero by Theorem
2.3 and that this series is in fact a finite sum. But if E denotes the expectation
with respect to P, :

Ho,0*

du =«

lim sup E[e, Yi>0 My, (x)] = lim sup &, Y20 Xj/rsse=ii+1/e E(mye, (%))

< Y7o lim sup e Xjksse,ii+1/e E(mye, (%))

) 1 .
< Yo lim sup % E(my.,(j/ken)) < a by (2).

On the other hand, by Lemma 2.1
E(ern Tesomye, (%)) = e.E(N,,(1, 0, @) = «
which is a contradiction.
Now take p(x) to be strictly decreasing C* function of R into [0, 1[.
THEOREM 3.3. Let u°be a product measure with
wfn(x) = k} = p(xe)*[1 — p(xe)].
Then

lim Tx/eﬂeTt/c = Vp(x,t)
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where p(x, t) is the unique classical solution of the equation
i)
P = - -p
X
with initial condition p(x, 0) = p(x).
PRrROOF. If we solve this equation using the method of characteristics [6], we
see that for each (x, t) there exists a unique y(x, t) such that p(x, t) = p(y(x, t))
and that it must satisfy x — y(x, t) = t(1 — p(y(x, t)))% Fix now x and ¢ and take

g such that p(x, t) < g < 1. There exists a unique z such that p(z) = q and it
must also satisfy x — z> t(1 — q)®. Now couple », and p° as follows: Define

_ |pw) forv=c: _Jq forv=z
@) = |0 otherwise 9(v) = |0 otherwise
(v)_IO forv =z (v)=[0 forv =<z
a10) = |p(v) otherwise 9 g otherwise

and define y;, as a product measure with ug (n(x) = k) = qi(xe)*(1 — gi(xe)). Take
now p, &, 7, £ such that:

pt+ E=any; & =anpg

S+ m=ang; §=akng
and take the following rule of precedence: £ - { I p and n, where p and 5 have to
jump together whenever possible. Here p + £ + { represent our system, whereas
£ + ¢+ n has distribution »,. We now prove that with probability close to one we
have, at site x/¢ and time t/e, more n + £ + {-particles than p + £ + {-particles.
Indeed, in the interval [2/e, x/¢] there are (x — 2) - ¢/(L —q) - e " of n + £+ {-
particles, but strictly less than this quantity of ¢-particles because we choose
x —z > t(1 — q)* (see remark below Lemma 3.1). Therefore there are {- or
n-particles in this interval with probability almost one. Now by construction, no
p-particle can ever overtake a {- or a n-particle so no p-particle has reached x/e
by time t/e. By monotonicity this proves that lim sup 7./.uTy. = vp-

On the other hand since u*> g for all y, where 4} is defined by:

[vpy(n(u) = k) for u<ye™

ﬁ?(ﬂ(u) = k) = ll'o(ﬂ(u) — k)

for u>ye!

we also have by Theorem 3.2: lim 7,,-1u°T, = vy, for all y’s such that x — y <
(1-p(y)?t.0
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