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DERIVATIONS, ISOMORPHISMS, AND SECOND

COHOMOLOGY OF GENERALIZED WITT ALGEBRAS

DRAGOMIR Ž. D– OKOVIĆ AND KAMING ZHAO

Abstract. Generalized Witt algebras, over a field F of characteristic 0, were
defined by Kawamoto about 12 years ago. Using different notations from
Kawamoto’s, we give an essentially equivalent definition of generalized Witt
algebras W = W (A,T, ϕ) over F , where the ingredients are an abelian group
A, a vector space T over F , and a map ϕ : T × A → K which is linear in the
first variable and additive in the second one.

In this paper, the derivations of any generalized Witt algebra W =
W (A, T, ϕ), with the right kernel of ϕ being 0, are explicitly described; the iso-
morphisms between any two simple generalized Witt algebras are completely
determined; and the second cohomology group H2(W,F ) for any simple gen-
eralized Witt algebra is computed.

The derivations, the automorphisms and the second cohomology groups
of some special generalized Witt algebras have been studied by several other
authors as indicated in the references.

1. Introduction

Let p be a prime number, A = 〈x〉 a cyclic group of order p, and F a field of
characteristic p. Then the derivation algebra of the group algebra FA is known as
the Witt algebra (see [5, Chapter V, Ex. 21]). It has a basis {D0, D1, . . . , Dp−1}
such that [Di, Dj ] = (j − i)Di+j . Furthermore, it is a simple Lie algebra if p 6= 2.

Generalized Witt algebras have been defined by Kaplansky [6] in the context
of the classification problem of simple finite dimensional Lie algebras over fields of
prime characteristic. His definition is of course applicable also to fields of character-
istic 0. In characteristic 0 case, the term Witt algebra is used as an alternative name
for the so-called centerless Virasoro algebra (see e.g. [9]). Amayo and Stewart, in
their book [1], refer to this particular algebra as the generalized Witt algebra. The
definition of generalized Witt algebras over fields of characteristic 0 has also been
given by N. Kawamoto [7]. Although he uses different notations, his definition is
actually equivalent to that of Kaplansky.

In this paper we essentially use Kaplansky’s definition, slightly generalized. Our
notation is different from that of Kawamoto, and can be viewed as a modification
of Kaplansky’s notation.

Received by the editors January 2, 1996 and, in revised form, April 8, 1996.
1991 Mathematics Subject Classification. Primary 17B40, 17B65; Secondary 17B56, 17B68.
Key words and phrases. Simple Lie algebras, derivations, 2-cocycles, automorphism group.
The first author was supported in part by the NSERC Grant A-5285.
The second author was supported by Academia Sinica of P.R. China.

c©1998 American Mathematical Society

643

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



644 DRAGOMIR Ž. D– OKOVIĆ AND KAMING ZHAO

The basic simplicity theorem in the context of generalized Witt algebras of char-
acteristic 0 was proved by Kawamoto [7], although we would not be surprised if it
was already known to Kaplansky at the time when he wrote his short note [6].

In spite of more than 40 years since these algebras were defined and studied, the
basic isomorphism problem for the simple generalized Witt algebras (of character-
istic 0) has remained unresolved. This problem is mentioned briefly in the recent
papers [3, 8].

We shall now describe the contents and main results of our paper.
In Section 2 we introduce the definition of generalized Witt algebras W =

W (A, T, ϕ) where A is an abelian group, T is a vector space over a field F , and
ϕ : T × A → F a map which is linear in the first variable and additive in the
second variable. We also give the classical example of such W , from which we have
derived our notations in the general case. We describe the center of W and restate
Kawamoto’s simplicity theorem. Roughly speaking, it says that if char F = 0, then
W is simple if and only if A 6= 0 and ϕ is nondegenerate. We also show that, for a
nonzero torsion-free abelian group A of finite rank, Der(FA) is a simple Lie algebra
(and a generalized Witt algebra).

In Section 3 we present two results of R. Farnsteiner [2] on derivations of graded
Lie algebras, in a slightly more general form. Then we show how these results can
be used to obtain a quick proof of a recent result of Ikeda and Kawamoto [4]. The
main result of this section is Theorem 3.4, which gives explicit description of all
derivations of W (assuming that the right kernel of ϕ is 0). The special case of this
theorem, namely when A is a free abelian group of finite rank, was proved recently
by Ikeda [3].

In Section 4 we study the structure of isomorphisms θ between two simple gen-
eralized Witt algebras W = W (A, T, ϕ) and W ′ = W (A′, T ′, ϕ′). The main result
of this section is Theorem 4.2, which gives an explicit description of all such iso-
morphisms θ. Hence this theorem provides a solution of the isomorphism problem
for simple generalized Witt algebras.

In Section 5 we apply the isomorphism theorem to the study of the automorphism
group of W . We apply the description of Aut(W ) given by Theorem 5.1 to a special
case and obtain a generalization of a recent theorem of Kawamoto [8].

In the last section, Section 6, we assume that W is simple and compute the
second cohomology group H2(W,F ). This can be viewed as a generalization of the
well known fact that the Virasoro algebra is the universal central extension of the
Witt algebra. It turns out that H2(W,F ) = 0 if dimT ≥ 2, and it is 1-dimensional
if dimT = 1. In the case A = Zn, assuming only that the right kernel of ϕ is 0 (and
so W may be non-simple), H2(W,F ) has been computed recently by Ikeda [3].

This research was carried out during the second author’s visit to the University
of Waterloo. He wishes to thank the Department of Pure Mathematics for its
hospitality.

2. Generalized Witt algebras

Let A be an abelian group, F a field, and T a vector space over F . We denote
by FA the group algebra of A over F . The elements tx, x ∈ A, form a basis of this
algebra, and the multiplication is defined by txty = tx+y. We shall write 1 instead
of t0. The tensor product W = FA⊗F T is a free left FA-module. We shall usually
denote an arbitrary element of T by ∂, to remind us of differential operators (see
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GENERALIZED WITT ALGEBRAS 645

Example 1 below). For the sake of simplicity, we shall write tx∂ instead of tx ⊗ ∂.
We now fix a pairing ϕ : T × A → F , which is F -linear in the first variable and
additive in the second one. For convenience we shall often also use the following
notations:

ϕ(∂, x) = 〈∂, x〉 = ∂(x)

for arbitrary ∂ ∈ T and x ∈ A.
There is a unique F -bilinear map W ×W →W sending (tx∂1, t

y∂2) to

[tx∂1, t
y∂2] := tx+y (∂1(y)∂2 − ∂2(x)∂1)(2.1)

for arbitrary x, y ∈ A and ∂1, ∂2 ∈ T . It is easy to verify that this map makes W
into a Lie algebra. We shall refer to W = W (A, T, ϕ) as a generalized Witt algebra.

We now introduce an A-gradation of W by setting Wx = txT for x ∈ A. This
gradation is compatible with the Lie algebra structure, i.e., [Wx,Wy] ⊂ Wx+y for
all x, y ∈ A. In particular we have W0 = T .

It follows from (2.1) that

[∂, tx∂1] = ∂(x)tx∂1,

i.e., ad(∂) acts on Wx as the scalar ∂(x). Hence ∂ is semisimple in the sense
that ad(∂) is a semisimple operator. Consequently T is a torus, i.e., an abelian
subalgebra of W consisting of semisimple elements.

The right kernel of ϕ is the subgroup A0 ⊂ A defined by

A0 = {x ∈ A : 〈∂, x〉 = 0, ∀∂ ∈ T } .
The left kernel of ϕ is the subspace T0 ⊂ T defined by

T0 = {∂ ∈ T : 〈∂, x〉 = 0, ∀x ∈ A}.
We say that ϕ is nondegenerate if A0 = 0 and T0 = 0, i.e., if

〈∂, x〉 = 0, ∀∂ ∈ T =⇒ x = 0(2.2)

and

〈∂, x〉 = 0, ∀x ∈ A =⇒ ∂ = 0.(2.3)

Our definition of generalized Witt algebras is slightly more general than that of
Kaplansky [6] (ignoring the fact that he assumes that characteristic of F is not 0).
The difference is that he assumes that (2.2) holds, and consequently he can identify
x ∈ A with the linear functional on T sending ∂ → 〈∂, x〉.

Kawamoto [7] also assumes that (2.2) is satisfied although he uses different no-
tation. He assumes that A is a subgroup of the direct product∏

i∈I
Fi, Fi = F.

He then defines W to be a vector space with basis consisting of all symbols w(x, i)
with x ∈ A and i ∈ I, and defines Lie multiplication in W by

[w(x, i), w(y, j)] = yiw(x+ y, j)− xjw(x + y, i),

where xj is the j-th coordinate of x, and yi the i-th coordinate of y. It is now easy
to see that his W is also a generalized Witt algebra in our sense: we have only to
identify w(x, i) with tx∂i, where ∂i, i ∈ I, is a basis of T , and to define ∂i(x) = xi,
i ∈ I. If 〈∂, x〉 = 0 for all ∂ ∈ T , then in particular xi = 〈∂i, x〉 = 0 for all i ∈ I,
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646 DRAGOMIR Ž. D– OKOVIĆ AND KAMING ZHAO

and so x = 0. Hence the condition (2.2) is automatically satisfied by Kawamoto’s
algebras.

It is easy to determine the center Z of an arbitrary generalized Witt algebra
W = W (A, T, ϕ).

Lemma 2.1. Z = FA0 ⊗F T0.

Proof. Let z ∈ Z and write z =
∑
tx∂x, where almost all ∂x ∈ T are 0. Clearly

each tx∂x ∈ Z. Assume that ∂x 6= 0; then [∂, tx∂x] = ∂(x)tx∂x = 0 implies that
∂(x) = 0 for all ∂ ∈ T , i.e., x ∈ A0. It follows that [tx∂x, t

y∂x] = ∂x(y)t
x+y∂x = 0,

i.e., ∂x(y) = 0 for all y ∈ A. Consequently ∂x ∈ T0. Hence we have shown that
Z ⊂ FA0 ⊗F T0. The opposite inclusion is obvious.

Let A = A/A0 and let K be the kernel of the natural homomorphism FA→ FA.
Thus K is spanned by all elements tx(1 − ty) with x ∈ A and y ∈ A0. It is easy
to check that KT = K ⊗ T is an ideal of W and W/KT ' W (A, T, ϕ), where
ϕ : T ×A→ F is induced by ϕ.

The subspace FA⊗T0 is also an ideal ofW . It has a complementary subalgebra in
W , namely FA⊗T1, where T1 is a vector space complement of T0 in T . Furthermore

FA⊗ T1 = W (A, T1, ϕ1),

where ϕ1 : T1 ×A→ F is the restriction of ϕ.
Hence if W is a simple Lie algebra, then A 6= 0 and ϕ must be nondegenerate.
The following theorem is due to Kawamoto [7].

Theorem 2.2. Suppose that characteristic of F is 0. Then W = W (A, T, ϕ) is a
simple Lie algebra if and only if A 6= 0 and ϕ is nondegenerate.

According to Kaplansky [6], the analogous result is also valid over fields of finite
characteristic, with one exception.

We shall assume from now on that the characteristic of F is 0. Hence if ϕ satisfies
the condition (2.3), then A must be torsion-free.

Example 1. Let A = Zn and let {ε1, . . . , εn} be its standard basis. Let us write
ti instead of tεi . Then the group algebra FA becomes identified with the alge-
bra of Laurent polynomials F [t±1

1 , . . . , t±1
n ]. Let T be a vector space with basis

{∂1, . . . , ∂n}. Define the pairing ϕ : T ×A→ F by setting 〈∂i, εj〉 = δij . The con-
ditions (2.2) and (2.3) are satisfied. The corresponding generalized Witt algebra
W = FA⊗ T is simple, and its elements can be written as

P1∂1 + . . .+ Pn∂n,

where Pi ∈ FA are Laurent polynomials. If we interpret ∂i as the differential
operator ti

∂
∂ti

, then we can identify W with the Lie algebra of vector fields with
coefficients in the above-mentioned Laurent polynomial ring.

For an arbitrary generalized Witt algebra W = W (A, T, ϕ) we can make the
group algebra FA into a left W -module. This module structure is characterized by

tx∂ · ty = ∂(y)tx+y,(2.4)

where x, y ∈ A and ∂ ∈ T are arbitrary.
The FA-module structure on W and the W -module structure on FA are related

by the following identity:

[fu, gv] = f(u · g)v − g(v · f)u+ fg[u, v],(2.5)
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where f, g ∈ FA and u, v ∈W are arbitrary.
The W -module structure on FA defines a homomorphism of Lie algebras

W → Der(FA)(2.6)

because each w ∈ W acts on FA as a derivation. Furthermore it is easy to check
that this homomorphism of Lie algebras is also a homomorphism of FA-modules.

It is well known that if F is a field of characteristic 0, n a positive integer, and
A = Zn, then Der(FA) is a simple Lie algebra. It is natural to ask: what happens
if A is an arbitrary abelian group? The next theorem provides a partial answer to
that question.

Theorem 2.3. Let A be an abelian group and F a field of characteristic 0.

(a) If Der(FA) is a simple Lie algebra over F , then A is torsion-free and A 6= 0.
(b) If A is torsion-free and 1 ≤ rank(A) <∞, then Der(FA) is simple. Further-

more it is isomorphic to W (A, T, ϕ) for suitably chosen T and ϕ.

Proof. (a) Let At be the torsion subgroup of A. If x ∈ At then there exists a
positive integer n such that nx = 0. Hence tnx = 1, and so, if D ∈ Der(FA), we
have

D(tnx) = D((tx)n) = n(tx)n−1D(tx) = 0,

i.e., D(tx) = 0. It follows that each D ∈ Der(FA) is an FAt-linear map, i.e.,
Der(FA) is an FAt-algebra. If At 6= 0, then FAt is not simple, and consequently
Der(FA) is not simple as a Lie algebra over F .

(b) From now on we shall assume that At = 0, i.e., A is torsion-free. By Zorn’s
lemma, we can choose a maximal independent subset S ⊂ A. Let f : S → FA be
an arbitrary map. We claim that there is a unique derivation Df of FA such that

Df (t
y) = f(y), ∀y ∈ S.(2.7)

An arbitrary x ∈ A can be written uniquely as

x =
∑
y∈S

cx(y)y,(2.8)

where cx(y) are rational numbers, almost all 0. Note that cx(y)y in general is not
an element of A. Hence the meaning of the above equation is that there exists a
positive integer, say N , such that all numbers ky = Ncx(y) are integers and

Nx =
∑
y∈S

ky · y

holds in A. Alternatively one could embed A into the Q-vector space Q ⊗Z A so
that all the terms cx(y)y acquire the status of vectors in this vector space.

We define

Df (t
x) =

∑
y∈S

cx(y)f(y)tx−y(2.9)

and extend it by linearity to obtain a linear map Df : FA → FA. It is straight-
forward to verify that Df is a derivation of FA. It follows from (2.9) that (2.7) is
valid.
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Assume now that D ∈ Der(FA) satisfies D(ty) = f(y) for all y ∈ S. Let x ∈ A
be arbitrary and write it as in (2.8). Choose an integer n > 0 such that all numbers
ky = ncx(y) are integers. By multiplying (2.8) by n and applying D, we obtain

D(tnx) = D(
∏
y∈S

tkyy) =
∏
y∈S

tkyy ·
∑
y∈S

kyt
−yD(ty).

Since D(tnx) = nt(n−1)xD(tx) and D(ty) = f(y), we conclude that

D(tx) =
∑
y∈S

cx(y)f(y)tx−y.

Hence D = Df , and our claim is proved.
Let T be the vector space over F with basis consisting of all symbols ∂y, y ∈ S.

There is a unique pairing ϕ : T ×A→ F such that

ϕ(∂y , x) = cx(y)

for all x ∈ A and y ∈ S, where the coefficients cx(y) ∈ Q are defined by (2.8).
Let x ∈ A be in the right kernel of ϕ. Then ϕ(∂y, x) = cx(y) = 0 for all y ∈ S,

and so x = 0 by (2.8).
Now let ∂ ∈ T be in the left kernel of ϕ, and write

∂ =
∑
y∈S

cy∂y,

where almost all cy ∈ F are 0. For z ∈ S we have

∂(z) =
∑
y∈S

cy∂y(z) =
∑
y∈S

cyδy,z = cz,

and so cz = 0 for all z ∈ S, i.e., ∂ = 0.
Hence we have shown that ϕ is nondegenerate. Consequently the generalized

Witt algebra W = W (A, T, ϕ) is a simple Lie algebra provided that A 6= 0.
For each y ∈ S we define fy : S → FA by fy(z) = δy,z. Then for x ∈ A and

y ∈ S we have

Dfy (t
x) =

∑
z∈S

cx(z)fy(z)t
x−z = cx(y)t

x−y,

and

t−y∂y · tx = ∂y(x)t
x−y = cx(y)t

x−y.

Hence the homomorphism (2.6) maps t−y∂y to Dfy for all y ∈ S.
An arbitrary function f : S → FA can be written as

f =
∑
y∈S

F (y)fy.

This makes sense even when S is infinite. Consequently we have

Df =
∑
y∈S

f(y)Dfy

in the sense that for every u ∈ FA only finitely many Dfy (u), y ∈ S, are nonzero
and

Df (u) =
∑
y∈S

f(y)Dfy (u).
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If S is finite, then the element

w =
∑
y∈S

f(y)t−y∂y

is mapped to Df by the homomorphism (2.6), and so this homomorphism is onto.
We conclude that, if 1 ≤| S |<∞, then (2.6) is an isomorphism of Lie algebras.

In connection with Theorem 2.3 we raise the following question.

Question 1. If F is a field of characteristic 0 and A a torsion-free group of infinite
rank, is it true that Der(FA) is a simple Lie algebra?

We are not able to answer this question even when A is a free abelian group of
countable rank.

3. Derivations of W

Let A be an abelian group, L an A-graded Lie algebra, and V an A-graded left
L-module. We denote by Lx resp. Vx the homogeneous component of L resp. V of
degree x ∈ A.

A linear map D : L→ V is called a derivation if the equality

D[v, w] = v ·Dw − w ·Dv
holds for all v, w ∈ L. If z ∈ V is fixed, then the linear map Dz : L → V defined
by Dz(w) = w · z is a derivation. The derivations Dz for z ∈ V are called inner.

Let Der(L, V ) denote the space of all derivations L → V and Inn(L, V ) that of
inner derivations. We say that D ∈ Der(L, V ) has degree y ∈ A if D(Lx) ⊂ Vx+y for
all x ∈ A. We denote by Der(L, V )x the space of all derivations L → V of degree
x.

We now reformulate, in a slightly more general form, two results of Farnsteiner
[2]. In his paper he assumes that L is finitely generated; we drop that assumption.
His proofs remain valid for these more general propositions.

Proposition 3.1. Every D ∈ Der(L, V ) can be written as

D =
∑
x∈A

Dx, Dx ∈ Der(L, V )x,

in the sense that for every v ∈ L only finitely many Dxv 6= 0 and

Dv =
∑
x∈A

Dxv.

A derivation D : L → V is locally inner if for every finite set {v1, . . . , vn} ⊂ L
there exists x ∈ V such that Dvi = vi · x for i = 1, . . . , n.

Proposition 3.2. Suppose that the following two conditions hold.

(i) H1(L0, Vx) = 0 for x 6= 0;
(ii) HomL0(Lx, Vy) = 0 for x 6= y.

Then Der(L, V )x, x 6= 0, consists of inner derivations and consequently

Der(L, V ) = Der(L, V )0 + Der′(L, V ),

where Der′(L, V ) denotes the space of locally inner derivations L→ V .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We shall now apply Proposition 3.2 in order to prove the following result of Ikeda
and Kawamoto [4].

Proposition 3.3. Let W = W (A, T, ϕ) be a generalized Witt algebra satisfying
(2.2). Then

Der(W ) = Der′(W ) + Der(W )0,

where Der′(W ) is the algebra of locally inner derivations of W . If dimT <∞ then
Der′(W ) = ad(W ).

Proof. We take L = V = W in Proposition 3.2. For the first assertion, we need
only verify that the two conditions of that proposition are satisfied.

The first condition requires that H1(W0,Wx) = 0 for x 6= 0, i.e., that every
derivation D : W0 → Wx be inner. For ∂1, ∂2 ∈ T = W0 we have [∂1, ∂2] = 0, and
consequently [∂1, D∂2] = [∂2, D∂1]. As D∂1, D∂2 ∈Wx, this gives

∂1(x)D∂2 = ∂2(x)D∂1.

As x 6= 0 and W satisfies (2.2), we can choose ∂1 ∈ T such that ∂1(x) 6= 0. Hence
we have

D∂ = ad(w)∂, ∂ ∈ T,
where w = −∂1(x)

−1D∂1 ∈Wx. Hence the first condition is satisfied.
Since (2.2) holds, it follows that Wx is the root space of W with respect to the

torus T . Hence if x 6= y we have

HomT (Wx,Wy) = 0,

i.e., the second condition is also satisfied.
In order to prove the second assertion, we assume now that dim T = n <∞ and

we choose a basis ∂1, . . . , ∂n of T . Let D ∈ Der(W )′. By Proposition 3.1, we have

D =
∑
x∈A

Dx,

where Dx ∈ Der(W )x. If x 6= 0 then, by Proposition 3.2, Dx is an inner derivation
of W , and so Dx = ad(tx∂x) for some ∂x ∈ T . Let S ⊂ A consist of all x 6= 0 such
that ∂x 6= 0. Let Si, i = 1, . . . , n, consist of all x ∈ S such that ∂i(x) 6= 0. For
x ∈ S we have

Dx(∂i) = ad(tx∂x)(∂i) = −∂i(x)tx∂x.
By Proposition 3.1, Dx(∂i) 6= 0 for only finitely many x ∈ A, and so Si is a finite
set. Since S is the union of the Si’s, S itself is finite.

It remains to show that D0 is also inner. We choose a finite set R ⊂ A such that

∂(x) = 0, ∀x ∈ R =⇒ ∂ ∈ T0.

Since D0 is locally inner, there exists ∂ ∈ T such that D0 = ad(∂) on the sum V
of Wx with x ∈ R. Now let y ∈ A be arbitrary and set V ′ = V +Wy. Then there
exists ∂′ ∈ T such that D0 = ad(∂′) on V ′. In particular ad(∂) = ad(∂′) on V , and
so ∂′ − ∂ ∈ T0. Hence D = ad(∂) on the whole algebra W .

We shall now describe three kinds of derivations of degree 0 of W .
If µ : A→ F is any additive map, then the linear map Dµ : W →W defined by

Dµ(w) = µ(x)w, w ∈Wx,

is a derivation of degree 0.
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Let u : T → T0 be any linear map, where T0 is the left kernel of ϕ. Then the
linear map Du : W →W defined by

Du(tx∂) = txu(∂), ∂ ∈ T,
is a derivation of degree 0.

Finally if ∂0 ∈ T0 is arbitrary, then the linear map D∂0 : W →W defined by

D∂0(t
x∂) = ∂(x)tx∂0, ∂ ∈ T,

is also a derivation of degree 0.
The main result of this section is the next theorem, which gives a description of

all derivations of degree 0 of W assuming only that the right kernel of ϕ is 0. In
the special case where A is a free abelian group of finite rank, this theorem was
proved by Ikeda [3].

Theorem 3.4. Let W = W (A, T, ϕ) be a generalized Witt algebra such that the
right kernel of ϕ is 0, i.e., such that (2.2) holds. If D ∈ Der(W )0, then D can be
written uniquely as

D = Dµ +Du +D∂0 ,

for some µ ∈ Hom(A,F ), u ∈ HomF (T, T0), and ∂0 ∈ T0.

Proof. For each x ∈ A define the linear operator Dx : T → T by

D(tx∂) = txDx(∂), ∂ ∈ T.
By applying D to (2.1), we obtain

[txDx∂1, t
y∂2] + [tx∂1, t

yDy∂2] = tx+y(∂1(y)Dx+y∂2 − ∂2(x)Dx+y∂1),

i.e.,

〈Dx∂1, y〉∂2 − ∂2(x)Dx∂1 + ∂1(y)Dy∂2 − 〈Dy∂2, x〉∂1

= ∂1(y)Dx+y∂2 − ∂2(x)Dx+y∂1.
(3.1)

By setting y = 0 in (3.1), we conclude that 〈D0∂2, x〉 = 0 for all ∂2 ∈ T and all x ∈
A. Consequently D0(T ) ⊂ T0. Let u : T → T0 be defined by u(∂) = D0(∂), ∂ ∈ T .
By replacing D with D −Du, we may assume that

D0 = 0.(3.2)

By setting y = −x 6= 0 in (3.1) and by using (3.2), we obtain the identity

〈Dx∂1, x〉∂2 + ∂2(x)Dx∂1 + ∂1(x)D−x∂2 + 〈D−x∂2, x〉∂1 = 0.(3.3)

By evaluating at x, we obtain

〈Dx∂1, x〉∂2(x) + 〈D−x∂2, x〉∂1(x) = 0.

Since x 6= 0, we can choose ∂1 ∈ T such that ∂1(x) 6= 0. Hence ∂2(x) = 0 implies
that 〈D−x∂2, x〉 = 0. Consequently there is a constant λx ∈ F such that

〈D−x∂, x〉 = −λx〈∂, x〉, ∀∂ ∈ T.(3.4)

By replacing x with −x, we obtain

〈Dx∂, x〉 = −λ−x〈∂, x〉, ∀∂ ∈ T.(3.5)

By using (3.4) and (3.5), we can rewrite (3.3) as follows:

∂2(x)Dx∂1 + ∂1(x)D−x∂2 = λx∂2(x)∂1 + λ−x∂1(x)∂2.(3.6)
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Fix ∂2 ∈ T such that ∂2(x) 6= 0. Then (3.6) implies that

Dx∂ = λx∂ + ∂(x)∂x, ∀∂ ∈ T,(3.7)

where ∂x ∈ T is defined by

∂x =
λ−x∂2 −D−x∂2

∂2(x)
.(3.8)

The formula (3.7) shows that the expression (3.8) for ∂x is independent of the choice
of ∂2 ∈ T provided that ∂2(x) 6= 0. Hence (3.8) implies that

D−x∂ = λ−x∂ − ∂(x)∂x , ∀∂ ∈ T.
By replacing x by −x and comparing with (3.7), we conclude that

∂−x = ∂x.(3.9)

By evaluating at x, we obtain from (3.7)

〈Dx∂, x〉 = (λx + ∂x(x)) ∂(x).

By invoking (3.5), we conclude that

∂x(x) = −λx − λ−x.

By replacing x by −x and using (3.9) we obtain

∂x(x) = λx + λ−x.

Hence we have

∂x(x) = 0, λ−x = −λx.(3.10)

From (3.7), (3.9), and (3.10) we derive

D−x = −Dx.(3.11)

Now assume that x, y, x+ y 6= 0. By (3.7) for Dx and the analogous formula for
Dy and Dx+y, the identity (3.1) takes the form

[Λx,y∂2(x)− ∂2(y)∂y(x)]∂1 − [Λx,y∂1(y)− ∂1(x)∂x(y)]∂2

= ∂1(y)∂2(y) (∂x+y − ∂y)− ∂1(x)∂2(x) (∂x+y − ∂x) ,
(3.12)

where for brevity we have set

Λx,y = λx+y − λx − λy .

By setting ∂1 = ∂y and ∂2 = ∂x, we obtain

∂x(y)∂y(x) (∂x − ∂y) = 0.(3.13)

Assume that ∂x 6∈ T0 for some x 6= 0. Then there exists y ∈ A such that
∂x(y) 6= 0. If ∂x = ∂y, then ∂y(x) = ∂x(x) = 0 by (3.10). Hence (3.13) implies that
∂y(x) = 0 in all cases. Since ∂x(x+ y) 6= 0, we can replace y by x+ y in the above
argument to conclude that also ∂x+y(x) = 0. By evaluating both sides of (3.12) at
x, we now obtain

∂2(x) · [Λx,y∂1(x− y) + ∂1(x)∂x(y)] = 0.

Since we can choose ∂2 such that ∂2(x) 6= 0, we conclude that

Λx,y∂1(x − y) + ∂1(x)∂x(y) = 0.

By setting ∂1 = ∂x, we obtain Λx,y = 0. Hence also ∂1(x)∂x(y) = 0. As ∂x(y) 6= 0
and x 6= 0 while ∂1 ∈ T is arbitrary, we have a contradiction to (2.2).
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Hence we have shown that ∂x ∈ T0 for all x 6= 0. Consequently (3.12) now takes
the form

Λx,y (∂2(x)∂1 − ∂1(y)∂2)

= ∂1(y)∂2(y) (∂x+y − ∂y)− ∂1(x)∂2(x) (∂x+y − ∂x) .
(3.14)

By evaluating both sides at x, we conclude that

Λx,y∂2(x)∂1(x− y) = 0.

Since ∂1, ∂2 ∈ T are arbitrary, this equation implies that Λx,y = 0 if x, y, x± y 6= 0.
By defining λ0 = 0 and by invoking (3.10), we infer that

λx+y = λx + λy(3.15)

for all x 6= y. If x 6= 0, we have

λ2x = λ3x + λ−x = (λ2x + λx) + (λx + λ−2x) = 2λx.

Hence (3.15) holds for all x, y ∈ A. Let µ : A→ F be the additive map defined by
µ(x) = λx, x ∈ A. By replacing D with D −Dµ, we may assume that λx = 0 for
all x ∈ A.

Since (3.15) holds, the equation (3.14) takes the simpler form

∂1(y)∂2(y) (∂x+y − ∂y) = ∂1(x)∂2(x) (∂x+y − ∂x) .(3.16)

By Lemma 3.5 below, there exists a vector ∂0 ∈ T0 such that ∂x = ∂0 for all
x 6= 0. Since λx = 0 we obtain Dx∂ = ∂(x)∂0 from (3.7), and so D = D∂0 .

It remains to prove the uniqueness assertion of the theorem. It suffices to show
that if

Dµ +Du +D∂0 = 0,

then Dµ = Du = D∂0 = 0. By evaluating these derivations at tx∂, we obtain

µ(x)∂ + u(∂) + ∂(x)∂0 = 0.

If A = 0, then clearly µ = 0. Otherwise, since the right kernel of ϕ is 0, we have
T0 6= T . Hence we can choose ∂ ∈ T \ T0, to conclude that µ(x) = 0 for all x, i.e.,
µ = 0. Consequently u(∂) + ∂(x)∂0 = 0. By substituting 2x for x, we infer that
u(∂) = 0 and D∂0 = 0.

Lemma 3.5. Suppose that a map A \ {0} → T , x → ∂x, satisfies the equation
(3.16) for arbitrary ∂1, ∂2 ∈ T . Then this map is necessarily a constant, i.e., there
exists ∂0 ∈ T such that ∂x = ∂0 for all x.

Proof. For ∂ ∈ T let ∂̂ ∈ Hom(A,F ) be defined by ∂̂(x) = ∂(x) = 〈∂, x〉.
In order to prove the lemma, it suffices to show that if x, y 6= 0 then ∂x = ∂y. We

first choose ∂2 such that ∂2(x)∂2(y) 6= 0. Hence if the ratio ∂1(y)/∂1(x) depends
on the choice of ∂1, then (3.16) implies that ∂x+y = ∂x = ∂y.

Assume now that the ratio ∂(y)/∂(x) is independent of the choice of ∂ (subject
to ∂(x) 6= 0). Then there exists c ∈ F ∗ such that ∂(y) = c∂(x) for all ∂ ∈ T . We
shall distinguish two cases.

Case 1: dimT > 1. Let ∂̂′1 and ∂̂′2 be linearly independent. Then there exists z ∈ A
such that ∣∣∣∣∣∣

∂′1(x) ∂′1(z)

∂′2(x) ∂′2(z)

∣∣∣∣∣∣ 6= 0.
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Hence the ratio ∂(z)/∂(x) depends on the choice of ∂. We have seen that this
implies that ∂x = ∂z. We can replace x with y and obtain similarly that ∂y = ∂z.
Hence also ∂x = ∂y.

Case 2: dim T̂ = 1. In this case we fix ∂ ∈ T such that ∂̂ 6= 0. By setting
∂1 = ∂2 = ∂ in (3.16), we obtain the equation[

∂(x)2 − ∂(y)2
]
∂x+y = ∂(x)2∂x − ∂(y)2∂y.(3.17)

By replacing x and y with kx and lx, respectively, where k, l are nonzero integers,
we obtain the equation

(k2 − l2)d(k + l) = k2d(k)− l2d(l),(3.18)

where d(k) = ∂kx. It follows from (3.18) that d(k) for k > 0 are uniquely determined
by d(1) and d(2). Hence we must have

d(k) = ∂0 +
1

k
∂1, k > 0,(3.19)

where ∂0, ∂1 ∈ T0 are some fixed vectors. By (3.9) we have also

d(−k) = d(k), k > 0.(3.20)

By setting k = 2 and l = −1 in (3.18), and by using (3.20), we find that 3d(1) =
4d(2)− d(1), i.e., d(1) = d(2). Consequently (3.19) implies that ∂1 = 0.

Hence we have shown that if x 6= 0, then

∂kx = ∂x, k 6= 0.(3.21)

If ∂(x)2 = ∂(y)2, then (3.17) implies that ∂x = ∂y. Hence we may assume that
∂(x)2 6= ∂(y)2.

By replacing x with x+ y in (3.17), we obtain

∂(x)∂(x+ 2y)∂x+2y = ∂(x+ y)2∂x+y − ∂(y)2∂y.

By substituting ∂x+y from (3.17) into this equation, we obtain

∂(x− y)∂(x+ 2y)∂x+2y = ∂(x)∂(x + y)∂x − 2∂(y)2∂y.

By replacing y with 2y in (3.17) and using the fact that ∂2y = ∂y, we obtain

∂(x+ 2y)∂(x− 2y)∂x+2y = ∂(x)2∂x − 4∂(y)2∂y.

By eliminating ∂x+2y from the last two equations, we obtain the equality ∂x =
∂y.

4. The isomorphism theorem

Let W = W (A, T, ϕ) and W ′ = W (A′, T ′, ϕ′) be two simple generalized Witt
algebras. We denote by X(A) the group of characters of A, i.e., group homomor-
phisms A→ F ∗.

Let χ ∈ X(A), σ ∈ Hom(A,A′), and τ ∈ HomF (T, T ′). Assume that σ and τ
satisfy

〈τ(∂), σ(x)〉 = 〈∂, x〉(4.1)

for all ∂ ∈ T and x ∈ A. Then there is a unique linear map

θ = θ(χ, σ, τ) : W →W ′

such that

θ(tx∂) = χ(x)tσ(x)τ(∂)(4.2)
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holds for all ∂ ∈ T and x ∈ A. It is straightforward to verify that θ is a homomor-
phism of Lie algebras.

If we also assume that σ and τ are isomorphisms, then θ is an isomorphism. Our
main objective is to show that every Lie algebra isomorphism θ : W →W ′ has the
form described above.

We say that w ∈ W is locally finite if the linear operator ad(w) is locally finite.
This means that W is the sum of finite dimensional ad(w)-invariant subspaces.

Let w ∈ W and write w =
∑
wx, where wx ∈ Wx = txT , and the summation is

over all x ∈ A. The support of w is the finite set Sw ⊂ A consisting of all x such
that wx 6= 0. Assume that a total ordering ≤ of A is chosen (compatible with its
group structure). If w 6= 0 and y is the maximal element of Sw, then we say that
wy is the leading term of w.

Lemma 4.1. If W is simple, then T is the set of locally finite elements of W .

Proof. It is obvious that the elements of T are locally finite. Let w ∈ W \ T . We
choose a total ordering ≤ of A and let wx = tx∂ be the leading term of w. As
w 6∈ T , by reversing the ordering of A (if necessary) we may assume that x > 0.

If ∂(x) 6= 0, then the leading term of ad(w)k(t2x∂) is

k!∂(x)kt(k+2)x∂, k ≥ 0.

Now assume that ∂(x) = 0. As ∂ 6= 0, the condition (2.1) implies that there
exists y ∈ A such that ∂(y) 6= 0. Then the leading term of ad(w)kty∂ is

∂(y)kty+kx∂, k ≥ 0.

Hence, in both cases, w is not locally finite.

Theorem 4.2. Let W = W (A, T, ϕ) and W ′ = W (A′, T ′, ϕ′) be simple generalized
Witt algebras. If θ : W → W ′ is an isomorphism of Lie algebras, then there exist
χ ∈ X(A), isomorphisms σ : A → A′ and τ : T → T ′ satisfying (4.1), such that
θ = θ(χ, σ, τ).

Proof. Lemma 4.1 implies that θ(T ) = T ′. Let τ : T → T ′ be the restriction of θ.
Clearly τ is an isomorphism of vector spaces.

Since θ(T ) = T ′, it follows that θ must map the root spaces of W to the root
spaces of W ′. Hence there exists a bijection σ : A→ A′ such that

θ(Wx) = W ′
σ(x), x ∈ A,

and σ(0) = 0.
We claim that σ(x + y) = σ(x) + σ(y) for all x, y ∈ A. It suffices to prove this

when x 6= y. Then we can choose ∂ ∈ T such that ∂(x− y) 6= 0. By applying θ to

[tx∂, ty∂] = ∂(y − x)tx+y∂,

we conclude that our claim holds. Hence σ : A→ A′ is an isomorphism.
For each x ∈ A there is a unique isomorphism θx : T → T ′ such that

θ(tx∂) = tσ(x)θx(∂), ∀∂ ∈ T.
In particular, we have θ0 = τ . Hence θ̃x := τ−1θx is an automorphism of the vector
space T . Note that θ̃0 is the identity operator. By applying θ to (2.1), we obtain[

tσ(x)θx∂1, t
σ(y)θy∂2

]
= tσ(x+y)θx+y (∂1(y)∂2 − ∂2(x)∂1) .
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It follows that

〈θx∂1, σ(y)〉θy∂2 − 〈θy∂2, σ(x)〉θx∂1 = θx+y (∂1(y)∂2 − ∂2(x)∂1) .

As θx = τ θ̃x, we infer that

〈τ θ̃x∂1, σ(y)〉θ̃y∂2 − 〈τ θ̃y∂2, σ(x)〉θ̃x∂1 = ∂1(y)θ̃x+y∂2 − ∂2(x)θ̃x+y∂1.

By setting y = 0 and ∂2 = ∂, we conclude that (4.1) holds. Hence we can rewrite
the above equality as

〈θ̃x∂1, y〉θ̃y∂2 − 〈θ̃y∂2, x〉θ̃x∂1 = ∂1(y)θ̃x+y∂2 − ∂2(x)θ̃x+y∂1.(4.3)

As θ̃0 is the identity map, by setting y = −x 6= 0, we obtain

〈θ̃x∂1, x〉θ̃−x∂2 + 〈θ̃−x∂2, x〉θ̃x∂1 = ∂1(x)∂2 + ∂2(x)∂1.(4.4)

By evaluating at x, we obtain

〈θ̃x∂1, x〉〈θ̃−x∂2, x〉 = ∂1(x)∂2(x).

By setting ∂1 = ∂2 = ∂, we infer that 〈θ̃−x∂, x〉 = 0 implies that ∂(x) = 0. It
follows that there is a constant λx ∈ F ∗ such that

∂(x) = λx〈θ̃−x∂, x〉 , ∀∂ ∈ T.(4.5)

By replacing x with −x, we conclude that

∂(x) = λ−x〈θ̃x∂, x〉 , ∀∂ ∈ T.(4.6)

By using (4.5) and (4.6), we can rewrite (4.4) as

λ−1
−x∂1(x)θ̃−x∂2 + λ−1

x ∂2(x)θ̃x∂1 = ∂1(x)∂2 + ∂2(x)∂1.

It follows that

θ̃x∂ = λx∂ + ∂(x)∂x , ∀∂ ∈ T,(4.7)

where

∂x = λx∂2(x)
−1 ·

[
∂2 − λ−1

−xθ̃−x∂2

]
∈ T(4.8)

is independent of ∂2 provided that ∂2(x) 6= 0. Hence (4.8) implies that

θ̃−x∂ = λ−x∂ − λ−xλ−1
x ∂(x)∂x , ∀∂ ∈ T.

By replacing x with −x and comparing the new equation with (4.7), we infer that

λx∂−x = λ−x∂x.(4.9)

By evaluating (4.7) at x and using (4.6), we find that

λ−x∂x(x) = 1− λxλ−x.

By substituting x with −x and using (4.9), we infer that

λ−x = λ−1
x , ∂x(x) = 0.(4.10)

By using (4.7), we can rewrite (4.3) as

[Λx,y∂2(x) − λx∂2(y)∂y(x)] ∂1 − [Λx,y∂1(y)− λy∂1(x)∂x(y)] ∂2

= [∂1(y)∂2(y)− ∂1(x)∂2(x)] ∂x+y + ∂1(x) [λy∂2(x) + ∂2(y)∂y(x)] ∂x

− ∂2(y) [λx∂1(y) + ∂1(x)∂x(y)] ∂y,

(4.11)
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where

Λx,y = λx+y − λxλy .

By setting ∂1 = ∂x, ∂2 = ∂y in (4.11) and by using (4.10), we obtain

Λx,y(∂y(x)∂x − ∂x(y)∂y) = 0.(4.12)

Next set ∂1 = ∂y, ∂2 = −∂x in (4.11) to obtain

∂x(y)∂y(x) [(λy − ∂y(x)) ∂x − (λx − ∂x(y)) ∂y] = 0.(4.13)

Finally, setting ∂1 = ∂2 = ∂x in (4.11), we find that

∂x(y) [∂x(y) (∂x+y − λx∂y) + (Λx,y + λx∂y(x)) ∂x] = 0.(4.14)

Suppose that there exists x 6= 0 such that ∂x 6= 0. Then we can choose y ∈ A
such that ∂x(y) 6= 0.

We claim that ∂y(x) = 0. We prove this claim by contradiction. Thus assume
that ∂y(x) 6= 0. Then (4.10) implies that ∂x and ∂y are linearly independent. From
(4.13) we infer that ∂x(y) = λx and ∂y(x) = λy . From (4.12) we obtain that
Λx,y = 0, and (4.14) implies that ∂x+y = λx∂y − λy∂x. By interchanging x and y,
we conclude that ∂x+y = 0 and λx∂y = λy∂x. This gives λx∂y(x) = λy∂x(x) = 0, a
contradiction. Hence we have shown that ∂y(x) = 0.

As ∂x(x + y) = ∂x(x) + ∂x(y) 6= 0, we can replace y by x + y in the above
arguments to conclude that also ∂x+y(x) = 0.

By evaluating (4.11) at x, we infer that

Λx,y∂2(x)∂1(x− y) + λy∂1(x)∂2(x)∂x(y) = 0.

By setting ∂1 = ∂x, we conclude that Λx,y = 0. It follows that λy∂1(x)∂2(x)∂x(y) =
0. Since ∂1, ∂2 ∈ T are arbitrary, we have a contradiction. Hence we have proved
that ∂x = 0 for all x ∈ A, x 6= 0.

The equation (4.11) now takes the form

Λx,y(∂2(x)∂1 − ∂1(y)∂2) = 0.(4.15)

By evaluating at x, we obtain

Λx,y∂2(x)∂1(x− y) = 0.

It follows that Λx,y = 0, i.e., λx+y = λxλy if x 6= y, where λ0 = 1 by definition.
This suffices in order to conclude that λx+y = λxλy for all x, y ∈ A. Hence the
map χ : A→ F ∗ defined by χ(x) = λx is a character.

By (4.7), we obtain

θ̃x∂ = λx∂

and so

θ(tx∂) = χ(x)tσ(x)τ(∂).

Hence we have θ = θ(χ, σ, τ).
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5. Automorphism group of W

In this section we assume that W = W (A, T, ϕ) is simple. By Theorem 4.2, every
θ ∈ Aut(W ) has the form θ = θ(χ, σ, τ), where χ ∈ X(A), σ ∈ Aut(A), τ ∈ GL(T ),
and σ and τ satisfy (4.1). Explicitly, we have

θ(χ, σ, τ)(tx∂) = χ(x)tσ(x)τ(∂)(5.1)

for all x ∈ A and ∂ ∈ T . By using this formula, we find that

θ(χ1, σ1, τ1) ◦ θ(χ2, σ2, τ2) = θ ((χ1 ◦ σ2)χ2, σ1σ2, τ1τ2) ,(5.2)

and consequently

θ(χ, σ, τ)−1 = θ
(
(χ ◦ σ−1)−1, σ−1, τ−1

)
.(5.3)

The map X(A) → Aut(W ) defined by

χ→ θ(χ, 1, 1)

is an injective homomorphism. Let N be the image of this homomorphism. Denote
by A the image of the endomorphism of Aut(W ) defined by θ(χ, σ, τ) → θ(1, σ, τ).
Its kernel is N and its restriction to A is the identity map. Hence Aut(W ) = NoA.
Hence we have the following result.

Theorem 5.1. If W = W (A, T, ϕ) is simple, then Aut(W ) ' X(A) oA.

We shall now consider a special case in order to obtain a generalization of a
result of Kawamoto [8].

Theorem 5.2. Let W = W (A, T, ϕ) where A = A1 × . . . × An, each Ai is a
nonzero subgroup of F , T is a vector space with basis ∂1, . . . , ∂n, and ϕ is defined
by ϕ(∂i, x) = xi, x = (x1, . . . , xn) ∈ A. Then W is simple and

Aut(W ) ' X(A) oG,

where G is the subgroup of GLn(F ) which consists of the automorphisms σ of Fn

such that σ(A) = A.

Proof. Theorem 5.1 implies that Aut(W ) ' X(A)oA, and it remains to show that
A ' G. In order to construct an isomorphism A → G, we extend ϕ to the bilinear
map

ϕ̃ : T × Fn → F

such that ϕ̃(∂i, x) = xi , x = (x1, . . . , xn) ∈ Fn. Obviously ϕ̃ is nondegenerate.
For any linear operator τ : T → T we shall denote by τ∗ its adjoint with respect to
ϕ̃. Thus we have

ϕ̃(τ(∂), x) = ϕ̃(∂, τ∗(x))

for all ∂ ∈ T and x ∈ Fn.
Now let θ = θ(1, σ, τ) ∈ A; thus σ and τ satisfy (4.1). It follows that

∂(x) = 〈τ(∂), σ(x)〉 = ϕ̃(τ(∂), σ(x)) = ϕ̃(∂, τ∗σ(x)),

i.e.,

ϕ̃(∂, τ∗σ(x) − x) = 0

for all ∂ ∈ T and x ∈ A. It follows that τ∗σ(x) = x for all x ∈ A, i.e., σ = τ∗−1 |A.
It is now easy to verify that the homomorphism A → G defined by θ → τ∗−1 is an
isomorphism.
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This theorem is a generalization of [8, Theorem 2] because we have dropped the
hypothesis that the automorphism θ is “graded”.

6. Computation of H2(W,F )

In this section we compute the second cohomology group of a simple generalized
Witt algebra W .

Theorem 6.1. Let W = W (A, T, ϕ) be a simple generalized Witt algebra. If
dimT ≥ 2, then H2(W,F ) = 0. If T = F∂ is 1-dimensional, then H2(W,F ) is
1-dimensional and is spanned by the cohomology class [ψ], where ψ : W ×W → F
is the 2-cocycle defined by

ψ(tx∂, ty∂) = δx+y,0∂(x)3, x, y ∈ A.
(Note that ∂ is a fixed nonzero element of T .)

Proof. Let ψ : W × W → F be an arbitrary 2-cocycle. For x, y ∈ A the map
ψx,y : T × T → F defined by

ψx,y(∂1, ∂2) = ψ(tx∂1, t
y∂2)(6.1)

is bilinear. Since ψ is skew-symmetric, we have

ψx,y(∂2, ∂1) = −ψy,x(∂1, ∂2).(6.2)

Since ψ is a 2-cocycle, we have

ψ ([tx∂1, t
y∂2] , t

z∂3) + ψ ([ty∂2, t
z∂3] , t

x∂1) + ψ ([tz∂3, t
x∂1] , t

y∂2) = 0.

This can be rewritten as

∂1(y)ψx+y,z(∂2, ∂3)− ∂2(x)ψx+y,z(∂1, ∂3)
+∂2(z)ψy+z,x(∂3, ∂1)− ∂3(y)ψy+z,x(∂2, ∂1)
+∂3(x)ψz+x,y(∂1, ∂2)− ∂1(z)ψz+x,y(∂3, ∂2) = 0.

(6.3)

By setting y = z = 0, we obtain

∂3(x)ψx,0(∂1, ∂2) = ∂2(x)ψx,0(∂1, ∂3).(6.4)

For each nonzero x ∈ A, we choose ∂x ∈ T such that ∂x(x) = 1 and define a linear
function fx : T → F by fx(∂) = ψx,0(∂, ∂x). Let f : W → F be the linear function
such that f(∂) = 0 for ∂ ∈ T and f(tx∂) = fx(∂) for x 6= 0 and ∂ ∈ T . By using
(6.4) we deduce that the 2-coboundary

ψf (u, v) = −f([u, v]), u, v ∈ W,
satisfies

ψf (t
x∂1, ∂2) = −f ([tx∂1, ∂2]) = ∂2(x)fx(∂1)

= ∂2(x)ψx,0(∂1, ∂x) = ψx,0(∂1, ∂2)

for all ∂1, ∂2 ∈ T and x 6= 0.
Hence by replacing ψ with the cohomologous 2-cocycle ψ − ψf , we may assume

that

ψx,0 = 0, x 6= 0.(6.5)

By setting z = 0 in (6.3) and by using (6.2) and (6.5), we deduce that

∂3(x+ y)ψx,y(∂1, ∂2) = 0.
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It follows that

ψx,y = 0, x+ y 6= 0.(6.6)

It remains to determine the bilinear forms ψx,−x. For simplicity we set

ψx = ψx,−x.(6.7)

From (6.2) we derive

ψx(∂2, ∂1) = −ψ−x(∂1, ∂2).(6.8)

By setting z = −x− y in (6.3) and using (6.8), we obtain

ψx+y(∂1(y)∂2 − ∂2(x)∂1, ∂3) = ψy(∂2, ∂3(x)∂1 + ∂1(x + y)∂3)

− ψx (∂1, ∂3(y)∂2 + ∂2(x+ y)∂3) .
(6.9)

By setting y = 0 in this equality, we obtain

ψ0(∂2, ∂3(x)∂1 + ∂1(x)∂3) = 0

for all ∂1, ∂2, ∂3 ∈ T and x ∈ A. Hence we can conclude that

ψ0 = 0.(6.10)

By setting ∂1 = ∂2 = ∂3 = ∂ in (6.9), we obtain

∂(y − x)ψx+y(∂, ∂) = ∂(2x+ y)ψy(∂, ∂)− ∂(x+ 2y)ψx(∂, ∂).(6.11)

Hence if ∂(x) 6= 0 and ∂(y) = 0, then

ψx+y(∂, ∂) = ψx(∂, ∂)− 2ψy(∂, ∂).(6.12)

Now let z ∈ A be such that ∂(z) = 0. By substituting x+ z for x in (6.11), we
obtain

∂(y − x)ψx+y+z(∂, ∂) = ∂(2x+ y)ψy(∂, ∂)− ∂(x+ 2y)ψx+z(∂, ∂).

By setting y = x, we conclude that

∂(x) · [ψx+z(∂, ∂)− ψx(∂, ∂)] = 0.

If ∂ 6= 0, then we can choose x ∈ A such that ∂(x) 6= 0, and by invoking (6.12) the
previous equality implies that ψz(∂, ∂) = 0.

Hence we have shown that

∂(z) = 0 =⇒ ψz(∂, ∂) = 0.(6.13)

Now let x ∈ A and ∂ ∈ T be such that ∂(x) 6= 0. By substituting kx for x and
lx for y in (6.11), we obtain

(k − l)d(k + l) = (k + 2l)d(k)− (2k + l)d(l),(6.14)

where

d(k) = ψkx(∂, ∂) , k ∈ Z.(6.15)

It follows from (6.14) that all the values d(k) can be computed if d(1) and d(2)
are known. Hence the general solution of the difference equation (6.14) is given by
d(k) = ak + bk3, where a, b ∈ F are arbitrary constants.

By setting k = 1 and k = 2, we find that

a =
1

6
(8d(1)− d(2)), b =

1

6
(d(2)− 2d(1)).
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We conclude that

ψkx(∂, ∂) =
k

6
[8ψx(∂, ∂)− ψ2x(∂, ∂)] +

k3

6
[ψ2x(∂, ∂)− 2ψx(∂, ∂)]

(6.16)

for all k ∈ Z, provided that ∂(x) 6= 0.
Note that (6.12) and (6.13) imply that

ψx+y(∂, ∂) = ψx(∂, ∂)(6.17)

for all x, y ∈ A and ∂ ∈ T , provided only that ∂(y) = 0.
We now assume that ∂ 6= 0 and fix x0 ∈ A such that ∂(x0) 6= 0. Then we claim

that

6ψx(∂, ∂) = [8ψx0(∂, ∂)− ψ2x0(∂, ∂)] · ∂(x)

∂(x0)

+ [ψ2x0(∂, ∂)− 2ψx0(∂, ∂)] ·
(
∂(x)

∂(x0)

)3(6.18)

for all x ∈ A.
Assume first that ∂(x) = k∂(x0) for some integer k. Since ∂(x−kx0) = 0, (6.17)

implies that

ψx(∂, ∂) = ψkx0(∂, ∂).

By setting x = x0 in (6.16), we infer that (6.18) is valid.
Now assume that ∂(x) 6∈ Z ·∂(x0). By substituting 2x0 for y in (6.11), we obtain

∂(2x0 − x)ψx+2x0(∂, ∂) = 2∂(x+ x0)∂2x0(∂, ∂)− ∂(x+ 4x0)ψx(∂, ∂).

By substituting x0 for x and x+ x0 for y in the same equality, we obtain

∂(x)ψx+2x0(∂, ∂) = ∂(x+ 3x0)ψx+x0(∂, ∂)− ∂(2x+ 3x0)ψx0(∂, ∂).

By substituting x0 for y in (6.11), we obtain

∂(x0 − x)ψx+x0(∂, ∂) = ∂(2x+ x0)ψx0(∂, ∂)− ∂(x+ 2x0)ψx(∂, ∂).

By eliminating ψx+2x0(∂, ∂) and ψx+x0(∂, ∂) from the above three equalities, we
obtain exactly (6.18). Hence our claim is proved.

Assume now that dimT = 1 and fix a nonzero ∂ ∈ T . It is easy to check that
the bilinear maps ψ1, ψ3 : W ×W → F defined by

ψi(t
x∂, ty∂) = δx+y,0∂(x)i, i = 1, 3,

are 2-cocycles. Furthermore, ψ1 is a 2-coboundary while ψ3 is not. The formula
(6.18) implies that ψ is a linear combination of ψ1 and ψ3. Consequently the
theorem holds if dimT = 1.

From now on we assume that dim T ≥ 2. We can write (6.18) in the simplified
form

ψx(∂, ∂) = a(∂)∂(x) + b(∂)∂(x)3,(6.19)

where a(∂), b(∂) ∈ F are independent of x.
Let ∂ 6= 0. Assume that there exists y ∈ A, y 6= 0, such that ∂(y) = 0. Then

(6.17) holds for all x ∈ A. Hence by setting ∂1 = ∂3 = ∂ in (6.9), we obtain

∂2(y)ψx(∂, ∂) = 2∂(x)ψy(∂2, ∂)(6.20)

whenever ∂(y) = 0.
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Now we claim that if ∂ 6= 0 then b(∂) = 0 in (6.19). We shall view ∂ as a
homomorphism A → F . If ker(∂) 6= 0, then we can choose y 6= 0 such that
∂(y) = 0, and so (6.20) holds. By fixing ∂2 such that ∂2(y) 6= 0, our claim follows
from (6.20). Assume now that ker(∂) = 0. Since dimT ≥ 2, we can choose ∂′ ∈ T
such that ∂ and ∂′ are linearly independent and both ∂′ and ∂ + ∂′ have nonzero
kernels. Then b(∂′) = b(∂ + ∂′) = 0, and so

ψx(∂
′, ∂′) = a(∂′)∂′(x),

ψx(∂ + ∂′, ∂ + ∂′) = a(∂ + ∂′) · [∂(x) + ∂′(x)],

for all x ∈ A. We now choose x 6= 0 such that ∂′(x) = 0. Then we have

a(∂ + ∂′)∂(x) = ψx(∂, ∂) + ψx(∂, ∂
′) + ψx(∂

′, ∂).(6.21)

Since ∂′(x) = 0, (6.20) implies that

∂(x)ψy(∂
′, ∂′) = 2∂′(y)ψx(∂, ∂′)

for all y ∈ A. We choose y such that ∂′(y) 6= 0. By replacing x with kx in the
above equality, we conclude that

ψkx(∂, ∂
′) = kψx(∂, ∂

′) , k ∈ Z.

By (6.8) we infer that

ψx(∂
′, ∂) = −ψ−x(∂, ∂′) = ψx(∂, ∂

′).

Hence replacing x with kx in (6.21), we obtain

ka(∂ + ∂′)∂(x) = ψkx(∂, ∂) + 2kψx(∂, ∂
′).

By applying (6.19) to the term ψkx(∂, ∂) we obtain

ka(∂ + ∂′)∂(x) = ka(∂)∂(x) + 2kψx(∂, ∂
′) + k3b(∂)∂(x)3.

Since k ∈ Z is arbitrary, we must have b(∂) = 0. Hence our claim is proved, i.e.,
we have

ψx(∂, ∂) = a(∂)∂(x).(6.22)

We define a(0) = 0, and we claim that a : T → F is a linear function. It is
immediate from (6.22) that a(c∂) = c · a(∂) for c ∈ F . It remains to show that
a(∂ + ∂′) = a(∂) + a(∂′) when ∂ and ∂′ are linearly independent. From

ψx(∂ + ∂′, ∂ + ∂′) = ψx(∂, ∂) + ψx(∂
′, ∂′) + ψx(∂, ∂

′) + ψx(∂
′, ∂),

by using (6.22), we obtain that

a(∂ + ∂′) · 〈∂ + ∂′, x〉 = a(∂)∂(x) + a(∂′)∂′(x) + ψx(∂, ∂
′) + ψx(∂

′, ∂).

By replacing ∂ with 2∂, we find that

a(2∂ + ∂′)〈2∂ + ∂′, x〉 = 4a(∂)∂(x) + a(∂′)∂′(x) + 2ψx(∂, ∂
′) + 2ψx(∂

′, ∂).

By eliminating ψx from these two equations, we obtain

a(2∂ + ∂′)〈2∂ + ∂′, x〉 − 2a(∂ + ∂′)〈∂ + ∂′, x〉 = 2a(∂)∂(x)− a(∂′)∂′(x).

Since x ∈ A is arbitrary, it follows that

a(2∂ + ∂′)(2∂ + ∂′)− 2a(∂ + ∂′)(∂ + ∂′) = 2a(∂)∂ − a(∂′)∂′.
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Since ∂ and ∂′ are linearly independent, we obtain the equations

a(2∂ + ∂′)− a(∂ + ∂′) = a(∂),

a(2∂ + ∂′)− 2a(∂ + ∂′) = −a(∂′).
By subtracting the second equation from the first, we obtain a(∂+∂′) = a(∂)+a(∂′).
Hence our claim is proved.

Let g : W → F be the linear function defined by g(∂) = a(∂), ∂ ∈ T , and
g(tx∂) = 0 for x 6= 0 and ∂ ∈ T . Let ψg be the 2-coboundary

ψg(u, v) = −g([u, v]), u, v,∈W.
We have

ψg(t
x∂1, t

y∂2) = δx+y,0(a(∂1)∂2(x) + a(∂2)∂1(x)),

By using (6.22) and setting ∂1 = ∂2 = ∂, we find that

ψg(t
x∂, ty∂) = 2δx+y,0ψx(∂, ∂).

Hence by replacing ψ with the cohomologous 2-cocycle ψ− 1
2ψg, we may assume

that

ψx(∂, ∂) = 0(6.23)

for all x ∈ A and ∂ ∈ T . From (6.20) and (6.23) we infer that ∂(x)ψy(∂2, ∂) = 0 if
∂(y) = 0. As x ∈ A is arbitrary, we conclude that ψy(∂2, ∂) = 0 if ∂(y) = 0. We
can restate this as

∂′(x) = 0 =⇒ ψx(∂, ∂
′) = 0.(6.24)

It follows from (6.23) that the bilinear forms ψx, x ∈ A, are skew-symmetric. We
claim that they are all zero, i.e.,

ψx(∂, ∂
′) = 0(6.25)

for all x ∈ A and all ∂, ∂′ ∈ T .
If ∂(x) = 0 or ∂′(x) = 0, then (6.25) follows from (6.24). Otherwise there is a

c ∈ F ∗ such that ∂(x) = c∂′(x). Since 〈∂ − c∂′, x〉 = 0, (6.24) implies that

ψx(∂, ∂ − c∂′) = 0.

By invoking (6.23), we infer that c · ψx(∂, ∂′) = 0. As c 6= 0, it follows that (6.25)
holds.

Hence our claim is proved, i.e. ψx = 0 for all x ∈ A. By invoking (6.6) and (6.7),
we conclude that ψx,y = 0 for all x, y ∈ A. Hence ψ = 0 by (6.1).
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