DERIVATIONS OF SIMPLE C*-ALGEBRAS, III ## SHÔICHIRÔ SAKAI* (Rec. May 14, 1971) 1. In the previous paper [8], the author introduced the notion of the derived C^* -algebra of a simple C^* -algebra into the study of derivations on C^* -algebras — i. e. let A be a simple C^* -algebra. Then there exists one and only one primitive C^* -algebra D(A) with unit (called the derived C^* -algebra of A) satisfying the following conditions. (1) A is a two-sided ideal of D(A); (2) for every derivation δ on A, there is an element d (unique modulo scalar multiples of unit) in D(A) such that $\delta(x) = [d, x]$ ($x \in A$); (3) every derivation of D(A) is inner. If A has a unit, then A = D(A), so that D(A)/A = (0). In the present paper, we shall show that for an arbitrary finite-dimensional C^* -algebra B, there exists a simple C^* -algebra A such that D(A)/A = B. In particular, there is a simple C^* -algebra A such that D(A)/A is one dimensional and so there is a simple C^* -algebra without unit in which all derivations are inner. Also, some problems on derived C*-algebras are stated. 2. Construction of examples. Let A be a simple C^* -algebra, and let L be a closed left ideal of A. Then $L \cap \widetilde{L}$ is a C^* -subalgebra of A, where $\widetilde{L} = \{x^* \mid x \in L\}$. PROPOSITION 1. $L \cap \widetilde{L}$ is a simple C*-algebra. PROOF. Let A^* be the dual Banach space of A, and let A^{**} be the second dual of A. Then A^{**} is a W^* -algebra and A is a $\sigma(A^{**},A^*)$ -dense C^* -subalgebra of A^{**} , when A is canonically embedded into A^{**} (cf. [9]). Let $L^{\circ\circ}$ (resp. $(L\cap\widetilde{L})^{\circ\circ}$) be the bipolar of L (resp. $(L\cap\widetilde{L})$) in A^{**} . Then $L^{\circ\circ}$ is a $\sigma(A^{**},A^*)$ -closed left ideal of A^{**} ; hence there is a projection e in A^{**} such that $L^{\circ\circ}=A^{**}e$. For $x\in L$, $x^*x\in L\cap\widetilde{L}$ and so $(L\cap\widetilde{L})^{\circ\circ}=eA^{**}e$. In fact, it is clear that $(L\cap\widetilde{L})^{\circ\circ}\subset eA^{**}e$. Suppose that $(L\cap L)^{\circ\circ}\subseteq eA^{**}e$; then there exists a self-adjoint element f of A^* such that $f(L\cap\widetilde{L})=0$, but $f(eA^{**}e)\neq (0)$. Since $f(x^*x)=0$ for $x\in L$ and since $y^*x=(1/4)\{(y+x)^*(y+x)-(y-x)^*(y-x)-i(y+ix)^*(y+ix)+i(y-ix)^*(y-ix)\}$ ^{*)} This research is supported by Guggenheim Foundation and National Science Foundation. 560 S. SAKAI for $x, y \in L$, $f(y^*x) = 0$ for $x, y \in L$. Take a directed set (x_{α}) in L such that $\sigma(A^{***}, A^{**})$ - $\lim x_{\alpha} = e$; then $f(y^{*}e) = 0$ for $y \in L$ and so $f(\widetilde{L}e) = 0$, so that $f(eA^{***}e) = 0$, a contradiction. Now suppose that $L \cap \widetilde{L}$ is not simple; then there exists a non-zero proper closed ideal I of $L \cap \widetilde{L}$. Then the bipolar $I^{\circ \circ}$ of I in A^{***} is a $\sigma(A^{***}, A^{**})$ -closed ideal of $eA^{***}e$; hence there exists a central projection p of $eA^{***}e$ such that $I^{\circ \circ} = eA^{***}ep$. On the other hand, the center of $eA^{***}e = Ze$, where Z is the center of A^{***} ; hence there exists a central projection z of A^{***} such that $I^{\circ \circ} = eA^{***}ez$. Therefore the bipolar $(AIA)^{\circ \circ}$ of AIA is contained in $A^{**}z$, where AIA is the closed linear subspace of A generated by $\{axb \mid a,b \in A,x \in I\}$. Since AIA is a non-zero ideal of A and A is simple, AIA = A and so z = 1; this implies that $I^{\circ \circ} = eA^{***}e$ and so $I = L \cap \widetilde{L}$, a contradiction. This completes the proof. THEOREM 1. Let N be a type II_1 -factor or a countably decomposable type III-factor, and let M be a maximal left ideal of M. Then $M \cap \widetilde{M}$ is a simple C*-algebra without unit and the quotient C*-algebra $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is one-dimensional, where $\widetilde{M} = \{x^* | x \in M\}$. PROOF. It is well known that N is a simple C^* -algebra with unit. Therefore by Proposition 1, $M \cap \widetilde{M}$ is a simple C^* -algebra. $M \cap \widetilde{M}$ does not have a unit; in fact, if $M \cap \widetilde{M}$ has a unit e, then e is a projection of M. Since Ne=M, (1-e)N(1-e) is one-dimensional and so N is a type I-factor, a contradiction. Let ρ be the identical mapping of $M \cap \widetilde{M}$ in $D(M \cap \widetilde{M})$ onto $M \cap \widetilde{M}$ in N. Since $M \cap \widetilde{M}$ is a two-sided ideal of $D(M \cap \widetilde{M})$, ρ can be extended to a *-homomorphism (denoted again by ρ) of $D(M \cap M)$ into N (cf. [1], [8]). Since $D(M \cap M)$ is primitive and $M\cap\widetilde{M}$ is simple, the extended ρ must be a *-isomorphism. Therefore we may identify $D(M \cap \widetilde{M})$ with $\rho(D(M \cap \widetilde{M}))$; then we have $M \cap \widetilde{M} \subset D(M \cap \widetilde{M}) \subset N$. If $D(M\cap\widetilde{M})/M\cap\widetilde{M}$ is not one-dimensional, there is a non-zero commutative C*-subalgebra C of $D(M\cap M)/M\cap M$ which does not contain the unit of $D(M \cap \widetilde{M})/M \cap \widetilde{M}$. Let C_1 be the inverse image of C in $D(M \cap \widetilde{M})$. Then C_1 is a C*-subalgebra of N which does not contain the unit of N. Since $1 \in C_1$, ||1-x|| ≥ 1 for $x \in C_1$; hence there exists a bounded linear functional φ on N such that $\varphi(C_1) = 0$ and $\varphi(1) = \|\varphi\| = 1$. Then φ is a state (cf. [1]). Let $M_{\varphi} = \{x \mid \varphi(x^*x) = 0, \}$ $x \in N$; then $M \cap \widetilde{M} \subset C_1 \subset M_{\varphi}$. For $x \in M$, $x^*x \in M \cap \widetilde{M}$, so that $x^*x \in M_{\varphi}$; hence $\varphi(x^*x) \leq \varphi(1)^{1/2} \varphi((x^*x)^2)^{1/2} = 0$. Therefore $M \subset M_{\varphi}$. Since M is maximal, $M = M_{\varphi}$ and so $C_1 = M \cap \widetilde{M}$, a contradiction. Hence $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is one-dimensional. This completes the proof. The above C^* -algebra $M\cap\widetilde{M}$ has the following remarkable properties. COROLLARY 1. Let A be a C*-algebra. Suppose that $(M \cap \widetilde{M}) \otimes A$ is *-isomorphic to $M \cap \widetilde{M}$; then A is the field of all complex numbers, where \otimes is the C*-tensor product. PROOF. Since $(M \cap \widetilde{M}) \otimes A$ is *-isomorphic to $M \cap \widetilde{M}$, A is simple. Clearly, $D((M \cap \widetilde{M}) \otimes A) \supset D(M \cap \widetilde{M}) \otimes A \supset 1 \otimes A$. Hence we have $1 \otimes A = 1 \otimes (\lambda 1)$ (λ , complex numbers) and so A is the field of complex numbers. This completes the proof. COROLLARY 2. Let A_1 , A_2 be two C^* -algebras. Suppose that $M \cap \widetilde{M} = A_1 \otimes A_2$. Then A_1 or A_2 is the field of complex numbers. PROOF. Clearly, A_1 and A_2 are simple; moreover either of them is a C^* -algebra without unit. Suppose that A_1 does not have a unit. Since $D(M \cap \widetilde{M}) = D(A_1 \otimes A_2)$ $\supset D(A_1) \otimes D(A_2) \supseteq A_1 \otimes D(A_2) \supset A_1 \otimes A_2 = M \cap \widetilde{M}$. Hence $A_1 \otimes D(A_2) = A_1 \otimes A_2$; therefore $D(A_2) = A_2$. If A_2 is not one-dimensional, $\dim (D(A_1 \otimes A_2)/A_1 \otimes A_2) \geqq \dim (1 \otimes A_2)$, a contradiction. This completes the proof. The following problem is interesting. PROBLEM 1. Let A be an infinite-dimensional simple C^* -algebra with unit, and let M be a maximal left ideal of A. Then can we conclude that $D(M \cap \widetilde{M})$ $/\widetilde{M} \cap M$ is one-dimensional? If A is an infinite-dimensional simple C^* -algebra with unit, then it is not a type I C^* -algebra and so it has a type III-factor *-representation ([3], [6]). If the following problem is affirmative, the problem 1 is affirmative. PROBLEM 2. Let B be an arbitrary C^* -algebra which contains the C^* -algebra A in the problem 1 as a proper C^* -subalgebra. Then, can we conclude that there exists a *-representation $\{\pi, \mathfrak{F}\}$ of B on a Hilbert space \mathfrak{F} such that $\overline{\pi(A)}$ is a type II (or III) W^* -algebra and $\overline{\pi(A)} \subseteq \overline{\pi(B)}$, where $\overline{\pi(A)}$ (resp. $\overline{\pi(B)}$) is the weak closure of $\pi(A)$ (resp. $\pi(B)$)? Next we shall construct a simple C^* -algebra A such that D(A)/A is a type I_n -factor $(n=1, 2, \cdots)$. PROPOSITION 2. Let B_n be a type I_n -factor $(n=1, 2, \cdots)$, and let A be a simple C^* -algebra. Then $D(A \otimes B_n) = D(A) \otimes D(B_n)$. PROOF. It is clear that $D(A \otimes B_n) \supset D(A) \otimes D(B_n) = D(A) \otimes B_n$. Let $\{\pi, \mathfrak{F}\}$ be an irreducible *-representation of A on a Hilbert space \mathfrak{F} . Then $\overline{\pi(A)} \otimes B_n$ is a W^* -algebra, where $\overline{\pi(A)}$ is the weak closure of $\pi(A)$; hence $\overline{\pi(A)} \otimes B_n$ 562 S. SAKAI $\supset D(\pi(A) \otimes B_n)$ ([5]). Since $\overline{\pi(A)} \otimes B_n$ can be considered as the matrix algebra of all $n \times n$ matrices over the algebra $\overline{\pi(A)}$, for $d \in D(\pi(A) \otimes B_n)$ there is an element $(a_{ij})(a_{ij} \in \overline{\pi(A)})$ in $\overline{\pi(A)} \otimes B_n$ such that $[d, (x_{ij})] = [(a_{ij}), (x_{ij})]$, where $x_{ij} \in \pi(A)$. Put $x_{ij} = \delta_{ij}a$ $(a \in \pi(A))$, where δ_{ij} is the Kronecker symbol; then $[d, (\delta_{ij}a)] = [(a_{ij}), (\delta_{ij}a)] = ([a_{ij}, a])$. Hence $[a_{ij}, a] \in \pi(A)$ $(i, j = 1, 2, \dots, n)$ and so $a_{ij} \in D(\pi(A))$. This completes the proof. REMARK. In Proposition 2, we can not replace the algebra B_n by an arbitrary simple C^* -algebra – for example, let $C(\mathfrak{H})$ be the C^* -algebra of all compact operators on an infinite-dimensional Hilbert space \mathfrak{H} ; then $D(C(\mathfrak{H})) = B(\mathfrak{H})$, where $B(\mathfrak{H})$ is the C^* -algebra of all bounded operators on \mathfrak{H} , and $C(\mathfrak{H}) \otimes C(\mathfrak{H}) = C(\mathfrak{H} \otimes \mathfrak{H})$. On the other hand, $D(C(\mathfrak{H}) \otimes C(\mathfrak{H})) = B(\mathfrak{H} \otimes \mathfrak{H})$ and $D(C(\mathfrak{H})) \otimes D(C(\mathfrak{H})) = B(\mathfrak{H}) \otimes B(\mathfrak{H})$. The following problem is interesting. PROBLEM 3. Let A be a simple C^* -algebra with unit. Then, can we conclude that $D(A \otimes B) = D(A) \otimes D(B)$, where B is a simple C^* -algebra? COROLLARY 3. Let $M \cap \widetilde{M}$ be the simple C*-algebra in Theorem 1, and let B_n be a type I_n -factor $(n=1, 2, \cdots)$. Then $D((M \cap \widetilde{M}) \otimes B_n)/(M \cap \widetilde{M}) \otimes B_n$ is a type I_n -factor $(n=1, 2, \cdots)$. PROOF. By Proposition 2, $D((M \cap \widetilde{M}) \otimes B_n) = D(M \cap \widetilde{M}) \otimes B_n$. Hence $D((M \cap \widetilde{M}) \otimes B_n)/(M \cap \widetilde{M}) \otimes B_n = 1 \otimes B_n$. This completes the proof. Now we shall show a generalization of Theorem 1. THEOREM 2. Let N be a type II₁-factor or a countably decomposable type III-facor, and let $\{\pi_i, \mathfrak{F}_i\}$ $(i=1, 2, \cdots, n)$ be a finite family of mutually inequivalent irreducible *-representations of N. Let $\Re_1, \Re_2, \cdots, \Re_n$ be finite dimensional linear subspaces of $\mathfrak{F}_1, \mathfrak{F}_2, \cdots, \mathfrak{F}_n$ respectively, and let $L = \{x | \pi_i(x) \Re_i = 0, i=1, 2, \cdots, n; x \in N\}$. Then $L \cap \widetilde{L}$ is a simple C*-algebra such that $D(L \cap \widetilde{L})/L \cap \widetilde{L} = \sum_{i=1}^n \bigoplus B(\Re_i)$, where $B(\Re_i)$ is the C*-algebra of all bounded operators on \Re_i . PROOF. Let $\mathfrak{H}=\sum_{i=1}^n\oplus\mathfrak{H}_i$, $\mathfrak{R}=\sum_{l=1}^n\oplus\mathfrak{R}_i$ and $\pi=\sum_{i=1}^n\pi_i$, and let E be the orthogonal projection of \mathfrak{H} onto \mathfrak{R} . Let $A=\{x\,|\,\pi(x)\,E=E\pi(x),\,x\in N\}$; then A is a C^* -subalgebra of N with unit. If $x\in A$ with $\pi(x)\,E=0$ and $x^*=x$, then $x\in L\cap\widetilde{L}$; conversely if $x\in L\cap\widetilde{L}$ with $x^*=x$, then $\pi(x)\,E=0$ and so $E\pi(x)=(\pi(x)E)^*=0$, so that $x\in A$. Therefore $L\cap\widetilde{L}=\{x\,|\,\pi(x)\,E=0,\,x\in A\}$. Moreover if $x \in A$, then $\pi(y)\pi(x)E = \pi(y)E\pi(x) = 0$ for $y \in L \cap \widetilde{L}$; hence $yx \in L \cap \widetilde{L}$, and analogously $xy \in L \cap \widetilde{L}$. Therefore $L \cap \widetilde{L}$ is a two-sided ideal of A. On the other hand, $D(L \cap \widetilde{L})$ can be realized as a C^* -subalgebra of N, since $L \cap \widetilde{L}$ is a two-sided ideal of $D(L \cap \widetilde{L})$. Since $L\cap\widetilde{L}$ is weakly dense in the W^* -algebra $N,A\subset D(L\cap\widetilde{L})$. Since the weak closure of $\pi(L\cap\widetilde{L})$ on $\mathfrak F$ is $(1_{\mathfrak F}-E)\overline{\pi(N)}(1_{\mathfrak F}-E)$, where $1_{\mathfrak F}$ is the identity operator on $\mathfrak F$ and $\overline{\pi(N)}$ is the weak closure of $\pi(N)$ on $\mathfrak F$, and since $L\cap\widetilde{L}$ is a two-sided ideal of $D(L\cap\widetilde{L})$, for $y\in D(L\cap\widetilde{L})$, $\pi(y)(1_{\mathfrak F}-E)$, $(1_{\mathfrak F}-E)\pi(y)\in (1_{\mathfrak F}-E)\cdot\overline{\pi(N)}(1_{\mathfrak F}-E)$, and so $(1_{\mathfrak F}-E)\pi(y)(1_{\mathfrak F}-E)=\pi(y)(1_{\mathfrak F}-E)=(1_{\mathfrak F}-E)\pi(y)$; hence $y\in A$ and so $D(L\cap\widetilde{L})=A$. Now by Kadison's theorem [1], for an arbitrary self-adjoint element H of $\sum_{i=1}^n \oplus B(\Re_i)$, there exists a self-adjoint element h in N such that $\pi(h)E=HE$. Since EHE=HE, $(\pi(h)E)^*=E\pi(h)=\pi(h)E$; hence $h\in A$. Therefore the *-homomorphism $y\to\pi(y)E$ of A into $\sum_{i=1}^n \oplus B(\Re_i)$ is onto, and its kernel is $L\cap\widetilde{L}$. Hence $D(L\cap\widetilde{L})$ $/L\cap\widetilde{L}=\sum_{i=1}^n \oplus B(\Re_i)$. This completes the proof. COROLLARY 4. For an arbitray finite-dimensional C*-algebra B, there exists a simple C*-algebra A such that D(A)/A=B. Since the algebra N in Theorem 2 has uncountably many inequivalent irreducible *-representations, this is clear. Now the following problems are interesting. PROBLEM 4. In Theorem 2, can we replace the algebra N by an arbitrary infinite-dimensional simple C^* -algebra with unit? PROBLEM 5. For an arbitrary commutative C^* -algebra C with unit, does there exist a simple C^* -algebra A such that D(A)/A=C? PROBLEM 6. For an arbitrary simple C^* -algebra B with unit, does there exist a simple C^* -algebra A such that D(A)/A = B? This problem is closely related to Problem 3. PROBLEM 7. For an arbitrary C^* -algebra B with unit, does there exist a simple C^* -algebra A such that D(A)/A=B? PROBLEM 8. Investigate the derived C^* -algebras of matroid C^* -algebras (cf. [2]). ## REFERENCES [1] J. DIXMIER, Les C*-algèbres et leurs représentations, Paris, Gauthier-Villars, 1964. - [2] J. DIXMIER, On some C^* -algebras considered by Glimm, J. Functional Analysis, 1(1967), 182–203. - [3] J. GLIMM, Type I C*-algebras, Ann. of Math., 73(1961), 572-612. - [4] R. KADISON, Derivations of operator algebras, Ann. of Math., 83-(1966), 280-293. - [5] S. SAKAI, Derivations of W*-algebras, Ann. of Math., 83(1966), 273-279. - [6] S. SAKAI, A characterization of type I C*-algebras, Bull. Amer. Math., 72(1966), 508–512. - [7] S. SAKAI, Derivations of simple C*-algebras, J. Functional Analysis. 2(1968), 202-206. - [8] S. SAKAI, Derivations of simple C*-algebras, II, Bull. Soc. Math. France, 99. - [9] Z. TAKEDA, Conjugate spaces of operator algebras, Proc, Japan Acad., 30(1954), 90-95. ## ADDED IN PROOF (Sept. 22, 1971) After writing this paper, the author found that the problems 1, 2 and 4 are negative for arbitrary uniformly hyperfinite C^* -algebra. Next, G. Elliot proved more generally that the problems 1, 2 and 4 are negative for arbitrary infinite-dimensional separable simple C^* -algebra with unit. DEPARTMENT OF MATHEMATICS UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, U. S. A. AND MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN