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DERIVATIONS ON ALGEBRAS OF
UNBOUNDED OPERATORS

BY

ATSUSHI INOUE AND SCHÔICHI ÔTA

Abstract. This paper is a study of derivations on unbounded operator algebras in
connection with those in operator algebras.

In particular we study spatiality of derivations in several situations. We give the
characterization of derivations on general «-algebras by using positive linear
functionals. We also show that a derivation with some range-property on a left
■EW*-algebra induced by an unbounded Hubert algebra is strongly implemented
by an operator which belongs to an algebra of measurable operators.

1. Introduction. Derivations in operator algebras (C*-algebras and von Neumann
algebras) have been investigated by many authors and many useful results have
been obtained. In particular, it is well known [18] that every bounded derivation on
a von Neumann algebra is spatial; that is, it is implemented by an element of its
von Neumann algebra. The structure of unbounded derivations in operator alge-
bras is more complicated than that of bounded derivations. It is well known that a
generator of a strongly continuous one-parameter subgroup of »-automorphisms of
a C*-algebra is a »-derivation which is implemented by a symmetric operator by
giving some representation of its C*-algebra on a Hubert space. It seems to be
important to investigate whether an unbounded closed derivation in a C*-algebra is
spatial by some faithful representation in a Hilbert space, or not [5].

Let S be a »-derivation in a von Neumann algebra 3JÍ acting on a Hilbert space
$. Suppose that 5 is implemented by a selfadjoint operator H (possibly un-
bounded) in £ with H^(H) c ^(H), where tf)(H) denotes the domain of H.
Then we can easily construct a derivation on an unbounded operator algebra
generated by the domain ^(S) of S and H. Furthermore, if a derivation <5 on a
particular unbounded operator algebra (an F W* -algebra) 62 is implemented by a
selfadjoint element H in 6E, then we can also construct a a-strongly closed
»-derivation in a von Neumann algebra.

In this point of view, we shall study in §4 the spatiality of derivations on
unbounded operator algebras.

In §3 we shall consider derivations on »-algebras with identity and extend a
derivation on »-algebras with identity to one on unbounded operator algebras by
using the G-N-S representation induced by some positive linear functional, and we
characterize the spatiality of its extended derivation by a positive linear functional.
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568 ATSUSHI INOUE AND SCHÔICHI ÔTA

2. Preliminaries. We start with some notations and definitions of unbounded
operator algebras. Let tf) be a pre-Hilbert space with the Hilbert space $ which is
the completion of tf). By ^(ty) we denote the algebra of all linear operators on 6D.
By fi*^) we denote the set of all operators A E H(fy) for which there exists an
operator A* E £(<$) such that

(¿Í|ii)-(€M*ii)
for every £, 17 E 6D. It is easily seen that each operator in Ê*^) is closable in §
and £*(6D) is an involutive algebra with the involution A —>• A*:. An involutive
subalgebra of £*(<?)) is called a #-algebra on ^). We note that a #-algebra with
identity operator is said to be an Qp* -algebra on ^D by G. Lassner.

Let 62 be a #-algebra on fy. We denote by 626 the bounded part of 62, that is,
62¿, = {.4e62;.4e <$($)}, where ,4 denotes the smallest closed extension of A
and •$($) denotes the algebra of all bounded linear operators on $. A #-algebra
62 on öD with the identity operator / is called a symmetric #-algebra on fy if
(/ + A*A)~X exists and lies in &b for all A E 62. If 62 is a symmetric #-algebra on
<>D and 62é is a C*-algebra (resp. If*-algebra), then 62 is called an EC*-algebra on
ty over 626 (resp. an F IT"*-algebra on ^ over 626), where 626 is the set of all A with
/I in (£b. For a more complete discussion of #-algebras the reader is referred to [1],
[8]-[ll], [13].

Let 9> be an involutive algebra (»-algebra) with involution A^>A*. By a
»-derivation in 9> we mean a linear mapping o of the domain ^(o), which is a
»-subalgebra of ® , into 9> satisfying that for each A, B E %

8(AB) = 8(A)B + A8(B),        6(A*) = 0(A)*.
In particular a »-derivation in a #-algebra 6E with fy(8) = 62 is called a ^deriva-
tion on 62. If a #-derivation on a #-algebra 62 is continuous with respect to the
topology t on 62, <5 is said to be r-continuous. We set 62o = {A E 626; o(/l) E 626}.
It is easily seen that éEq is a »-subalgebra of a »-algebra 626. Hence we define a
»-derivation in &b with the domain 6Eq as follows

fi0(J) =ÔÔ4) (A E So).
For // = //* in 6E, we define a #-derivation S" on 62 as follows:

8H(A)= i[H,A]        (= ¿(A4 - AH))

for A E. (£. Such a derivation is called a spatial derivation implemented by H.

Proposition 2.1. Let 62 be an EW*-algebra on ty and let 8H be a spatial
derivation on 62. Then (8H)0 is a a-weakly closed *-derivation in the von Neumann
algebra &b with the a-weakly dense domain 6^.

Proof. We first show that 62p is a-weakly dense in 626. Since 62 is an E W* -alge-
bra, H is a selfadjoint operator with the spectral resolution H = /f ^ dE(X). For
each A e &b we put An = E(\)AE(\), where {\,} is an increasing sequence with
limn_oc> Xn = 00 and E(Xn) converges a-strongly to the identity operator /. Then we
have 8"(A„) = i[H, AJ = i{HEQin)AE(Xn) - E(\,)AE(Xn)H} E^ which im-
plies An E éÜq. Since An= EQ^AEÇK^) converges a-weakly to A, 6^ is a-weakly
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ALGEBRAS OF UNBOUNDED OPERATORS 569

dense in 626. Now we recall the (62)-a-weak topology simply denoted by tf_w. Let
^x be the Hilbert direct sum of the Hilbert spaces §„ with §„ = $(«= 1,2,...).
We set

^»(fl) = {{£,} E $„,; i, E ÖD (n = 1, 2, . . . ) and

2 H^y2 < oo for all A E 62
n=i J

and

pi(.uv.M) = 2 (^sk)
n = \

where ,4 E 62, {£„}, {r/„} E 6D00(62). It is easily seen that 62 is a locally convex
»-algebra equipped with the locally convex topology tf_w generated by the family
i/'{€.}.{%)(-); ii»)' H«) G ^»(ÉB)!. The derivation 5" is if_„-continuous on 62
and so (8H)0 is a-weakly closed in 626. This completes the proof of Proposition 2.1.

Example 2.2 (direct sums of #-derivations). Let {62,} be a sequence of
#-algebras 62, on fy¡ with the identity operators /,. We denote by ty the set 2e 6U¡
of all elements £ = (¿,), where ¿, E ^ and £, = 0 except for finitely many indices i
and also denote by 62 the Cartesian product UfLx 62, of the #-algebras 62,. Then 62
is a # -algebra on fy with identity / = (/,.) by the usual operations. We note that
for A = (A¡) e 62, A* = (A*). Then each #-derivation o on 62 is represented by
the direct sum of #-derivations o, on 62,, that is, 8(A) = (o,(,4,)) for A = (A¡) G 62.
In fact, for every A¡ in 62, we set

C = [s{A,)*, 8(Af2, ..., B(A¡)f_v 0,8(Ai)f+x, 8(At)f+2, ...je«.
Then we have

8{A,C) = 8(Ai)C + At8(C)

= (8(Ai)l8(Ai)^, S(Ai)28(Ai)t, • ■ • , S(Ai)i_x8(A ,)*_,,
/f,o(C),, 8(Ai)i+x8(Ai)*+x, 8(Ai)i+28(Ai)*+2, . . .).

Since AtC = 0, we have ô(Ai)kô(Ai)k* = 0 for k -* /' and so 8(A¡)k = 0 for k * i.
This implies that each 62, is invariant under ô, and hence we can define a linear
mapping 5, on 62, as the restriction of 8 to 62,. It is easily proved that each 5, is a
#-derivation on 62, and 8(A\ = 8,(At) for A = (A,) E 62. Suppose that in the
above situation, each 62, is a von Neumann algebra on a Hilbert space $,
(§,. = <$,). Then 62 = H?_x 62,. is an FW*-algebra on <% = Sf §,- and every
#-derivation on 62 is a spatial derivation on 62. This follows from the well-known
fact [18] that every bounded »-derivation o on a von Neumann algebra ÏÏR. is
represented as 8(A) = i[H, A] for A E Tt, where H is a selfadjoint element in 3ft.

3. Derivations on »-algebras. Let A be a »-algebra with identity e and let / be a
positive linear functional on A, that is, f(x*x) > 0 for every x e A. We consider
the G-N-S representation induced by/. The elements a in A with/(a*a) = 0 form a
left ideal lDlf in A. For a in A we denote by tya) the coset of A/?fif (= A/A))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



570 ATSUSHI INOUE AND SCHÔICHI OTA

which contains a and we define an inner product by (XA[a)\XAb)) = f(b*a). Then
\f(A) becomes a pre-Hilbert space with the completion §,. For each a E A, we
define a linear operator on Xa[A) by TTj(a)Xi(b) = Xj(ab) (b £ A). It is easily seen
that TTj(a) is closable in ¿gy and for a, b E A we have Tr/(aa + ßb) = aTTj(a) +
ßTTj(b) and <rrj(a)TTj{b) = TTj(ab) (a, ß E C). Then w/A) is a # -algebra on X/_A) with
TTj(a)# = TTj(a*). Now let w be an involution-preserving homomorphism of a
»-algebra A into a #-algebra 62 and let Ô be a »-derivation on A. In the rest of this
paper, we only consider everywhere defined derivations. If o preserves the kernel of
tt, i.e., o(ker tt) c ker tt, we can define a #-derivation 5^ induced by 5 on a
#-algebra 77(A) by defining 6„(ir(ä)) = ir(8(a)) for a E A.

The following proposition is well known in the case of unbounded derivations in
C*-algebras [2, Theorem 4] and is proved in the same way.

Proposition 3.1. Let A be a *-algebra with identity e and let 8 be a »-derivation
on A. Suppose that there exists a positive linear functional f with f(8(a)) = 0 for
a G A. Then there exists an element H = H* of £*(Ay(A)) such that

8Wj(TTf(a)) = i[H,TTf(a)]   for a E A.

Using the above proposition, we can prove the following proposition in the same
way as in [2, Theorem 8].

Proposition 3.2. If & is a # -algebra on tf) containing all finite rank operators in
£*(6D) and 8 is a # -derivation on 62, then there exists an element H = H of
£*(<$) such that

8(A) = i[ H, A]   for all A £62.

Chernoff proved in [7] that if X is a normed space and 8 is a derivation on the
algebra of all linear continuous operators, then ô is spatial. In the case of
derivations on unbounded operator algebras, we have

Corollary 3.3. Each #-derivation on E*^) is a spatial derivation implemented
by H = H* in £#(<î>).

Let /be a positive linear functional on a »-algebra A with identity e. We set

«DC*/) = D %«f(a)*)
nEA

and Tr/(a)è = TTf(a*)*£ (a Ê A, | E ^(tt/)). It follows from [15, Lemma 4.1] that
itf is a homomorphism of A into ^(^(mf)). We remark that ^(-rrf) D Xj(A) and
TT*(a) coincides with TTj(a) on A/A).

Theorem 3.4. Let 8 be a »-derivation on a »-algebra A with identity e and let f be
a positive linear functional on A. The following conditions are equivalent.

(1) \f(8(ba))\2 < ybf(a*a) for all a, b E A, where yb is a constant depending only
on b.

(2) There exists a linear operator H in £(Ay(A), ^(tt*)) satisfying the following
conditions (a) ~ (c):
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ALGEBRAS OF UNBOUNDED OPERATORS 571

(a) H is a symmetric operator on $y.
(b) (HK¿e)\\¿a)) = - (Xj(a*)\HXj(e))for all a E A.
(c) 8r/(ir¿a))tyb) = i[H, w/(a)]\/o) for all a, b E A, where £(A/A), <$(*/))

denotes the set of all linear transformations of Xa[A) into ty (tt?).

Proof. (1)=>(2). The idea of this proof is based on [4]. We define a linear
functional <> on Ay(A) by (¡¡(XJa)) = if(8(a)). From the condition (1) we have
\<¡>(Xj(a))\ < yé!/2||A/(fl)|| and so there exists a vector £ in $y, by the Riesz representa-
tion theorem, such that if(8(a)) = (Xy(a)|£) for all a E A. Furthermore we have

|í>/¿0ty«)|É)| =I'/(Ô(M)| < Ï6/2||Va)|l
for all a, b E A, which implies that £ belongs to ty (rf). Now we define a linear
operator H in §^ by

//X/fl)= -iXf(8(a))-{TTf*(a)l

We show that // has the desired properties. Since

(Xf(a*M) = if(8(a*)) = -if(S(a)) = - (||A/a))

for all a E A, we have

(/YA/iOIA/A)) - (À/flJltfA/i)) = (-/A/fi(fl))IV6)) - H»/(«)*IW)

- (A/«)| - ÍA/fiíé))) +i(A/ö>K*<6)«)
= -if{b*s(a)) -i^lV**)) - iWO*«) +KV*'fl)IO
= -i/(ô(è*û)) + (A/(fb*a)|0 = 0

for all a, b E A. Hence // is a well-defined symmetric operator and belongs to
£(A/A), ^(ttj*)) by the definition. From the equality that HX/e) = - j£ we find
the condition (b). Finally using the homomorphism of tt/, for a, ¿> E A we have

/[//, */(fl)]A/*) = i{HTTf(a)Xf(b) - TT*(a)HXf(b)}

= ¡{HXjiab) - TTf*(a)HXf(b)}

= i{-iXf(8(ab))-\TT*(ab)i - w/(a)(-ityfi(ô)) -^/(ô)€)}

= X/fi(a6)) -¿»/(afctf - A/aa(è)) -r-iw/iaèK

= tyô(<0*) = fy*MWb)-
This implies (1) => (2).

(2) => (1). For a, b E A, we have

l/(a(te))|<|/(ô(è)a)| + |/(Z>ô(a))|

< f(8(b)8(b)*)x/2f(a*a)i/2 +\(XJ(8(a))\XJ(b*))\
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572 ATSUSHI INOUE AND SCHÔICHI ÔTA

and

\(W(a))W))\-\i{Hvf(d»¿e) ~ v;{a)H\¿e)\A¿b*))\
< \(H\j(a)\\¿b*))\ + |(# ty*)k/a*)ty¿*))|
= \(\¿a)\H\¿b*))\ + |(A/éa)|//\/e))|    (condition (b))

< \\HXf(b*)\\f(a*a)x/2+\(Xf(a)\TTf(b)*HXf(e))\

< (\\H\(b*)\\+\\^b)*H\^e)¡)fia*a)l/2.

Therefore there exists a constant yb depending only on b such that \f(8(ba))\2 <
yj(a*a) for each a, b £ A. This completes the proof of Theorem 3.4.

4. Derivations on left F W* -algebras. In this section we consider derivations in a
particular # -algebra (a left F IT"*-algebra) which has an interesting structure in
#-algebras. We recall some of the definitions and results concerning unbounded
Hilbert algebras and left F W# -algebras and refer to [9], [10] for further details.

Let 91 be a pre-Hilbert space with inner product (-| • ) and be a »-algebra. Let
§(91) be the completion of 31. Suppose 91 satisfies the following conditions:

(i) «h) = (ilD,
(2) (m) = (Tiirn

for every £, t\ and f E 9Í. For each £ E 91, we define tt(í¡,) and 7r'(£) by w(£)tj = £r/
and TrXOv = VÍ f°r n E 91. Then by the equalities (1) and (2) we see that both tt(Ü)
and tt'(£) are closable operators in §(91) with domains 21 satisfying tt(£)* d tt(£*)
and tt'(0* 3 "■'(£*)• Furthermore if 91 satisfies the conditions (1), (2) and

(3) SI;* is dense in §(91),
where 9l0 denotes the set of all elements £ of 91 such that 7r(£) is a bounded operator
on §(91), then 91 is called an unbounded Hilbert algebra over 9t0 in §(91) and tt
(resp. tt') is called the left (resp. right) regular representation of 91. If 9t is an
unbounded Hilbert algebra over 9i0 in §(91), then we see that 9I0 is a Hilbert
algebra and the completion §(910) of 9t0 is the Hilbert space §(9t) (= §). The
involution * on 91 is extended to an involution on §, which is also denoted by ».

Let 770 (resp. tt'0) be the left (resp. right) regular representation of the Hilbert
algebra 9I0. For each x in §, we define linear operators tt0(x) and tt'0(x) in § by

7T0(x)| = tt'0(Ç)x    and    tt'0(x)£ = tt0(£)x

for £ £ 9I0. Then both tt0(x) and tt'0(x) are closable operators in § with domains 9t0
such that

*o(*)* = *o(x*)     and   *o(*)* = <>(■**) •

Let %)(%) (resp. %(9I0)) be the left (resp. right) von Neumann algebra of the
Hilbert algebra 9i0 and let <f>0 be the natural trace on %t)(9t0)+. We set (9I0)fc = {x
£ §; tt0(x) E ® (§)}. Then (9t0)6 is a Hilbert algebra containing 9I0.

We next define the L2 -spaces with respect to the natural trace <>0 and the Hilbert
algebra 9I0 according to the noncommutative integration of Segal [21]. We denote
by Lp(<¡>0) = V (1 < p < + oo ) the Lp-space with respect to 4>0 equipped with the
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ALGEBRAS OF UNBOUNDED OPERATORS 573

L^-norm || • || and also by L00 the left von Neumann algebra 91tj(9I0) with
operator-norm || • H^.

Now we put Z,£(<f>o) =  D2<p<x L" and

L2"(9I0) = [x £ §; Irjx) E L2"(<i>0)}.

Then L"(9I0) becomes an unbounded Hilbert algebra with the multiplication
defined by £ • tj = 7r0(£)r; (£, 17 E L"(9i0)) and involution ». Thus if 91 is an un-
bounded Hilbert algebra over 9t0 in §, then 91 is an involutive subalgebra of
L2"(9I0).

Let TT2 be the left regular representation of L2(ñ0). Then L2(9i0) is invariant
under 77-2(91) and also under ^(VLq). Hence both 772(91) and the restriction
carj(9l0)/L£(9l0) of %o(9t0) on L^(%0) are #-algebras on L^(\) under tt?©* =
tt^*) for £ E 9t and (T/L?(2t0))# = T*/L^(%0) for T E %(%0). We denote by
<?L(9i) the # -algebra on L2"(9I0) generated by tt^(%) and %0(9i0)/L2J(9I0). We see
that 91,(91) is an FIT#-algebra over %(\) on L^(%), which is called a left
FH/#-algebra of 91. We remark that each element in %(9l) is represented by the
sum of an element in L°° and an element in Lp with any fixed p (2 < p < + 00).

Let 9IL be the set of all measurable operators with respect to <¡>0. It is well known
[8] that <Dlt is a »-algebra under the operations of strong product, strong sum and
strong scalar multiplication, and the adjoint operation.

We now introduce the strong commutator in 911 as follows:

[A,B] = A- B - BA    for all ,4, .8 £ 911.

Lemma 4.1. Let 91 be an unbounded Hilbert algebra over 9I0 in §. Let 62 be the left
EW*-algebra 9i(9t) induced by 91 and let 62„ be the set of all unitary elements of 62.
If 8 is a #-derivation on 62 with the range in tt2(L2(^L0)), then for each p
(2 < p < 00) there exists a selfadjoint operator Hp in Lp such that 8(A) = i ■ [Hp, A]
for all A in &b.

Proof. We shall show this lemma by the application of the Ryll-Nardzewski's
fixed point theorem [14], [17]. We note that 62 is contained in LP (2 < p < 00). We
denote by % thejset of all U*8(U) with U E 62M and by â the a(Lp, (Lp)*)-closed
convex hull of %. It is easily seen that Lp is a Banach 62A-module. We set
8b(A) =8(A) for A E 626. Then 8b is a derivation of the C*-algebra 62fe into the
Banach 62¿,-module Lp. It hence follows from [16, Theorem 2] that 8b is continuous.
This implies that â is a bounded subset of the Banach space Lp. Since Lp is
reflexive, it follows from the Alaoglu theorem that 2. is a(Lp, (L/,)*)-compact. We
now define an affine map on Lp for each U Œ 62u as follows:

AV(S) = U*S- U +  U*8(U)
for S <E L". Since ÜT■ U* <E (Lp)* for all U £ 62„ and TE (Lp)*, for each
U £ 62tt the affine map Au is a(Lp, (L/')*)-continuous. Since for U, V £ 62u we
have

AV(U*8(U)) = V*U*8(U)- V+ V*~8(V)
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the affine map Av leaves 2, invariant. Since AVAV(T) = AVU(T), {Av; U E 62u} is
a semigroup. We have

\\AV(S) - A¿T%-\W{S - T)- U\\p =\\S - TU,
for U £ 62„ and S, T E Lp. It follows from the Ryll-Nardzewski's fixed point
theorem that there exists H0 E 2, such that AV(H0) = H0 for all U E 62„. This
implies that 8(U) = U- H0 — H0- U for all Í/ £ 62„. Since &b is a von Neumann
algebra, each element of 626 is a finite linear combination of elements of 62u. Thus
we have 8(A) = [Ä, H0] for all A £ 626.

Now we set

Hp=±-.(H0-H*).

Then we have Hp = H* £ Lp and 8(A) = i • [//,, i] for all .4 E 626.
Remark 4.2. In the same assumption as in Lemma 4.1, if 2 <p < oo we have

8(A)£ = i(HpA£ - ÂHpÇ) for all A E &b and £ £ ¿£(91,)). In fact, we can easily
show that | E ^(/L,) for each £ £ L^(ñ0). This implies that

8(A)t = i  [Hp, J]| = i(HpAi - AHpi)
for all A £ 62¿ and | E L^Sf,)).

Lemma 4.3. Le/ 91 be an unbounded Hilbert algebra over 9l0 in § and let 62 ¿>e </ie
left EW*-algebra of 9Í. T/ie«, for each A in 62 there exists a sequence {Bn} in âb
which converges to A with respect to Lp-norm for each p (2 < p < oo).

Proof. Take A in 62 with I = T, + T2 where T, is in L00 and T2 £ L£(<¿>0). Let
T2 = U\T2\ be the polar decomposition and let |T2| = /"A dE(X) be the spectral
resolution of |T2|. We put

Bn=Tx+ ufxdE(X),       n -1,2,...,
•'o

and, as easily seen, a sequence { Bn} has the desired property.
Let 62 be a #-algebra on ty with the identity operator / and let § be the

completion of the pre-Hilbert space ty. We define the following seminorms on 62 :

PtM) ~\(4fa)\       «^£öD);
P((A) =||^||        tfe<$).

The locally convex topology on 62 generated by the family of the seminorms
{F^(-); £, 17 E ^ } (resp. (PjO); £ £ ûD}) is called the weak (resp. strong) topol-
ogy and is denoted by tw (resp. ts).

Theorem 4.4. Let 9Í be an unbounded Hilbert algebra over 9t0 in § and let 8 be a
^-derivation on the left EW*-algebra 62 induced by 91. If 8 is ts-continuous and the
range of 8 is contained in 772(L$'(9l0)), then for each p (2 < p < 00) there exists a
selfadjoint operator Hp in Lp such that

8(A)t=i[Hp,Â]ï

for all A EIS, and | E L£(9X0).
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Proof. Take p (2 < p < oo). By Lemma 4.1, 8(B) = i ■ \Hp, B] for all B £ 626.
We show that 8(A) = i ■ [Hp, A] for all A E 62. For each A E 62 there exists, by
Lemma 4.3, a sequence {Bn} in 62é such that limn_>0O ||Fn— A\\, = 0 for all /
(2 < t < oo). Since 8 is /,-continuous, we have

Jim WCSjBj - -8JÄ)) • ̂ oW||, < Km ||o(Fj| - 8(A)t\\ \\lrjn)\\2 = 0
for every £, tj £ 9i0.

On the other hand, we have

Km \Hp ■ Tn • Wo(fn) - #, • J- *„(&,) ^ < Jim {||//JJ( X - Â) ■ ̂rJjrJj \\p.}

where \/p + \/p' = 1, \/qx + l/q2 = 1/p' and qx > 2, similarly

lim \\Tn-Hp-^JM- Ä-Hp- ̂¡JIL- 0.
Therefore we have

5(Fj • ̂ ~m -i{HpTn-TnHp). ItJM
^i(HpÄ-Ä-Hp)-^Jen)

as n —» oo in Lx, which implies that

W)-^J^ = i-{Hp-A - I-Hp)-^M.
Since 770(£t))* is a bounded operator on §, we have

770(iT,)*o(,4)* = 7t0(£t,)* • 8(A)* = ("SO) • ̂ oM)*

= "ofo)* • («K^])* = ̂ )*(<K^])*>
for every £, r/ E 9i0. Thus we have 8(A)* = (i[Hp, A])*, which implies that 8(A) = /'
• [H , A]. This completes the proof of the theorem.

Using Remark 4.2 we can prove the following corollary by the similar calcula-
tions in the proof of Theorem 4.4.

Corollary 4.5. If 8 is a tw-continuous ^-derivation on the left EW*-algebra 62
induced by 91 with the range of 8 in 772(L2(9i0)), then for each p (2 <p < oo) there
exists a selfadjoint operator H  in Lp such that

8(A)£ = i(HpA£ - AHpi)
for all A £ 62 and £ £ L^0).

From Theorem 4.4 and Corollary 4.5 we have the following

Corollary 4.6. Let 91 be an unbounded Hilbert algebra over 9t0 in § with identity
and let 8 be a #-derivation on the left EW*-algebra 62 induced by 91. // ô is
ts-continuous (or tw-continuous), then for each p (1 <p < oo) there exists a
selfadjoint operator Hp in Lp such that 8(A) = i ■ \Hp, A] for all A E 62.

We recall the A-topology defined by D. Arnal and J. P. Jurzak [1]. Let 62 be a
# -algebra on fy with the identity operator. For each T £ 62 we set
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|M||r=sup]¡^§-,        AEâ,

where A/0 = oo for A > 0. This defines the normed space ctMT = {A £ 62; Xf(A)
< oo} equipped with the norm || ■ ||r and the spaces {91Lr; T E 62} constitute a
direct set with U^ea ^-t = ^res ^t = ^- The inductive limit topology for the
normed spaces ( <31tr ; T £ 62} is called the A-topology and is denoted by tx.

Lemma 4.7. If 62 is an EW*-algebra on 6D, then for each A in 62 there exists a
sequence {C„} in &b which converges to A with respect to the X-topology. Thus 626 is
dense in 62 with respect to the X-topology.

Proof. Take A in 62. Let A = U\A\ be the polar decomposition of A and let
Ml = fo^dE(X) be the spectral resolution of |>1|. Now we put C„ = ^4F(«),
R„ = /"(1/X) dE(X), n= 1,2,_Thus we have C„ E 626 and Ä - ~Cn = Â~R„\Â~\.
Furthermore, since Rn commutes with \A |, we have for each £ E L2 (9I0)

\\A£ - C„||| = \ARAA\i\ < I | J |2F„||| = (R2\Â\\\ \Â\2tf2

< ±((I - E(n))\Ä\\\\Ä\2t)l/2 < ±\\\A\%

Hence we have \\A - Cn\\A*A < \/n. This implies that the sequence {C„} con-
verges to A with respect to the A-topology.

Let & be a #-algebra on ty. We put <$ = n ,,£í ^(J), i¿ = J£ for ,4 E 62
and ¿ £ 6D. Then, 62 = {^4;y4£62}isa # -algebra on ÓD, which is called the
closure of 62. Let ô be a #-derivation on 62. We put 8(A) = 8(A), A E 62. Then <5
is a #-derivation on 62.

Theorem 4.8. Let 91 be an unbounded Hilbert algebra over 9I0 in § and let 8 be a
^-derivation on the left EW*-algebra induced by 9Í with the range of 8 in
TT^(L^Cä0)). If 8 is continuous with respect to the topology tw (or t^, /£, t^, t%, t^,
h' las> *2> 'u> {qu' V r\)' then for each p (2 <p < oo) there exists a selfadjoint operator
H  in Lp such that

8(A)£=i{HpA£-ÄHpi)

for all A E 62 and £ E L2 (9I0). (Remark: the reader is referred to [1], [11] (resp. [13],
[1]) for the topologies tw, t^, &, £,, i*, i^, f„ /* and C (resp. tu and t^, tp and

Proof. We first note from Remark 4.2 that 8(B)£ = i(HpB£ - BHp£) for all
B £ &b and £ £ L"(9i0). From Lemma 4.7, for each A E 62 there exists a sequence
{C„} in 62fc such that {C„} converges to A with respect to the A-topology tx.
Suppose t is one of the following topologies: tw, t^, £, £,, /*, /£,, t„ tfs, t%, tu,
t^, tp and /A. Since tw < t < fA [11, Theorem 2.1], it follows that {(?„} converges to
À with respect to t. From the continuity of 8 we have

Km (o(Cjlh) = (8(A)£\t})
n—»oo
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for all £, r/ E L"(9t0). Furthermore, it is easily shown that
Hp£ E LÍ(%)

for all £ £ L%(%). This implies that

Jkn (/(//,C„ - CnHpyfri) = (i(HpA - ÄHp)£U)
for all £, Tj £ L^(%). Hence we have 5(^4 )£ = /(¿L^l - /Î/L,© for all A E 62 and
£ £ L"(9I0). This completes the proof.

Remark 4.9. Let 9t be an unbounded left Hilbert algebra over 9I0 in § and let ô
be a #-derivation on the left F If*-algebra 62 induced by 91 with the range of 8 in
772(L2(9I0)). If 8 is continuous with respect to the special topology (called WI2-
topology [10]) on 62, then the statement in Theorem 4.8 holds.
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