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Abstract. L00-blow-up of solutions of semilinear parabolic equations has received considerable 
interest. Several major problems like sufficient conditions for blow-up, the form of the blow-up 
set, the profile of the solution near a blow-up point or the existence after the blow-up time have 
been studied. The aim of this paper is to deal with similar questions for a related phenomenon, 
namely blow-up of the spatial derivative while the solution itself stays bounded. We proceed via 
the maximum and comparison principles. 

1. Introduction. Finite time blow up in the L 00 norm for solutions of semilinear 
parabolic equations has received considerable interest. Several major problems like 
sufficient conditions for blow-up, the form of the blow-up set, the profile of the 
solutions near a blow-up point, and existence of a (suitable extension of the) solution 
past the blow-up time have been studied. The aim of this paper is to deal with similar 
questions for a related phenomenon, namely, blow-up of the spatial derivative while 
the solution stays bounded. · 

Specifically, we consider the problem 

Ut = Uxx + f(ux), 

u(O, t) = u(L, t) = 0, 

u(x, 0) = uo(x), 

where f E C2 (R) satisfies the conditions 

0 <X< L, t > 0, 

t > 0, 

O::::;x::::; L, 

f(v) > 0 for all v, f'(v);::::: 0 for v large enough,. 

limsupf'(v)jj(v) < oo, 
U-+00 

/

00 v dv 
f(v) < oo, 
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Then we show that ux(O, t) is bounded from below and ux(L, t) is bounded for 
0 < t < T. This will imply (2.8) since max lux I must occur on the boundary because 
v = Ux satisfies a linear parabolic equation of the form Vt = Vxx + g(x, t)vx with g 
locally bounded. 

Consider first the case when (1.8) holds and define 

1x 1 
q~,.(x) = c-1(0's)ds = -q~(cJ'X). 

0 0' 

Then for any L > La there is a 0' E (0, 1) such that q~,.(L) < 0 and an M,. > 0 such 
that q~~(x) 2: -M,. for x E (0, L]. Choose 8 E (0, (1 - O')rJ) where rJ > 0 is such 
that f(v) 2: rJ if v 2: -M,. and set 

K = sup (q~,.(x)- u0 (x)), cp(x, t) = q~,.(x)- K + ot. 
o::;x::;L 

Then ¢ (x, 0) ::::; uo (x) and ¢ satisfies: 

c/Jt :S c/Jxx + f(c/Jx) on (0, L) X (0, oo) 

c/Jx(O, t) = 00 

K 
¢(0, t) < 0, cp(L, t) < 0 forO::::; t < 8' 

K K 
¢(0, -y) = 0, cp(L, -y) < 0. 

By comparison, u 2: ¢ as long as u exists, therefore u ceases to exist at a finite 
time T ::::; f. Since u itself stays bounded, sup I Ux ( ·, t) I must become unbounded as 
t-+ T. 

Now, v · Ux satisfies 

Vt = Vxx + f'(v)vx 

Vx =- f(v) 

v(·, 0) = u~ 

in (0, L) x (0, T), 

for x = 0, L and t E (0, T), 

in [0, L] 

and max I vI must occur on the boundary. 

(2.10a) 

(2.10b) 

(2.10c) 

Ifwetake.e1largeenough,thenG-1(x+.e1)::::; u~(x)forx E [O,L]andG-1(x+ 
.e1) is a stationary solution of (2.10a,b). Hence, ux is bounded from below. On the 
other hand, for any u0 there is an .e2 E (0, L) such that c-1 (x - .e2) 2:: u~(x) for 
X E (.e2. L). Therefore Ux(L, t)::::; c-1(L- .e2) for 0::::; t < T and (2.8) follows. 

Consider now the case when (1.7) holds. Then the only difference in the proof is 
that c-1 is now defined only for x E (0, L1). Now we take .e1 < L1 and comparison 
with c-1(x + .e1) yields a lower bound for Ux(O, t). An upper bound for ux(L, t) is 
obtained as before and we shall show that ux(L, t) 2:: -k(T) fort < T. 
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The supersolution f(O)t +max uo yields that 

u(x, t) ::SF= f(O)T +maxuo fort< T. 

If we chooses, £3 and M positive such that cp(L - s- £3) + M ~ F and cp(L -
£3) + M = 0, then 

u(x, t) ::S cp(x- £3) + M 
ux(L, t) ~ cp' (L - £3) 

in [L - B, L] X [0, T) 

for 0 < t < T. D 
(2.11) 

Note that the lower bound on ux(L, t) can be taken independent oft if (1.7) holds 
and L < L 1 because we can then use as supersolution cp(x, t) - min{O, cp(L)} + 
maxuo. 

Our next step, which sets the stage for investigation of the extension, is to prove 
a pointwise upper bound for ux. 

Theorem 2.3. Assume that (1.4) holds and that j 00 Jc~) < oo. Then for any u0 E 

C 1 [0, L] there is a constant k E (0, 1) which depends on u0, f and L such that 

ux(x, t) ::s c-1(kx) for X E (0, L], 0 ::s t < T. (2.12) 

Proof. The function w(x, t) = G(ux(x, t)) satisfies (1.18)-(1.20). We show by 
comparison that w(x, t) ~ kx fork small enough. 

Since c-1 is decreasing and c-1(s) --+ oo ass --+ 0, it is possible to choose 
k E (0, 1) such that c-1(kL) ~ max{v0, supu~}, where v0 is such that f'(v) ~ 
0 for v ~ Vo. If z(x, t) = kx, then w(x, 0) ~ z(x, 0) and w(O, t) > z(O, t), 
Wx(L, t) = 1 > k = Zx(L, t). Our choice of k guarantees that f'(G- 1(z)) ~ 0 
in (0, L). Therefore z is a subsolution of (1.18)-(1.20) and w(x, t) ~ z(x, t) in 
[0, L] x [0, T). D 

Under special circumstances, the reverse inequality to (2.12) can be proved with 
k = 1. Clearly, this will be the case if uo,x ~ c-1, but the inequality holds more 
generally. 

Theorem 2.4. Let f and L be as in Theorem 2.2. If there is an so > 0 such that 
c-1(x + s)- u~(x) changes sign exactly once for s E (0, s0 ], then 

c-1(x) ::s Ux(x, T) for X E (0, L*), L* =min {L, 100 _!:y_}. 
-oo f(v) 

(2.13) 

Proof. We follow an idea from [5]. Since Ux and c-1(x + s) both satisfy (1.14), 
(1.15) and c-1(x + s)- u~(x) changes sign once, the number of sign changes of 
c-1 (x + s) - ux (x, t) is less than or equal to one for t E (0, T) and it does not 
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increase. But u~(O) < c-1(s) if sis small enough and limsupHT ux(O, T) = oo, 
hence there is a to < T such that 

ux(x,to)>G-1(x+s) forxE(O,L*-s). D 

Remark. There are functions u0 for which there is an s0 > 0 such that c-1(x + 
s)- u~(x) has one sign change for s E (0, s0]; for example, u0 = 0. 

3. Behavior of the solution near and after blow-up. The key ingredient in our 
analysis is the function w from (1.18)-(1.20). We first notice that 

by direct calculation. Since v = Ut satisfies 

Vt = Vxx + f' (ux)Vx 

v(O, t) = v(L, t) = 0 

0 < X < L, 0 < t < T, 

0 < t < T, 

(3.1) 

it follows that lvl attains its maximum over [0, L] x [s, T] for any s > 0 when 
t = s. (In fact if Uo E C2 and Uo E C2 and Uo,xx = - f(uo,x) at X = 0, L, then 
I vI ::::; max I uo,xx + f ( uo,x) 1. If uo is not this regular, we use the local existence 
of a smooth solution to infer that u(·, s) E C2 with Uxx(O, s) + f o ux(O, s) = 
Uxx(L, s)+ foux(L, s) = Oforallsufficientlysmallpositives.) Therefore lvl::::; c1 

on (0, L) x [s, T]forsomecomputableconstants s andq. It follows from (1.5), (1.1), 
(2.11), (1.18), and (3 .1) that w solves a linear equation with bounded coefficients in 
(0, L) x (s, T). It then follows from [11, Theorem 1.2] (or a suitable modification 
of the linear theory in [9, Chapter IV]) that w E ci+a,(l+a)/2 . In particular, w is 
continuous at (0, T), so limx-rO,t-rT- w(x, t) = 0, and limx-ry,t-rT- w(x, t) exists 
and is positive if y > 0. Converting back to the original variables gives the following 
result. 

Theorem 3.1. Let u be a solution of (1.1)-(1.3), and suppose f E C2 (JR) satisfies 
conditions (1.4)-(1.6) and (1.7) or (1.8). If L > Lo, the constant from (1.13), and T 
is the time at which u ceases to exist, then (1.9) and (1.10) hold. 

Our next step is to construct a continuation for w after time T. For this construction, 
we suppose first that (1. 8) holds and we consider the problem 

Wt = Wxx + F(w)(wx- w;) 

wx(O, t) = 1, wx(L, t) = 1 

w(x, 0) = wo(x) 

0 <X< L, t > 0 

t > 0 

0 <X< L, 

where F E C 1(0, oo) and lim F(w) = oo. Standard local existence results show 
w-ro+ 

that this problem has a solution until w = 0. Specifically, either w is global and 
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positive or there is aT > 0 such that w ( ·, t) > 0 fort < T and lim infr-+r- w (-, t) = 
0. In our case, F = f' o o-1 so the solution is not global and the argument preceding 
Theorem 3.1 implies thatlimr-+r-, x--+D w(x, t) = 0. 

For each smalls > 0, choose te so that w(O, te) =sand te t Tass~ 0. Define 
we by the same differential equation and initial condition as w but with boundary 
conditions 

w~(L, t) = 1 

w~(O, t) = 1 

w8 (0, t) = s 

t > 0, 

0 < t < te, 

t ::: ti. 

Since the constants is a subsolution, we exists for all time. As in Theorem 2.3, we 
have W 8 ;:::: kx. Since x +max wo is a supersolution, we also have a uniform upper 
bound for we. To continue, we define 

and note that 

u: = u~x + f(u~) 0 <X< L, t > 0 

ue(O,t)=O 0 < t :::=:; te, 

u~(O, t) = o-1(s) t > te, 

ue(L, t) = 0 t > 0, 

ue(x, 0) = uo(x) 0 <X< L. 

Now u = u8 fort ::::; te and hence ve = u~ is uniformly bounded because it is 
continuous at (0, te) and v;(o, t) = 0 fort > te. The argument at the beginning of 
the section now provides a uniform cl+a,(l+a)/2 bound on the family (we) over any 
finite time interval (and the bound is independent of the time interval). It follows that 
(we) converges uniformly to a global, classical solution of 

Wt = Wxx + F(w)(wx- w;) 

Wx(O, t) = 1 

w(O, t) = 0 

Wx(L, t) = 1 

w(x, 0) = wo(x) 

Our continuation U of u is defined by 

0 <X< L, t > 0, 

0 < t::::; T, 

0 <X< L. 

t > T, 

t > 0, 

U(x, t) = 1L o- 1 (w(~, t))d~. 



820 MAREK FILA AND GARY M. LIEBERMAN 

Because u; (0, t) 2: 0 (so U8 cannot attain its maximum at x = 0), U is bounded 
from above by virtue of the proof of (1.11). 

Moreover, (1.6) implies that lim supV--+00 !' (v) = (X) and limx--+0 c-1 (w(x, t)) = 
oo fort 2: T8 • Hence, for any t > T8 , there is a sequence (xn) with Xn ---7- 0 such that 
f'(G- 1(w(xn, t))) ---7- oo. But 

f'(G-1(w))(1- Wx) = f'(ux) Ut 
f(ux) 

is bounded, so 1 - Wx (xn, t) ---7- 0. It follows from the continuity of Wx that, in fact, 
Wx (0, t) = 1 for all t > 0. This additional boundary condition can be viewed as 
justification of our continuation. 

When (1.7) is assumed rather than (1.8), the arguments of this section need only 
slight modification. As long as w < L1, we can follow our previous arguments 
exactly. But if U 8 exists fort < to, we can use the lower bound for u~(L, t) from 
Section 2. This bound is also valid up to time to and hence w 8 (L, t) is bounded 
away from L 1, so the maximum principle implies that w is bounded away from L 1 in 
[0, L] x [0, L- 0]. Therefore W 8 exists for all times and the uniform lower bound on 
u~ (L, t) allows all of our arguments to go through. In particular, w remains bounded 
away from L 1 for all time. 

4. Asymptotic behavior of U. When L 0 < L < L1, the asymptotic behavior 
of our continuation is easily studied. To simplify our notation, we set rp0 = -rp(L). 
In this case, from the proof of Theorem 2.2, we see that, for any 0' < 1 with 1 -_ 0' 

sufficiently small, there are positive numbers K and 8 such that 

1 
<jJ(x, t) = -rp(O'x)- K + 8t + rpo 

(J' 
(4.1) 

is asupersolution (even for our continuation by [10, Lemma3.1]) as long as <P (L, t) :::; 
0. Now, for any e > 0, there is 0' E (0, 1) (with 0' -7- 1 as e ---7- 0) such that 

1 
1-rp(O'x)-rp(x)l <B 

(J' 

for 0 < x < L, so, with this choice of 0' and t* = (K- e)/ 8, we have <P (L, t*) :::; 0. It 
follows from the comparison principle, applied to u and <P, that U (x, t*) 2: <P (x, t*) 2: 
rp(x) - 8 + rp0 . Applying the comparison principle now to U and rp- e + rpo shows 
that U 2: rp - 8 + rp0 . It follows that 

liminfU(x, t) 2: rp(x) + rpo. 
t--+00 

Similarly, if 0' > 1 with 0' - 1 sufficiently small, then 

1 
<t>(x, t) = -rp(O'x) + K- 8t + rpo 

(J' 
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is a supersolution as long as <l> (L, t) =::: 0. In this way, we see that also 

lim sup U(x, t)::::; cp(x) + CfJo· 
t---+00 

It follows that U converges to cp + cpa. Moreover, the convergence is uniform by our 
proof. Standard regularity theory (along with the uniform upper bound on Ux away 
from x = 0) shows that U converges in C2 norm uniformly on compact subsets of 
(0, L]. Applying the same regularity theory tow, we see that win fact converges in 
C 1[0, L] to the steady-state 1/f(x) =X. 

On the other hand, if L > L1, we fix xo E [0, L - L1) and define <l>(x, t) = 
cp(x- x0 , t), where cp is defined by (4.1). If a E (LI/(L- xo), 1) and 1 -a is 
sufficiently small, then <l> is a subsolution on [xo, xo + Lifa] x (0, oo) because 
<l>x(x0 , t) = oo and <l>(xo + L1, t) = -oo. Hence U must tend uniformly to infinity 
on any compact subinterval of [xo, xo + L1). It follows that U tends uniformly to 
infinity on any compact subinterval of [0, L). 
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