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Abstract

Background: As a promising way to transform medicine, mass spectrometry based proteomics technologies have

seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack

of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level

disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent

studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified

biomarker patterns to lose repeatability and prevents it from real clinical usage.

Methods: In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for

high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component

analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent

data characteristics and conduct de-noising. We further demonstrate DCA’s advantages in disease diagnosis by

viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the

reproducibility issue, besides comparing it with state-of-the-art peers.

Results: Our results show that high-dimensional proteomics data are actually linearly separable under proposed

derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only

overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an

effective resolution to overcoming proteomics data’s reproducibility problem and provides new techniques and

insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes

clinical level diagnostic performances reproducible across different proteomic data, which is more robust and

systematic than the existing biomarker discovery based diagnosis.

Conclusions: Our findings demonstrate the feasibility and power of the proposed DCA-based profile biomarker

diagnosis in achieving high sensitivity and conquering the data reproducibility issue in serum proteomics.

Furthermore, our proposed derivative component analysis suggests the subtle data characteristics gleaning and de-

noising are essential in separating true signals from red herrings for high-dimensional proteomic profiles, which

can be more important than the conventional feature selection or dimension reduction. In particular, our profile

biomarker diagnosis can be generalized to other omics data for derivative component analysis (DCA)’s nature of

generic data analysis.
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Background

With the surge in serum proteomics, large volumes of

mass spectral serum proteomic data are available to

make molecular diagnosis of complex disease pheno-

types possible. As a promising way to revolutionize

medicine, serum proteomics demonstrates a great

potential in identifying novel biomarker patterns from

the serum proteome for diagnosis, prognosis, and early

disease discovery [1-3]. However, high-performance dis-

ease phenotype discrimination remains a challenge in

translational bioinformatics due to special characteristics

of serum proteomics data, in addition to its well-known

data reproducibility issue, which means that no two

independent studies have been found to produce same

proteomic patterns [3-5].

A serum proteomic data set can be represented as a

matrix X ∈ ℜn×p after preprocessing, where each row

represents protein expression at a mass-to-charge (m/z)

ratio of peptides or proteins and each column represents

protein expression from a sample/observation (e.g., a

control or cancer subject) across all m/z ratios in experi-

ment. The number of rows is much greater than the

number of columns, p << n, that is #variables (peptides/

proteins) is much greater than #samples. Usually

n∼O(104), and p∼O(102). Although there are a large

amount of m/z ratios (peptides or proteins), only a few

numbers of them (e.g., peaks) have meaningful contribu-

tion to disease diagnosis and data variations. Moreover,

such data are not noise-free because normalization meth-

ods cannot remove built-in systems noise from mass

spectrometry technology itself [6,7]. In particular, the

high-dimensionality directly prevents conventional classi-

fication algorithms from achieving clinical rivaling dis-

ease diagnosis, limits its generalization capability or even

causes some regularity problem in classification [7].

Quite a lot feature selection methods have been

employed in serum proteomic data classification to glean

informative features, reduce dimension, or conduct de-

noising in order to achieve high accuracy disease diagnosis

[7-10]. It is noted that a feature refers to a row in a serum

proteomic data set, which are biologically peptides or pro-

teins. In this work, we categorize them into input-space

and subspace methods respectively. The former seeks a

feature subset X′ ∈ ℜm×p, m << n in the same space ℜn×p

as input data X by conducting a hypothesis test (e.g.,

t-test), or wrapping a classifier to features recursively; The

latter conducts dimension reduction by transforming

data X into a subspace S induced by a linear or nonlinear

transformation f : X → S where S = span(s1, s2 . . . sk),

k ≤ p ≤ n, k ≤ p ≤ n, and seeking meaningful linear com-

binations of features. For example, the subspace spanned

by all principal components when the transformation is

induced by principal component analysis (PCA) [11].

All subspace methods can be formulated as a matrix

decomposition problem: X∼SPT ,S ∈ ℜn×k,P ∈ ℜp×k where

different methods construct different basis matrices S and

different feature matrices P according to different termina-

tion conditions. For instance, nonnegative matrix factori-

zation (NMF) seeks nonnegative matrix decomposition

such that ||X∼SPT || is minimized under an Euclidean dis-

tance or K-L divergence [12,13]. In fact, almost all PCA,

ICA, and NMF ‘s extensions such as nonnegative principal

component analysis (NPCA), sparse NMF, and other

methods such as random projection methods all fall into

this category [8,12-16].

However, these methods may not always contribute to

improving diagnosis in serum proteomics robustly.

Instead, it was reported that classifiers integrated with

them may usually demonstrate large oscillations in per-

formance for different data sets and some even got

worse performance than the case without feature selec-

tion [7,8,10]. Moreover, there was no systematic work

on addressing the limitations of those feature selection

methods. In this work, we address these methods’ lim-

itations before introducing our novel derivative compo-

nent analysis (DCA).

Lack of de-noising schemes

The input-space methods usually lack de-noising

schemes and assume input data is clean or nearly clean.

Such an assumption can be true for the data that are by

nature clean or with quite low-level noise (e.g., financial

data). However, it appears to be inappropriate for serum

proteomics data since they usually contain nonlinear

noise from profiling systems, and technical/biological

artifacts. The noise would enter feature selection as out-

liers and produce less informative or even ad-hoc fea-

ture sets (e.g., peaks with less biological meaning),

which would lead to an inaccurate or even poor decision

function in classification and affect the disease pheno-

type diagnosis, generalization, and biomarker discovery

in translational bioinformatics.

Latent data characteristics missing

Those subspace methods have difficulties in capturing

subtle or latent data characteristics, because subspace

methods transform data into another subspace to seek

meaningful feature combination and original spatial

coordinates are ‘lost’, which makes it almost impossible

to track those features contributing to the behaviors. The

latent data characteristics refer to subtle data behaviors

interpreting transient data changes (we use words ‘subtle’

and ‘latent’ equivalently when describing data character-

istics in our context). Quite different from global data

characteristics that referring to the holistic data behaviors

interpreting long-time interval data changes, subtle data
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characteristics have to be represented by the first or even

high-level derivative of data mathematically [8,10].

We use principal component analysis (PCA) as an

example to address this issue. Given input data with zero

mean X ∈ ℜn×p, the subspace is spanned by selected PCs,

i.e. S = span(u1, u2, . . . uk)1 ≤ k ≤ p. Since each subspace

basis (PC) receives contributions from all features (pep-

tides/proteins) in the linear combinations, changes in one

feature will inevitably affect all bases globally. Although

it is biologically important to identity which protein/

peptide has more contributions to the data change, it is

quite hard to achieve it because their coefficients in the

linear combination are not usually comparable [6].

Moreover, subspace basis calculation does not involve

the feature derivative information or its related approxi-

mation, which causes each PC not to be able to capture

latent (subtle) data characteristics well. As such, only glo-

bal data characteristics can be captured well and subtle

data characteristics, which are essential in achieving high

performance diagnosis, may be totally missed. For exam-

ple, some malignant and benign tumors may have similar

global data characteristics but different subtle data char-

acteristics in serum profiling. As such, detecting subtle

data characteristics is essential to achieve a clinical level

diagnosis.

Although various subspace methods such as sparse-

PCA, nonnegative-PCA, and sparse-NMF [12,8,14,16],

have been proposed to enhance subtle data characteristics

capturing by imposing non-negativity or sparsity con-

straints in order to seek subspace bases through solving a

nonlinear optimization problem, they are usually charac-

terized by high complexities (e.g., nonnegative PCA [6,8])

and none of them seems to be able to catch subtle data

characteristics by examining the features ‘beyond’ their

original data level.

In this work, we propose a de novo derivative compo-

nent analysis (DCA), which evolves from author’s pre-

vious work in gene and protein expression omics data

analysis [8,9], to overcome the current feature selection

methods’ weaknesses for the sake of clinical level disease

diagnosis in serum proteomics. It is worthwhile to point

out that our DCA is a novel machine learning algorithm

based on our global and local feature selection theory

proposed in [8], which is more complicated and power-

ful than the serum proteomics data analysis methods

that straight-forwardly apply wavelet transforms to a

proteomic sample and conduct classic statistical tests to

following wavelet coefficients [17]. Our DCA employs

discrete wavelet transforms (DWT) [18] to look at

serum proteomics data in ’multiple windows’ to extract

latent data characteristics and achieve de-noising by

retrieving ‘data derivatives’.

Furthermore, we employ benchmark serum proteomic

data to demonstrate DCA’s superiority in disease diagnosis

by proposing a novel diagnosis algorithm DCA-SVM and

comparing it with the other state-of-the-art peers. The

exceptional performance of our DCA-SVM suggests it can

be a potential way to overcome the serum proteomics’

reproducibility by viewing input data as a profile biomar-

ker. As a key result in this work, we present DCA-MARK,

a DCA-based biomarker discovery algorithm that strongly

demonstrates high-dimensional serum proteomics data’s

linear separability, which not only has an important mean-

ing in machine learning, but also has practical impacts on

translational bioinformatics for its novelty. To the best of

our knowledge, it is the first work that is able to linearly

separate high-dimensional serum proteomic data with few

biomarkers.

Derivative Component Analysis (DCA)

Different from its conventional definition, a feature is no

longer viewed as an indecomposable information unit in

DCA. Instead, all features are hierarchically decomposed

into different components to discover data derivatives to

capture subtle data characteristics and conduct de-nois-

ing. The proposed derivative component analysis (DCA)

consists of the following three steps.

First, a discrete wavelet transform (DWT) is applied to

all features to decompose it hierarchically as a set of

detail coefficient matrices cD1, cD2 . . . cDJ and an

approximation matrix cAJ under a transform level J.

Since DWT is done on a set of dyadic grid points hier-

archically, the dimensionalities of the approximation and

detail coefficient matrices shrink dyadically from level 1

to level J [17]. For example, given a proteomic data set

with 10 samples across 1024 m/z ratios under a DWT

with a transform level J = 5, cD1 is a 10 × 512 matrix

and cD2 is 10 × 256 matrix. Similarly, cD5 and cA5 both

are 10 × 32 matrices.

The approximation matrix and coarse level detail coeffi-

cient matrices (e.g., cDJ) capture the global data character-

istics, because they contain contributions from the

features disclose slow changes in ‘long-time windows’, if

we view each m/z ratio as a corresponding time point in

our context. Similarly, the fine level detail coefficient

matrices (e.g., cD1, cD2), capture subtle data characteris-

tics, because they contain contributions from the features

that disclose quick changes in ‘short-time windows’. In

fact, the fine level detail matrices are components to

reflect data derivatives in different time windows. Further-

more, most system noises are hidden in these components

for its heterogeneity with respect to true signals. In sum-

mary, the first step separates global characteristics, subtle

data characteristics, and noise in different resolutions.

Second, retrieve the most important subtle data beha-

viors and remove noise by reconstructing the fine level

detail coefficient matrices before or at a presetting cutoff

level τ (e.g.,τ = 3). Such construction consist of two
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steps: 1) Conduct principal component analysis (PCA)

for the detail matrices cD1, cD2 . . . cDτ 2) Reconstruct

each detail coefficient matrix by using its first m leading

loading vectors, i.e., principal components, in its each

principal component (PC) matrix. Usually, we set m = 1,

i.e., we employ the first principal component to recon-

struct each detail coefficient matrix, which means we

only retrieve the most important subtle data characteris-

tics in detail coefficient matrix reconstruction. In fact,

the first PC based reconstruction also achieves de-nois-

ing by suppressing noise’s contribution in the detail

coefficient matrix reconstruction because noise has is

usually unlikely to appear in the 1st PC.

On the other hand, the coarse level detail coefficient

matrices after the cutoff τ: cDτ+1, cDτ+2 . . . cDJ and

approximation coefficient matrix cAJ are kept intact to

retrieve global data characteristics. In fact, parameter m

can be also determined by using a variability explanation

ratio ρm defined as follows, such that it is greater than a

threshold ρ (e.g., ρ = 60%), which is the variability expla-

nation ratio by the first principal component of those

detail coefficient matrices before or equal the cutoff.

Variability explanation ratio

Given a data set with n variables and p observations,

usually, p < n, the variability explanation ratio is the

ratio between the variance explained by the first m PCs

and the total data variances: ρm =
m
∑

i=1

σi/
p

∑

i=1

σi, where σj is

the variance explained by the jth PC, which is actually

the jth eigenvalue of the covariance matrix of the input

proteomic data.

It is noted that such a selective reconstruction process

in the second step extracts the most important subtle

data characteristics and conduct de-noising by suppres-

sing the contribution from system noise. This is because

only one or few principal components are employed in

reconstructing each targeted fine level coefficient matrix
cDj and those less important and noise-contained princi-

pal components are dropped in reconstruction.

Third, conduct the corresponding inverse DWT by

using the current detail and approximation coefficient

matrices to obtain an meta-data X∗ that is the corre-

sponding de-noised data set with subtle data characteris-

tics extraction and system noise removal, because of the

highlight of the most significant subtle data behaviors in

the “derivative components” based reconstructions. The

meta-data are just ‘true signals’ separated from red her-

rings that share the same dimensionality with the origi-

nal data but with less memory storage because less

important PCs are dropped in our reconstruction.

It is noted that, unlike traditional feature selection

methods, DCA is an implicit feature selection method,

where useful characteristics are selected implicitly with-

out an obvious variable removal or dimension reduction.

Algorithm 1 gives the details about DCA as follows,

where we use XT instead of X to represent input proteo-

mic data for the convenience of description, i.e. each

row is a sample and each column is a feature in the cur-

rent context.

Algorithm Derivative Component Analysis (DCA)

1. Input: XT = [x1, x2, . . . xn] xi ∈ ℜp,DWT level J;

cutoff τ; wavelet ψ , thereshold ρ,

2. Output: Meta-data XT
∗

3. Step 1. Column-wise discrete wavelet transforms

(DWT)

4. Conduct J-level DWT with wavelet ψ for each col-

umn of XT to obtain [cD1, cD2 . . . cDJ ; cAJ], cDj ∈ ℜpj×n,

cAJ ∈ ℜpJ×n, and pj =
[

p/2j
]

, j = 1, 2, . . . J.

5. Step 2. Derivative component analysis for latent

data characteristics extraction and de-noising

6. for j = 1 to J

7. if j ≥ τ

8. a) Do principal component analysis for each detail

matrix cDj to obtain its PC and score matrix,

9. U = [u1, u2, . . . up], ui ∈ ℜn and S = [s1, s2 . . . spJ
],

i = 1, 2, · · · pj i = 1, 2, · · · pj

10. b) Reconstruct matrix cDj by employing first m

principal components u1, u2, . . . um, s.t. ρm ≥ p

11. cDj ← cDj × (I × IT)/p
j
+

m
∑

i=1

ui × sT
i , I = [1, 1, · · · 1]T ∈ ℜpj

12. end if

13. end for

14. Step 3. Approximate the original data by the

inverse discrete wavelet transform

15. XT
∗ ← inverseDWT([cD1 , cD2 . . . cDJ; cAJ]) with the

wavelet ψ

Tuning parameters in derivative component analysis

Although an optimal DWT level can be obtained theore-

tically by following the maximum entropy principle [19],

it is reasonable to adaptively select the DWT level

J according to the ’nature’ of input data, where large

#samples corresponds to a relatively large J value, for the

convenience of computation. Although the convolution

in the DWT always introduces a few extra entries into

each feature’s corresponding detail coefficient vector in

cDj+1 such that its length is slightly more than the half

of that of in cDj [18], we have found that a large trans-

form level does not show advantages compared with the

a small transform level in feature selection. However, a

small transform level (e.g., J = 3) may bring some hard

time in separating subtle and global data characteristics

because of the limited choice for the cutoff τ. As such, we

select the DWT level as 4 ≤ J ≤
⌈

log2p
⌉

considering the

magnitude level of the #samples, i.e. p∼O(102) for a pro-

teomics data set. Correspondingly, we empirically set the
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cutoff as 1 < τ ≤ J/2 to separate the fine and coarse level

detail coefficient matrices for its robust performance.

Furthermore, we require the waveletψ in the DWT to be

orthogonal and have compact supports such as Daubechies

wavelets (e.g., ‘db8’), for the sake of the subtle data beha-

vior capturing. The variability explanation ratio threshold

is usually set as r ≥ 60%, which means the reconstructed

fine level detail coefficient matrix cDj (1 ≤ j ≤ τ) contains at

least 60% variances of the original one, to retrieve the most

important subtle data behaviors interpreted by cDj. Inter-

estingly, we have found that the first PC of each fine-level

detail coefficient matrix usually count quite a high variabil-

ity explanation ratio (e.g. >60%) for each fine-level detail

coefficient matrix cDj (1 ≤ j ≤ τ ). Thus, we relax the varia-

bility explanation ratio threshold r by only using the first

PC to reconstruct each cDj matrix to catch the subtle data

characteristics along the maximum variance direction. In

fact, we have found that using more PCs in the fine-level

detail coefficient matrix reconstruction does not demon-

strate advantages in subtle data characteristics extraction

and de-noising than using the first PC.

Figure 1 shows the meta-data of a feature obtained by

DCA on Ovarian-qaqc data with 95 controls and 121

ovarian cancer samples across 15,000 m/z ratios [20], and

its two level detail coefficient reconstructions under DCA

with τ=2, J = 7, and wavelet ’db8’. Interestingly, the meta-

data are smoother and have values in a smaller range than

the original feature for its subtle data characteristics cap-

turing and de-noising, which reflect the true expression of

the peptides/proteins at the m/z ratio better. In other

words, DCA provides a ‘zooming’ mechanism to capture

the original data’s subtle behaviors that are usually latent

in general feature selection methods. It is noted that simi-

lar results can be obtained for other mass spectral proteo-

mic profiles also.

In fact, the meta-data obtained from DCA can be viewed

as “true signals” separated from red herrings for each

serum proteomics data set. Figure 2 shows the true signals

of the 10 cancer and control samples, which are randomly

selected from Colorectal data [17] with total 48 controls

and 64 cancer samples across 16,331 m/z ratios, extracted

by our DCA under the cutoff τ=2, transform-level J = 7,

and wavelet ’db8’. For the convenience of description, true

signals are highlighted between 1,400 Da and 1,500 Da.

Interestingly, the each type of samples in the extracted

true signals appear to be smoother and more proximal to

each other besides demonstrating less variations, because

of major subtle data characteristics extraction and system

noise removal. Obviously, from a classification viewpoint,

these true signals will contribute to high accuracy diag-

noses than the original proteomic data, because the built-

in noises and redundant global data characteristics would

have a much lower chance to get involved in classification

due to derivative component analysis. Instead, subtle data

characteristics would have a greater chance of participat-

ing in the decision rule inference.

Disease diagnosis with Derivative Component Analysis

Since DCA can separate true signals from red herrings

by extracting subtle data characteristics and removing

Figure 1 A feature in Ovarian-qaqc data and its meta-data computed from DCA. The detail coefficients cD1,cD2 (blue color) and their first

PC reconstructions (red color) in DCA.
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built-in noises, it is natural to combine DCA with the

start-of-the-art classifiers to demonstrate its effective-

ness in serum proteomic disease diagnosis. We choose

support vector machines (SVM) for its efficiency and

popularity in translational bioinformatics [21]. As such,

we propose novel derivative component analysis based

support vector machines (DCA-SVM) to handle serum

proteomic disease diagnosis, which is equivalent to a

binary or multi-class classification problem. Thus, we

briefly describe the corresponding binary and multiclass

DCA-SVM as follows.

Given a binary type training samples X = [x1, x2, · · · xp]T

and their labels {xi, ci}
p
i=1, ci ∈ {−1, 1} its corresponding

meta-data Y = [y1, y2, · · · yp]T are computed by using

DCA, Then, a maximum-margin hyperplane:

Oh : wTy + b = 0 in ℜn is constructed to separate the ‘+1’

(’cancer’) and ‘-1’ (’control’) types of the samples in the

meta-data Y, which is equivalent to solving the following

quadratic programming problem (standard SVM, i.e.,

C-SVM):

min
w,b,ξ

1

2
||w||22 + C

∑p

i=1
ξi

s..t. ci(w
Tyi + b) ≥ 1 − ξi, = 1, 2 . . . p

ξi ≥ 0

(1)

The C-SVM can be solved by seeking the solutions to

the variables α1 of the following Lagrangian dual problem,

max α
∑p

i=1
αi −

1

2

∑p

i=1

∑p

j=1
αiαjcicjy

T
i yj

s..t.
∑p

i=1
αici = 0, 0 ≤ αi ≤ Ci, i = 1, 2, . . . p

ξi ≥ 0

(2)

The normal of the maximum-margin hyperplane can

be calculated by the equation s =
∑p

i=1 αiciyi, where the

sparsity of variables α1 i = 1,2,...p, makes classification

only dependent on few training points, which are few

cancerous patients or healthy subjects in the proteomics

data used for training. The decision function

f (x′) = sign(
∑p

i=1 αik(yi • y′) + b is used to determine the

class type of a testing sample x′, where y′ is its corre-

sponding meta-sample computed from DCA. The func-

tion k(yi • y′) is a kernel function mapping y and y′ into a

same-dimensional or high-dimensional feature space. In

this work, we employ the ’linear’ kernel k(x • y) = (x • y)

for its simplicity and efficiency (more detailed reason for

such a kernel selection can be found in the following sec-

tion). Such a decision function answers the query: ‘is this

proteomic sample is from a patient with a specified dis-

ease or a normal individual?’

Our multiclass DCA-SVM algorithm employs the ’one-

against-one’ for its proved advantage over the ’one-against-

all’ and ’directed acyclic SVM’ methods [21,22]. The ’one-

against-one’ method builds k(k-1)/2 binary SVM classifiers

for a data set with k classes {1,2,...k}, each of which corre-

spond to a pathological state. Each classifier is trained on

data from two classes, i.e. training samples are from the i-

th and j-th classes, i, j = 1, 2 ... k. After building all k(k-1)/2

classifiers, we employ the ’Max-wins’ voting approach to

infer its final class type: if the local decision function says

x′ is in the class i, then the class i wins one vote; Other-

wise, the class j wins one vote. Finally, sample x′ will

belong to the class with the largest vote.

The DCA-SVM ‘s advantages over SVM in disease diagnosis

It is worthwhile to point out that, compared with the

standard SVM, our DCA-SVM has a different feature

Figure 2 The true signals of 10 cancer and control samples of the Colorectal data between 1400-1500 Da.
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space due to the true-signals extraction from DCA,

which leads to a more robust decision rule than the

standard SVM (C-SVM) for inviting the de-noised data

with the subtle data characteristics in the optimal hyper-

plane construction. Obviously, the decision rule inferred

from our DCA-SVM would avoid the traditional bias

from that of the standard SVM. On the other hand, the

standard SVM’s feature space usually contains noises

from input proteomic data, and misses the subtle data

characteristics, which limit the classifier’s performance

and lead to a biased, global data characteristics favored

decision rule.

Alternatively, the DCA-SVM ‘s feature space contains

‘de-noised’ true signals with the subtle data characteris-

tics, which avoids the global data characteristics favored

decision rule inference because the subtle data charac-

teristics are also invited in SVM hyperplane construc-

tion besides the global data characteristics. As such, the

DCA-SVM can efficiently detect those samples with

similar global characteristics but different subtle charac-

teristics in disease diagnosis than the standard SVM,

which contributes to the high accuracy diagnosis.

Results

We demonstrate our DCA-SVM can achieve rivaling-

clinical diagnosis by using five benchmark high-dimen-

sional serum proteomic data sets [17,20,23-25] and

compare it with state-of-the-art peers on these data. We

introduce details about the data sets as follows.

Data sets

The benchmark data sets used in the experiment are het-

erogeneous data generated from different experiments via

different high-resolution serum profiling technologies

such as MALDI (matrix-assisted laser desorption)-TOF

(time-of-flight), SELDI (surface enhanced laser desorption

and ionization)-TOF (time-of-flight), and SELDI-QqTOF

(quadrupole time-of-flight). The details of the data sets are

as follows.

Cirrhosis data set is a three-class MALDI-TOF serum

proteomic data with total 201 spectra that consisting of

72 samples from healthy individuals, 78 samples from

patients with hepatocellular carcinoma (HCC), the most

common liver cancer, and 51 samples form cirrhosis

patients, across 23,846 m/z ratios [24]. As the major

cause of hepatocellular carcinoma, cirrhosis can be

viewed as a key intermediate stage pathologically between

a normal state and a state with hepatocellular carcinoma.

Colorectal (CRC) data set consists of 48 control and

64 cancer spectra across 16,331 m/z values [17], which

are selected from the raw data with 65, 400 m/z values

profiled by MALDI-TOF technologies to cover a range

from 0.96 to 11.16 kDa; HCC data set is a binary

SELDI-QqTOF proteomic data with total 358 spectra

that consisting of 181 controls and 176 cancers across

6,107 m/z ratios, which are selected from about 340,000

m/z values through a binning procedure for original

mass spectra [23]. As a well-known benchmark data,

Ovarian-qaqc data consist of 95 controls and 121

ovarian cancers across 15,000 m/z values, which is a

high-resolution serum proteomics data produced by

SELDI-TOF profiling [20]. Toxpath data were generated

from a toxicoproteomics experiment to conduct serum

proteomic diagnosis for doxorubicin-induced cardiotoxi-

city by Petricoin et al [25]. This data set has 115 mass

spectra consisting of 28 normal, 43 potential normal,

34 cardiotoxicities, and 10 potential cardiotoxicities,

across 7,105 m/z values, which were obtained by a

binning procedure from ~350,000 m/z values in the

raw data.

It is worthwhile to point out that these data sets are

preprocessed by different methods. In fact, we conducted

baseline correction, smoothing, normalization, and peak

alignment for the Ovarian-qaqc data. The baseline for

each profile was estimated within multiple shifted win-

dows of widths 200 m/z, and the spline approximation

was employed to predict the baseline. The mass spectra

were further smoothed using the ‘lowess’ method, and

normalized by standardizing the area under the curve

(AUC) to the group median [26]. Alternatively, we only

conducted the baseline correction, normalization and

smoothing for the HCC and Cirrhosis, HCC and ToxPath

data (The smoothing method is selected as a different

‘least-square polynomial’ algorithm) [25,26]. We did not

conduct our own preprocessing for the Colorectal data

because it was preprocessed data [17]. Table 1 sketches

the basic information about the five mass spectra data.

The state-of-the-art comparison algorithms in proteomic

diagnosis

We compare our DCA-SVM based profile biomarker

diagnosis with following state-of-the-arts in this work.

They include a partial least square (PLS) based linear

logistic discriminant analysis (PLS-LLD) [27,28], standard

SVM [21], a SVM combining with principal component

analysis: PCA-SVM [8], and a SVM with input-space fea-

ture selection: fs-SVM.

These comparison classifiers can be categorized into

three groups, i.e., The group 1 only consists of standard

SVM itself; The group 2 consists of those classifiers

integrating SVM with input space and subspace feature

selection methods respectively, i.e., PCA-SVM and fs-

SVM; The group 3 consists of a non-SVM classifier,

which employs partial least square (PLS) to conduct

dimension reduction for linear logistic discriminant ana-

lysis [27,28]. The reason we select PLS-LLD classifier is
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that it generally outperforms the other similar non-SVM

(e.g., PCA-LDA) methods according to our implementa-

tions and Sampson et al ‘s work [29].

It is noted that we employ two different input-space

methods: t-test and anona1 (one-way ANOVA) in fs-SVM

to conduct feature selection for binary and multi-class

data respectively [30]. Since serum proteomics data usually

follow or approximately follow a normal distribution after

normalization, it is reasonable to use a two-sample t-test

to rank each feature under a binary case. For multi-class

data such as Cirrhosis and Toxpath, we use one-way

ANOVA (anova1) to identify its statistically significant fea-

tures [30]. As such, we select a feature set including all

features with p-values < 0.05 under the t-test and anova1

for each data. Moreover, since the PLS-LLD classifier

involved matrix inverse calculation, which is notorious for

its high computing demand for a large matrix (e.g., a 5,000

× 5,000 matrix), we only pick 2000 top-ranked features

from for this method to avoid large computing overhead.

Kernel selection, cross validation, and parameter setting

It is noted that we employ the ’linear’ kernel

k(x, y) = (x • y) in all SVM-related classifiers for its effi-

ciency in omics data classification, rather than nonlinear

kernels (e.g., Gaussian kernels). In our previous work, we

actually have pointed out that nonlinear kernels (e.g., Gaus-

sian kernels) would lead to overfitting for gene expression

and proteomics data [6,8]. Although Gaussian kernels are

quite popular in serum proteomics diagnosis, it would give

deceptive diagnosis due to overfitting [6]. In fact, we will

show serum proteomics data diagnosis is a linear separable

problem, for which a linear kernel should be the optimal

kernel selection in next section.

To avoid potential biases from presetting training/test

data partition on classification, we employ the k-fold

(k = 5) cross-validation in our experiments to evaluate

the five classifiers’ performance for all data sets instead of

the independent test set approach. In the 5-fold cross-

validation, proteomic samples are randomly partitioned

into k = 5 folds equally, k = 4 folds are used as training

data each time, the fold left is used for evaluation. Such a

process is repeated k = 5 times. In addition to choosing

the first ten PLS components in the PLS-LLD classifier,

we uniformly set the transform level J = 7; cutoff τ = 2;

and apply the first loading vector based detail coefficient

matrix reconstruction in DCA for all data sets for the

convenience of comparison, though these parameter set-

ting may not be optimal.

Diagnostic performance measures

Before we demonstrate our profile biomarker approach’s

advantages. We introduce several key diagnosis perfor-

mance measures, which are diagnostic accuracy, sensi-

tivity, specificity and positive predication ratios, as

follows. The diagnostic accuracy is the ratio of the cor-

rectly classified test samples over total test samples. The

sensitivity, specificity, and positive predication ratio are

defined as the rates TP/(TP+FN), TN/(TN+FP), and TP/

(FP+TP) respectively, where TP (TN) is the number of

positive (negative) targets (a positive (negative) target is

a proteomic sample with ‘+1’ (’-1’) label) correctly diag-

nosed and FP (FN) is the number of negative (positive)

targets incorrectly diagnosed by the classifier (e.g.,

SVM). It is noted that the sensitivity, specificity, and

positive predication ratio for multiclass data Cirrhosis

and Toxpath are obtained by treating them as a corre-

sponding binary data. For instance, we group 78 HCC

and 51 cirrhosis samples into a same class type.

Figure 3 compares the DCA-SVM’s average diagnosis

and its standard deviations with those of the comparison

algorithms. We have found that proposed DCA-SVM

achieves a nearly rivaling-clinical level diagnosis and

demonstrates strongly leading advantages over its peers

in a stable manner. Alternatively, those comparison

algorithms seem to show quite large level oscillations

that indicate that the classifiers lack stability and good

generalization capacities across different data sets, which

probably exclude themselves as candidates for clinical

proteomics diagnosis.

For example, DCA-SVM achieves 99.52% (sensitivity:

100%, specificity: 99.17%), 100% (sensitivity: 100%, specifi-

city: 100%), and 99.44% (sensitivity: 98.00%, specificity:

100%) diagnostic accuracies on the Ovarian-qaqc, Colorec-

tal and HCC data respectively. However, the SVM classi-

fier only attains corresponding 97.68% (sensitivity: 96.78%,

specificity: 98.40%), 96.48% (sensitivity: 96.92%, specificity:

95.78%), 87.93% (sensitivity: 90.32%, specificity: 85.62%)

diagnostic accuracies respectively for these three data sets.

Such a consistently leading performance is highlighted

further in multiclass phenotype diagnosis. Our DCA-

SVM algorithm reaches 97.50%, 99.01% diagnostic rates

for Toxpath and Cirrhosis data respectively. However,

the SVM classifier can only achieve 75.80% and 88.06%

diagnosis for the same data sets respectively.

Although the input-space or subspace methods may

boost diagnosis sometimes for binary-type data set (e.g.,

for HCC data PCA-SVM, fs-SVM attains 93.56% and

Table 1 Benchmark proteomic data

Data #Feature #Sample Platform

Cirrhosis 23846 72 controls +
78 HCCs +
51 cirrhosis

MALDI-TOF

Colorectal 16331 48 controls + 64 cancers MALDI-TOF

HCC 6107 181 controls +176 cancers SELDI-QqTOF

Ovarian-qaqc 15000 95 controls + 121 cancers SELDI-TOF

ToxPath 7105 28 normals +
43 potential normals +
34 cardiotoxicities +
10 potential cardiotoxicities

SELDI-QqTOF
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90.18% diagnosis which are higher than the 87.93% diag-

nostic ration from the SVM classifier), they seem not be

able to increase a SVM classifier’s diagnosis and genera-

tion abilities significantly, especially for multiclass data.

For instance, the fs-SVM and PCA-SVM both have

lower or the same level diagnosis than the original SVM

without feature selection on Toxpath and Cirrhosis data.

This may suggest the selected features’ unpredictable

impacts on serum proteomics diagnosis due to the input

and subspace feature selection methods’ limitations in

de-noising and latent data characteristics capturing.

In contrast to the proposed DCA-SVM algorithm, all

the comparison algorithms including PLS-LLD, which

achieves slightly better diagnosis than SVM, PCA-SVM,

and fs-SVM, shows high-level oscillations in diagnosis

like the others, across different data. It is noteworthy

that the high-level oscillations in diagnosis is further

highlighted by corresponding large standard deviation

values in diagnosis from those classifiers in Figure 3,

where DCA-SVM demonstrates its good stability and

generalization for its smallest standard deviation values

across all the data sets.

We have to point out that such an excellent perfor-

mance is because DCA forces the SVM hyperplane con-

struction to rely on the both latent and global data

characteristics in a de-noised feature space under a lin-

ear kernel, which contributes to a robust and consistent

high-accuracy diagnosis. Such consistent performance

applies all five data sets, which prevents from any possi-

ble overfitting possibility. On the other hand, just as we

pointed out in our previous work, overfitting always

happens on nonlinear kernels (e.g., Gaussian kernels) in

omics data classification [6,8].

A potential solution to overcome the data reproducibility

Figure 4 compares the performance of five classifiers

across four data sets under k-fold (k = 5) cross validation

in terms of diagnostic accuracy, sensitivity, specificity and

positive predication ratios. It seems that DCA-SVM has

attained strong advantages over its peers in terms of diag-

nostic measures. In fact, all classifiers except DCA-SVM

Figure 3 Comparing DCA-SVM based profile-biomarker diagnosis’ average diagnostic accuracies and its standard deviations with

those of other peers.
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show relatively high-level oscillations for these diagnostic

measures. For example, fs-SVM achieves 96.48% diagno-

sis for the Colorectal data but only 70.47% for the Tox-

path data. To further demonstrate DCA’superiority in

serum proteomics data diagnosis, we compare DCA-

SVM results with those previous results obtained for

these data sets in the literature as follows.

For Colorectal data, a 97.5% diagnosis accuracy with sen-

sitivity 98.4% and specificity 95.8% were attained under

5-fold cross-validation in [17], where a wavelet transform is

directly applied to each proteomic sample by applying

Kolmogorov-Smirnov (KS) and Mann-Whitney (MW)

tests to the wavelet coefficients before calling a standard

SVM classifier [30]. However, our DCA-SVM achieves

100% diagnosis accuracy with sensitivity 100% and specifi-

city 100%. It is worthwhile to point out that our compari-

son algorithms: fs-SVM and PLS-LLD have attained

96.48% (sensitivity: 96.92%, specificity: 95.78%), and 97.31%

(sensitivity: 96.00%, specificity: 98.46%) diagnosis accuracies

with very general feature selection under 5-fold CV ([14]

uses a double CV consisting of 5-fold CV and leave-one-

out CV).

For HCC data, a ~90%+ diagnosis accuracy with sensi-

tivity 91% and specificity 92% is achieved by a particle

swarm optimization based support vector machines (PSO-

SVM) with baseline selection under a 10-fold cross-valida-

tion [23]. Instead, our DCA-SVM achieves 99.44% diagno-

sis accuracy (sensitivity: 99.44%, specificity: 99.44%) under

5-fold CV. In fact, all comparison algorithms expect SVM

achieves same or high level performance than the previous

PSO-SVM approach.

For Ovarian-qaqc data, our DCA-SVM achieves a

99.53% clinical-level diagnosis accuracy with sensitivity

98.95% and specificity 100%, which is better than the

original diagnosis level obtained in [23] and all the other

peers; For Cirrhosis data, Ressom et al partitioned this

three-class data into two binary data sets and proposed

a novel hybrid ant colony optimization based support

vector machines (ACO-SVM) to achieve 94% and 100%

specificity to distinguish hepatocellular carcinoma

(HCC) from Cirrhosis [24]. There was no result available

to distinguish normal, HCC, and cirrhosis in a multi-

class diagnostic way. However, our proposed DCA-SVM

has achieved 99.01% diagnosis accuracy for this multi-

class data sets; The DCA-SVM achieves a rivaling clini-

cal diagnosis accuracy 97.5% for the Toxpath data,

which is a subset of the original data with 203 samples

in [25] (we remove the 88 samples whose class-type is

‘unknown’ to avoid ambiguity in diagnosis).

It is noted that those algorithms applied to these data

sets are generally individualized methods designed for a

specific proteomics data. However, our proposed deriva-

tive component analysis based classifier (DCA-SVM) can

apply to all data sets generated from different experi-

ments and profiling technologies with rival-clinical diag-

nosis. Moreover, since DCA outputs a same-dimensional

meta-data for each input proteomics data, it seems to be

able to provide a potential profile-biomarker approach to

overcome the data reproducibility issue by viewing the

meta data as a uniform profile-biomarker by employing

DCA-SVM to achieve rivaling-clinical diagnosis. To

some degree, DCA and DCA-SVM show some promising

Figure 4 Comparing profile-biomarker diagnosis’ diagnostic accuracies, sensitivity, specificity, and positive predication ratio with

those of other peers across four proteomics data under 5-fold cross validation.
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to use a profile-biomarker way to resolve such a problem

for its latent data characteristics extraction and excep-

tional diagnosis.

Serum proteomics data are linearly separable

Our DCA-SVM algorithm’s rivaling clinical level perfor-

mance may suggest that serum proteomic data classifi-

cation can be a linearly separable problem under

appropriate feature selection. Such a proposition would

provide a direct theoretical support to clarify some

doubts about the nonlinearity in serum proteomics data

may prevent it from complex disease diagnosis clinical

routine [3,5,17], and suggest feasibility to conduct dis-

ease phenotype discrimination by using few biomarkers.

In other words, if serum proteomics data are linearly

separable, then, using biomarker patterns can guarantee

disease phenotype discrimination, which is a key in early

cancer discovery. Otherwise, seeking biomarker patterns

only have a partial meaning if serum proteomics data

are linearly non-separable or nonlinear because these

biomarkers cannot attain 100% or rival clinical (e.g.,

99%) disease phenotype separation. Moreover, serum

proteomics data are linearly separable indicates ‘linear ’

kernels rather than nonlinear ones would be optimal

one for SVM in disease diagnosis. We sketch the defini-

tion of a linear separable problem as follows.

Linearly separable problem

A linearly separable problem can be simply described as

follows. Given P = [x1, x2, · · · xN]T , Q = [y1, y2, · · · yM]T ,
i = 1, 2, · · · N, i = 1, 2, · · · N, j = 1, 2, · · · M, if there exists

a hyperplane H: wTv + b = 0, w, v, ∈ ℜn, b ∈ ℜ, such that
∀y ∈ Q, ∀y ∈ Q, wTx + b > 0 and wTy + b < 0, then P

and Q are linearly separable data, i.e. classifying P and

Q is a linearly separable problem. In other words, it is

equivalent to mapping entries in P and Q to two differ-

ent types of labels (e.g., +1 and -1) respectively. Such a

definition can be extended similarly to more than two

sets, e.g., P1; P2...Pm, m ≥ 2, which is equivalent to map-

ping the m sets to the labels 1,2,...m respectively.

It’s clear to see that binary and multiclass SVMs by nat-

ure are linear separable test methods for its optimal hyper-

plane construction. However, due to the fact that serum

proteomic profiles are noisy data with redundant informa-

tion, it is rather difficult to draw a conclusion that they are

linearly separable data because of its relatively low classifi-

cation accuracies from most SVM classifier.

However, the DCA-SVM’s exceptional performance

reaches 99.53% 99.44%, 100%, for Ovarian-qaqc, HCC,

and Colorectal, respectively, which strongly demonstrates

they are linearly separable data. Although DCA-SVM only

achieves 97.50% and 99.01% for Toxpath and Cirrhosis

respectively, which are much better than those of the

state-of-the-arts, we still believe the performances indicate

these serum proteomic data are linearly separable,

considering possible factors to lead to small misclassifica-

tions such as complexities of multi-class SVM hyperplane

construction, possible numerical artifacts in SVM algorithm

implementations, and small likelihoods that the SVM deci-

sion function may not provide a deterministic answer [21].

Thus, DCA-SVM disease classification results demonstrate

that these high-dimensional data are actually linearly separ-

able in a de-noised feature space when their latent data

characteristics are extracted by DCA. Alternatively, it

means the linear kernel is the optimal kernel for SVM.

DCA-MRAK: a DCA-induced biomarker discovery

Motivated by DCA-SVM’s exceptional performance, we

present a DCA-induced biomarker discovery algorithm:

DCA-MARK to further validate the linear separability of

serum proteomics data, where each biomarker can be

viewed as a statistically significant feature with respect

to the others [30]. That is, we demonstrate a serum pro-

teomic data set ‘s linear separability by employing the

few biomarkers discovered from its meta data obtained

from DCA. We will demonstrate that these biomarkers

from DCA-MARK can easily separate disease phenotype

completely for high-dimensional proteomics data. To

the best of our knowledge, there is no similar result

available in the previous research. The DCA-MARK can

be sketched as follows.

1). Given an input dataset X ∈ ℜn×p, we seek the bio-

markers by looking at its meta data X∗ from DCA

through scoring and ranking each feature in X∗ by using

the t-statistic for the binary data and F-statistic for the

multiclass data [30].

2). Given a feature in a binary-class dataset
x = x1 · · · xn1+1 · · · yn1+n2 in X∗, the t-statistic is calculated

as t = |x − y|/
√

s2
x /n1 + s2

y /n2, where x, y, s2
x , s2

y are the mean

and variance values of the two classes of entries in the

feature x. In practice, we can employ the pooled variance

estimation to calculate a same variance for two types of

entries as s2
p = ((n1 − 1)s2

x + (n2 − 1)s2
y )/(n1 + n2 − 2).

3). Given a feature in a multi-class dataset with

k > 2 classes, the F-statistic is calculated as

F =
∑k

j=1
nj/(x

∗
j − x∗)

2
/(k − 1)/

∑k

j=1
(nj − 1)s2

j /(nT − k)), where nj

is the sample size, parameters x∗
j and s2

j are the sample

mean and sample variance for the j-th class.

x∗ =
∑k

j=1

∑nj

i=1 x∗
ij/nT is the overall sample mean where x∗

ij

is the expression value of i-th observation for the class j

and nT =
∑T

j=1 nj is the total sample size for the k groups.

4). The biomarkers are the top-ranked features with

the largest statistic values or the smallest p-values, i.e.

we pick the three top-scored biomarkers for the sake of

3-dimensional visualization convenience.
Figure 5 illustrates the separation of four benchmark

data sets with three top-ranked biomarkers (peaks) from
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DCA-MARK. It is interesting to see that these high-

dimensional proteomic profiles can be separated almost

completely with few biomarkers identified from DCA-

MARK. We can also obtain meaningful biological depth

by checking these biomarkers. For example, the SW plot

in Figure 5 shows the separation of 176 controls and

181 cancers in the HCC data, which is generated by

high resolution mass spectral SELDI-Qq-TOF platform,

by the top-ranked biomarkers (peaks) at 2534.2, 2584.3,

and 6486.2 m/z ratios, where each dot represents a sam-

ple (a patient with HCC or a healthy subject). It is clear

that we achieve linear separability for this data by using

only three biomarkers. It is also interesting to see that

two biomarkers are from downstream m/z ratios, which

were believed to be more sensitive to detect phenotype

information than those from upstream m/z ratios [24].

Such a separation actual fits to the linearly separable

case for an SVM classifier. Thus, it is quite easy to iden-

tify a hyperplane to separate two classes phenotypes

completely. For example, we run SVM for the three bio-

markers for the total 357 samples and achieve 100%

classification accuracy (sensitivity: 100%, specificity:

100%). Such a result demonstrates a strong advantages

in phenotype discrimination over the previous work

[17,23,24], just as we pointed out before, which

employed quite complicate evolutionary algorithm

(PSO-SVM) to collect a set of informative peaks and

achieved 90%+ diagnosis accuracy under a 5-fold cross

validation [23].

Moreover, we select three top-ranked biomarkers at

1668.99, 5907.73, 5907.13 m/z ratios for the Cirrhosis

dataset, which is a three-class high-resolution MALDI-

TOF proteomic profile with 23,846 features [24]. In

addition to demonstrating the linear separability, the

phenotype separations provided by the three biomarkers

give very meaningful biological information. The SE plot

in Figure 5 shows the three clearly separable clusters,

where Cirrhosis cluster with 51 samples (blue) have clo-

ser spatial distances to the HCC cluster 78 samples

(red) than the normal cluster with 72 samples (yellow).

Such spatial distances demonstrated by our biomarkers

are actually consistent to their pathological distances:

Cirrhosis is the middle stage to hepatocellular carci-

noma (HCC) for a healthy subject [31]. To the best of

our knowledge, no previous work achieved the similar

results.

Figure 5 Separating disease phenotypes of four serum proteomic data sets by only using their three biomarkers with the smallest

p-values.
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Discussion

In this study, we propose a novel feature selection algo-

rithm: derivative component analysis (DCA) to over-

come the weakness of the traditional feature selection

methods. Unlike the traditional methods, the DCA

focuses on latent data characteristics gleaning and de-

noising by analyzing derivative data components for

input data to calculate a same dimensional meta-data.

We further embed derivative component analysis into

support vector machines to achieve rivaling clinical level

phenotype discrimination for five benchmark serum

proteomics data by comparing it with the other state-of-

the-arts. The DCA-SVM ‘s exceptional classification

accuracies suggest the serum proteomics data’s linear

separability and further inspire DCA-MARK, a DCA-

induced biomarker discovery approach, which in turn

demonstrate high-dimensional proteomics data ‘s linear

separability with few biomarkers. Moreover, derivative

component analysis (DCA) demonstrate a potential to

resolve data reproducibility problem of serum proteo-

mics by viewing each input data’s meta-data as a profile

biomarker by employing DCA-SVM to achieve clinical

level disease diagnosis, because of DCA’s true signal

extraction for input proteomics data.

Such profile biomarker diagnosis approach actually

demonstrates strong advantages over the existing bio-

marker discovery oriented diagnosis by treating input

proteomic data as a profile biomarker. The systems

approach seems to fit the “personalized diagnostics” bet-

ter [32], because it can be difficult both biologically and

computationally to achieve a clinical level diagnostics

for those complex diseases like cancer, in which thou-

sands genes can be involved, based on several differen-

tially expressed proteins, especially when the source data

suffer from the reproducibility issue.

Our experimental results demonstrated that the DCA’s

parametric tuning works efficiently though they may not

be the optimal ones theoretically. It is possible to seek

optimally parametric settings in derivative component

analysis for each proteomic data from an information

entropy analysis or Monte Carlo simulation standing

point [18]. However, we are not sure such computing

demand way is practically worthwhile because the clini-

cal level diagnostics are already attained under our cur-

rent parametric tuning.

Conclusions

Our DCA provides an alternative feature selection by

implicitly extracting useful data characteristics whiling

maintaining the data ‘s original dimensionality. It sug-

gests that subtle data characteristics gleaning and de-

noising may be more important in proteomics data fea-

ture selection and following phenotype discrimination. It

is worthwhile to point out that DCA-related techniques

developed can be also applied to gene expression data

smoothly. Although we are quite optimistic to see that

our DCA-MARK can capture meaningful peaks from

low-weight sera from different data sets, there is still an

urgent need to verify and compare these biomarkers

with the previous ones to seek potential pathological

meaning and clinical application. Although derivative

component analysis does show a potential to conquer

the reproducibility problem of serum proteomics, a

future concrete proteomics clinical test is still needed to

explore such a potential. Although we are quite optimis-

tic to see that our DCA-SVM based diagnosis will be a

potential candidate to achieve a clinical disease diagnosis

in proteomics by conquering the reproducibility pro-

blem, rigorous proteomics clinical tests are needed

urgently to explore such a potential and validate its clin-

ical effectiveness. In our ongoing work, we are working

with pathologists to investigate extending the profile-

biomarker diagnosis approach to TCGA and RNA-Seq

data besides genes expression array analysis [33,34].
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