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Abstract. In this paper, we establish Ck estimates for a class of elliptic systems, including lin-
ear systems of elasticity, in a narrow region. The problem arises from studies of fiber-reinforced
elastic composite materials.

1. Introduction. In this paper we establish local derivative estimates for solutions to a class
of elliptic systems arising from studies of fiber-reinforced composite materials. From the struc-
ture of the composite, there are a relatively large number of fibers which are touching or nearly
touching. The maximal strains can be strongly influenced by the distances between the fibers.

Stimulated by some works on damage analysis of fiber composites ([6]), there have been a
number of papers, starting from [9], [15] and [16], on gradient estimates for solutions of elliptic
equations and systems with piecewise smooth coefficients which are relevant in such studies.
See, e.g. [1–5], [7, 8], [10], [12], [17], [18, 19]. Earlier studies on such and closely related issues
can be found in [11], [13, 14].

In a recent paper [2], some gradient estimates were obtained concerning the conductivity
problem where the conductivity is allowed to be∞ (perfect conductor).

Theorem A ([2]). Let B1 and B2 be two balls in R3 with radius R and centered at (0, 0,±R ± ε
2 ),

respectively. Let H be a harmonic function in R3 such that H(0) = 0. Define u to be the solutions
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of ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δu = 0 in R3 \ B1 ∪ B2,

u = 0 on ∂B1 ∪ ∂B2,

u(x) − H(x) = O(|x|−1) as |x| → +∞.
(1.1)

Then there exists a constant C independent of ε such that

‖∇(u − H)‖L∞(R3\B1∪B2) ≤ C. (1.2)

Contrary to scalar equations, less is known about derivative estimates of solutions of systems.
In this paper we extend Theorem A to general elliptic systems, including linear systems of elas-
ticity, in all dimensions. Moreover, we allow the two balls in Theorem A to be replaced by any
two smooth domains, and we establish a stronger local version.

We use Br(0′) = {x′ ∈ Rn−1 | |x′| < r} to denote a ball in Rn−1 centered at the origin 0′ of radius
r. Let h1 and h2 be smooth functions in B1(0′) satisfying

h1(0′) = h2(0′) = 0, ∇h1(0′) = ∇h2(0′) = 0,

and
− ε

2
+ h2(x′) <

ε

2
+ h1(x′), for |x′| < 1.

For 0 < r ≤ 1, we define

Ωr :=
{
x ∈ Rn

∣∣∣ − ε
2
+ h2(x′) < xn <

ε

2
+ h1(x′), x′ ∈ Br(0′)

}
.

Its lower and upper boundaries are, respectively,

Γ−r =
{
x ∈ Rn

∣∣∣ xn = −
ε

2
+ h2(x′), |x′| ≤ r

}
, Γ+r =

{
x ∈ Rn

∣∣∣ xn =
ε

2
+ h1(x′), |x′| ≤ r

}
.

Let u = (u1, · · · , uN) be a vector-valued function. We consider the following boundary value
problems: ⎧⎪⎪⎨⎪⎪⎩ ∂α

(
Aαβ

i j (x)∂βuj + Bα
i ju

j
)
+Cβ

i j∂βu
j + Di ju j = 0 in Ω1,

u = 0 on Γ+1 ∪ Γ
−
1 .

(1.3)

We use the usual summation convention: α and β are summed from 1 to n, while i and j are
summed from 1 to N. For 0 < λ < Λ < ∞, we assume that the coefficients Aαβ

i j (x) are measurable
and bounded,

|Aαβ
i j | ≤ Λ, (1.4)

and satisfy the rather weak ellipticity condition∫
Ω1

Aαβ
i j ∂αψ

i∂βψ
j ≥ λ

∫
Ω1

|∇ψ|2, ∀ ψ ∈ H1
0(Ω1,R

N). (1.5)

Furthermore, we assume that Aαβ
i j , Bα

i j, Cβ
i j, Di j, h1 and h2 are in Ck(Ω1) for some k ≥ 0, denote

‖A‖Ck(Ω1) + ‖B‖Ck(Ω1) + ‖C‖Ck(Ω1) + ‖D‖Ck(Ω1) ≤ βk,

and
‖h1‖Ck(Ω1) + ‖h2‖Ck(Ω1) ≤ γk,

where βk and γk are some positive constants. Hypotheses (1.4) and (1.5) are satisfied by linear
systems of elasticity (see [20]).
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We give local estimates of weak solutions u of (1.3); that is, u ∈ H1(Ω1,R
N), u = 0 on Γ+1 ∪Γ

−
1

a.e., and satisfies ∫
Ω1

(
Aαβ

i j (x)∂βuj + Bα
i ju

j
)
∂αζ

i − Cβ
i j∂βu

jζ i − Di ju jζ i = 0

for every vector-valued function ζ = (ζ1, · · · , ζN) ∈ C∞c (Ω1,R
N), and hence for every ζ ∈

H1
0(Ω1,R

N).

Theorem 1.1. Assume the above and let u ∈ H1(Ω1,R
N) be a weak solution of (1.3). Then for

k ≥ 0, there exist constants 0 < μ < 1 and C, depending only on n,N, λ,Λ, k, βk+1+ n
2

and γk+1+ n
2
,

such that
|∇ku(x)| ≤ Cμ

1√
ε+|x′ | ‖u‖L2(Ω1), for all x = (x′, xn) ∈ Ω 1

2
.

In particular,
max

− ε
2+h2(0′)<xn<

ε
2+h1(0′)

∣∣∣∇ku(0′, xn)
∣∣∣→ 0, as ε → 0.

A consequence of Theorem 1.1 is an extension of Theorem A to all dimensions and to any
smooth domains.

Corollary 1.1. Let D1 and D2 be two disjoint bounded open sets in Rn, n ≥ 2, with Ck

boundaries for k =
[

n
2 + 2

]
, and dist(∂D1, ∂D2) = ε ∈ (0, 1). Let H be a harmonic function

in Rn \ (D1 ∪ D2). Assume that u satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Δu = 0 in Rn \ D1 ∪ D2,

u = 0 on ∂D1 ∪ ∂D2,

lim inf
|x|→∞

|u(x) − H(x)| ≤ K, for some K > 0.
(1.6)

Then there exists a constant C, depending only on K, ‖H‖L∞(∂D1∪∂D2) and the Ck norms and
diameters of D1 and D2 (but independent of ε), such that

‖∇(u − H)‖L∞(Rn\D1∪D2) ≤ C. (1.7)

2. Proof of Theorem 1.1. In this section, we derive the Ck estimates for solutions of elliptic
systems (1.3). In the following, we first show that the energy in Ωr decays exponentially as r
tends to 0. Unless otherwise stated, we use C to denote some positive constants, whose values
may vary from line to line, which depend only on n,N, λ,Λ, β0 and γ2, but is independent of ε.

Lemma 2.1. Let u ∈ H1(Ω1,R
N) be a weak solution of (1.3); then there exist 0 < μ0 < 1 and C,

depending only on n,N, λ,Λ, β0 and γ2, such that, for any
√
ε ≤ r < 1

2 ,∫
Ωr

|∇u|2dx ≤ C(μ0)
1
r

∫
Ω1

|∇u|2. (2.1)

Proof. Without loss of generality, we can assume that
∫
Ω1
|∇u|2 = 1. For any 0 < t < s ≤ 1,

we introduce a cutoff function η ∈ C∞(Ω1) satisfying 0 ≤ η ≤ 1, η = 1 in Ωt, η = 0 in Ω1\Ωs,
and |∇η| ≤ 2

s−t . Multiplying (uη2) on both sides of the equation in (1.3) and integrating by parts,
we have ∫

Ω1

(
Aαβ

i j (x)∂βuj + Bα
i ju

j
)
∂α(uiη2) − Cβ

i j∂βu
j(uiη2) − Di ju j(uiη2) = 0.
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Since ∫
Ωs

(
Aαβ

i j (x)∂βuj + Bα
i ju

j
)
∂α(uiη2)

=

∫
Ωs

Aαβ
i j (x)∂β(η uj)∂α(η ui) −

∫
Ωs

Aαβ
i j (x)(uj∂βη)∂α(η ui) +

∫
Ωs

Bα
i jη uj∂α(uiη)

+

∫
Ωs

Aαβ
i j (x)∂β(η uj)ui∂αη −

∫
Ωs

Aαβ
i j (x)(uj∂βη)(ui∂αη) +

∫
Ωs

Bα
i j(η uj)(∂αη ui),

it follows, in view of (1.5), that

λ

∫
Ωs

|∇(uη)|2dx

≤
∫
Ωs

Aαβ
i j ∂β(u

jη)∂α(uiη)dx

=

∫
Ωs

Aαβ
i j (x)(uj∂βη)∂α(η ui) −

∫
Ωs

Bα
i jη uj∂α(uiη) −

∫
Ωs

Aαβ
i j (x)∂β(η uj)ui∂αη

+

∫
Ωs

Aαβ
i j (x)(uj∂βη)(ui∂αη) −

∫
Ωs

Bα
i j(η uj)(∂αη ui)

+

∫
Ωs

Cβ
i j∂β(u

jη)(uiη) −
∫
Ωs

Cβ
i j(u

j∂βη)(uiη) +
∫
Ωs

Di ju j(uiη2)

≤ λ

4

∫
Ωs

|∇(uη)|2dx +C
∫
Ωs

|u∇η|2dx + C
∫
Ωs

|uη|2dx.

Since uη = 0 on Γ−1 , by the Hölder inequality, it follows that∫
Ωs

|uη|2dx =
∫
Ωs

⎛⎜⎜⎜⎜⎝∫ xn

− ε
2+h2(x′)

∂n(uη)(x′, xn)dxn

⎞⎟⎟⎟⎟⎠2

dx

≤
∫
Ωs

⎛⎜⎜⎜⎜⎝(xn +
ε

2
− h2(x′))

∫ xn

− ε
2+h2(x′)

|∂n(uη)|2dxn

⎞⎟⎟⎟⎟⎠ dx

≤ C(ε + s2)2
∫
Ωs

|∇(uη)|2dx.

Taking 0 < δ0 < 1 such that C2(δ0 + δ
2
0)2 = λ

4 , then we have∫
Ωs

|∇u|2η2dx ≤ C
∫
Ωs

u2|∇η|2dx, for ε, s < δ0. (2.2)

Again using u = 0 on Γ−1 , and by the Hölder inequality, we have∫
Ωs

u2dx ≤ C(ε + s2)2
∫
Ωs

|∇u|2dx. (2.3)

Combining (2.2) and (2.3), we have∫
Ωt

|∇u|2dx ≤ C
(
ε + s2

s − t

)2 ∫
Ωs

|∇u|2dx, for s < δ0. (2.4)

For simplicity of notation, we denote

F(t) =
∫
Ωt

|∇u|2dx.
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Then (2.4) can be written as

F(t) ≤ C
(
ε + s2

s − t

)2

F(s). (2.5)

For
√
ε ≤ t < s ≤ δ0, we have the following iterative formula:

F(t) ≤
(
C0s2

s − t

)2

F(s),

where C0 is a fixed constant, depending only on n,N, λ,Λ, β0 and γ2. Let δ = min{ 1
8C0

, δ0} and
t0 = r < δ, ti+1 = 2δ(1 −

√
1 − ti/δ) if ti ≤ δ. Then

C0t2
i+1

ti+1 − ti
=

1
2
, (2.6)

and {ti} is an increasing sequence. It is easy to see that for some i, ti > δ. Let k be the integer
satisfying tk ≤ δ and tk+1 > δ. Clearly tk+1 ≤ 2δ. Then for any 0 ≤ i ≤ k, we have

F(ti) ≤
⎛⎜⎜⎜⎜⎝ C0t2

i+1

ti+1 − ti

⎞⎟⎟⎟⎟⎠2

F(ti+1) =
1
4

F(ti+1), (2.7)

Iterating (2.7) k times, we have

F(t0) ≤ (
1
4

)k+1F(tk+1) ≤ (
1
4

)k+1F(2δ) ≤ (
1
4

)k+1. (2.8)

Now we estimate k. From (2.6) it follows that

1
2C0ti

=
1

2C0ti+1
+

1
1 − 2C0ti+1

, for 0 ≤ i ≤ k.

Then summing it from i = 0 to i = k, we have

1
2C0t0

=
1

2C0tk+1
+

k+1∑
i=1

1
1 − 2C0ti

.

Since 0 < ti ≤ δ ≤ 1
8C0

for 1 ≤ i ≤ k, it follows that

1 <
1

1 − 2C0ti
≤ 4

3
.

Then

k + 1 <
1

2C0

(
1
t0
− 1

tk+1

)
<

4
3

(k + 1).

Recalling t0 = r, and δ < tk+1 ≤ 2δ, we have

3
8C0r

− 3 ≤ k + 1 <
1

2C0r
− 2.

Therefore, from (2.8),

F(r) = F(t0) ≤
(
1
4

)k+1

≤
(
1
4

) 3δ
r −3

.

The proof is completed. �
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Proof of Theorem 1.1. Given a point z = (z′, zn) ∈ Ω1, define

Ω̂s(z) :=
{
x = (x′, xn) ∈ Ω1

∣∣∣ − ε
2
+ h2(x′) < xn <

ε

2
+ h1(x′), |x′ − z′| < s

}
. (2.9)

We consider the following scaling in Ω̂ 1
2 (ε+h1(z′)−h2(z′))(z),⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ry′ + z′ = x′,

Ryn −
ε

2
+ h2(z′) = xn,

where R = (ε + h1(z′) − h2(z′)). Denote

ĥ1(y′) :=
1
R

(
ε − h2(z′) + h1

(
z′ + Ry′

))
,

ĥ2(y′) :=
1
R

(
−h2(z′) + h2

(
z′ + Ry′

))
.

Then

ĥ1(0′) = 1, ĥ2(0′) = 0,

and

ĥ2(y′) < ĥ1(y′), |∇l̂h1(y′)|, |∇l̂h2(y′)| ≤ Cl, for |y′| ≤ 1, l ≥ 1.

Let

û(y′, yn) = u
(
Ry′ + z′,Ryn −

ε

2
+ h2(z′)

)
.

Then û(y) satisfies

∂α
(
Âαβ

i j (y)∂βû j(y) + B̂α
i j(y)̂uj(y)

)
+ Ĉβ

i j(y)∂βû j(y) + D̂i j(y)̂uj(y) = 0 in Q1, (2.10)

where

Â(y) = A
(
Ry′ + z′,Ryn −

ε

2
+ h2(z′)

)
, B̂(y) = RB

(
Ry′ + z′,Ryn −

ε

2
+ h2(z′)

)
,

Ĉ(y) = RC
(
Ry′ + z′,Ryn −

ε

2
+ h2(z′)

)
, D̂(y) = R2D

(
Ry′ + z′,Ryn −

ε

2
+ h2(z′)

)
,

and for r < 1,

Qr :=
{

(y′, yn) ∈ Rn
∣∣∣ ĥ2(y′) < yn < ĥ1(y′), |y′| < r

}
.

Using L2 estimates for elliptic systems (2.10) and by the Sobolev imbedding theorems, we
have

max
0≤yn≤1

|∇kû(0′, yn)| ≤ C‖∇û‖L2(Q1),

where C depends only on n,N, λ, Λ, k, βk+ n
2+1 and γk+ n

2+1. It follows, in view of Lemma 2.1, that

|∇ku(z)| ≤ C
(
ε + |z′|2

)1−k− n
2 ‖∇u‖

L2
(
Ω|z′ |+ R

2

) ≤ C
(
ε + |z′|2

)1−k− n
2 (μ0)

1
max{

√
ε, |z′ |+ R

2 } , (2.11)

where μ0 < 1 was defined in Lemma 2.1, and C depends only on n,N, λ, Λ, k, βk+ n
2+1 and γk+ n

2+1.
The proof is completed. �
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Proof of Corollary 1.1. Without loss of generality, we assume that D1 and D2 are separated
by the plane xn = 0, with (0′, ε2 ) ∈ ∂D1 and (0′,− ε2 ) ∈ ∂D2. Since

Δ(u − H) = 0 in Rn \ D1 ∪ D2,

we have, after applying the maximum principle to u − H, that

|u − H| ≤ ‖H‖L∞(∂D1∪∂D2) + K, in Rn \ D1 ∪ D2.

Corollary 1.1 then follows from Theorem 1.1. �
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