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Abstract

We present a fully automated framework to estimate derivatives nonparametrically without esti-

mating the regression function. Derivative estimation plays an important role in the exploration of

structures in curves (jump detection and discontinuities), comparison of regression curves, analy-

sis of human growth data, etc. Hence, the study of estimating derivatives is equally important as

regression estimation itself. Via empirical derivatives we approximate the qth order derivative and

create a new data set which can be smoothed by any nonparametric regression estimator. We derive

L1 and L2 rates and establish consistency of the estimator. The new data sets created by this tech-

nique are no longer independent and identically distributed (i.i.d.) random variables anymore. As a

consequence, automated model selection criteria (data-driven procedures) break down. Therefore,

we propose a simple factor method, based on bimodal kernels, to effectively deal with correlated

data in the local polynomial regression framework.

Keywords: nonparametric derivative estimation, model selection, empirical derivative, factor rule

1. Introduction

The next section describes previous methods and objectives for nonparametric derivative estimation.

Also, a brief summary of local polynomial regression is given.

1.1 Previous Methods And Objectives

Ever since the introduction of nonparametric estimators for density estimation, regression, etc. in

the mid 1950s and early 1960s, their popularity has increased over the years. Mainly, this is due to

the fact that statisticians realized that pure parametric thinking in curve estimations often does not
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meet the need for flexibility in data analysis. Many of their properties have been rigorously inves-

tigated and are well understood, see, for example, Fan and Gijbels (1996), Györfi et al. (2002) and

Tsybakov (2009). Although the importance of regression estimation is indisputable, sometimes the

first or higher order derivatives of the regression function can be equally important. This is the case

in the exploration of structures in curves (Chaudhuri and Marron, 1999; Gijbels and Goderniaux,

2004) (jump detection and discontinuities), inference of significant features in data, trend analysis

in time series (Rondonotti et al., 2007), comparison of regression curves (Park and Kang, 2008),

analysis of human growth data (Müller, 1988; Ramsay and Silverman, 2002), the characterization

of submicroscopic nanoparticles from scattering data (Charnigo et al., 2007) and inferring chemical

compositions. Also, estimation of derivatives of the regression function is required for plug-in band-

width selection strategies (Wand and Jones, 1995) and in the construction of confidence intervals

(Eubank and Speckman, 1993).

It would be tempting to differentiate the estimated nonparametric estimate m̂(x) w.r.t. the in-

dependent variable to obtain the first order derivative of the regression function. However, such a

procedure can only work well if the original regression function is extremely well estimated. Other-

wise, it can lead to wrong derivative estimates when the data is noisy. Therefore, it can be expected

that straightforward differentiation of the regression estimate m̂(x) will result in an accumulation of

errors which increase with the order of the derivative.

In the literature there are two main approaches to nonparametric derivative estimation: Regres-

sion/smoothing splines and local polynomial regression. In the context of derivative estimation,

Stone (1985) has shown that spline derivative estimators can achieve the optimal L2 rate of con-

vergence. Asymptotic bias and variance properties and asymptotic normality have been established

by Zhou and Wolfe (2000). In case of smoothing splines, Ramsay (1998) noted that choosing the

smoothing parameter is tricky. He stated that data-driven methods are generally poor guides and

some user intervention is nearly always required. In fact, Wahba and Wang (1990) demonstrated

that the smoothing parameter for a smoothing spline depends on the integer q while minimizing

∑n
i=1(m̂

(q)(xi)−m(q)(xi))
2. Jarrow et al. (2004) suggested an empirical bias bandwidth criterion to

estimate the first derivative via semiparametric penalized splines.

Early works discussing kernel based derivative estimation include Gasser and Müller (1984)

and Härdle and Gasser (1985). Müller et al. (1987) and Härdle (1990) proposed a generalized

version of the cross-validation technique to estimate the first derivative via kernel smoothing using

difference quotients. Their cross-validation technique is related to modified cross-validation for

correlated errors proposed by Chu and Marron (1991). Although the use of difference quotients

may be natural, their variances are proportional to n2 in case of equispaced design. Therefore, this

type of cross-validation will be spoiled due to the large variability. In order to improve on the

previous methods, Müller et al. (1987) also proposed a factor method to estimate a derivative via

kernel smoothing. A variant of the factor method was also used by Fan and Gijbels (1995).

In case of local polynomial regression (Fan and Gijbels, 1996), the estimation of the qth deriva-

tive is straightforward. One can estimate m(q)(x) via the intercept coefficient of the qth derivative

(local slope) of the local polynomial being fitted at x, assuming that the degree p is larger or equal

to q. Note that this estimate of the derivative is, in general, not equal to the qth derivative of the

estimated regression function m̂(x). Asymptotic properties as well as asymptotic normality were

established by Fan and Gijbels (1996). Strong uniform consistency properties were shown by Dele-

croix and Rosa (2007).
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As mentioned before, two problems inherently present in nonparametric derivative estimation

are the unavailability of the data for derivative estimation (only regression data is given) and band-

width or smoothing selection. In what follows we investigate a new way to compute derivatives of

the regression function given the data (x1,Y1), . . . ,(xn,Yn). This procedure is based on the creation

of a new data set via empirical derivatives. A minor drawback of this approach is the fact the data

are correlated and hence poses a threat to classical bandwidth selection methods. In order to deal

with correlated data we extend our previous work (De Brabanter et al., 2011) and derive a factor

method based on bimodal kernels to estimate the derivatives of the unknown regression function.

This paper is organized as follows. Next, we give a short introduction to local polynomial fitting.

Section 2 illustrates the principle of empirical first order derivatives and their use within the local

polynomial regression framework. We derive bias and variance of empirical first order derivatives

and establish pointwise consistency. Further, the behavior at the boundaries of empirical first order

derivatives is described. Section 3 generalizes the idea of empirical first order derivatives to higher

order derivatives. Section 4 discusses the problem of bandwidth selection in the presence of cor-

related data. In Section 5 we conduct a Monte Carlo experiment to compare the proposed method

with two often used methods for derivative estimation. Finally, Section 6 states the conclusions.

1.2 Local Polynomial Regression

Consider the bivariate data (x1,Y1), . . . ,(xn,Yn) which form an independent and identically dis-

tributed (i.i.d) sample from a population (x,Y ) where x belongs to X ⊆ R and Y ∈ R. If X de-

notes the closed real interval [a,b] then xi = a+(i−1)(b−a)/(n−1). Denote by m(x) = E[Y ] the

regression function. The data is regarded to be generated from the model

Y = m(x)+ e, (1)

where E[e] = 0, Var[e] = σ2 <∞, x and e are independent and m is twice continuously differentiable

on X . Suppose that (p+ 1)th derivative of m at the point x0 exists. Then, the unknown regression

function m can be locally approximated by a polynomial of order p. A Taylor expansion yields, for

x in a neighborhood of x0,

m(x)≈
p

∑
j=0

m( j)(x0)

j!
(x− x0)

j ≡
p

∑
j=0

β j(x− x0)
j. (2)

This polynomial is fitted locally by the following weighted least squares regression problem:

min
β j∈R

n

∑
i=1

{

Yi −
p

∑
j=0

β j (xi − x0)
j
}2

Kh(xi − x0), (3)

where β j are the solutions to the weighted least squares problem, h is the bandwidth controlling the

size of the local neighborhood and Kh(·) = K(·/h)/h with K a kernel function assigning weights

to each point. From the Taylor expansion (2) it is clear that m̂(q)(x0) = q!β̂q is an estimator for

m(q)(x0), q = 0,1, . . . , p. For local polynomial fitting p− q should be taken to be odd as shown in

Ruppert and Wand (1994) and Fan and Gijbels (1996). In matrix notation (3) can be written as:

min
β
{(y−Xβ)T W(y−Xβ)},
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where y = (Y1, . . . ,Yn)
T , β = (β0, . . . ,βp)

T and

X =







1 (x1 − x0) · · · (x1 − x0)
p

...
...

...

1 (xn − x0) · · · (xn − x0)
p






,

and W the n×n diagonal matrix of weights

W = diag{Kh(xi − x0)}.

The solution vector is given by least squares theory and yields

β̂ = (XT WX)−1 XT Wy .

2. Derivative Estimation

In this section we first illustrate the principle of empirical first order derivatives and how they can

be used within the local polynomial regression framework to estimate first order derivatives of the

unknown regression function.

2.1 Empirical Derivatives And Its Properties

Given a local polynomial regression estimate (3), it would be tempting to differentiate it w.r.t. the

independent variable. Such a procedure can lead to wrong derivative estimates when the data is

noisy and will deteriorate quickly when calculating higher order derivatives. A possible solution to

avoid this problem is by using the first order difference quotient

Y
(1)
i =

Yi −Yi−1

xi − xi−1

as a noise corrupted version of m′(xi) where the superscript (1) signifies that Ŷ
(1)
i is a noise corrupted

version of the first (true) derivative. Such an approach has been used by Müller et al. (1987) and

Härdle (1990) to estimate first order derivatives via kernel smoothing. Such an approach produces

a very noisy estimate of the derivative which is of the order O(n2) and as a result it will be difficult

to estimate the derivative function. For equispaced design yields

Var(Y
(1)
i ) =

1

(xi − xi−1)2
(Var(Yi)+Var(Yi−1)) =

2σ2

(xi − xi−1)2
=

2σ2(n−1)2

d(X )2
,

where d(X ) := supX − infX . In order to reduce the variance we use a variance-reducing linear

combination of symmetric (about i) difference quotients

Y
(1)
i = Y (1)(xi) =

k

∑
j=1

w j ·
(

Yi+ j −Yi− j

xi+ j − xi− j

)

, (4)

where the weights w1, . . . ,wk sum up to one. The linear combination (4) is valid for k+1 ≤ i ≤ n−k

and hence k ≤ (n−1)/2. For 2≤ i≤ k or n−k+1≤ i≤ n−1 we define Y
(1)
i by replacing ∑k

j=1 in (4)

by ∑
k(i)
j=1 where k(i)=min{i−1,n− i} and replacing w1, . . . ,wk(i) by w1/∑

k(i)
j=1 w j, . . . ,wk(i)/∑

k(i)
j=1 w j.
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Finally, for i = 1 and i = n we define Y
(1)
1 and Y

(1)
n to coincide with Y

(1)
2 and Y

(1)
n−1. The proportion

of indices i falling between k + 1 and n− k approaches 1 as n increases, so this boundary issue

becomes smaller as n becomes larger. Alternatively, one may just leave Y
(1)
i undefined for indices i

not falling between k+1 and n− k. This latter approach will be used in the remaining of the paper,

except in Figure 1 where we want to illustrate the boundary issues.

Linear combinations such as (4) are frequently used in finite element theory and are useful

in the numerical solution of differential equations (Iserles, 1996). However, the weights used for

solving differential equations are not appropriate here because of the random errors in model (1).

Therefore, we need to optimize the weights so that minimum variance is attained. This result is

stated in Proposition 1.

Proposition 1 Assume model (1) holds with equispaced design and let ∑k
j=1 w j = 1. Then, for

k+1 ≤ i ≤ n− k, the weights

w j =
6 j2

k(k+1)(2k+1)
, j = 1, . . . ,k

minimize the variance of Y
(1)
i in (4).

Proof: see Appendix A. �

Figure 1a displays the empirical first derivative for k ∈ {2,5,7,12} generated from model (1)

with m(x) =
√

x(1− x)sin((2.1π)/(x + 0.05)), x ∈ [0.25,1] for 300 equispaced points and e ∼
N (0,0.12). For completeness the first order difference quotient is also shown. Even for a small

k, it can be seen that the empirical first order derivatives are noise corrupted versions of the true

derivative m′. In contrast, difference quotients produce an extreme noisy version of the true deriva-

tive (Figure 1b). Also, note the large amplitude of the signal constructed by difference quotients.

When k is large, empirical first derivatives are biased near local extrema of the true derivative (see

Figure 1f). Further, the boundary issues are clearly visible in Figure 1d through Figure 1f for

i ∈ [1,k+1]∪ [n− k,n].
The next two theorems give asymptotic results on the bias and variance and establish pointwise

consistency of the empirical first order derivatives.

Theorem 2 Assume model (1) holds with equispaced design and m is twice continuously differen-

tiable on X ⊆R. Further, assume that the second order derivative m(2) is finite on X . Then the bias

and variance of the empirical first order derivative, with weights assigned by Proposition 1, satisfy

bias(Y
(1)
i ) = O(n−1k) and Var(Y

(1)
i ) = O(n2k−3)

uniformly for k+1 ≤ i ≤ n− k.

Proof: see Appendix B. �

Theorem 3 (Pointwise consistency) Assume k→∞ as n→∞ such that nk−3/2 →0 and n−1k → 0.

Further assume that m is twice continuously differentiable on X ⊆ R . Then, for the minimum

variance weights given in Proposition 1, we have for any ε > 0

P
(

|Y (1)
i −m′(xi)| ≥ ε

)

→ 0.

Proof: see Appendix C. �
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(b) difference quotient
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(c) empirical derivative (k = 2)
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(d) empirical derivative (k = 5)
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(e) empirical derivative (k = 7)
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(f) empirical derivative (k = 12)

Figure 1: (a) Simulated data set of size n = 300 equispaced points from model (1) with m(x) =
√

x(1− x)sin((2.1π)/(x+0.05)) and e ∼ N (0,0.12); (b) first order difference quotients

which are barely distinguishable from noise. As a reference, the true derivative is also

displayed (full line); (c)-(f) empirical first derivatives for k ∈ {2,5,7,12}.

According to Theorem 2 and Theorem 3, the bias and variance of the empirical first order derivative

tends to zero and k → ∞ faster than O(n2/3) but slower than O(n). The optimal rate at which k → ∞

such that the mean squared error (MSE) of the empirical first order derivatives will tend to zero at

the fastest possible rate is a direct consequence of Theorem 2. This optimal L2 rate is achieved for

k = O(n4/5) and consequently, the MSE(Y
(1)
i ) = E(Y

(1)
i −m′(xi))

2 = O(n−2/5 + n−1/5). Similar,

one can also establish the rate of the mean absolute deviation (MAD) or L1 rate of the estimator,

that is, E |Y (1)
i −m′(xi)|. By Jensen’s inequality

E |Y (1)
i −m′(xi)| ≤ E |Y (1)

i −E(Y
(1)
i )|+ |E(Y (1)

i )−m′(xi)|

≤
√

Var(Y
(1)
i )+bias(Y

(1)
i ) = O(n−1/5),

for the optimal L1 rate of k = O(n4/5) (equal to the optimal L2 rate). Under the same conditions

as Theorem 3, it is easy to show that E |Y (1)
i −m′(xi)| → 0. Even though we know the optimal

asymptotic order of k, the question still remains how to choose k in practice. In many data analyses,

one would like to get a quick idea what the value of k should be. In such a case a rule of thumb

can be very suitable. Such a rule can be somewhat crude but it possesses simplicity and is easily

computable. In order to derive a suitable expression for the MSE, we start from the bias and variance

expressions for the empirical derivatives. An upperbound for the MSE is given by (see also the proof
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of Theorem 2)

MSE(Y
(1)
i ) = bias2(Y

(1)
i )+Var(Y

(1)
i )

≤ 9k2(k+1)2B2d(X )2

16(n−1)2(2k+1)2
+

3σ2(n−1)2

k(k+1)(2k+1)d(X )2
, (5)

where B = supx∈X |m(2)(x)|. Setting the derivative of (5) w.r.t. k to zero yields

3B2d(X )4k3(1+ k)3(1+2k+2k2) = 8(1+8k+18k2 +12k3)(n−1)4σ2. (6)

Solving (6), with the constraint that k > 0, can be done by means of any root finding algorithm and

will result in the value k for which the MSE is lowest. However, a much simpler rule of thumb and

without much loss of accuracy is obtained by only considering the highest order terms yielding

k =

(

16σ2

B2 d(X )4

)1/5

n4/5.

The above quantity contains some unknown quantities and need to be estimated. The error variance

σ2 can be estimated by means of Hall’s
√

n-consistent estimator (Hall et al., 1990)

σ̂2 =
1

n−2

n−2

∑
i=1

(0.809Yi −0.5Yi+1 −0.309Yi+2)
2.

For the second unknown quantity B one can use the local polynomial regression estimate of order

p = 3 leading to the following (rough) estimate of the second derivative m̂(2)(x0) = 2β̂2 (see also

Section 1). Consequently, a rule of thumb selector for k is given by

k̂ =

(

16 σ̂2

(supx0∈X |m̂(2)(x0)|)2 d(X )4

)1/5

n4/5. (7)

The result of the rule of thumb (7) is a value for k which is real. In practice we round the obtained

k value closest to the next integer value. As an alternative, one could also consider cross-validation

or complexity criteria in order to find an optimal value for k.

2.2 Behavior At The Boundaries

Recall that for the boundary region (2 ≤ i ≤ k and n− k+1 ≤ i ≤ n−1) the weights in the deriva-

tive (4) and the range of the sum are slightly modified. Such a modification allows for an automatic

bias correction at the boundaries. This can be seen as follows. Let the first (q+1) derivatives of m

be continuous on X . Then a Taylor series of m in a neighborhood of xi yields

m(xi+ j) = m(xi)+
q

∑
l=1

1

l!

(

jd(X )

n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

and

m(xi− j) = m(xi)+
q

∑
l=1

1

l!

(− jd(X )

n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

.
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From the above series it follows that

E(Y
(1)
i ) =

k

∑
j=1

w j

m(xi+ j)−m(xi− j)

xi+ j − xi− j

=
n−1

2d(X )

k

∑
j=1

w j

∑
q

l=1
1
l!

(

jd(X )
n−1

)l

m(l)(xi)−∑
q

l=1
1
l!

(

− jd(X )
n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

j
.

By noticing that all even orders of the derivative cancel out, the previous result can be written as

E(Y
(1)
i ) =

n−1

2d(X )

k

∑
j=1

w j

j

[

2 jd(X )

n−1
m′(xi)+

q

∑
l=3,5,...

2

l!

(

jd(X )

n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

]

= m′(xi)
k

∑
j=1

w j +
q

∑
l=3,5,...

m(l)(xi)
k

∑
j=1

w j

l!

jl−1d(X )l−1

(n−1)l−1
+O

(

( j/n)q
)

.

For 2≤ i≤ k, the sum in the first term is not equal to 1. This immediately follows from the definition

of the derivative in (4). Therefore, the length of the sum k has to be replaced with k(i) = i−1. Let

0 ≤ κ = ∑
k(i)
j=1 w j < 1 for 2 ≤ i ≤ k. Then, the bias of the derivative (4) is given by

bias(Y
(1)
i ) = (κ−1)m′(xi)+

q

∑
l=3,5,...

m(l)(xi)
k

∑
j=1

w j

l!

jl−1d(X )l−1

(n−1)l−1
+O

(

n−q/5
)

,

where ∑k
j=1

w j

l!

jl−1d(X )l−1

(n−1)l−1 = O(n−(l−1)/5) since k = O(n4/5). However, in order to obtain an auto-

matic bias correction at the boundaries, we can make κ = 1 by normalizing the sum leading to the

following estimator

Y
(1)
i =

k(i)

∑
j=1

w j

∑
k(i)
j=1 w j

(

Yi+ j −Yi− j

xi+ j − xi− j

)

(8)

at the boundaries. Also notice that the bias at the boundaries is of the same order as in the interior.

Unfortunately, this bias correction comes at a prize, that is, increased variance at the boundaries.

The variance of (8), for k(i) = i−1, is given by

Var(Y
(1)
i ) =

σ2(n−1)2

2d(X )2

k(i)

∑
j=1

w2
j

(

∑
k(i)
j=1 w j

)2

1

j2
=

3σ2(n−1)2

d(X )2

1

i(i−1)(2i−1)
.

Then, at the boundary (for 2 ≤ i ≤ k), it follows that an upper bound for the variance is given by

Var(Y
(1)
i )≤ σ2(n−1)2

2d(X )2

and a lower bound by

Var(Y
(1)
i ) ≥ 3σ2(n−1)2

d(X )2

1

k(k−1)(2k−1)

≥ 3σ2(n−1)2

d(X )2

1

k(k+1)(2k+1)
.
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Hence, the variance will be largest (but limited) for i = 2 and will decrease for growing i till i = k.

Also, from the last inequality it follows that variance at the boundaries will always be larger or equal

than the variance of the interior. An analogue calculation shows the same result for n− k+1 ≤ i ≤
n−1 by setting k(i) = n− i.

3. Higher Order Empirical Derivatives

In this section, we generalize the idea of first order empirical derivatives to higher order derivatives.

Let q denote the order of the derivative and assume further that q ≥ 2, then higher order empirical

derivatives can be defined inductively as

Y
(l)
i =

kl

∑
j=1

w j,l ·
(

Y
(l−1)
i+ j −Y

(l−1)
i− j

xi+ j − xi− j

)

with l ∈ {2, . . . ,q}, (9)

where k1,k2, . . . ,kq are positive integers (not necessary equal), the weights at each level l sum up to

one and Y
(0)
i = Yi by definition. As with the first order empirical derivative, a boundary issue arises

with expression (9) when i < ∑
q

l=1 kl + 1 or i > n−∑
q

l=1 kl . Similar to (4), a boundary correction

can be used. Although, the qth order derivatives are linear in the weights at level q, they are not

linear in the weights at all levels. As such, no simple formulas for variance minimizing weights

exist. Fortunately, simple weight sequences exist which control the asymptotic bias and variance

quite well assuming that k1, . . . ,kq increase appropriately with n (see Theorem 4).

Theorem 4 Assume model (1) holds with equispaced design and let ∑
kl

j=1 w j,l = 1. Further assume

that the first (q+ 1) derivatives of m are continuous on the interval X . Assume that there exist

λ ∈ (0,1) and cl ∈ (0,∞) such that kln
−λ → cl for n → ∞ and l ∈ {1,2, . . . ,q}. Further, assume that

w j,1 =
6 j2

k1(k1 +1)(2k1 +1)
for j = 1, . . . ,k1,

and

w j,l =
2 j

kl(kl +1)
for j = 1, . . . ,kl and l ∈ {2, . . . ,q}.

Then the asymptotic bias and variance of the empirical qth order derivative are given by

bias(Y
(q)
i ) = O(nλ−1) and Var(Y

(q)
i ) = O(n2q−2λ(q+1/2))

uniformly for ∑
q

l=1 kq +1 < i < n−∑
q

l=1 kq.

Proof: see Appendix C. �

An interesting consequence of Theorem 4 is that the order of the bias of the empirical derivative

estimator does not depend on the order of the derivative q. The following two corollaries are a direct

consequence of Theorem 4. Corollary 5 states that the L2 rate of convergence (and L1 rate) will be

slower for increasing orders of derivatives q, that is, higher order derivatives are progressively more

difficult to estimate. Corollary 5 suggests that the MSE of the qth order empirical derivative will

tend to zero for λ ∈ ( 2q
2q+1

,1) prescribing, for example, kq = O(n2(q+1)/(2q+3)). Similar results can

be obtained for the MAD. Corollary 6 proves L2 and L1 consistency.

289



DE BRABANTER, DE BRABANTER, DE MOOR AND GIJBELS

Corollary 5 Under the assumptions of Theorem 4, for the weight sequences defined in Theorem 4,

the asymptotic mean squared error and asymptotic mean absolute deviation are given by

E(Y
(q)
i −m(q)(xi))

2 = O(n2(λ−1)+n2q−2λ(q+1/2)) and E |Y (q)
i −m(q)(xi)|= O(nλ−1+nq−λ(q+1/2)).

Corollary 6 Under the assumptions of Theorem 4, for the weight sequences defined in Theorem 4

and λ ∈ ( 2q
2q+1

,1), it follows that

E(Y
(q)
i −m(q)(xi))

2 → 0 and E |Y (q)
i −m(q)(xi)| → 0, n → ∞.

4. Bandwidth Selection For Correlated Data

From (4), it is clear that for the newly generated data set the i.i.d. assumption is no longer valid

since it is a weighted sum of differences of the original data set. In such cases, it is known that data-

driven bandwidth selectors and plug-ins break down (Opsomer et al., 2001; De Brabanter et al.,

2011). In this paper we extend the idea of De Brabanter et al. (2011) and develop a factor rule

based on bimodal kernels to determine the bandwidth. They showed, under mild conditions on the

kernel function and for equispaced design, that by using a kernel satisfying K(0) = 0 the correlation

structure is removed without any prior knowledge about its structure. Further, they showed that

bimodal kernels introduce extra bias and variance yielding in a slightly wiggly estimate. In what

follows we develop a relation between the bandwidth of a unimodal kernel and the bandwidth of a

bimodal kernel. Consequently, the estimate based on this bandwidth will be smoother than the one

based on a bimodal kernel.

Assume the following model for the qth order derivative

Y (q)(x) = m(q)(x)+ ε

and assume that m has two continuous derivatives. Further, let Cov(εi,εi+l) = γl < ∞ for all l and

assume that ∑∞
l=1 l|γl|< ∞. Then, if h → ∞ and nh → ∞ as n → ∞, the bandwidth h that minimizes

the mean integrated squared error (MISE) of the local polynomial regression estimator (3) with p

odd under correlation is given by (Simonoff, 1996; Fan and Gijbels, 1996)

ĥ =Cp(K)

[

(σ2 +2∑∞
l=1 γl)d(X )

∫ {m(p+1)(u)}2 du

]1/(2p+3)

n−1/(2p+3), (10)

where

Cp(K) =

[

{(p+1)!}2
∫

K⋆2
p (u)du

2(p+1){∫ up+1K⋆
p(u)du}2

]1/(2p+3)

and K⋆
p denotes the equivalent kernel defined as

K⋆
p(u) = (1 0 · · · 0)











µ0 µ1 · · · µp

µ1 µ2 · · · µp+1

...
...

. . .
...

µp µp+1 · · · µ2p











−1









1

u
...

up











K(u),
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with µ j =
∫

u jK(u)du. Since the bandwidth hb based on a symmetric bimodal kernel K has a similar

expression as (10) for a unimodal kernel, one can express h as a function of hb resulting into a factor

method. It is easily verified that

ĥ =Cp(K,K)ĥb,

where

Cp(K,K) =

[∫
K⋆2

p (u)du{∫ up+1K
⋆
p(u)du}2

∫
K
⋆2
p (u)du{∫ up+1K⋆

p(u)du}2

]1/(2p+3)

.

The factor Cp(K,K) is easy to calculate and Table 1 lists some of these factors for different uni-

modal kernels and for various odd orders of polynomials p. We take K(u) = (2/
√

π)u2 exp(−u2)
as bimodal kernel.

p Gaussian Uniform Epanechnikov Triangular Biweight Triweight

1 1.16231 2.02248 2.57312 2.82673 3.04829 3.46148

3 1.01431 2.45923 2.83537 2.98821 3.17653 3.48541

5 0.94386 2.79605 3.09301 3.20760 3.36912 3.62470

Table 1: The factor Cp(K,K) for different unimodal kernels and for various odd orders of polyno-

mials p with K(u) = (2/
√

π)u2 exp(−u2) as bimodal kernel.

5. Simulations

In what follows, we evaluate the proposed method for derivative estimation with several other meth-

ods used in the literature.

5.1 First Order Derivative Estimation

We evaluate the proposed method for derivative estimation with several other methods used in the

literature, that is, via the local slope in local polynomial regression with p = 3 (R package locpol

(Cabrera, 2009)) and penalized smoothing splines (R package pspline (Ramsey and Ripley, 2010)).

For the latter we have used quintic splines (Newell and Einbeck, 2007) to estimate the first order

derivative. All smoothing parameters were determined by weighted generalized cross-validation

(WGCV(q)) defined as

WGCV(q) =
1

n

n

∑
i=1

si

(

Y
(q)
i − m̂

(q)
n (xi)

1− trace(L)/n

)2

,

with si = 1{∑
q

l=1 kl +1 ≤ i ≤ n−∑
q

l=1 kl} and let L be the smoother matrix of the local polynomial

regression estimate. The Gaussian kernel has been used for all kernel methods. The proposed

method uses K(u) = (2/
√

π)u2 exp(−u2) as bimodal kernel. The corresponding sets of bandwidths

of the bimodal kernel hb were {0.04,0.045, . . . ,0.095} and k1 was determined in each run by (7).

Consider the following two functions

m(x) = sin2(2πx)+ log(4/3+ x) for x ∈ [−1,1] (11)
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and

m(x) = 32e−8(1−2x)2

(1−2x) for x ∈ [0,1], (12)

In a first simulation we show a typical result for the first order derivative (q = 1) of (11) and (12), its

first order empirical derivative (see Figure 2). The data sets are of size n = 1000 and are generated

from model (1) with e ∼ N(0,σ2) for σ = 0.03 (regression function (11)) and σ = 0.1 (regression

function (12)). To smooth the noisy derivative data we have chosen a local polynomial regression

estimate of order p = 3. For the Monte Carlo study, we constructed data sets size with n = 500 and
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Figure 2: Illustration of the noisy empirical first order derivative (data points), smoothed empirical

first order derivative based on a local polynomial regression estimate of order p = 3 (bold

line) and true derivative (bold dashed line). (a) First order derivative of regression func-

tion (11) with k1 = 7; (b) First order derivative of regression function (12) with k1 = 12.

generated the function

m(x) =
√

x(1− x)sin

(

2.1π

x+0.05

)

for x ∈ [0.25,1]

100 times according to model (1) with e ∼ N(0,σ2) and σ = 0.1. As measure of comparison we

chose the adjusted mean absolute error defined as

MAEadjusted =
1

481

490

∑
i=10

|m̂′
n(xi)−m′(xi)|.

This criterion was chosen to ignore boundary effects in the estimation for the three methods. The

result of the Monte Carlo study for (12) is given in Figure 3. From the Monte Carlo experiment, it

is clear that all three methods yield similar results and no method supersedes the other.

5.2 Second Order Derivative Estimation

As before, all smoothing parameters were determined by weighted generalized cross-validation

(WGCV(q)) for q = 2. A typical result for the second order derivative (q = 2) of (11) and (12) and
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Figure 3: Result of the Monte Carlo study for the proposed method and two other well-known

methods for first order derivative estimation.

its second order empirical derivative is shown in Figure 4. To smooth the noisy derivative data we

have chosen a local polynomial regression estimate of order p = 3. The question that arises is the

following: How to tune k1 and k2 for second order derivative estimation? Consider a set of candidate

values of k1 and k2, for example, {5,. . . ,40}. Note that, according to Corollary 5, the order of kq

should increase with q. The size of the set is determined both by the computational time that one

is willing to invest and by the maximum fraction of the observation weights s1, . . . ,sn that one is

willing to set to 0 in order to circumvent the aforementioned boundary issues. In order to have a

fair comparison among the values of k1 and k2, one should use the same observation weights for

all candidate values. Therefore, the largest value determines the weights. To choose the value k1

and k2 from the candidate set, we can take k1 and k2 that minimize WGCV(2). A similar strategy

can be used to determine kq. We have chosen to tune k1 according to the way described above and

not via (7) because the optimal k1 for first derivatives is not necessarily the optimal one to be used

for estimating second derivatives. From the simulations, it is clear that the variance is larger for

increasing q for λ ∈ ( 2q
2q+1

,1) (the order of the bias remains the same). This was already confirmed

by Theorem 4.

For the Monte Carlo study, we constructed data sets are of size n = 1500 and generated the

function

m(x) = 8e−(1−5x)3(1−7x) for x ∈ [0,0.5]

100 times according to model (1) with e ∼ N(0,σ2) and σ = 0.1. As measure of comparison we

chose the adjusted mean absolute error defined as

MAEadjusted =
1

1401

1450

∑
i=50

|m̂(2)
n (xi)−m(2)(xi)|.

This criterion was chosen to ignore boundary effects in the estimation. We evaluate the proposed

method for derivative estimation with the local slope in local polynomial regression with p = 5 and

penalized smoothing splines. For the latter we have used septic splines (Newell and Einbeck, 2007)

to estimate the second order derivative. The result of the Monte Carlo study is shown in Figure 5.

As before, all three methods perform equally well and show similar variances.
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Figure 4: Illustration of the noisy empirical second order derivative (data points), smoothed em-

pirical second order derivative based on a local polynomial regression estimate of order

p = 3 (bold line) and true derivative (bold dashed line). (a) Second order derivative of re-

gression function (11) with k1 = 6 and k2 = 10; (b) Second order derivative of regression

function (12) with k1 = 3 and k2 = 25.
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Figure 5: Result of the Monte Carlo study for the proposed method and two other well-known

methods for second order derivative estimation.

6. Conclusion

In this paper we proposed a methodology to estimate derivatives nonparametrically without estimat-

ing the regression function. We derived L1 and L2 rates and established consistency of the estimator.

The newly created data sets based on empirical derivatives are no longer independent and identi-

cally distributed (i.i.d.) random variables. In order to effectively deal with the non-i.i.d. nature of
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the data, we proposed a simple factor method, based on bimodal kernels, for the local polynomial

regression framework. Further, we showed that the order bias of the empirical derivative does not

depend on the order of the derivative q and that slower rates of convergence are to be expected for

increasing orders of derivatives q. However, our technique has also a drawback w.r.t. the design as-

sumptions. All our results have been derived for equispaced design. In many practical applications

and data coming from industrial sensors (e.g., process industry, robotics, nanoparticles, growth data)

equispaced data is often available since sensors are measuring at predefined times, see, for example,

Charnigo et al. (2007) and Patan (2008). However, our approach does not cover all possible appli-

cations, that is, application with inherent random design. In this case the weight sequence would

depend on the design density, which in practice has to be estimated.

Acknowledgments

Kris De Brabanter is a postdoctoral researcher supported by an FWO fellowship grant. BDM is full

professor at the Katholieke Universiteit Leuven, Belgium. Research supported by Onderzoeksfonds

KU Leuven/Research Council KUL: GOA/11/05 Ambiorics, GOA/10/09 MaNet , CoE EF/05/006

Optimization in Engineering (OPTEC) en PFV/10/002 (OPTEC), IOF-SCORES4CHEM, several

PhD/postdoc & fellow grants; Flemish Government:FWO: PhD/postdoc grants, projects: G0226.06

(cooperative systems and optimization), G0321.06 (Tensors), G.0302.07 (SVM/Kernel), G.0320.08

(convex MPC), G.0558.08 (Robust MHE), G.0557.08 (Glycemia2), G.0588.09 (Brain-machine) re-

search communities (WOG: ICCoS, ANMMM, MLDM); G.0377.09 (Mechatronics MPC) IWT:

PhD Grants, Eureka-Flite+, SBO LeCoPro, SBO Climaqs, SBO POM, O&O-Dsquare Belgian

Federal Science Policy Office: IUAP P6/04 (DYSCO, Dynamical systems, control and optimiza-

tion, 2007-2011);IBBT EU: ERNSI; FP7-HD-MPC (INFSO-ICT-223854), COST intelliCIS, FP7-

EMBOCON (ICT-248940), FP7-SADCO ( MC ITN-264735), ERC HIGHWIND (259 166) Con-

tract Research: AMINAL Other: Helmholtz: viCERP ACCM. IG is a full professor at the Katholieke

Universiteit Leuven, Belgium. GOA/07/04 en GOA/12/014, IUAP: P6/03, FWO-project G.0328.08N.

Interreg IVa 07-022-BE i-MOCCA. The scientific responsibility is assumed by its authors.

Appendix A. Proof Of Proposition 1

Using the fact that xi+ j − xi− j = 2 j(n−1)−1d(X ), where d(X ) := supX − infX , yields

Var(Y
(1)
i ) = Var

(

k

∑
j=1

w j ·
(

Yi+ j −Yi− j

xi+ j − xi− j

)

)

= Var

(

(

1−
k

∑
j=2

w j

)

Yi+1 −Yi−1

xi+1 − xi−1

+
k

∑
j=2

w j ·
(

Yi+ j −Yi− j

xi+ j − xi− j

)

)

=
σ2(n−1)2

2d(X )2

{

(

1−
k

∑
j=2

w j

)2

+
k

∑
j=2

w2
j

j2

}

.

Setting the partial derivatives to zero gives

2

(

1−
k

∑
j=2

w j

)

=
2w j

j2
, j = 2, . . . ,k,
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and hence j2w1 = w j. Normalizing such that the weights sum up to one yields

w j =
j2

∑k
i=1 i2

=
6 j2

k(k+1)(2k+1)
j = 1, . . . ,k.

Appendix B. Proof Of Theorem 2

Since m is twice continuously differentiable, the following Taylor expansions are valid for m(xi+ j)
and m(xi− j) round xi:

m(xi+ j) = m(xi)+(xi+ j − xi)m
′(xi)+

(xi+ j − xi)
2

2
m(2)(ζi,i+ j)

and

m(xi− j) = m(xi)+(xi− j − xi)m
′(xi)+

(xi− j − xi)
2

2
m(2)(ζi− j,i),

where ζi,i+ j ∈]xi,xi+ j[ and ζi− j,i ∈]xi− j,xi[. Using the above Taylor series and the fact that xi+ j −
xi− j = 2 j(n− 1)−1d(X ) and (xi+ j − xi) =

1
2
(xi+ j − xi− j), it follows that the absolute value of the

bias of Y
(1)
i is given by

∣

∣

∣

∣

∣

k

∑
j=1

w j

m(xi+ j)−m(xi− j)

xi+ j − xi− j

−m′(xi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k

∑
j=1

w j

(xi+ j − xi− j)[m
(2)(ζi,i+ j)−m(2)(ζi− j,i)]

8

∣

∣

∣

∣

∣

≤ sup
x∈X

|m(2)(x)|
∣

∣

∣

∣

∣

k

∑
j=1

w j

(xi+ j − xi− j)

4

∣

∣

∣

∣

∣

=
supx∈X |m(2)(x)|(n−1)−1d(X )

2

k

∑
j=1

j3

∑k
i=1 i2

=
3k(k+1)supx∈X |m(2)(x)|d(X )

4(n−1)(2k+1)

= O(kn−1)

uniformly over i. Using Proposition 1, the variance of Y
(1)
i yields

Var(Y
(1)
i ) =

σ2(n−1)2

2d(X )2

{

(

1−
k

∑
j=2

w j

)2

+
k

∑
j=2

w2
j

j2

}

=
σ2(n−1)2

2d(X )2

k

∑
j=1

w2
j

j2

=
σ2(n−1)2

2d(X )2

k

∑
j=1

36 j2

k2(k+1)2(2k+1)2

=
3σ2(n−1)2

k(k+1)(2k+1)d(X )2
= O(n2k−3)

uniformly over i.
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Appendix C. Proof of Theorem 3

Due to Chebyshev’s inequality, it suffices to show that the mean squared error (MSE) goes to zero,

that is,

lim
n→∞

MSE(Y
(1)
i )→ 0. (13)

Under the conditions k → ∞ as n → ∞ such that n−1k → 0 and nk−3/2 → 0, the bias and variance go

to zero (see Theorem 2). Hence, condition (13) is fulfilled.

Appendix D. Proof Of Theorem 4

The first step is to notice that there exist λ ∈ (0,1) and c1 ∈ (0,∞) (see Theorem 3) so that the

bias and variance of the first order empirical derivative can be written as bias(Y
(1)
i ) = O(nλ−1) and

Var(Y
(1)
i ) = O(n2−3λ) uniformly over i for k1n−λ → c1 as n → ∞. Next, we continue the proof by

induction. For the bias, assume that the first (q+1) derivatives of m are continuous on the compact

interval X . Hence, all O(·)-terms are uniformly over i. For any l ∈ {0,1, . . . ,q}, a Taylor series

yields

m(l)(xi± j) = m(l)(xi)+
q−l

∑
p=1

(

± jd(X )
n−1

)p

p!
m(p+l)(xi)+O

(

( j/n)q−l+1
)

. (14)

The expected value of the first order empirical derivative is given by (see Section 2)

E(Y
(1)
i ) = m′(xi)+

q

∑
p=3,5,...

m(p)(xi)
k1

∑
j=1

w j,1

p!

jp−1d(X )p−1

(n−1)p−1
+O

(

nq(λ−1)
)

,

with

θp,1 =
k1

∑
j=1

w j,1

p!

jp−1d(X )p−1

(n−1)p−1
= O

(

n(p−1)(λ−1)
)

,

for k1n−λ → c1 as n → ∞. Suppose that for l ∈ {2, . . . ,q} and kln
−λ → cl , where cl ∈ (0,∞), as

n → ∞

E(Y
(l−1)
i ) = m(l−1)(xi)+

q

∑
p=l+1,l+3,...

θp,l−1m(p)(xi)+O
(

n(q−l+2)(λ−1)
)

(15)

for θp,l−1 = O
(

n(p−l+1)(λ−1)
)

. We now prove that

E(Y
(l)
i ) = m(l)(xi)+

q

∑
p=l+2,l+4,...

θp,lm
(p)(xi)+O

(

n(q−l+1)(λ−1)
)
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for θp,l = O
(

n(p−l)(λ−1)
)

. Using (14) and (15) yields for ∆ = E(Y
(l−1)
i+ j )−E(Y

(l−1)
i− j )

∆ = m(l−1)(xi+ j)+
q

∑
p=l+1,l+3,...

θp,l−1m(p)(xi+ j)−m(l−1)(xi− j)−
q

∑
p=l+1,l+3,...

θp,l−1m(p)(xi− j)+O
(

n(q−l+2)(λ−1)
)

=
q−l+1

∑
p=1

(

jd(X )
n−1

)p

p!
m(p+l−1)(xi)+O

(

( j/n)q−l+2
)

+
q

∑
p=l+1,l+3,...

θp,l−1



m(p)(xi)+
q−p

∑
s=1

(

jd(X )
n−1

)s

s!
m(p+s)(xi)+O

(

( j/n)q−p+1
)





−
q−l+1

∑
p=1

(

− jd(X )
n−1

)p

p!
m(p+l−1)(xi)+O

(

( j/n)q−l+2
)

−
q

∑
p=l+1,l+3,...

θp,l−1



m(p)(xi)+
q−p

∑
s=1

(

− jd(X )
n−1

)s

s!
m(p+s)(xi)+O

(

( j/n)q−p+1
)



+O
(

n(q−l+2)(λ−1)
)

.

Rearranging and grouping term gives

∆

xi+ j − xi− j

= m(l)(xi)+
q−l+1

∑
p=3,5,...

(

jd(X )
n−1

)p−1

p!
m(p+l−1)(xi)+O

(

( j/n)q−l+1
)

+
q

∑
p=l+1,l+3,...

θp,l−1







q−p

∑
s=1,3,...

(

jd(X )
n−1

)s−1

s!
m(p+s)(xi)+O

(

( j/n)q−p
)







+
n−1

2 jd(X )
O
(

n(q−l+2)(λ−1)
)

.
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Multiplying all the above terms by w j,l =
j

∑
kl

i=1 i
and summing over j = 1,2, . . . ,kl results in

E(Y
(l)
i ) = m(l)(xi)

+
kl

∑
j=1

j

∑
kl

i=1 i

q−l+1

∑
p=3,5,...

(

jd(X )
n−1

)p−1

p!
m(p+l−1)(xi) (16)

+
kl

∑
j=1

j

∑
kl

i=1 i
O
(

( j/n)q−l+1
)

(17)

+
kl

∑
j=1

j

∑
kl

i=1 i

q

∑
p=l+1,l+3,...

θp,l−1

q−p

∑
s=1,3,...

(

jd(X )
n−1

)s−1

s!
m(p+s)(xi) (18)

+
kl

∑
j=1

j

∑
kl

i=1 i

q

∑
p=l+1,l+3,...

θp,l−1O
(

( j/n)q−p
)

(19)

+
kl

∑
j=1

j

∑
kl

i=1 i

n−1

2 jd(X )
O
(

n(q−l+2)(λ−1)
)

. (20)

The terms (17), (19) and (20) all yield O(n(q−l+1)(λ−1)) for θp,l−1 = O(n(p−l+1)(λ−1)). Similar,

the terms (16) and (18) yield ∑
q

p=l+2,l+4,...θp,lm
(p)(xi) for θp,l = O

(

n(p−l)(λ−1)
)

for kln
−λ → cl as

n → ∞. As a consequence, the bias of Y
(l)
i is given by

bias(Y
(l)
i ) = E(Y

(l)
i )−m(l)(xi) =

q

∑
p=l+2,l+4,...

θp,l m(p)(xi)+O(n(λ−1)) = O(nλ−1).

For the variance, we proceed in a similar way. Note that Var(Y
(1)
i ) = O(n2−3λ) uniformly over

i. Assume that Var(Y
(l−1)
i ) = O(n2(l−1)−2λ(l−1/2)) uniformly over i for l ∈ {2,3, . . . ,q}. The proof

will be complete if we show that Var(Y
(l)
i ) = O(n2l−2λ(l+1/2)). The variance of Y

(l)
i is given by

Var(Y
(l)
i ) =

(n−1)2

4d(X )2
Var

(

kl

∑
j=1

w j,l

j

(

Y
(l−1)
i+ j −Y

(l−1)
i− j

)

)

≤ (n−1)2

2d(X )2

[

Var

(

kl

∑
j=1

w j,l

j
Y
(l−1)
i+ j

)

+Var

(

kl

∑
j=1

w j,l

j
Y
(l−1)
i− j

)]

.

For a j ∈ N\{0}, j = 1, . . . ,kl , the variance is upperbounded by

Var(Y
(l)
i )≤ (n−1)2

d(X )2

(

kl

∑
j=1

a j

w2
j,l

j2

)

O(n2(l−1)−2λ(l−1/2)).

As in the proof of the bias, the choice of the weights become clear. If we choose w j,l =
j

∑
kl
i=1 i

for

l ≥ 2 then ∑
kl

j=1 a j
w2

j,l

j2 = O(n−2λ). Then, for kln
−λ → cl as n → ∞, it readily follows that Var(Y

(l)
i ) =

O(n2l−2λ(l+1/2)).
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