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Abstract. Augmented Lagrangian methods for derivative-free continuous optimization with

constraints are introduced in this paper. The algorithms inherit the convergence results obtained

by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and

are available. In particular, feasible limit points satisfy KKT conditions under the Constant Posi-

tive Linear Dependence (CPLD) constraint qualification. The form of our main algorithm allows

us to employ well established derivative-free subalgorithms for solving lower-level constrained

subproblems. Numerical experiments are presented.
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1 Introduction

In many applications one needs to solve finite-dimensional optimization prob-

lems in which derivatives of the objective functions or of the constraints are not

available. A comprehensive book describing many of these situations has been
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recently published by Conn, Scheinberg and Vicente [9]. In this paper we in-

troduce algorithms for solving constrained minimization problems of this class,

in which constraints are divided in two levels, as in [1]. The shifted-penalty ap-

proach that characterizes Augmented Lagrangian methods is applied only with

respect to the upper-level constraints whereas the lower level constraints are

explicitly included in all the subproblems solved at the main algorithm. Lower-

level constraints are not restricted to the ones that define boxes or polytopes. In

general we will assume that derivatives with respect to lower-level constraints

are available, but derivatives with respect to upper-level constraints and objective

function are not.

The form of the problems addressed in this paper is the following:

Minimize f (x) subject to h(x) = 0, g(x) ≤ 0, x ∈ �. (1)

The set � represents lower-level constraints of the form

h(x) = 0, g(x) ≤ 0. (2)

In the most simple case, � will take the form of an n-dimensional box:

� = {x ∈ Rn | ℓ ≤ x ≤ u}. (3)

We will assume that the functions f : Rn → R, h : Rn → R
m, g : Rn →

R
p, h : Rn → R

m, g : Rn → R
p are continuous. First derivatives will be

assumed to exist for some convergence results but they will not be used in the

algorithmic calculations at all. It is important to stress that the algorithms pre-

sented here do not rely on derivative discretizations, albeit some theoretical

convergence results evoke discrete derivative ideas.

We aim to solve (1) using a derivative-free Augmented Lagrangian approach

inspired in [1]. Given ρ > 0, λ ∈ Rm , μ ∈ R
p
+, x ∈ R

n , we define the

Augmented Lagrangian Lρ(x, λ, μ) by:

Lρ(x, λ, μ) =

f (x)+
ρ

2

{ m
∑

i=1

[

hi (x)+
λi

ρ

]2

+

p
∑

i=1

[

max

{

0, gi (x)+
μi

ρ

}]2}

.
(4)
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At each (outer) iteration the main algorithm will minimize (approximately)

Lρ(x, λ, μ) subject to x ∈ � using some derivative-free method and, between

outer iterations, the Lagrange multipliers λ,μ and the penalty parameter ρ

will be conveniently updated. The definition (4) corresponds to the well-known

PHR (Powell-Hestenes-Rockafellar) [12, 24, 27] classical Augmented Lagran-

gian formulation. See, also, [7, 8].

In the global optimization framework one finds an approximate global mini-

mizer of Lρ(x, λ, μ) on � at each outer iteration. In the limit, it may be proved

that a global minimizer of the original problem up to an arbitrary precision

is found [5]. Global minimization subalgorithms are usually expensive, but the

Augmented Lagrangian approach exhibits a practical property called “preference

for global minimizers” [1], thanks to which one usually finds local minimizers

with suitable small objective function values if efficient local minimization algo-

rithms are used for solving the subproblems. In other words, even if we do not

find global minimizers of the subproblems, the global results [5] tend to explain

why the algorithms work with the sole assumption of continuity of objective

function and constraints.

We conjecture that the effectivity of Augmented Lagrangian tools in deriv-

ative-free optimization is associated with the main motivation of the general

Augmented Lagrangian approach. Augmented Lagrangian methods are not

motivated by Newtonian ideas (which involve iterative resolution of linearized

problems associated with derivatives). Instead, these methods are based on

the idea of minimizing penalized problems with shifted constraints. The most

natural updating rule for the multipliers does not use derivatives at all, as its

motivation comes from a modified-displacement strategy [24]. Continuity is the

only smoothness property of the involved functions that supports the plausibil-

ity of Augmented Lagrangian procedures for constrained optimization.

The division of the constraints between upper-level and lower-level ones may

be due to different reasons. In our algorithms, we will adopt the point of view

that the upper level contains “difficult” constraints whose derivatives are not

available and that the lower level contains “easier” constraints whose explicit

derivatives could be employed. Derivative-free methods for minimization with

(only) lower-level constraints are supposed to exist (see [9, 23]) albeit this as-
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sumption is irrelevant from the theoretical point of view. However it is impor-

tant to put in relief that we could use many known derivative-free algorithms

to minimize Lρ(x, λ, μ) subject to x ∈ �, including directional direct search

methods, simplex methods or algorithms based on polynomial interpolation

[9]. Sometimes lower-level constraints are easy in the sense that we can deal

with them using direct directional search methods. For instance, we can use

the MADS algorithm [3, 4], which has been proven to be a very good choice

for problems where � = I nt (�). Although most frequently lower-level con-

straints define boxes or polytopes, more general situations are not excluded at

all. Sometimes lower-level constraints cannot be violated, because they involve

fundamental definitions or because the objective function may not be defined

when they are not fulfilled.

The choice of the algorithm that should be used to solve the subproblems de-

pends on the nature of the lower-level constraints. The best known case is when

� is an n-dimensional box. We will develop a special algorithm for this case.

The algorithm employs an arbitrary derivative-free box-constraint (or even un-

constrained) minimization solver which we complement with a local coordinate

search in order to ensure convergence. When � is defined by linear (equality

or inequality) constraints, the technique of positive generators on cones ([9],

Chapter 13) may be employed. See [15, 17, 20].

Assume that x̄ is a feasible point of a smooth nonlinear programming problem

whose constraints are h̄i (x) = 0, i ∈ I , ḡ j (x), j ∈ J and that the active con-

straints at x̄ are (besides the equalities) ḡ j (x) ≤ 0, j ∈ J0. Let I1 ⊆ I, J1 ⊆ J0.

We say that the gradients∇h̄i (x̄)(i ∈ I1),∇ ḡ j (x̄)( j ∈ J1) are positively linearly

dependent if
∑

i∈I1

λi∇ h̄i (x̄)+
∑

j∈J1

μ j∇ ḡ j (x̄) = 0,

where

λi ∈ R ∀i ∈ I1, μ j ≥ 0 ∀ j ∈ J1 and
∑

i∈I1

|λi | +
∑

j∈J1

μ j > 0.

The CPLD condition says that, when a subset of gradients of active constraints

is positively linearly dependent at x̄ , then the same gradients remain linearly

dependent for all x (feasible or not) in a neighborhood of x̄ . Therefore, CPLD
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is strictly weaker than the Mangasarian-Fromovitz (MFCQ) constraint qualifi-

cation [21, 28].

The CPLD condition was introduced in [26] and its status as a constraint

qualification was elucidated in [2]. In [1] an Augmented Lagrangian algorithm

for minimization with arbitrary lower-level constraints was introduced and it was

proved that feasible limit points that satisfy CPLD necessarily fulfill the KKT

optimality conditions. The derivative-free algorithms introduced in this paper

recover the convergence properties of [1].

In [14], Kolda, Lewis and Torczon proposed a derivative-free Augmented

Lagrangian algorithm for nonlinear programming problems with a combina-

tion of general and linear constraints. In terms of (1), the set � is defined by

a polytope in [14]. The authors use the approach of [7], by means of which

inequality constraints are transformed into equality constraints with the addi-

tion of slack non-negative variables. Employing smoothness assumptions, they

reproduce the convergence results of [7]. This means that feasible limit points

satisfy KKT conditions, provided that the Linear Independence Constraint

Qualification (LICQ) holds. In a more recent technical report [19], Lewis and

Torczon used the framework of [1] for dealing with linear constraints in the

lower level and employed their derivative-free approach for solving the sub-

problems. The proposed algorithm inherits the theoretical properties of [1],

which means that the results in [19] are based on the CPLD constraint quali-

fication. However, the authors don’t consider nonlinear constraints in the lower

level set, which is possible in our approach.

This paper is organized as follows. In Section 2 we recall the method and

theoretical results found in [1]. In Section 3 we introduce a derivative-free

version of [1] for the case in which the lower-level set is a box. In Section 4

we introduce a derivative-free version of the Augmented Lagrangian method

for arbitrary lower-level constraints. Section 5 describes some numerical res-

ults. Finally, we make some comments and present our conclusions about this

work in Section 6.

Notation

• The symbol ‖ ∙ ‖ denotes an arbitrary vector norm.

Comp. Appl. Math., Vol. 30, N. 1, 2011



24 NONLINEAR PROGRAMMING WITH GENERAL LOWER-LEVEL CONSTRAINTS

• The canonical basis of Rn will be denoted {e1, . . . , en}.

• For all y ∈ Rn , y+ = (max{0, y1}, . . . ,max{0, yn})T .

• N = {0, 1, . . .}.

• If v is a vector and t is a scalar, the statement v ≤ t means that vi ≤ t for

all the coordinates i .

• [a, b]m = [a, b] × [a, b] × . . .× [a, b] m times.

2 Preliminary results

In this section we recall the main algorithm presented in [1] for solving (1)

with � defined by (2). We will also mention the convergence theorems that are

relevant for our present research.

Algorithm 1 (Derivative-based Augmented Lagrangian)

The parameters that define the algorithm are: τ ∈ [0, 1), γ > 1, λmin < λmax,

μmax > 0. At the first outer iteration we use a penalty parameter ρ1 > 0 and

safeguarded Lagrange multipliers estimates λ̄1 ∈ Rm and μ̄1 ∈ Rp such that

λ̄1i ∈ [λmin, λmax] ∀i = 1, . . . ,m and μ1i ∈ [0, μmax] ∀i = 1, . . . , p.

Finally, {εk} is a sequence of positive numbers that satisfies

lim
k→∞

εk = 0.

Step 1. Initialization.

Set k ← 1.

Step 2. Solve the subproblem.

Compute xk ∈ Rn such that there exist vk ∈ Rm, wk ∈ Rp satisfying

‖∇Lρk (x
k, λ̄k, μ̄k)+

m
∑

i=1

vki ∇hi (x
k)+

p
∑

i=1

wki ∇gi
(xk)‖ ≤ εk, (5)

wk ≥ 0, g(xk) ≤ εk, (6)
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wki = 0 whenever g
i
(xk) < −εk, for all i = 1, . . . , p, (7)

‖h(xk)‖ ≤ εk . (8)

Step 3. Estimate multipliers.

For all i = 1, . . . ,m, compute

λk+1i = λ̄ki + ρkhi (x
k) (9)

and

λ̄k+1i ∈ [λmin, λmax]. (10)

For all i = 1, . . . , p, compute

μk+1i = max{0, μ̄
k
i + ρkgi (x

k)}, (11)

V ki = max

{

gi (x
k),−

μ̄ki

ρk

}

,

and

μ̄k+1i ∈ [0, μmax]. (12)

Step 4. Update penalty parameter.

If k > 1 and

max{‖h(xk)‖∞, ‖V k‖∞} > τ max{‖h(xk−1)‖∞, ‖V k−1‖∞},

define

ρk+1 = γρk .

Else, define

ρk+1 = ρk .

Update k ← k + 1 and go to Step 2.

Lemma 1 below shows that the points xk generated by Algorithm 1 are, ap-

proximately, KKT points of the problem, which is a consequence of require-

ments (5–8). Lemma 2 shows that the complementarity conditions respect to

constraints g(x) ≤ 0 are satisfied for k large enough.
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Lemma 1. Assume that {xk} is a sequence generated by Algorithm 1. Then,

for all k = 1, 2, . . . we have:

∥

∥∇ f (xk)+∇h(xk)λk+1 +∇g(xk)μk+1 +∇h(xk)vk +∇g(xk)wk
∥

∥ ≤ εk,

where

wk ≥ 0, wki = 0 whenever g
i
(xk) < −εk,

g
i
(xk) ≤ εk ∀ i = 1, . . . , p, ‖h(x

k)‖ ≤ εk .

Proof. The proof follows from (5–8) using the definitions (9) and (11). �

Lemma 2. Assume that the sequence {xk} is generated by Algorithm 1 and that

K is an infinite sequence of indices such that

lim
k∈K
xk = x∗.

Suppose that gi (x
∗) < 0. Then, there exists k0 ∈ K such that

μk+1i = 0 for all k ∈ K , k ≥ k0.

Proof. See the proof of formula (4.10) in Theorem 4.2 of [1]. �

Theorem 1. Assume that x∗ is a limit point of a sequence generated by Algo-

rithm 1. Then:

1. If the sequence of penalty parameters {ρk} is bounded, x∗ is a feasible

point of (1). Otherwise, at least one of the following two possibilities

holds:

• The point x∗ satisfies the KKT conditions of the problem

Minimize ‖h(x)‖22 + ‖g(x)+‖
2
2 subject to h(x) = 0, g(x) ≤ 0.

• The CPLD constraint qualification corresponding to the lower-level

constraints h(x) = 0, g(x) ≤ 0 does not hold at x∗.
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2. If x∗ is a feasible point of (1) then at least one of the following two possi-

bilities holds:

• The KKT conditions of (1) are fulfilled at x∗.

• The CPLD constraint qualification corresponding to all the con-

straints of (1) (h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0) does not

hold at x∗.

Proof. See Theorems 4.1 and 4.2 of [1]. �

Theorem 1 represents the type of global convergence result that we want

to prove for the algorithms presented in this paper. In [1], under additional

assumptions, it is proved that the penalty parameters remain bounded when one

applies Algorithm 1 to (1). The first part of Theorem 1 says that the algorithm

behaves in the best possible way in the process of finding feasible points. This

result cannot be improved since the feasible region could be empty and, on

the other hand, the algorithm is not equipped for finding global minimizers. It

must be observed that, since the lower-level set is generally simple, the CPLD

condition related to � is usually satisfied at all the lower-level feasible points.

The second part of the theorem (which corresponds to Theorem 4.2 of [1]) says

that, under the CPLD constraint qualification, every feasible limit point is KKT.

Since CPLD is weaker than popular constraint qualifications like LICQ (regular-

ity) or MFCQ (Mangasarian-Fromovitz), this result is stronger than properties

that are based on LICQ or MFCQ. The consequence is that, roughly speaking,

Algorithm 1 “works” when it generates a bounded sequence (so that limit points

necessarily exist). The first requirement for this is, of course, that the conditions

(5–8) must be effectively satisfied at every outer iteration, otherwise the algo-

rithm would not be well defined. This requirement must be analyzed in every

particular case. A sufficient condition for the boundedness of the sequence is

the boundedness of the set

{x ∈ Rn | g(x) ≤ ε, ‖h(x)‖ ≤ ε} for some ε > 0.

This condition holds, for example, if the lower-level constraints include box

constraints on all the variables.
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3 Derivative-free method for box lower-level constraints

In this section we define a derivative-free method that applies to problem (1)

when � is a box defined by (3).

Algorithm 2 (Derivative-free Augmented Lagrangian for box constraints in

the lower level)

Let τ ∈ [0, 1), γ > 1, λmin < λmax, μmax > 0, ρ1 > 0, λ̄1, μ̄1 and {εk} be

as in Algorithm 1. Steps 1, 3 and 4 of Algorithm 2 are identical to those of

Algorithm 1. Step 2 is replaced by the following:

Step 2. Solve the subproblem.

Choose a positive tolerance δk < (ui − ℓi )/2, i = 1, . . . , n, such that

δk ≤ min

{

εk

ρk
, εk

}

. (13)

Find xk ∈ � such that, for all i = 1, . . . , n,

xk ± δke
i ∈ �⇒ Lρk (x

k ± δke
i , λ̄k, μ̄k) ≥ Lρk (x

k, λ̄k, μ̄k). (14)

Since the algorithm found in [19] handles linear constrained problems, it could

also be applied to a box constrained problem. The main difference between

this algorithm and Algorithm 2 relies on the choice of the solver for the sub-

problem. We encourage the use of any derivative-free technique able to find

points satisfying (14), whereas in [19] the authors use Generating Set Search

methods for solving the subproblems, taking advantage of the geometry of the

linear constraints.

Theorem 2. Assume that ∇ f,∇h,∇g satisfy Lipschitz conditions on the box

�. Then Algorithm 2 is a particular case of Algorithm 1. Moreover:

• The sequence {xk} is well defined for all k and admits limit points.

• If the sequence of penalty parameters {ρk} is bounded, x
∗ is feasible.

Otherwise, every limit point x∗ is a stationary point of the box con-

strained problem

Minimize ‖h(x)‖22 + ‖g(x)+‖
2
2 subject to x ∈ �.
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• If x∗ is a feasible limit point, then at least one of the following possibili-

ties holds:

1. The point x∗ fulfills the KKT conditions of

Minimize f (x), subject to h(x) = 0, g(x) ≤ 0, x ∈ �.

2. The CPLD constraint qualification is not satisfied at x∗ for the con-

straints h(x) = 0, g(x) ≤ 0, x ∈ �.

Proof. By (4), (10), (12) and the Lipschitz assumption, there exists M > 0

such that for all x, y ∈ � we have:

‖∇Lρk (x, λ̄
k, μ̄k)−∇Lρk (y, λ̄

k, μ̄k)‖∞ ≤ Mρk‖x − y‖∞. (15)

Assume that xk is computed at Step 2 of Algorithm 2. Given i ∈ {1, . . . , n},

since δk < (ui − ℓi )/2, we may consider three possible cases:

• ℓi ≤ x
k
i − δk and xki + δk ≤ ui ;

• ℓi > x
k
i − δk and xki + δk ≤ ui ;

• ℓi ≤ x
k
i − δk and xki + δk > ui .

Consider the first case. By (14) and the Mean Value Theorem, there exists

θ ki ∈ [−δk, δk] such that

[

∇Lρk (x
k + θ ki e

i , λ̄k, μ̄k)
]

i
= 0.

Then by (15)
∣

∣[∇Lρk (x
k, λ̄k, μ̄k)]i

∣

∣ ≤ Mρkδk . (16)

Now consider the second case. By (14) and the Mean Value Theorem, there

exists θ ki ∈ [0, δk] such that

[

∇Lρk (x
k + θ ki e

i , λ̄k, μ̄k)
]

i
≥ 0.

So there exists wki ≥ 0 such that

[

∇Lρk (x
k + θ ki e

i , λ̄k, μ̄k)
]

i
− wki = 0.
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Therefore, by (15),

∣

∣[∇Lρk (x
k, λ̄k, μ̄k)]i − wki

∣

∣ ≤ Mρkδk . (17)

Analogously, in the third case we obtain that there exists wki ≥ 0 such that

∣

∣[∇Lρk (x
k, λ̄k, μ̄k)]i + wki

∣

∣ ≤ Mρkδk . (18)

From (16), (17) and (18), we deduce that there exists wk ≥ 0 such that
∥

∥

∥

∥

∥

∇Lρk (x
k, λ̄k, μ̄k)+

n
∑

i=1

±wki e
i

∥

∥

∥

∥

∥

∞

≤ Mρkδk, (19)

where

wki = 0 if x
k
i − ℓi ≥ δk and x

k
i − ui ≤ −δk .

The sign − takes place in (19) if

xki − ℓi < δk and x
k
i ≤ ui − δk,

while the sign + takes place in (19) if

xki − ℓi ≥ δk and x
k
i − ui > −δk .

Then, by (13), xk satisfies (5–8) if one redefines εk ← max{εk,Mεk}.

To complete the proof of the theorem, observe first that it is always possi-

ble to satisfy (14) defining a δk-grid on � and taking xk as a global minimizer

of Lρk (x, λ̄
k, μ̄k) on that grid. Since � is bounded, the sequence is in a com-

pact set and limit points exist. Moreover, the box constraints that define �

satisfy CPLD, therefore, by Theorem 1, limit points are stationary points of

‖h(x)‖22 + ‖g(x)+‖
2
2. The last part of the thesis is a direct consequence of

Theorem 1. �

4 Derivative-free method for arbitrary lower-level constraints

In this section we define a derivative-freemethod of Augmented Lagrangian type

for solving (1) with arbitrary lower-level constraints. Recall that in Section 3 the

case in which the lower-level constraints define a box has been addressed.
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In order to minimize the Augmented Lagrangian subject to the lower-level

constraints, we need to use an “admissible” derivative-free algorithm, having

appropriate theoretical properties. Roughly speaking, when objective function

and constraints are differentiable, an admissible algorithm should compute KKT

points of the subproblem up to any required precision.

Let F : Rn → R, h : Rn → R
m , g : Rn → R

p be continuously differ-

entiable. We say that an iterative algorithm is admissible with respect to the

problem

Minimize F(x) subject to h(x) = 0, g(x) ≤ 0 (20)

if it does not make use of analytical derivatives of F and, independently of x0,

it computes a sequence {xν} with the following properties:

• {xν} is bounded;

• Given ε > 0 and ν1 ∈ N, there exist ν ≥ ν1, xν ∈ Rn , vν ∈ Rm , wν ∈ R
p

+,

satisfying:

‖∇F(xν)+

m
∑

i=1

vν
i ∇hi (x

ν)+

p
∑

i=1

wν
i ∇gi

(xν)‖ ≤ ε, (21)

wν ≥ 0, g(xν) ≤ ε, (22)

wν
i = 0 whenever g

i
(xν) < −ε, ∀ i = 1, . . . , p, (23)

‖h(xν)‖ ≤ ε. (24)

In this case, we say that xν is an ε-KKT point of the problem (20).

When we talk about lower-level constraints, we have in mind not only boxes

and polytopes, as [14, 15], but also more general constraints that can be handled

using, for example, the extreme barrier approach (see [9], Chapter 13). Barrier

methods can be useful for solving subproblems when easy inequality constraints

define feasible sets � such that

� = I nt (�).

In these cases, incorporating the constraints which define � in the upper-level

set may be inconvenient. A reasonable algorithm for solving the problem of

minimizing a function subject to this type of constraints can be found in [3, 4].
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We will assume that Gρ(x, λ, μ, δ) approximates the gradient of the Aug-

mented Lagrangian, in the sense that there exists M > 0 such that, for all

x ∈ Rn, λ ∈ [λmin, λmax]
m, μ ∈ [0, μmax]

p, δ > 0,

‖Gρ(x, λ, μ, δ)−∇Lρ(x, λ, μ)‖ ≤ δMρ. (25)

Many possible definitions of G can be given satisfying (25) if ∇ f,∇h,∇g

satisfy Lipschitz conditions. An appealing possibility is to define G as a simplex

gradient [9]. It may not be necessary to use many auxiliary points to compute

G because this approximation can be built using previous iterates of the sub-

algorithm.

Algorithm 3, defined below, applies to the general problem (1). For this

algorithm we will prove that the convergence properties of Algorithm 1 can be

recovered under suitable assumptions on the optimization problem. For the ap-

plication of Algorithm 3 we will assume that the gradients of the lower-level

constraints ∇h and ∇g are available.

For each outer iteration k we will denote by {xk,ν} a sequence generated by an

admissible algorithm applied to the problem

Minimize Lρk (x, λ̄
k, μ̄k) subject to h(x) = 0, g(x) ≤ 0. (26)

We assume that the computational form of the admissible algorithm includes

some internal stopping criterion that is going to be tested for each ν. When

this stopping criterion is fulfilled we check the approximate fulfillment of (21–

24) without using analytic derivatives of f, h, g. Of course, some admissible

algorithms may ensure that the approximate KKT conditions are satisfied when

their convergence criteria are met, in which case it is not necessary to check the

approximate KKT conditions.

Algorithm 3 (Derivative-free Augmented Lagrangian for general constraints in

the lower level)

Let τ ∈ [0, 1), γ > 1, λmin < λmax, μmax > 0, ρ1 > 0, λ̄1, μ̄1 and {εk} be

as in Algorithm 1. Steps 1, 3 and 4 of Algorithm 3 are identical to those of

Algorithm 1. Step 2 is replaced by the following:
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Step 2. Solve the subproblem.

Choose a tolerance δk such that

δk ≤
εk

ρk
. (27)

Let {δk,ν} be such that δk,ν ∈ (0, δk] for all ν and

lim
ν→∞

δk,ν = 0.

Step 2.1. Set ν ← 1.

Step 2.2. Compute xk,ν .

Step 2.3. If xk,ν does not satisfy the intrinsic stopping criterion of the admissi-

ble subalgorithm, set ν ← ν + 1 and go to Step 2.2.

Step 2.4. If ‖h(xk,ν)‖ > εk or there exists i ∈ {1, . . . , p} such that g
i
(xk,ν) >

εk , set ν ← ν + 1 and go to Step 2.2.

Step 2.5. Compute Gρk (x
k,ν, λ̄k, μ̄k, δk,ν),∇h(x

k,ν),∇g(xk,ν).

Step 2.6. Define

Iν = {i ∈ {1, . . . , p} | g
i
(xk,ν) < −εk}.

Solve, with respect to (v,w), the following problem:

Minimize

∥

∥

∥

∥

∥

Gρk (x
k,ν, λ̄k, μ̄k, δk,ν)+

m
∑

i=1

vi∇hi (x
k,ν)+

p
∑

i=1

wi∇g
i
(xk,ν)

∥

∥

∥

∥

∥

(28)

subject to w ≥ 0 and wi = 0 if i ∈ Iν .

Step 2.7. If, at a solution (v,w) of (28) we have that

∥

∥

∥

∥

∥

Gρk (x
k,ν, λ̄k, μ̄k, δk,ν)+

m
∑

i=1

vi∇hi (x
k,ν)+

p
∑

i=1

wi∇g
i
(xk,ν)

∥

∥

∥

∥

∥

≤ εk, (29)

define ν∗(k) = ν, xk = xk,ν
∗(k), vk = v, wk = w and go to Step 3. Else, set

ν ← ν + 1 and go to Step 2.2.
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The purpose of Step 2 above is to find a point xk,ν
∗(k) and multipliers vk, wk

that verify (5-8), but with the actual gradient of ∇Lρk replaced by the simplex

gradient Gρk . At (28) we compute approximate Lagrange multipliers v,w with

respect to lower-level constraints. In some cases, the basic admissible algorithm

may provide these multipliers so that the step (28) may not be necessary. If

‖ ∙ ‖ is the Euclidean norm, (28) involves the minimization of a convex quadratic

with non-negative constraints. So, its resolution is affordable in the context

of derivative-free optimization, where functions evaluations are generally very

expensive, since neither f, g nor h are computed at (28).

In the following theorem we prove that Algorithm 3 is well defined. This

amounts to show that the loop defined by Steps 2.1–2.7 necessarily finishes for

some finite ν.

Theorem 3. Assume that, for all k = 1, 2, . . . an admissible algorithm with

respect to (26) is available. Assume, moreover, that the first derivatives of

f, h, g, h, g exist and are Lipschitz on a sufficiently large set. Then, Algorithm 3

is well defined.

Proof. For fixed k, assume that the admissible algorithm, whose existence

is postulated in the hypothesis, computes a sequence {xk,ν}. Since f, h, g have

Lipschitz gradients, there exists a Lipschitz constant ρkM for the function

∇Lρk (x
k,ν, λ̄k, μ̄k) that is valid for all x in a sufficiently large ball that contains

the whole sequence and (25) is satisfied. Let ν1 be such that

ρkMδk,ν < εk/2 (30)

for all ν ≥ ν1 (note that it is not necessary to know the value of M at all).

By the definition of admissible algorithm, there exists ν ≥ ν1, vk,ν ∈ Rm ,

wk,ν ∈ R
p

+ such that:

∥

∥

∥

∥

∥

∇Lρk (x
k,ν, λ̄k, μ̄k)+

m
∑

i=1

v
k,ν
i ∇hi (x

k,ν)+

p
∑

i=1

w
k,ν
i ∇gi

(xk,ν)

∥

∥

∥

∥

∥

≤ εk/2, (31)

wk,ν ≥ 0, g(xk,ν) ≤ εk/2, (32)
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g
i
(xk,ν) < −εk/2⇒ w

k,ν
i = 0 for all i = 1, . . . , p, (33)

‖h(xk,ν)‖ ≤ εk/2. (34)

Now, by (25) and (30),

‖Gρk (x
k,ν, λ̄k, μ̄k)−∇Lρk (x

k,ν, λ̄k, μ̄k, δk,ν)‖ ≤ εk/2.

Thus, by (31),

∥

∥

∥

∥

∥

Gρk (x
k,ν, λ̄k, μ̄k, δk,ν)+

m
∑

i=1

v
k,ν
i ∇hi (x

k)+

p
∑

i=1

w
k,ν
i ∇gi

(xk)

∥

∥

∥

∥

∥

≤ εk,

therefore, by (32–34), the solution of problem (28) necessarily satisfies (29).

This means that the loop at Step 2 of Algorithm 3 necessarily finishes in finite

time, so the algorithm is well defined. �

Theorem 4. In addition to the hypotheses of Theorem 3, assume that there

exists ε > 0 such that the set defined by ‖h(x)‖ ≤ ε, g(x) ≤ ε is bounded.

Then, the sequence {xk} defined by Algorithm 3 is well defined and bounded.

Moreover, if x∗ is a limit point of this sequence, we have:

1. The lower-level constraints are satisfied at x∗ (h(x∗) = 0, g(x∗) ≤ 0).

2. If the sequence of penalty parameters {ρk} is bounded, x∗ is a feasible

point of (1). Otherwise, at least one of the following two possibilities

holds:

• The point x∗ satisfies the KKT conditions of the problem

Minimize ‖h(x)‖22 + ‖g(x)+‖
2
2 subject to h(x) = 0, g(x) ≤ 0.

• The CPLD constraint qualification corresponding to the lower-level

constraints h(x) = 0, g(x) ≤ 0 does not hold at x∗.

3. If x∗ is a feasible point of (1) then at least one of the following possibili-

ties hold:

Comp. Appl. Math., Vol. 30, N. 1, 2011



36 NONLINEAR PROGRAMMING WITH GENERAL LOWER-LEVEL CONSTRAINTS

• The KKT conditions of (1) are fulfilled at x∗.

• The CPLD constraint qualification corresponding to all the con-

straints of (1) (h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0) does not

hold at x∗.

Proof. By Theorem 3, the sequence {xk} is well defined. Since εk ≤ ε for k

large enough, all the iterates of the method belong to a compact set from some

iteration on. This implies that the whole sequence is bounded, so limit points

exist.

By (25) we have that:

‖Gρk (x
k, λ̄k, μ̄k, δk,ν∗(k))−∇Lρk (x

k, λ̄k, μ̄k)‖ ≤ Mρkδk,ν∗(k).

Therefore, since, by (27), δk,ν∗(k) ≤ δk and ρkδk ≤ εk ,

‖Gρk (x
k, λ̄k, μ̄k, δk,ν∗(k))−∇Lρk (x

k, λ̄k, μ̄k)‖ ≤ Mεk .

Then, by (29),

∥

∥

∥

∥

∥

∇Lρk (x
k, λ̄k, μ̄k)+

m
∑

i=1

vki ∇hi (x
k,ν)+

p
∑

i=1

wki ∇gi
(xk,ν)

∥

∥

∥

∥

∥

≤ (1+ M)εk .

Moreover, by Step 2 of Algorithm 3,

‖h(xk)‖ ≤ εk, g(x
k) ≤ εk

and

wki = 0 whenever gi (x
k) < −εk .

Therefore, redefining εk ← (1 + M)εk , we have that Algorithm 3 can be seen

as a particular case of Algorithm 1. So the thesis of Theorem 1 holds for Algo-

rithm 3 and the theorem is proved. �

In Theorem 4 we proved that the only requirement for Algorithm 3 to be a

satisfactory algorithm for solving (1) with arbitrary lower level constraints is the

availability of an admissible algorithm for solving the subproblems. Now we are

going to show that, for many reasonable lower-level constraints, Algorithm 2
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may be such admissible algorithm. As we mentioned before, reasonable admis-

sible algorithms has been already introduced by several authors for particular

classes of lower-level sets. Here we wish to show that, as a last resource, even

Algorithm 2 may also be used as admissible algorithm for solving subproblems.

The special case of lower-level constraints that we wish to consider is almost

as general as it could be. Essentially, we are going to consider arbitrary lower

level constraints with bounds on the variables. More precisely, we define:

� = {x ∈ Rn | h(x) = 0, g(x) ≤ 0, ℓ ≤ x ≤ u}, (35)

where h and g are as defined in the Introduction. A very important partic-

ular case of (35) is when � is described by linear (equality and inequality)

constraints and bounds.

For proving the main admissibility result we will need the following as-

sumption.

Assumption A.

If x is a stationary (KKT) point of the problem

Minimize ‖h(x)‖22 + ‖g(x)+‖
2
2 subject to ℓ ≤ x ≤ u

then

h(x) = 0 and g(x) ≤ 0.

Theorem 5. Assume that F : Rn → R is continuously differentiable and sup-

pose that h, g, ℓ, u satisfy Assumption A. Then Algorithm 2 is an admissible

algorithm for the problem

Minimize F(x) subject to h(x) = 0, g(x) ≤ 0, ℓ ≤ x ≤ u.

Proof. Assume that we apply Algorithm 2 to the problem above. Therefore,

F plays the role of f , h and g stand for h and g, respectively.

First observe that, as required by the definition of admissibility, the generated

sequence is well defined and bounded.
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Without loss of generality, let us identify {xν} as a convergent subsequence

of the sequence generated by Algorithm 2. By Theorem 2, Algorithm 2 is a

particular case of Algorithm 1. This implies that, for a given ε > 0 and ν large

enough, condition (21) necessarily holds.

Also by Theorem 2, every limit point is a stationary point of the infeasibility

measure subject to the bounds. Therefore, by Assumption A, (22) and (24) also

hold for ν large enough.

Finally, let us prove that (23) also takes place for ν large enough. Suppose, by

contradiction, that this is not true. Therefore, there exists ε̄ > 0 such that, for

all ν large enough, there exits i = i(ν) satisfying

g
i
(xν) < −ε̄ and wν

i > 0.

Without loss of generality, since the number of different indices of i is finite, we

may assume that i = i(ν) for all ν. Hence, in the limit, one has g
i
(x∗) < 0.

Then, by Lemma 2, wν
i = 0 for ν large enough. This is a contradiction, which

ends the proof of the theorem. �

Theorem 5 shows that Algorithm 2 is an admissible algorithm. Hence, by

Theorem 3, it is possible to use Algorithm 2 to generate a sequence {xk,ν} that

can be employed in Step 2 of Algorithm 3, when one is attempting to solve (1)

with � as in (35).

5 Numerical experiments

In this section, we present some computational results obtained with a Fortran

77 implementation of Algorithm 2. Since there is freedom on the choice of

the algorithm for the box constrained subproblems, we tested three derivative-

free solvers: Coordinate Search [16], the BOBYQA software [25], based on

quadratic approximations and trust region techniques, and the well known

Nelder-Mead algorithm [22]. In order to satisfy the condition (14), the points

returned by BOBYQA or Nelder-Mead are taken as knots of meshes with den-

sity δk and, if necessary, other points on these meshes are visited. Eventually,

a point satisfying (14) is found. This means that BOBYQA and Nelder-Mead

may be followed by some iterations of Coordinate Search. On the other hand,

Coordinate Search satisfies (14) naturally, if we set δk as the step of the search
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on the exit of the algorithm. When using the Nelder-Mead algorithm for the

subproblems, we force f (x) = ∞ for x 6∈ �, to make sure that all gener-

ated points lie within the box. We will call the Augmented Lagrangian with

BOBYQA, Nelder-Mead and Coordinate Search as subsolvers, respectively, as

AL-BOBYQA, AL-NMead and AL-CSearch.

We say that the Augmented Lagrangian found a solution of a problem if

(14) is achieved with tolerance δopt at a point x that is sufficiently feasible,

in the sense that, for a tolerance ε f eas, max{‖h(x)‖, ‖V (x)‖} ≤ ε f eas . We

consider that the algorithm fails in the attempt of solving the problem in the

following cases:

Failure 1: when it cannot find the solution in up to 50 outer iterations,

Failure 2: when it performs 9 outer iterations without improving the feasibility,

Failure 3: when it evaluates the Augmented Lagrangian function more than

106 times in a single call of the subsolver.

5.1 Hock-Schittkowski problems

The first set of problems we considered was the Hock-Schittkowski collec-

tion [13], which is composed by 119 differentiable problems. We solved only

the 47 problems that have general and box constraints simultaneously. The di-

mension of the problems varies between 2 and 16, while the number of con-

straints are between 1 and 38, exceeding 10 in only 5 cases. We used δopt =

ε f eas = 10−5. Table 1 shows the performance of each algorithm for all prob-

lems, with respect to the objective function on the solution, f (x∗), and the num-

ber of function evaluations, f eval, while Table 2 lists the feasibility reached

in each case. It is worth noticing that it was required as a stopping criterion

for the Augmented Lagrangian algorithm that max{‖h(x)‖, ‖V (x)‖} ≤ 10−5,

and for this reason, in all cases where the algorithm succeeded the measure of

feasibility is small. But on the other hand, in the cases where the feasibility is

substantially small than the tolerance, we have the impression that the respec-

tive algorithm is not having problem on achieving or maintaining the feasibility.

The first line of Table 3 shows the percentage of problems that took 10 to

100 function evaluations to be solved, the second line report those that used 100
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to 1000 function evaluations and so on. The last three lines show the amount

of failures.

Table 4 shows which method has the best performance for each problem.

The first line shows the percentage of problems for which each method evalu-

ated less times the Augmented Lagrangian function, the second and third lines

consider the occasions where each method was the second best and worst, re-

spectively, while the last line informs the total amount of failures.

We can see from the tables that BOBYQAwas the most economic subproblem

solver. On the other hand, even with the greatest number of function evaluations

in many cases, AL-NMead was the most robust. Recall that we do not used the

“pure” Nelder-Mead method as a subsolver, but the Nelder-Mead method plus

Coordinate Search; the same comment can be made for BOBYQA. AL-CSearch

exhibited an intermediate performance when we consider computational effort,

but was the least robust among the three algorithms.

5.2 Minimum volume problems

The volume of complex regions defined by inequalities in Rd is very hard to

compute. A popular technique, when one needs to compute a volume approx-

imation, consists of using a Monte Carlo approach [6, 11]. We will use some

small-dimensional examples (d = 2) in order to illustrate the behavior of

derivative-free methods in problems in which volumes need to be optimized.

In the following examples, one needs to minimize the Monte Carlo approxima-

tion of the area of a figure subject to constraints.

Suppose that we want to find the minimal Monte Carlo approximation area of

the figure defined by the intersection between two circles that contains n p given

points. With this purpose, we draw a tight rectangle containing the intersection

of the circles. Then, a large number of points is generated with uniform distribu-

tion inside the rectangle. The area of the intersection is, approximately, the area

of the rectangle multiplied by the ratio of random points that dropped inside the

intersection of the circles. This is the objective function, the simulated area, that

has to be minimized. The constraints arise from the fact that the n p points have

to be inside the intersection. It is worth noticing that it is a different rectangle,

which contains the intersection, at each iteration. Our intention is to achieve
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max{‖h(x)‖, ‖V (x)‖}

problem AL-Csearch AL-BOBYQA AL-Nmead

18 6.93835E-06 4.22791E-08 3.41580E-06

19 8.61303E-05 1.48703E-06 8.90075E-07

21 0.00000E+00 0.00000E+00 0.00000E+00

23 0.00000E+00 4.20926E-06 9.06558E-06

30 0.00000E+00 0.00000E+00 0.00000E+00

31 5.60586E-06 4.10645E-08 5.86759E-07

34 1.07579E-06 2.64828E-07 8.58953E-06

36 0.00000E+00 1.27542E-12 9.53323E-07

37 0.00000E+00 4.22483E-06 4.38670E-06

41 0.00000E+00 7.85883E-06 9.24319E-06

53 1.52588E-05 3.54130E-06 3.69152E-06

54 5.60000E+03 5.60000E+03 5.60000E+03

59 0.00000E+00 0.00000E+00 0.00000E+00

60 4.34169E-07 1.06845E-06 5.92753E-06

62 1.11022E-16 9.76119E-06 4.65999E-06

65 0.00000E+00 9.43265E-08 1.41357E-07

66 4.15393E-06 6.11729E-07 8.58920E-07

67 9.53939E-06 2.93764E-07 2.17418E-07

68 3.06824E-06 1.05255E-07 1.91330E-06

69 1.38778E-17 4.27808E-06 5.43593E-06

70 0.00000E+00 0.00000E+00 0.00000E+00

71 9.08319E-06 8.04100E-07 6.96594E-06

72 7.29974E-06 7.29978E-06 7.29972E-06

74 9.52878E-06 4.90520E-06 1.77604E-06

75 1.15089E-05 9.18479E-06 3.91491E-06

80 7.39619E-05 2.41344E-06 3.56675E-06

81 6.31320E-06 4.08971E-06 1.77111E-06

83 8.76166E-06 9.02256E-06 8.16030E-06

84 0.00000E+00 0.00000E+00 0.00000E+00

85 2.42318E-06 2.57279E-03 5.87496E-06

Table 2 – Feasibility for the Hock-Schitkowski problems.
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max{‖h(x)‖, ‖V (x)‖}

problem AL-Csearch AL-BOBYQA AL-Nmead

87 5.76242E+02 7.64699E-06 5.76242E+02

95 0.00000E+00 4.12168E-06 0.00000E+00

96 0.00000E+00 4.12168E-06 0.00000E+00

97 0.00000E+00 3.96820E-11 0.00000E+00

98 0.00000E+00 3.96820E-11 0.00000E+00

99 3.84488E-01 8.08513E-01 4.23545E-06

101 2.40927E-06 2.40891E-06 2.28791E-06

102 9.26345E-06 2.95266E-06 9.37161E-06

103 5.07649E-06 4.80719E-07 5.59066E-06

104 3.26251E-06 2.88762E-06 3.99122E-06

105 0.00000E+00 0.00000E+00 0.00000E+00

106 5.22614E-06 4.78864E-06 4.78342E-06

111 8.81476E-06 4.76928E-07 8.38667E-06

114 4.40000E-01 4.40000E-01 4.40000E-01

116 6.82202E-06 0.00000E+00 2.52912E-08

118 0.00000E+00 3.39784E-06 7.28004E-06

119 7.78198E-06 7.45953E-06 5.09764E-06

Table 2 – (continuation).

# of function evaluations AL-CSearch AL-BOBYQA AL-NMead

101 to 102 6.4 % 4.3 % 0.0 %

102 to 103 17.0 % 34.0 % 21.3 %

103 to 104 27.7 % 29.8 % 34.0 %

104 to 105 19.1 % 14.9 % 14.9 %

105 to 106 12.8 % 8.5 % 10.6 %

106 to 107 0.0 % 0.0 % 12.8 %

failure 1 10.6 % 0.0 % 0.0 %

failure 2 0.0 % 2.1 % 0.0 %

failure 3 6.4 % 6.4 % 6.4 %

Table 3 – Function evaluations for 47 problems of Hock-Schittkowski.
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classification AL-CSearch AL-BOBYQA AL-NMead

1st 12.8% 57.5% 25.5%

2nd 38.3% 31.9% 21.3%

3rd 31.9% 2.1% 46.8%

failures 17.0% 8.5% 6.4%

Table 4 – Comparison of the subsolvers’ performances for 47 problems of Hock-Schittkowski.

a good precision for the simulated area with a small amount of computational

effort. We could put the figure of interest inside a very large rectangle, and keep

this rectangle fixed within iterations. But, in this case, the computational effort

would be possibly bigger.

We considered unions and intersections between three types of figures:

• rectangles, defined by 4 parameters: the coordinates (x, y) of the bottom

left vertex, the height and the width;

• circles, defined by 3 parameters: the coordinates of the center and the

radius;

• ellipses, defined by 6 parameters, a, b, c, d, e and f, by the formulae

ax2 + 2bxy + cy2 + dx + ey + f ≤ 0.

Suppose that we want the point y to be inside some figure A (or B). This is

achieved imposing a constraint of type cA(y) ≤ 0 (or cB(y) ≤ 0). If we want

y to lie inside the intersection between figures A and B, we ask that cA(y) ≤ 0

and cB(y) ≤ 0, so that each point defines two inequality constraints, 2n p at all.

On the other hand, the number of constraints defined by unions are n p, since

each point must be inside figure A or figure B. This is achieved imposing that

c(x) = min{cA(x), cB(x)} ≤ 0.

We firstly considered the problem of minimizing the

1. intersection of two circles,

2. intersection between a rectangle and a ellipse,

3. union of a rectangle and a ellipse and

4. union of two ellipses.
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In the four cases the problem consists of finding the smallest intersection (cases

1 and 2) or union (cases 3 and 4) area that contains a given set of points. In all

the problems we considered the same set of n p = 10 points given in Table 5.

We adopted ε f eas = δopt = 10−4. The initial guesses for circles and ellipses

were chosen as circles of radius one centered at the origin and for rectangles,

squares of side 2 centered at the origin. The value of n p in our tests is 10, and

the points are

i (xi , yi ) i (xi , yi )

1 (-2.0,-1.0) 6 (0.5,1.5)

2 (-1.5,1.0) 7 (1.0,0.5)

3 (-1.0,1.5) 8 (1.5,1.0)

4 (-1.0,-1.0) 9 (1.0,-2.0)

5 (-1.0,-2.0) 10 (2.0,-1.0)

Table 5 – Points that have to be inside the figure whose simulated area is being minimized.

The density of points generated in the simulation is 105 per unit of area, but

the maximum of points allowed is 107. This means that, if the rectangle that

contains the desired figure (used in the simulation of the area) has dimensions

a× b, then the number of generated points is min{105ab, 107}. The initial seeds

used in the random points generator are the same at each call of the simulator,

so the simulated area is always the same for the same parameters.

It is simple to find the smallest rectangle that contains a specific rectangle,

circle or ellipse. The smallest rectangle that contains a given rectangle is the

proper rectangle; for a circle or an ellipse it is the one that is tangent to these

figures on four points that can be explicitly found. On the other hand, the area

A of a figure F can be simulated generating ng random points inside a rectangle

with area AR that contains F and counting the amount of points that lie inside

the figure, ni , so we have that A ≈ ARni/ng.We use these two ideas to compute

our objective function according to the following rules:

• In the case of intersection between figures F and G, where F and G can

be a rectangle, a circle or an ellipse, we compute the smallest rectangles

RF and RG that contains each figure, and use the rectangle with smallest

area between them to simulate the area of the intersection, generating
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random points inside it and counting the amount of points that lie on F

and G. We are using the fact that the intersection of figures F and G is

inside RF and is also inside RG .

• In the case of union between two rectangles, a rectangle and a circle or

two circles, we add the areas of the figures, since the expression to these

areas is well known, and subtract the area of the intersection, which is

computed by the method above. We are using the fact that the area of

the union is the sum of the area of the figures minus the area of the inter-

section.

• In the case of union between a circle and an ellipse, we simulate the area

of the figure formed by the ellipse minus the circle, making the simula-

tion inside the smallest rectangle that contains the ellipse. We count how

many of the random points lie inside the ellipse but outside the circle, so

the desired area is approximately the area of the circle plus the simulated

area. The same method is used to simulate the area between a rectangle

and an ellipse.

• In the case of union between two ellipses, we find the smallest rectangle

that contains both ellipses, and simulate the area of the union counting the

amount of random points that lie inside the first or the second (or both)

ellipse.

Of course, there are many methods to simulate the considered areas, and we

are not claiming that the one we chose is the best. More efficient techniques

to simulate these areas is a topic under consideration, and can be the scope of

future works.

Figures 1–12 show the results obtained in some instances of area problems.

The A value is the area of the figure, while f eval is the number of function

evaluations performed to find the solution.

Table 6 shows the objective function (the area) found and the number of

function evaluations performed for each of the subalgorithms in the attempt

of minimizing the area of different types of figures containing the 10 points of

Table 5. I and U stand for intersection and union, while R, C and E mean rect-
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Figure 1 – Intersection of two circles,

Algorithm: AL-CSearch, A = 13.247,

f eval = 4277.

Figure 2 – Intersection of two circles,

Algorithm: AL-BOBYQA, A = 15.004,

f eval = 6283.

Figure 3 – Intersection of two circles,

Algorithm: AL-NMead, A = 13.247,

f eval = 6099.

Figure 4 – Intersection between a rect-

angle and an ellipse, Algorithm: AL-C-

Search, A = 12.574, f eval = 6260.

Figure 5 – Intersection between a rectan-

gle and an ellipse, Algorithm: AL-BO-

BYQA, A = 12.564, f eval = 4177.

Figure 6 – Intersection between a rect-

angle and an ellipse, Algorithm: AL-N-

Mead, A = 13.174, f eval = 11379.

angle, circle and ellipse, respectively. The last line shows the average area and

average number of function calls among all problems.

The simulated area is (slightly) discontinuous with respect to the parameters

that define the figures. The reason is that this area can take only a finite num-

ber of values, depending on the number of points that belong to the region.
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Figure 7 – Union of rectangle and ellipse,

Algorithm: AL-CSearch, A = 6.753,

f eval = 9955.

Figure 8 – Union of rectangle and ellipse,

Algorithm: AL-BOBYQA, A = 12.887,

f eval = 6059.

Figure 9 – Union of rectangle and ellipse,

Algorithm: AL-NMead, A = 14.000,

f eval = 7251.

Figure 10 – Union of two ellipses, Al-

gorithm: AL-CSearch, A = 12.237,

f eval = 16154.

Figure 11 – Union of two ellipses, Al-

gorithm: AL-BOBYQA, A = 13.339,

f eval = 8191.

Figure 12 – Union of two ellipses, Al-

gorithm: AL-NMead, A = 11.363,

f eval = 18881.

The impact of the discontinuities decreases with the number of points used in

the simulation. (Note that the computer time of function evaluations is propor-

tional to that number). Besides, the function c(x) defined for the union between

figures has discontinuous derivatives. By these reasons, these problems do not

satisfy the smoothness requirements of the convergence theorems presented in

this paper. Despite of this fact, in all the cases our algorithm was able to find

what seems to be a local minimizer. Since there are several local minimizers,

the results show us how each subalgorithm behaved with respect to finding the

smallest possible area and computer work (function evaluations) required for

achieving a solution. The figures with the smallest and the largest simulated
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area f eval

figure AL-CSearch AL-BOBYQA AL-NMead AL-CSearch AL-BOBYQA AL-NMead

I RR 14.001 13.999 14.003 2709 1535 4959

I RC 12.722 13.467 12.572 6035 3629 7784

I CC 13.247 15.004 13.247 4277 6283 6099

I RE 12.574 12.564 13.174 6260 4177 11379

I CE 13.211 12.973 13.207 5020 7201 11132

I EE 12.058 13.519 13.115 6881 13156 12710

U RR 11.500 12.250 11.499 4312 1745 5717

U RC 13.247 13.894 13.231 2788 874 5466

U CC 13.082 13.890 13.081 2636 4021 4798

U RE 6.723 12.887 14.000 9955 6059 7251

U CE 12.459 13.894 13.333 6715 2042 11688

U EE 12.237 13.399 11.363 16154 8191 18881

average 12.255 13.478 12.985 6145 4909 8989

Table 6 – Results for the minimum area problems.

area were found by the Augmented Lagrangian algorithm with, respectively,

Coordinate Search and BOBYQA plus Coordinate Search for the subproblems,

and are shown in Figures 7 and 2. In terms of the average area among all fig-

ures, shown in the last line of Table 6, AL-CSearch had the best performance,

followed by AL-NMead and AL-BOBYQA. On the other hand, AL-BOBYQA

required less function evaluations on average, while AL-NMead was the most

expensive option.

6 Final remarks

In this paper we defined new derivative-free algorithms for minimizing finite-

dimensional functions with two levels of constraints, following the Augmented

Lagrangian approach of [1], in such a way that theoretical convergence results

are preserved. We introduced an algorithm for the case in which lower-level

constraints are defined by bounds on the variables, allowing us to compare

the relative efficiency of different box-constraints derivative-free solvers in the

context of Augmented Lagrangian subproblems. Then, we defined a new algo-

rithm for dealing with arbitrary lower-level constraints. This algorithm gener-

ates subproblems that may be solved by procedures exhibiting an admissibility

property. Admissible algorithms for the subproblems may include many of the

Comp. Appl. Math., Vol. 30, N. 1, 2011



50 NONLINEAR PROGRAMMING WITH GENERAL LOWER-LEVEL CONSTRAINTS

recently introduced methods for constrained optimization when the constraints,

generally speaking, admit extreme penalty approaches. Here, we showed that,

besides the existing admissible algorithms for solving subproblems, the Aug-

mented Lagrangian algorithm with box constraints considered first in this paper

(Algorithm 2) may also be considered an admissible algorithm. The practical

consequences of this observation remain to be exploited in future research.

From the computational point of view, we introduced a family of Volume

Optimization problems, in which we optimize Monte Carlo approximations of

volumes subject to constraints. We solved several toy problems of this class,

which allowed us to compare different alternatives for solving box-constraint

minimization problems in the context of Augmented Lagrangian subproblems

without derivatives. We believe that these problems emulate some of the com-

mon characteristics of real-life derivative-free optimization problems, especially

those originated in simulations.

Acknowledgements. We are indebted to the anonymous referees whose com-

ments helped us to improve the first version of this paper.
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