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Abstract

Many properties of nanostructures depend on the atomic configuration at the surface. One
common technique used for determining this surface structure is based on the low energy elec-
tron diffraction (LEED) method, which uses a high-fidelity physics model to compare experi-
mental results with spectra computed via a computer simulation. While this approach is highly
effective, the computational cost of the simulations can be prohibitive for large systems. In this
work, we propose the use of a direct search method in conjunction with an additive surrogate.
This surrogate is constructed from a combination of a simplified physics model and an interpo-
lation that is based on the differences between the simplified physics model and the full fidelity
model.

1 Introduction

Many properties of nanostructures depend on the atomic configuration at the surface. One frequently
used technique for surface structure determination is the low energy electron diffraction (LEED)
method [1, 2]. LEED involves the use of an electron gun to bombard a sample with a beam of
electrons, with energy, and recording the diffraction pattern over a range of energies. The change
in intensity (I) can then be tracked as a function of the energy (V), generating an intensity-voltage
curve. Previous attempts at structure determination have employed a time intensive trial-and-error
approach, to find the best-fit surface structure by comparing LEED calculations to experimental
intensity spectra. Here, we propose an alternative approach based on a direct search method within
a surrogate framework for solving this optimization problem.

The optimization problem is usually formulated in terms of minimizing the Pendry R-factor,
which measures the misfit between theory and experiment. Several methods have been proposed
for this problem including simulated simulated annealing [3], fast simulated annealing [4, 5], a
modified random sampling algorithm [6] and genetic algorithms (GAs) [7]. Recently, Zhao et al. [8]
applied a generalized pattern search method (GPS) to the problem of determining the structure of a
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Ni(001)-(5x5)-Li surface. Pattern search methods were found to have better performance than both
simulated annealing and GA, generating better trial structures with significantly fewer evaluation
functions required. Nevertheless, each of the function evaluations is computationally expensive, and
consequently, the total time required for a structure determination is still daunting. Here, we propose
the use of an additive surrogate function for the objective function to reduce the computational effort.

2 Simplified physics surrogate

In optimization, a surrogate is an inexpensive function that replaces a more expensive one. The goal
is to shift the computational effort from the true expensive functions onto the inexpensive surrogates.
One fairly well understood approach for building surrogates, which has proven itself in practice [9,
10], is to interpolate a set of known data points and their function values using, for example, Kriging
functions. In this work, we propose a simplified physics model or simplified physics surrogate (SPS)
as a means of reducing the computational effort. The calculation of the I-V spectrum is based on
a sophisticated multiple scattering model. However, all multiple-scattering methods designed for
LEED scale unfavorably with the complexity of the structure being investigated, and in particular
with the number of atoms in the unit cell or surface section of interest. However, in the kinematic
limit, only single scattering events are included in the description of the electron diffraction. As
a result, the kinematic LEED (KLEED) approximation contains significant information about the
structure and we will use it as a surrogate for the multiple scattering model.

Since the KLEED approximation is not guaranteed to match the high-fidelity model even at
the optimal solution, we employ an additive surrogate composed of an interpolatory function in
addition to the simplified physics surrogate. The interpolatory part of the surrogate is designed to
fit the difference between the multiple scattering LEED function value and the simplified physics
model. For simplicity, we will denote the multiple scattering LEED function values as the ”true”
values. Let φA = φS + φI , where φA = additive surrogate, φS = simplified physics surrogate,
e.g. KLEED, and φI = interpolatory surrogate, e.g. DACE model. The surrogate optimization and
update is performed as follows. First, we initialize the additive surrogate by computing a set of
function values at a set of points generated by a Latin Hypercube sample (LHS). The simplified
model function φS is also evaluated at the LHS data points. Once the true and surrogate function
values are known for the initial data points, we estimate φI , by interpolating the difference between
the two. In our approach, the interpolation is performed using the DACE [11] MATLAB kriging
toolbox.

3 Numerical Results

In this work, we employed the NOMADm software package [12], which is a MATLAB implemen-
tation of a mesh adaptive direct search (MADS) algorithm [13]. Each iteration of MADS contains
two steps – a SEARCH step and a POLL step. In the SEARCH, we construct and quickly optimize the
inexpensive additive surrogate to generate good trial points for the true function to evaluate. If any
of these trial points gives a reduced function value (as measured by the true function) the iteration is
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Method LHS f(x∗) fevals
No SEARCH 0 0.2551 180

LHS 40 0.2551 160
SPS+DACE 15 0.2543 180
SPS+DACE 5 0.2354 135

Figure 1: Comparison of various search
strategies
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Figure 2: Optimization using additive surrogate,
∆0 = 0.1

declared successful. Otherwise, the POLL step is performed and the algorithm proceeds as normal.
After each iteration, the additive surrogate is updated with the newly evaluated points and their true
and SPS function values.

We tested our additive surrogate on a test problem based on the complex Ni(001)-(5x5)-Li sur-
face, formed by adding lithium (Li) atoms onto a (001) nickel (Ni) crystal (5x5) superlattice surface.
Due to symmetry, there are only 14 atoms on this surface, resulting in 42 (14×3) optimization vari-
ables. We compared our results against the numerical experiments performed by Zhao et al. [8].
Table 1 displays the results for using the additive surrogate versus no search and a simple LHS

search, in which columns 2-4 contain the number of initial LHS points used, the best objective func-
tion value f(x∗) found, and the number of true function evaluations (fevals). The results indicate
a reduction in the number of true function evaluations by as many as 45, which translates into ap-
proximately 2 hours of CPU time per optimization run. Figure 2 contains the iteration history for
the last row in Table 1.

4 Conclusions

Our results indicate that performance can be enhanced by using an additive surrogate function in
the SEARCH phase of a pattern search method. The total number of function evaluations decreased
by approximately 20%, which represents a reduction of ≈ 2 CPU hours per optimization run. In
addition, the case using SPS with DACE and an initial LHS sample size of 5 was able to achieve a
better solution than any of the previous results. The efficiency can be highly dependent on certain
algorithmic parameters though, and further research is necessary to understand the effect of the
DACE model on performance.
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