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Abstract. Let Pn and Qn be the polynomials obtained by repeated differentiation of the
tangent and secant functions respectively. From the exponential generating functions of these
polynomials we develop relations among their values, which are then applied to various nu-
merical sequences which occur as values of the Pn and Qn. For example, Pn(0) and Qn(0)
are respectively the nth tangent and secant numbers, while Pn(0) +Qn(0) is the nth André
number. The André numbers, along with the numbers Qn(1) and Pn(1) − Qn(1), are the
Springer numbers of root systems of types An, Bn, and Dn respectively, or alternatively
(following V. I. Arnol’d) count the number of “snakes” of these types. We prove this for the

latter two cases using combinatorial arguments. We relate the values of Pn and Qn at
√

3 to
certain “generalized Euler and class numbers” of D. Shanks, which have a combinatorial in-
terpretation in terms of 3-signed permutations as defined by R. Ehrenborg and M. A. Readdy.
Finally, we express the values of Euler polynomials at any rational argument in terms of Pn
and Qn, and from this deduce formulas for Springer and Shanks numbers in terms of Euler
polynomials.

1. Introduction. Consider the sequences Pn and Qn of “derivative polynomials” defined
by

dn

dxn
tanx = Pn(tanx) and

dn

dxn
secx = Qn(tanx) secx

for integer n ≥ 0. As shown in [12], their exponential generating functions

P (u, t) =
∞∑
n=0

Pn(u)
tn

n!
and Q(u, t) =

∞∑
n=0

Qn(u)
tn

n!

are given by the explicit formulas

(1) P (u, t) =
sin t+ u cos t

cos t− u sin t
and Q(u, t) =

1

cos t− u sin t
.
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In §2 we obtain from identities in these generating functions some useful relations among
values of the polynomials (Theorem 2.2 below), and recall from [12] a result (Theorem
2.3) relating the polynomials to series of reciprocal powers. In §3 we apply results of §2 to
the computation of Pn(u) and Qn(u) for u = 0, 1,

√
3, and 1/

√
3, in the process obtaining

several integer sequences studied by Glaisher [9,10,11].
In §4 we give a combinatorial interpretation of the values of the derivative polynomials

at 0 and 1. These values give the Springer numbers of the irreducible root systems An, Bn,
and Dn [19], which also count the corresponding types of “snakes” as defined in [3]. (Snakes
for the root system An−1 are alternating permutations of {1, 2, . . . , n}, whose study dates
back to André [2].) This follows from comparison of equations (1) with the generating
functions found in [19], but we also give combinatorial proofs using snakes (Theorems 4.2
and 4.3). Results from §3 then give identities for the Springer numbers (e.g., Proposition
4.4).

In §5 we recall the definition of the the “generalized Euler and class numbers” of Shanks
[17]. These are arrays of positive integers ca,n and da,n. The first two “rows” (i.e., the
ca,n and da,n with a = 1, 2) are the Springer numbers of the preceding paragraph; we show

that the third row of Shanks’s numbers are given by the values P2n(
√

3) and Q2n−1(
√

3)
of the derivative polynomials. We also give a combinatorial interpretation to the numbers
c3,n and d3,n in terms of 3-signed alternating permutations as defined by Ehrenborg and
Readdy [8].

In §6 we consider the Euler polynomials En(x), defined by

(2)
2etx

et + 1
=
∞∑
n=0

En(x)
tn

n!
.

Euler polynomials appear in many classical results (see Chapter 23 of [1]). In [6], the values
of these polynomials at rational arguments were expressed in terms of the Hurwitz zeta
function. Here we give explicit formulas for the Euler polynomials at rational arguments
in terms of the polynomials Pn and Qn (Theorem 6.1), and use them together with the
computations of §3 to find En(p/q) for 0 ≤ p ≤ q and q = 2, 3, 4 and 6. We also write the
Springer and Shanks numbers in terms of values of the Euler polynomials (Theorem 6.2).

2. Derivative polynomials. From the chain rule it follows that the polynomials Pn
satisfy P0(u) = u and Pn+1(u) = (u2 + 1)P ′n(u), n ≥ 0, and similarly Q0(u) = 1 and
Qn+1(u) = (u2 + 1)Q′n(u) +uQn(u), n ≥ 0. The following result is then clear by induction
on n.

Theorem 2.1. Let n ≥ 0. Then Pn(u) is a polynomial of degree n+ 1 consisting of even
powers with positive integral coefficients when n is odd and of odd powers with positive
integral coefficients when n is even; and Qn(u) is a polynomial of degree n consisting of
even powers with positive integral coefficients when n is even and of odd powers with
positive integral coefficients when n is odd.

In particular, for n ≥ 0 we have

Pn(−u) = (−1)n+1Pn(u) and Qn(−u) = (−1)nQn(u).
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The key properties of the Pn and Qn come from two sorts of identities in their corre-
sponding generating functions P and Q. First, there are the composition relations

(3) P (P (u, t), s) = P (u, t+ s) and Q(P (u, t), s)Q(u, t) = Q(u, t+ s);

these follow from the representations

P (u, t) = tan(tan−1 u+ t) and Q(u, t) =
sec(tan−1 u+ t)

sec(tan−1 u)
,

equivalent to equations (1) above. Second, there is the functional equation

(4) P (u, t) = P

(
u2 − 1

2u
, 2t

)
+
u2 + 1

2u
Q

(
u2 − 1

2u
, 2t

)
,

which follows from equations (1) and the half-angle formula for tangent (cf. Theorem 3.1
of [12]). The composition relations (3) imply the following relations among values of the
polynomials Pn and Qn.

Theorem 2.2. For nonnegative integers n,

Pn(P (u, s))− tan s
n∑
k=0

(
n

k

)
Pk(P (u, s))Pn−k(u) = Pn(u) + δ0n tan s;(i)

Qn(P (u, s))− tan s
n∑
k=0

(
n

k

)
Qk(P (u, s))Pn−k(u) = (1− u tan s)Qn(u).(ii)

Proof. The composition relation for P gives

P (P (u, s), t) = P (u, s+ t) = P (P (u, t), s) =
sin s+ cos sP (u, t)

cos s− sin sP (u, t)
,

or cos sP (P (u, s), t)− sin sP (P (u, s), t)P (u, t) = sin s + cos sP (u, t). Take the coefficient
of tn/n! and divide by cos s to get (i). The proof of (ii) proceeds similarly, using the
composition relation for Q.

In [12] contour integration and expansion into power series were used to obtain closed
forms in terms of the Pn and Qn for certain series. We need the following definitions.
Call a function ψ : Z → C periodic mod q if ψ(0) = 0 and ψ(n + q) = ψ(n) for all
n ∈ Z, and alternating mod q if ψ(0) = 0 and ψ(n + q) = −ψ(n) for all n ∈ Z. If ψ is
periodic or alternating mod q, we call it even if ψ(q − j) = ψ(j) for 0 < j < q, and odd if
ψ(q − j) = −ψ(j) for 0 < j < q. From [12] we have the following result.

Theorem 2.3. Let n ≥ 0 be an integer. If ψ is periodic mod q, then

∞∑
j=1

ψ(j)

jn+1
=

πn+1

2qn+1n!

q−1∑
p=1

ψ(p)Pn(cot pπ
q

)

provided n and ψ have opposite parity. If ψ is alternating mod q, then

∞∑
j=1

ψ(j)

jn+1
=

πn+1

2qn+1n!

q−1∑
p=1

ψ(p) csc
pπ

q
Qn(cot pπ

q
)

provided n and ψ have the same parity.
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3. Particular values of derivative polynomials. By setting u = 0 in equations (1)
we see that Pn(0) and Qn(0) are respectively the tangent and secant numbers, i.e. the
coefficients of tn/n! in the Maclaurin series of tan t and sec t. We shall take these numbers
as known. They can be computed from the Euler-Bernoulli triangle as discussed in [4] and

[3]; see also [13]. In this section we show how to compute Pn(u) and Qn(u) for u = 1,
√

3,
and 1/

√
3 from the tangent and secant numbers.

Set u = 1 and consider the coefficient of tn/n! in the functional equation (4) to get
Pn(1):

(5) Pn(1) = 2n(Pn(0) +Qn(0)) =

{
2nQn(0), n even,

2nPn(0), n odd.

Now compute Qn(1) using the following result.

Theorem 3.1. For integers n ≥ 0,

Qn(1) = − sin
nπ

2
+
∑

2k≤n

(
n

2k

)
(−1)kPn−2k(1).

Proof. Set u = 1 in Theorem 2.2(ii), and then let s → +∞i so that tan s → i and
P (1, s)→ i. This gives

(1− i)Qn(1) = Qn(i)− i
n∑
k=0

(
n

k

)
Qk(i)Pn−k(1).

Now Q(i, t) = eit, so Qn(i) = in. Thus, we have

(1− i)Qn(1) = in − i
n∑
k=0

(
n

k

)
ikPn−k(1).

Take the imaginary part to get the conclusion.

Remarks. 1. This result, together with the corresponding one obtained by taking the real
part in the proof, is equivalent to the computation of the Qn(1) from the numbers Pn(1)
via Seidel matrices as described in [7].
2. Since the Qn(1) turn out to be the Springer numbers bn of the next section, they can be
computed via the pair of “boustrophedonic” triangles L(b) and R(b) described in [3] (see
also [14]); in fact these triangles are equivalent to Seidel matrices as is explained in [7].
3. The numbers Qn(1) were extensively studied by Glaisher [9,11], who wrote Pn for
Q2n(1) and Qn for Q2n−1(1).

Set u = −1/
√

3 in equation (4) and examine the coefficient of tn/n! to get

(2n + (−1)n)Pn(
1
√

3
) =

2n+1

√
3
Qn(

1
√

3
);

then combine this with the equation obtained by setting u =
√

3 to get

Pn(
√

3) = (2n+1 + (−1)n)Pn(
1
√

3
).

In view of these equations, to find Pn( 1√
3
) and Qn( 1√

3
) it is enough to find Pn(

√
3). Our

next two results give Pn(
√

3) and Qn(
√

3).
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Theorem 3.2. i. If n is odd, Pn(
√

3) = 1
2 (3n+1 − 1)Pn(0).

ii. If n is even, Qn(
√

3) = 1
4(3n+1 + 1)Qn(0).

Proof. Note first that cos 3t = cos t(2 cos 2t − 1), by the addition formula for cosine and
the double-angle formulas for sine and cosine. Then

P (
√

3, t) =
sin t+

√
3 cos t

cos t−
√

3 sin t
=

√
3 + 2 sin 2t

2 cos 2t− 1
=

(
√

3 + 2 sin 2t) cos t

cos 3t
,

while on the other hand

3P (0, 3t)− P (0, t) =
3(sin 2t cos t+ sin t cos 2t)− (2 cos 2t− 1) sin t

cos 3t

=
3 sin 2t cos t+ 2 cos2 t sin t

cos 3t
=

4 sin 2t cos t

cos 3t
.

Thus

(6) P (
√

3, t)−
1

2
(3P (0, 3t)− P (0, t)) =

√
3 cos t

cos 3t
,

and (i) follows from consideration of the coefficient of tn/n!, n odd (Note the right-hand
side is an even function). A similar argument proves the identity

(7) Q(
√

3, t)−
1

4
(3Q(0, 3t) +Q(0, t)) =

√
3

2

sin 2t

cos 3t
,

from which (ii) follows upon the observation that the right-hand side is an odd function.

Theorem 3.3. i. If n > 0 is even, Pn(
√

3) can be computed from the tangent numbers
Pk(0) via

Pn(
√

3) =

√
3

2

∑
k odd

(
n

k

)
(3k+1 − 1)Pk(0)Pn−k(0).

ii. If n is odd, Qn(
√

3) can be computed from the tangent numbers Pk(0) and the secant
numbers Qk(0) via

Qn(
√

3) =

√
3

8

∑
k odd

(
n

k

)
(3k+1 − 1)Pk(0)Qn−k(0).

Proof. For (i), set s = π
3 and u = 0 in Theorem 2.2(i) to get

Pn(
√

3)−
√

3
n∑
k=0

(
n

k

)
Pk(
√

3)Pn−k(0) = Pn(0) +
√

3δ0n.
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Now suppose n > 0 is even; then this reduces to

Pn(
√

3) =
√

3
∑
k odd

(
n

k

)
Pk(
√

3)Pn−k(0) =
√

3
∑
k odd

(
n

k

)
3k+1 − 1

2
Pk(0)Pn−k(0),

where we have used Theorem 3.2(i) in the last step. For (ii), proceed similarly after setting

s = π
3 and u = −

√
3 in Theorem 2.2(ii).

Remarks. 1. Comparing equation (6) to the equation at the beginning of §24 in [10], we

see the numbers Hn of [9,10] are given by Hn =
√

3P2n(
√

3)/22n+1.
2. Similarly, equation (7) shows that the numbers Tn of [9] are Q2n−1(

√
3)/
√

3.
3. In Theorem 5.1 below we show that the numbers P2n(

√
3) and Q2n−1(

√
3) are closely

related to certain generalized Euler and class numbers as defined in [17].

4. Root systems, values of derivative polynomials at 0 and 1, and the combi-
natorics of snakes. Let V be a real vector space, R a root system in V , and W the Weyl
group of R (for definitions see [5]). Fix a set S of simple roots for R: then any α ∈ R is
either a positive or negative linear combination of elements of S; we write α > 0 in the
first case and α < 0 in the second. For I ⊂ S, denote by σ(I, S) the number of elements
w ∈W such that wα > 0 for α ∈ I and wα < 0 for α ∈ S− I. Let M(R) be the maximum
value of σ(I, S). T. A. Springer [19] computed the quantity M(R) for all irreducible root
systems R. Setting aside the exceptional root systems, his results are as follows.
1. If R is of type An, n ≥ 1, then M(R) = an satisfies

1 + t+
∑
n≥2

an−1

n!
tn = tan t+ sec t.

2. If R is of type Bn or Cn, n ≥ 2, then M(R) = bn satisfies

1 + t+
∑
n≥2

bn
n!
tn =

cos t+ sin t

cos 2t
.

3. If R is of type Dn, n ≥ 3, then M(R) = dn satisfies

t+
1

2
t2 +

∑
n≥3

dn
n!
tn =

1 + sin 2t− cos t− sin t

cos 2t
.

We shall call M(R) the Springer number of the root system R.

Proposition 4.1. The Springer numbers an, bn, and dn as defined above are given by
an = Pn+1(0) +Qn+1(0), bn = Qn(1), and dn = Pn(1)−Qn(1).

Proof. This amounts to writing the the generating functions above in terms of P and Q.
For example, the formula for an follows from observing that P (0, t)+Q(0, t) = tan t+sec t.
Similarly,

Q(1, t) =
1

cos t− sin t
=

cos t+ sin t

cos 2t
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and

P (1, t)−Q(1, t) =
sin t+ cos t− 1

cos t− sin t
=

1 + sin 2t− cos t− sin t

cos 2t
.

By describing Springer numbers geometrically in terms of Weyl chambers, Arnol’d [3]
showed that the numbers an, bn, and dn can be thought of as counting various types of
snakes (updown sequences). The formal definitions are as follows.

Definition. A snake of type An is a sequence (x0, x1, . . . , xn) of integers such that x0 <
x1 > x2 < · · ·xn and {x0, x1, . . . , xn} = {0, 1, . . . , n}. A snake of type Bn is a sequence
(x1, x2, . . . , xn) of integers such that 0 < x1 > x2 < · · ·xn and {|x1|, |x2|, . . . , |xn|} =
{1, 2, . . . , n}. A snake of type Dn is a sequence (x1, . . . , xn) of integers such that −x2 <
x1 < x2 > x3 < · · ·xn and {|x1|, |x2|, . . . , |xn|} = {0, 1, . . . , n− 1}.

We shall write An for the set of snakes of type An and so forth. The geometric argument
of [3] shows that cardAn, cardBn, and cardDn are an, bn, and dn respectively. On the
other hand, it is possible to prove that these cardinalities are given by the formulas of
Proposition 4.1 using combinatorial arguments about snakes. This is done for An in [2]
and [3] (see the remark following Theorem 13): we do it here for Bn and Dn. For this
purpose, it is convenient to introduce another type of snake from [3]: an integer sequence
(x1, . . . , xn) such that x1 < x2 > x3 < · · ·xn and {|x1|, . . . , |xn|} = {1, . . . , n} is called a
snake of type βn. Let βn denote the set of snakes of type βn.

Theorem 4.2. Let b(t) =
∑
n≥0 cardBnt

n/n! and β(t) =
∑
n≥0 cardβnt

n/n!. Then

b(t) = Q(1, t) and β(t) = P (1, t) (so cardBn = Qn(1) and cardβn = Pn(1)).

Proof. We prove the formula for β(t) first. Given (x1, . . . , xn+1) ∈ βn+1, let r be the
unique element of {0, . . . , n} with |xr+1| = n + 1. Then the sets {|x1|, . . . , |xr|} and
{|xr+2|, . . . , |xn+1|} partition {1, . . . , n}. The sequence (x1, . . . , xr) can be shrunk into
a snake of type βr by applying the order-preserving bijection of {|x1|, . . . , |xr|} onto
{1, . . . , r}; similarly ((−1)r+1xr+2, . . . , (−1)r+1xn+1) gives a snake of type βn−r. Con-
versely, given r ∈ {0, . . . , n} and a partition of {1, . . . , n} into an r-set and an (n− r)-set,
together with elements of βr and βn−r, we can construct a βn+1-snake in a unique way.
Hence

cardβn+1 =
n∑
r=0

(
n

r

)
cardβr cardβn−r + δn0.

from which follows β′(t) = β(t)2 + 1. (The Kronecker delta term reflects the fact that
there are two β1-snakes, (1) and (−1).) The unique solution of this differential equation
satisfying the initial condition β(0) = cardβ0 = 1 (β0 consists of the empty snake) is

β(t) = tan(t+ π
4 ) =

tan t+ 1

1− tan t
= P (1, t).

Now suppose (x1, . . . , xn+1) ∈ Bn+1, with r ∈ {0, . . . , n} such that |xr+1| = n + 1.
Again the sequences (x1, . . . , xr) and (xr+2, . . . , xn+1) consist of integers whose absolute
values partition {1, . . . , n}. The sequence (x1, . . . , xr) can be shrunk into a Br-snake, since
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x1 > 0; but the shrinkage of the sequence ((−1)rxr+2, . . . , (−1)rxn+1) is a snake of type
βn−r. Hence

cardBn+1 =
n∑
r=0

(
n

r

)
cardBr cardβn−r

and we have b′(t) = b(t)β(t). Using b(0) = 1 and our formula for β(t), this gives

b(t) =
1
√

2
sec(t+ π

4 ) = Q(1, t).

Theorem 4.3. cardβn = cardBn + cardDn (so cardDn = Pn(1)−Qn(1)).

Proof. First note that we have a partition βn = β−n ∪β
+
n , where β−n and β+

n are respectively
the sets of βn-snakes that start with a negative integer and with a positive integer. We shall
define bijections f : β−n → Bn and g : β+

n → Dn. Let f(x1, . . . , xn) = (−x1, . . . ,−xn):
it is easy to see that f is a bijection of β−n onto Bn. For g, let (x1, . . . , xn) ∈ β+

n ,
with r ∈ {1, . . . , n} such that |xr| = 1. Then g(x1, . . . , xn) = (xrx̃1, x̃2, . . . , x̃n), where
x̃i = (sgnxi)(|xi| − 1). The reader may verify that the image of g is in Dn, and in fact
that g has an inverse given by

g−1(y1, . . . , yn) =

{
(1, ŷ2, . . . , ŷn), if r = 1;

(|ŷ1|, ŷ2, . . . , ŷr−1, sgn y1, ŷr+1, . . . , ŷn), otherwise;

for (y1, . . . , yn) ∈ Dn with yr = 0, and ŷi = (sgn yi)(|yi|+ 1) for i 6= r.

We can use the machinery of previous sections to obtain relations among the Springer
numbers (and cardβn). For example, equation (5) above implies card βn = 2nan−1, which
has a simple combinatorial interpretation in terms of snakes (cf. Theorem 24 of [3]). Other
relations, like the following, appear to be new.

Proposition 4.4. For positive integers n,

bn =
(−1)n + 1

2
an−1 +

∑
k odd

(
n

k

)
ak−1bn−k

and

dn = (−1)n−1an−1 +
∑
k odd

(
n

k

)
ak−1dn−k.

Proof. Set s = π
4 and u = 0 in Theorem 2.2: then the first identity follows from part (ii)

of the theorem, and the second upon subtracting part (ii) from part (i).

Remark. The formula for bn can be given a combinatorial interpretation. Let Ām be the
set of sequences (x0, . . . , xm) such that {x0, . . . , xm} = {0, 1, . . . ,m} and x0 > x1 < x2 >
· · ·xm: evidently Ām is in 1-1 correspondence withAm via (x0, . . . , xm)→ (m−x0, . . . ,m−
xm). Now suppose (x1, . . . , xn) ∈ Bn. If all the xi are positive, then (x1− 1, . . . , xn− 1) ∈
Ān−1. Otherwise, there is a smallest k ∈ {1, . . . , n} with xk < 0, and it follows from the



the electronic journal of combinatorics 6 (1999),#R21 9

definition of Bn that k must be even. Then (x1, . . . , xk−1) can be shrunk into an element
of Āk−2, and (−xk,−xk+1, . . . ,−xn) can be shrunk into an element of Bn−k+1. Since there
are

(
n
k−1

)
ways to choose {x1, . . . , xk−1} ⊂ {1, . . . , n}, we have

bn = an−1 +
∑

2≤k≤n even

(
n

k − 1

)
ak−2bn−k+1 = an−1 +

∑
k≤n−1 odd

(
n

k

)
ak−1bn−k,

which is equivalent to the first identity above.

5. Values of derivative polynomials at
√

3, generalized Euler and class numbers,
and 3-signed permutations. In [17] Shanks defined positive integers ca,n (for integer
a ≥ 1 and n ≥ 0) and da,n (for integer a, n ≥ 1) by

La(2n+ 1) = Ka

√
a
ca,n
(2n)!

( π
2a

)2n+1

and L−a(2n) = Ka

√
a

da,n
(2n− 1)!

( π
2a

)2n

,

where Ka = 1
2 if a = 1 and 1 otherwise, and

La(s) =
∞∑
k=0

(
−a

2k + 1

)
(2k + 1)−s;

here (−a/(2k + 1)) is the Jacobi symbol. As noted in [17], the numbers c1,n are just the
secant numbers Q2n(0), and the d1,n are the tangent numbers P2n−1(0). Comparison of
the tables in [17] and those of [3] reveals that the numbers c2,n and d2,n are Springer
numbers: in fact c2,n = Q2n(1) = b2n and d2,n = Q2n−1(1) = b2n−1. This can be proved
using the recurrences given in [17] together with the generating function for the Qn(1):
see Proposition 6.3 of [16], where bn is denoted E±n . Our next result gives the third row of
Shanks’s numbers in terms of the numbers P2n(

√
3) and Q2n−1(

√
3) discussed in Theorem

3.3 above.

Theorem 5.1. i. For n ≥ 0, c3,n = 1√
3
P2n(
√

3).

ii. For n ≥ 1, d3,n = 2√
3
Q2n−1(

√
3).

Proof. By substituting into the first of equations (19) of [17] the constants corresponding
to the expression for L3(s) in equations (19) of [18], we have

(8)
∞∑
n=0

w2n c3,n
(2n)!

=
cos(3w(1− 4/3))

cos 3w
=

cosw

cos 3w
,

and comparison with equation (6) above proves (i). Similarly, substitute into the second
of equations (19) of [17] the constants from the expression for L−3(s) in equations (19) of
[18] to get

(9)
∞∑
n=1

w2n−1 d3,n

(2n− 1)!
=

sin(3w(1− 4/12))

cos 3w
=

sin 2w

cos 3w
,
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which on comparison with equation (7) gives (ii).

The notion of an alternating permutation of {1, 2, . . . , n} is generalized in [8] to a “Λ-
alternating augmented r-signed permutation” of {1, 2, . . . , n} for any pair (p, r) of positive
integers with p ≤ r. The cases (1, 1), (1, 2) and (2, 2) correspond respectively to the
An−1-snakes, Bn-snakes, and βn-snakes of the previous section. Here we give a combi-
natorial interpretation of the numbers c3,n and d3,n using the case (p, r) = (2, 3). Let

S = {nωm| n,m nonnegative integers}, where ω = e
2πi
3 , with the linear order

ω2 < 2ω2 < 3ω2 < · · · < 0 < ω < 2ω < 3ω < · · · < 1 < 2 < 3 < · · ·

Define an ERn-snake to be a sequence (x1, x2, . . . , xn) of elements of S such that 0 < x1 >
x2 < · · ·xn and {|x1|, |x2|, . . . , |xn|} = {1, 2, . . . , n}. Let ERn be the set of ERn-snakes,
so e.g., ER0 consists of the empty snake, ER1 = {(1), (ω)}, and

ER2 = {(2, 1), (2, ω), (2, ω2), (2ω, ω), (2ω, ω2), (1, 2ω), (1, 2ω2), (ω, 2ω2)}.

Theorem 5.2. For n ≥ 0, c3,n = cardER2n; for n ≥ 1, d3,n = cardER2n−1.

Proof. In the terminology of [8], ERn-snakes are Λ-alternating augmented 3-signed per-
mutations of {1, 2, . . . , n} corresponding to p = 2. By Proposition 7.2 of [8], we have

∞∑
n=0

cardERn
n!

xn =
sin 2x+ cosx

cos 3x

and the conclusion follows by comparison with equations (8) and (9) above.

6. Euler Polynomials. In this section we give explicit formulas for the values of the
Euler polynomials at rational numbers in terms of the Pn and Qn. The Euler polynomials
En(x) are defined by equation (2) above; the Euler numbers are En = 2nEn( 1

2 ). In view
of the translation formula for Euler polynomials (23.1.7 of [1]), it suffices to give formulas
for rational arguments between 0 and 1.

Theorem 6.1. If n, p and q are nonnegative integers with 0 ≤ p ≤ q (0 < p < q if n = 0)
and q ≥ 2 even, then

En(
p

q
) =

2

qn+1

q/2−1∑
k=0

sin( (2k+1)πp
q

− nπ
2 ) csc (2k+1)π

q
Qn(cot (2k+1)π

q
)

if p is odd, and

En(
p

q
) =

2

qn+1

q/2−1∑
k=0

sin( (2k+1)πp
q

− nπ
2 )Pn(cot (2k+1)π

q
)

if p is even.

Proof. We start with the Fourier series

En(
p

q
) =

4 · n!

πn+1

∞∑
k=0

sin( (2k+1)πp
q

− nπ
2 )

(2k + 1)n+1
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([1], 23.1.16). Consider

ψ(j) =

{
sin( jπp

q
− nπ

2 ), j odd,

0, j even.

Then ψ(j + q) = (−1)pψ(j), so ψ is alternating mod q if p is odd and periodic mod q if p
is even. Further, ψ(q− j) = (−1)p+n+1ψ(j), so ψ has parity (as an alternating or periodic
function mod q) opposite that of p+ n. Thus, since

En(
p

q
) =

4 · n!

πn+1

∞∑
j=1

ψ(j)

jn+1

the conclusion follows from Theorem 2.3.

Remark. By a proof similar to that above, one can obtain a formula for rational values
Bn(p/q) of the nth Bernoulli polynomial in terms of Pn−1. This is essentially Theorem C
of [20].

Examples. Set q = 2 to get

(10) En(
1

2
) =

1

2n
sin

(1− n)π

2
Qn(0) =

{
0, n odd

(−1)
n
2 2−nQn(0), n even.

Hence (by Theorem 2.1) Qn(0) = |En|. We have also

(11) En(0) = −En(1) =
1

2n
sin

(−n)π

2
Pn(0) =

{
0, n even

(−1)
n+1

2 2−nPn(0), n odd,

for n ≥ 1; this can be written in terms of Bernoulli numbers (see [1], 23.1.20) as −2(2n+1−
1)Bn+1/(n+ 1).

Taking q = 4, we obtain

(12) En(
1

4
) = (−1)nEn(

3

4
) =

{
(−1)

n
2 4−nQn(1), n even,

(−1)
n+1

2 4−nQn(1), n odd.

Finally, let q = 6 to get

(13) En(
1

6
) = (−1)nEn(

5

6
) =

{
2(−1)

n
2 6−n−1[2Qn(

√
3) +Qn(0)], n even,

4(−1)
n+1

2 6−n−1
√

3Qn(
√

3), n odd,

and

(14) En(
1

3
) = (−1)nEn(

2

3
) =

{
2(−1)

n
2 6−n−1

√
3Pn(

√
3), n even,

2(−1)
n+1

2 6−n−1[Pn(
√

3)− Pn(0)], n odd.

If n is even, we can use Theorem 3.2(ii) and equation (13) to write

En(
1

6
) = En(

5

6
) =

(−1)
n
2 (3n + 1)

2 · 6n
Qn(0) =

3n + 1

2 · 6n
En
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(cf. [15], Ch. 2, eqn. (46)). If n is odd, we have

En(
1

3
) = −En(

2

3
) =

(−1)
n+1

2 (3n − 1)

2 · 6n
Pn(0) = −

(3n − 1)(2n+1 − 1)

3n(n+ 1)
Bn+1

using Theorem 3.2(i) and equation (14) (cf. [15], Ch. 2, eqn. (45); [1], 23.1.22).

We close this section by expressing the Springer and Shanks numbers in terms of the
Euler polynomials.

Theorem 6.2. For integers n ≥ 1,

an−1 = 2n|En(
(−1)n + 1

4
)|;(i)

bn = 4n|En(
1

4
)|;(ii)

dn = 4n|En(
(−1)n + 1

4
)−En(

1

4
)|;(iii)

c3,n = 62n|E2n(
1

3
)|;(iv)

d3,n = 62n−1|E2n−1(
1

6
)|.(v)

Proof. For (i), note first that an−1 is Qn(0) for n even, and Pn(0) for n odd; then use
equations (10) and (11). For (ii), use equation (12). For (iii), observe from equation (5)
that dn is 2nQn(0)−Qn(1) for n even, and 2nPn(0)−Qn(1) for n odd; then use equation
(12) together with equations (10) and (11) respectively. For (iv) and (v), use Theorem 5.1
together with equations (13) and (14).
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