Derivatives of dibenzothiophene for PET imaging of $\alpha 7$-Nicotinic Acetylcholine Receptors

Yongjun Gao ${ }^{1}$, Kenneth J. Kellar ${ }^{2}$, Robert P. Yasuda ${ }^{2}$, Thao Tran ${ }^{2}$, Yingxian Xiao ${ }^{2}$, Robert F. Dannals ${ }^{1}$, and Andrew G. Horti ${ }^{1{ }^{1, *}}$
${ }^{1}$ Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287-0816, USA
${ }^{2}$ Georgetown University, 3900 Reservoir Road, Washington, DC 20007 USA

Abstract

A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5dioxide with high binding affinities and selectivity for $\alpha 7$-nicotinic acetylcholine receptors (a7-$\mathrm{nAChRs})\left(\mathrm{K}_{\mathrm{i}}=0.4-20 \mathrm{nM}\right)$ has been synthesized for PET imaging of a7-nAChRs. Two radiolabeled members of the series $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}\left(\mathrm{~K}_{\mathrm{i}}=0.4 \mathrm{nM}\right)$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}\left(\mathrm{K}_{\mathrm{i}}=1.3 \mathrm{nM}\right)$ were synthesized. $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ readily entered the mouse brain and specifically labeled a7nAChRs. The a7-nAChR selective ligand $\mathbf{1}$ (SSR180711) blocked the binding of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{7 a}$ in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-a7-nAChR CNS drugs demonstrated that $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ is highly a $7-\mathrm{nAChR}$ selective. In agreement with its binding affinity the binding potential of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}\left(\mathrm{BP}_{\mathrm{ND}}=5.3-8.0\right)$ in control mice is superior to previous a7-nAChR PET radioligands. Thus, $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of a7-nAChR in non-human primates.

Introduction

Cerebral neuronal nicotinic cholinergic receptors ($n A C h R s$) are ligand-gated ion channels composed of α (i.e., $\alpha 2-\alpha 10$) and β (i.e., $\beta 2-\beta 4$) subunits that can assemble in multiple combinations of pentameric structures. Among the many nAChRs subtypes in the human CNS, heteropentameric a4ß2-nAChRs and homopentameric $\alpha 7-n A C h R s$ are predominant. ${ }^{1,2} \alpha 7-n A C h R s$ are composed of five identical $\alpha 7$ subunits, and each subunit provides an orthosteric binding site for its neurotransmitter, acetylcholine. ${ }^{3}$ Many lines of evidence associate a7-nAChRs with the pathophysiology of a variety of disorders such as schizophrenia and AD , anxiety, depression, traumatic brain injury, multiple sclerosis, inflammation and drug addiction. ${ }^{4-12}$

Clinical experiments with a7-nAChR agonists have demonstrated that selective activation of the receptor is a viable approach towards improving cognitive performance in patients with schizophrenia. ${ }^{13,14}$
 drug target, synthesis and pre-clinical examination of a7-nAChR subtype selective

[^0]compounds receive substantial interest in industry and academia. ${ }^{9,14}$ A number of a7nAChR drugs are currently in various stages of the development for treatment of a variety of disorders including schizophrenia, AD, multiple sclerosis, depression, asthma and type-2 diabetes. ${ }^{15-17}$

In vivo imaging and quantification of a7-nAChR binding in humans would provide a significant advance in the understanding of a7-nAChR-related CNS disorders and could also facilitate novel a7-nAChR drug development. Positron emission tomography (PET) is the most advanced technique to quantify neuronal receptors and their occupancy in vivo, and the development of a suitable PET radiotracer for a7-nAChRs would be of particular interest.

Many lead structures of a7-nAChR ligands have been identified within various structural classes. A number of these ligands have been radiolabeled for PET ($\left[{ }^{18} \mathrm{~F}\right],\left[{ }^{11} \mathrm{C}\right]$) and singlephoton emission computed tomography (SPECT) ($\left.\left[{ }^{123} \mathrm{I}\right]\right)$ (Table 1) and studied in mice, pigs and non-human primates as potential a7- nAChR probes. ${ }^{18-29}$ Most of these radioligands entered the animal brain, but manifested relatively low specific binding (see for review ${ }^{30-32}$) and insufficient $\mathrm{BP}_{\mathrm{ND}}$ values $\left(\mathrm{BP}_{\mathrm{ND}}<1\right)($ Table 1$) .\left[{ }^{11} \mathrm{C}\right] \mathrm{CHIBA}-1001$ is the only a7nAChR PET radioligand so far that has been studied in human subjects, ${ }^{25}$ but it also exhibits low specific binding (Table 1).

Due to the exceptionally low concentration ($B_{\max }$) of cerebral a7-nAChR binding sites in the human ($5-15 \mathrm{fmol} / \mathrm{mg}$ protein $)^{33}$ and animal brain ($1.5-12 \mathrm{fmol} / \mathrm{mg}$ tissue), ${ }^{34,35}$ a PET radioligand with high specific brain uptake for this receptor subtype must exhibit very high binding affinity and selectivity, along with other important properties (e.g., lipophilicity, polar surface area, suitability for radiolabeling) in an appropriate range (see for details ${ }^{30,32,36,37}$). The general aptness of a PET radioligand for quantitative imaging studies is defined by a conventional criterion $B_{\max } / K_{D} \geq 10 .{ }^{37}$ This equation predicts that a picomolar range of the binding affinity is required for a good a7-nAChR PET radioligand ($\mathrm{K}_{\mathrm{D}} \leq 0.15-1.2 \mathrm{nM}$), whereas the most previously published a7-nAChR radioligands exhibited nanomolar binding affinities (Table 1). It is noteworthy, however, that the inhibition binding assays of the published compounds have been performed under a variety of assay conditions and, thus, the values of K_{i} listed in Table 1 may not be directly comparable to one another (see Discussion for details).

Recently Abbott Laboratories has reported 3-(1,4-diazabicyclo[3.2.2]nonan-4yl)dibenzo $[b, d]$ thiophene 5,5 -dioxide 5 (Figure 2) as an $\alpha 7$-nAChR selective antagonist with extraordinarily high binding affinity, $\mathrm{K}_{\mathrm{i}}=0.023 \mathrm{nM} .{ }^{43}$ We envisioned the synthesis of fluoro-derivatives of $\mathbf{5}$ producing a new set of compounds with similar or even better binding affinities with the potential for radiolabeling with $\left[{ }^{18} \mathrm{~F}\right]$ for PET imaging. The rationale for the design of fluorine-bearing analogs of compound $\mathbf{5}$ has been strengthened by reports that fluorine substituents can increase the metabolic stability and the rate and extent of blood-brain barrier penetration of radiotracers. ${ }^{44}$

In this study, we describe the design, synthesis and in vitro and in vivo characterization in mice of a series of high a7-nAChR binding affinity derivatives of 5 as potential probes for PET imaging of a7-nAChR receptor.

Results and Discussion

 ChemistrySynthesis of $\alpha 7$-nAChR ligands-The fluoro-derivatives 7a-e of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-dibenzo[b, d]thiophene 5,5-dioxide $\mathbf{5}$ were synthesized via
the Buchwald-Hartwig cross-coupling reaction between the respective fluoro-bromo compounds 6a-e with 1,4-diazabicyclo[3.2.2]nonane (Scheme 1).

The nitro-derivatives of (1,4-diazabicyclo[3.2.2]nonan-4-yl)-dibenzo[b,d]thiophene 5,5dioxide $\mathbf{1 0}$ and $\mathbf{1 1}$ were synthesized similarly starting with respective nitro-bromodibenzothiophene derivatives $\mathbf{8}$ and 9 (Scheme 2). Reduction of nitro groups in 10 and 11 with iron powder gave corresponding anilines 12 and 13 in high yield. Diazotizationiodination of $\mathbf{1 2}$ and $\mathbf{1 3}$ yielded corresponding iodides 14 and $\mathbf{1 5}$ (Scheme 2).

Synthesis of intermediate compounds-The synthesis of intermediate fluorobromide $6 \mathbf{a}$ was performed in four steps (Scheme 3). Coupling of commercially available 4-bromo-2-fluoro-nitrobenzene 16 and 2-fluoro-thiophenol 17 gave nitrodiaryl thioether 18 that was reduced to aniline 19 . Aniline 19 was treated with sodium nitrite at $0^{\circ} \mathrm{C}$ in the presence of hydrochloric acid and sodium tetrafluoroborate to yield a corresponding diazonium tetrafluoroborate derivative (not shown). The intramolecular deazotisation/ cyclization of the diazonium salt in the presence of copper (I) oxide and 0.1 N sulfuric acid afforded fluoro-bromo-dibenzothiophene derivative 20, that in turn was oxidized with hydrogen peroxide to $\mathbf{6 a}$ in high yield (Scheme 3).

The fluoro-bromo isomers $\mathbf{6 b}$ and $\mathbf{6 c}$ were synthesized in four steps via the commercially available dibenzo $[b, d]$ thiophene 5,5-dioxide 21 and 2-nitrodibenzo $[b, d]$ thiophene 22, respectively (Scheme 4). In brief, nitration of compound 21 and oxidation of compound 22 gave compounds 23 and 24, respectively. Bromination of compounds 23 and 24 provided mono-bromo derivatives 25 and 9 that sequentially were reduced to anilines 26 and 27, respectively, in high yields. The anilines $\mathbf{2 6}$ and $\mathbf{2 7}$ were converted to fluorides $\mathbf{6 b}$ and $\mathbf{6 c}$ in moderate yields by the Schiemann reaction via the corresponding intermediate diazonium fluoroborates (structures not shown). The diazonium salts precipitated in the reaction mixture and were isolated by filtration in high yields.

The brominated isomers $6 \mathbf{d}$ and $\mathbf{6 e}$ were prepared by bromination of 4-
fluorodibenzo $[b, d]$ thiophene 5,5 -dioxide 29 starting with 4-fluorodibenzo[$b, d]$ thiophene 28. ${ }^{45}$ Oxidation of $\mathbf{2 8}$ with hydrogen peroxide gave dioxide 29 in nearly quantitative yield. Bromination of 29 with one equivalent NBS in $\mathrm{H}_{2} \mathrm{SO}_{4}$ afforded two isomeric bromides: 6d as the main product in 24% yield as well as $\mathbf{6 e}$ as a minor product in 13% yield. A substantial amount of compound 29 (about 50%) was recovered from the reaction mixture. Isomers $\mathbf{6 d}$ and $\mathbf{6 e}$ were readily separated by silica gel chromatography.

3-Bromo-6-nitrodibenzo[b,d]thiophene 5,5-dioxide $\mathbf{8}$ was synthesized in two steps: (1) oxidation of 4-nitrodibenzo $[b, d]$ thiophene $\mathbf{3 0}^{46}$ gave 4-nitrodibenzo $[b, d]$ thiophene 5,5dioxide $\mathbf{3 1}$ in 90% yield; (2) bromination of compound $\mathbf{3 1}$ provided compound $\mathbf{8}$ as the only product in 77% yield. (Scheme 6)

In vitro inhibition binding assay-The results of the a7-nAChR in vitro inhibition binding assays for compounds $\mathbf{7 a - e}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 4}$ and $\mathbf{1 5}$ are shown in Table 2. In order to determine $\alpha 7-n A C h R$ selectivity of new compounds vs. other nAChR subtypes, binding assays for the main cerebral heteromeric nAChR subtypes ($\alpha 2 \beta 2-, ~ a 2 \beta 4-, \alpha 3 \beta 2-, \alpha 3 \beta 4-$, $\alpha 4 \beta 2-$, $\alpha 4 \beta 4-$) were also performed (Table 2). In addition, because $\alpha 7-n A C h R$ shares 30% homology with the $5-\mathrm{HT}_{3}$ receptor and first generation $\alpha 7-\mathrm{nAChR}$ radioligands exhibited low a7-nAChR/5- HT_{3} selectivity, ${ }^{27}$ the in vitro binding affinity at the $5-\mathrm{HT}_{3}$ receptor was also determined for selected compounds of our series (Table 2).

The a7-nAChR assays for 7a-e, 10, 11, 14 and $\mathbf{1 5}$ were performed using a commercial assay consisting of rat cortical membranes (rich in $\alpha 7-\mathrm{nAChR}$) in competition against 0.1
$\mathrm{nM}\left[{ }^{125} \mathrm{I}\right]$ a-bungarotoxin, an a7-nAChR antagonist with a K_{D} of 0.7 nM . These assays were performed independently in duplicate, each twice (Table 2). Assays for two reference compounds, methyllycaconitine (MLA), a conventional reference a7-nAChR antagonist, and compound $5,{ }^{43}$ a lead of our series, were also performed (Table 3).

The new series of fluoro isomers 7a-d exhibited high binding affinity at a7-nAChRs with K_{i} values in the range of $0.3-2.5 \mathrm{nM}$, whereas the binding affinity of isomer 7 e was lower (Table 2). The K_{i} values of the fluoro derivatives 7a-d (Table 2) were better than that of the conventional reference a7-nAChR ligand MLA (Table 3). Among all fluoro isomers compound 7a manifested the best a7-nAChR binding affinity that was an order of magnitude better than MLA and at least comparable to the non-fluorinated lead 5 (Tables 2, $3)$.

Within the series 7a-e, two fluoro derivatives 7a and 7c were selected for further evaluation. This selection was based on the high a7-nAChR binding affinity and selectivity of 7a and 7c (see Table 2) and the suitability of these compounds for radiolabeling with $\left[{ }^{18} \mathrm{~F}\right]$. The radiolabeling of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ was anticipated to be accomplished by a direct nucleophilic substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)$ with [$\left.{ }^{18} \mathrm{~F}\right]$ fluoride via the nitro $\mathbf{1 0}$ and $\mathbf{1 1}$ or iodo derivatives 14 and $\mathbf{1 5}$, respectively. The leaving nitro- in 10 and 11 or iodo-groups in 14 and 15 are activated for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ fluorination by the powerful electron-withdrawing $\mathrm{SO}_{2} \mathrm{Ar}$ on the ortho and para positions, respectively. ${ }^{47-50} \mathrm{We}$ did not find in the literature an example of fluorination of nitro- or iododibenzothiophene 5,5-dioxides, but the structural analog of 11, 4,4'-sulfonylbis(p-nitrobenzene), has been converted to the corresponding fluoro-derivative with good yield. ${ }^{51}$

The fluoro derivative 7b that also exhibited high a7-nAChR binding affinity was not selected for further studies because the activating $\mathrm{SO}_{2} \mathrm{Ar}$ was located on the meta position to the leaving group and direct radiolabeling of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{b}$ via its nitro or iodo-derivative was less likely. A detailed search of the literature for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions for 3nitrodibenzo $[\mathrm{b}, \mathrm{d}]$ thiophene 5,5 -dioxide, a potential precursor for $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{~b}$, or its structural analogs (1-nitro-3-(phenylsulfonyl)benzene, etc.) did not reveal any previous publications.

The potential precursors $\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 4}$ and $\mathbf{1 5}$ for ${ }^{18} \mathrm{~F}$-fluorination of $\left[{ }^{18} \mathrm{~F}\right] \mathbf{7 a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ were studied in the same a7-nAChR inhibition binding assay. The nitro compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ exhibited comparable $\alpha 7-n A C h R$ binding affinities to those of the corresponding fluorides $7 a$ and $7 c$, whereas the binding affinities of iodo-derivatives 14 and 15 were lower.

Currently, there is no conventional in vitro competition binding assay for a7-nAChR. Different research groups use different radioligands ($\left[{ }^{125} \mathrm{I}\right]$ a-bungarotoxin, $\left[{ }^{3} \mathrm{H}\right] \alpha$ bungarotoxin, $\left[{ }^{3} \mathrm{H}\right]$ MLA, $\left[{ }^{125} \mathrm{I}\right]$ iodo-MLA, $\left[{ }^{3} \mathrm{H}\right] \mathrm{A}-585539$, etc) and different sources of receptor tissue (cell lines, brain, adrenal glands) under different conditions for this assay. ${ }^{26,} 29,52-54$ It is not surprising that the difference in the K_{i} values for the same compound under different assay conditions can exceed an order of magnitude. ${ }^{53}$, 54 Therefore, a direct comparison of K_{i} values of the previously published a7-nAChR ligands with compounds of our new series is not practical.

For the purpose of comparison, we determined the K_{i} values of three most recently published a7-nAChR PET radioligands $\left[{ }^{11} \mathrm{C}\right] 2,{ }^{26}\left[{ }^{18} \mathrm{~F}\right] 3^{29}$ and $\left[{ }^{18} \mathrm{~F}\right] 4^{27}$ (Table 3) under the same assay conditions as that of our series (Table 2). It was noteworthy that the a7-nAChR binding affinities of the best compounds of our series 7a and 7c were substantially better than those of the previous radioligands.

Heteromeric nAChR subtypes assays ($\alpha 2 \beta 2-$, $\alpha 2 \beta 4-$, $\alpha 3 \beta 2-$, $\alpha 3 \beta 4-, ~ a 4 \beta 2-, ~ \alpha 4 \beta 4-n A C h R$) were performed in our labs using membrane preparations from HEK293 cells expressing the transfected nAChR under test in competition with $0.5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ epibatidine to investigate the specificity of the ligand for each receptor (Table 2).

The heteromeric $n A C h R K_{i}$ values of the tested compounds $\mathbf{7 a}, \mathbf{7 c}-7 e$ and $\mathbf{1 5}$ were substantially greater than the corresponding a7-nAChR K_{i} 's, indicating a high a7-/ heteromeric-nAChR subtype selectivity of all studied compounds (Table 2). Thus, the fluoro isomer 7a with the best $\alpha 7-n A C h R$ binding affinity also manifested an excellent selectivity versus heteromeric nAChR including the main cerebral subtype a $4 \beta 2-n A C h R ~(T a b l e ~ 2) . ~$ Interestingly, the $\alpha 7 / a 4 \beta 2$ selectivity of iodo derivative 15 is ten times lower than the corresponding fluoro derivative $7 \mathbf{c}$.

5-HT3 assay. The in vitro binding affinity of the most promising members of the series, compounds $7 \mathbf{a}$ and $\mathbf{7 c}$, at the $5-\mathrm{HT}_{3}$ receptor were determined commercially using membrane preparations from HEK293 cells expressing transfected human $5-\mathrm{HT}_{3} \mathrm{R}$ in competition with $0.35 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ GR65630, a $5-\mathrm{HT}_{3} \mathrm{R}$ antagonist with a K_{D} of 0.5 nM . The assay demonstrated that fluoro compounds $\mathbf{7 a}$ and 7 c manifest relatively low $5-\mathrm{HT}_{3}$ binding affinities and they are highly a7-nAChR/ $5 \mathrm{HT}_{3}$ selective (Table 2).

Lipophilicity of 7a and 7c-Lipophilicity $\left(\log \mathrm{D}_{7.4}\right)$ is considered an important property of CNS radioligand because it has been linked to the blood-brain barrier permeability and non-specific binding. ${ }^{35,} 37,38$ The lipophilicity values for $\mathbf{7 a}$ and $\mathbf{7 c}\left(\log D_{7.4}=2.0\right)$ were calculated with ACD Labs Structure Designer Suite (ACD Labs, Toronto) and fall within the conventional range for CNS PET radioligands.

Radiochemistry

We radiolabeled the fluoro isomers $7 \mathbf{a}$ and $7 \mathbf{c}$ that exhibited highest binding affinity within the series with fluorine-18. The radiosyntheses were performed remotely in one step by 1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane (Kryptofix-222 ${ }^{\circledR}$) - assisted radiofluorination of the respective nitro- 10 and $\mathbf{1 1}$ (Scheme 7) or iodo-precursors $\mathbf{1 4}$ and $\mathbf{1 5}$ using a radiochemistry synthesis module (Microlab, GE) followed by the semi-preparative HPLC separation and formulation of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ as sterile apyrogenic solutions in 7% ethanolic saline.

It is noteworthy that the radiotracer product yields from iodo-precursors $\mathbf{1 4}$ and $\mathbf{1 5}$ were substantially lower than those of the nitro-precursors $\mathbf{1 0}$ and 11. The conventional Kryptofix-222/potassium carbonate assisted radiofluorination of both iodo-derivatives 14 and 15 in DMSO at $130-180{ }^{\circ} \mathrm{C}$ produced $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ with radiochemical yields below 0.5% and this radiosynthesis pathway was not optimized further (not shown).

The radiofluorination of nitro-derivatives $\mathbf{1 0}$ or $\mathbf{1 1}$ (Scheme 7) in the presence of Kryptofix-222/potassium carbonate at $160{ }^{\circ} \mathrm{C}$ produced $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ or $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ in a slightly better yield ($2-3 \%$). Further optimization of this radiosynthesis suggested that both final products $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ or $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ rapidly decomposed in the DMSO reaction solution in the presence of highly basic $\mathrm{K}_{2} \mathrm{CO}_{3}$, but the radiochemical yield was improved if the less basic potassium oxalate was used. In the presence of potassium oxalate, the final products [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ were prepared under similar reaction conditions with comparable radiochemical yields of $16 \pm 6 \%(n=14)$ (nondecay-corrected), with specific radioactivities in the range of $330-1260 \mathrm{GBq} / \mu \mathrm{mol}(9-34 \mathrm{Ci} / \mu \mathrm{mol})$, and a radiochemical purity greater than 99%. The nitro-precursors $\mathbf{1 0}$ and $\mathbf{1 1}$ that exhibited substantial a7-nAChR binding affinity (Table 2)
were fully separated by preparative HPLC and were not detected by analytical HPLC in the final products $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ (see Table 6 for the HPLC details).

Biodistribution Studies of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ in mice

Baseline studies in mice—Radioligands [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ were evaluated in mice as potential PET tracers for imaging a7-nAChRs. After intravenous injection, $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ exhibited robust initial brain uptake followed by washout. The highest accumulation of radioactivity of both radioligands occurred in the superior/inferior colliculus, hippocampus and frontal cortex. Moderate uptake was observed in thalamus and striatum and the lowest radioactivity was seen in cerebellum (Figs. 4-6). This distribution of radioactivity was similar to the previously published in vitro data on the distribution of a7nAChRs in rodents. ${ }^{56,57}$ The clearance rate of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ from cerebellum was higher than that from any other regions studied. The ratios of tissues to cerebellum increased steadily over the 90 minutes, reaching values of 10 for $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and 4.5 for $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$. The better ratios for compound $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ vs. $\left[{ }^{18} \mathrm{~F}\right] \mathbf{7} \mathbf{c}$ are in agreement with in vitro a7-nAChR binding affinity of these compounds (Table 2).

Specificity and selectivity of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ binding in the mouse brain-

A conventional in vivo blockade methodology with CNS drugs is used here for demonstration of specificity and selectivity at the a $7-n A C h R$ receptor in the mouse brain. A self-blockade study with a non-radioactive form of a radioligand estimates whether or not the binding is specific. A blockade study with a drug that is highly selective at the target binding site is expected to show the selectivity and specificity of the radioligand binding. A dose-escalation blockade with such a target selective drug provides further evidence of the radioligand specificity and selectivity and it is useful for demonstration of the radioligand suitability for evaluation of conventional drug candidates. In addition, blockade with CNS drugs that do not bind at the target site provide more evidence of the radioligand selectivity versus other cerebral binding sites.

Self-blockade studies of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ with 7a (Fig. 5-Left) and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ with $7 \mathbf{c}$ (Fig. 5-Right) demonstrated a reduction of the radioligand uptake in most brain regions except the cerebellum, a region with low density of $\alpha 7-n A C h R s$. The studies showed that accumulation of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ radioactivity in the mouse brain was specific. When the specific binding of the radioligands in the hippocampus and colliculus was estimated by using the radioactivity concentration in the blocked cerebellum as nonspecific binding, the specific binding value amounted to 94% and 80% and the baseline-to-blockade ratio in the a7-nAChR-rich regions was 13 and 5 for $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$, respectively. This result also demonstrated that $\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ exhibited a higher level of specificity and greater uptake in the mouse brain versus $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$.

Neither behavioral nor locomotor activity changes were observed in the mice in the blockade studies with $7 \mathbf{7 a}(0.3 \mathrm{mg} / \mathrm{kg}$, i.v.) or $\mathbf{7 c}(0.2 \mathrm{mg} / \mathrm{kg}$, i.v.).

Blocking with selective a $7-n A C h R$ ligands. A blockade study of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ with $\mathbf{1}$, a selective a7-nAChR partial agonist with a K_{i} of $22 \mathrm{nM},{ }^{58}$ showed a dose dependent blockade in all regions studied. However, in the a7-nAChR-poor cerebellum, the blockade was significant only with the highest dose of $\mathbf{1}(3 \mathrm{mg} / \mathrm{kg})$ (Fig. 6-Left). A similar dose-response study was performed with $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ using compound 5 , a selective a7-nAChR antagonist, as a blocker (Fig. 6-Right). These studies confirmed that the in vivo binding of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ was specific and mediated by a7-nAChR. The dose-escalation response demonstrated that both radioligands are suitable tools for evaluation of new a7-nAChR drug candidates.

It is noteworthy that the doses of $\mathbf{1}$ that significantly blocked the $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ binding in CD1 mice were comparable to the doses of $\mathbf{1}$ that significantly improved cognitive deficit in the various rodent models of schizophrenia. ${ }^{59,60}$ This finding suggests that $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ is suitable radioprobe for in vivo studies in mice with pharmacologically relevant doses of a7-nAChR drugs.

Because the lowest regional uptake of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ was seen in the cerebellum the regional $\mathrm{BP}_{\mathrm{ND}}$ values in mice were approximated for a single time point measurement (90 $\min)$ as $\mathrm{BP}_{\mathrm{ND}}=\left(\right.$ regional uptake/cerebellum uptake) -1^{42} (Table 4). The substantially higher $\mathrm{BP}_{\mathrm{ND}}$ values for [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ are in agreement with greater binding affinity of this compound versus $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ (Table 2; also see Fig. 9). The $\mathrm{BP}_{\mathrm{ND}}$ values for both radioligands $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ were superior to all previously published $\alpha 7$-nAChR PET radioligands (Table 1)

Blocking with nicotine and $a 4 \beta 2-n A C h R$ selective cytisine. The blockade of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ in CD1 mouse brain with cytisine, a partial nicotinic agonist selective for $a 4 \beta 2-n A C h R ~ a n d ~ o t h e r ~$ $\beta 2 / \beta 4$-containing heteromeric $n A C h R$ subtypes while exhibiting low $\alpha 7-n A C h R$ binding affinity, ${ }^{52,55,61}$ showed insignificant reduction of radioactivity accumulation in all regions studied (Fig. 7). This result demonstrated that $\left[{ }^{18} \mathrm{~F}\right] 7$ a manifested insignificant binding at a432-nAChRs in the mouse brain.

The blockade study of $\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ with nicotine that binds at all nAChR subtypes including a7$n A C h R^{52}$ showed significant blockade in all regions, except the nAChR-poor cerebellum. This suggests that $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ can be used for nicotine addiction or smoking studies in mice. The lesser blockade of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ with nicotine (Fig. 7) in comparison with $\mathbf{1}$ (Fig. 6) is due to the rather modest binding affinity of nicotine at a7-nAChR $\left(\mathrm{K}_{\mathrm{i}}=610 \mathrm{nM}\right) .{ }^{52}$

Blocking with non-a7-nAChR CNS ligands. For determination of in vivo selectivity of $\left.{ }^{[18} \mathrm{F}\right] 7$ a for a7-nAChRs vs. several major CNS receptor systems, we compared the regional distribution (Fig. 8) of the radiotracer in control CD-1 mice vs. mice preinjected with various CNS active drugs or the positive control 1 (see Table 5 for the drug list). None of the drugs except 1 reduced accumulation of radioactivity when compared with controls (Fig. 8). The absence of blockade with the $5-\mathrm{HT}_{3}$-selective drug ondansetron was especially remarkable because $\alpha 7-n A C h R$ ligands often bind to this receptor subtype. This finding suggests that in the mouse brain the radioligand $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ was selective for $\alpha 7-\mathrm{nAChRs}$ versus several major cerebral binding sites.

Comparison of imaging properties of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ with previous $\alpha 7-n A C h R$ PET radioligands

Binding potential $\left(\mathrm{BP}_{\mathrm{ND}}\right)$, a measure of in vivo specific binding and one of the most important imaging characteristics of a PET radioligand, is defined as the ratio of $B_{\max }$ (receptor density) to K_{D} (radioligand equilibrium dissociation constant) or the product of $B_{\max }$ and binding affinity. ${ }^{41,62}$ Therefore, the binding affinities $\left(1 / \mathrm{K}_{\mathrm{i}}\right)$ of $\alpha 7-\mathrm{nAChR}$ radioligands should correlate linearly with their $\mathrm{BP}_{\mathrm{ND}}$ values.

The comparison of all previously published a7-nAChR radioligands (Table 1) revealed little correlation between $1 / \mathrm{K}_{\mathrm{i}}$ and $\mathrm{BP}_{\mathrm{ND}}\left(R^{2}=0.05\right.$, not shown). It was likely that the lack of correlation was due to the wide variability in binding assay conditions for these compounds when performed by various research groups (see Discussion above).

When the a7-nAChR binding assay for the radioligands is performed under the same assay conditions (Tables 2, 3), the binding affinities $1 / \mathrm{K}_{\mathrm{i}}$ correlate linearly (Fig. 9) with the cortical $\mathrm{BP}_{\mathrm{ND}}$'s of $\left[{ }^{18} \mathrm{~F}\right] \mathbf{7 a}$ and $\left[{ }^{18} \mathrm{~F}\right] \mathbf{7} \mathbf{c}$ (Table 4) and $\left[{ }^{11} \mathrm{C}\right] \mathbf{2},\left[{ }^{18} \mathrm{~F}\right] \mathbf{3}$ and $\left[{ }^{18} \mathrm{~F}\right] \mathbf{4}$ (Table 1).

This finding may explain why the specific binding of the very high affinity radioligands $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ is superior to the previous a7-nAChR radioligands with lower binding affinities. This result emphasizes further the importance of high binding affinity for the imaging properties of a7-nAChR radioligands.

Conclusion

A series of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide derivatives with high binding affinities for a7-nAChRs $\left(K_{i}=0.4-20 n M\right)$ has been synthesized with potential application for PET imaging of a7-nAChRs. Two members of the series, $7 \mathbf{a}$ and $\mathbf{7 c}$, with the best a7-nAChR binding affinities ($\mathrm{K}_{\mathrm{i}}=0.4$ and 1.3 nM , respectively) and high selectivity vs. other nicotinic subtypes and $5-\mathrm{HT}_{3}$, were radiolabeled with ${ }^{18} \mathrm{~F}$.
$\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ readily entered the mouse brain and specifically and selectively labeled cerebral a7-nAChR receptors. The binding potential $\left(\mathrm{BP}_{\mathrm{ND}}\right)$ values in mouse cortex of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a},\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ and previously published $\alpha 7-\mathrm{nAChR}$ radioligands correlated linearly with their binding affinities $\left(1 / \mathrm{K}_{\mathrm{i}}\right)$ when the binding affinity values were determined under the same assay conditions. In agreement with the binding affinity of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ its $\mathrm{BP}_{\mathrm{ND}}$ value in mice was substantially better than those of the previous a7-nAChR radioligands.

The best PET radioligand of this new series $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ exhibits excellent a7-nAChR imaging properties in the mouse brain. Therefore, $\left[{ }^{18} \mathrm{~F}\right] 7$ a holds promise as a highly specific PET radioligand for quantification of a7-nAChR receptors and further evaluation of this radioligand in baboon PET studies is underway.

Experimental Section

All reagents were used directly as obtained commercially unless otherwise noted. Reaction progress was monitored by TLC using silica gel 60 F254 ($0.040-0.063 \mathrm{~mm}$) with detection by UV. All moisture-sensitive reactions were performed under an argon atmosphere using oven-dried glassware and anhydrous solvents. Column flash chromatography was carried out using E. Merck silica gel 60F (230-400 mesh). Analytical thin-layer chromatography (TLC) was performed on aluminum sheets coated with silica gel $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm}$ thickness, E. Merck, Darmstadt, Germany). Melting points were determined with a FisherJohns apparatus and were not corrected. ${ }^{1}$ H NMR spectra were recorded with a Bruker-400 NMR spectrometer at nominal resonance frequencies of 400 MHz , in CDCl_{3} or DMSO- d_{6} (referenced to internal $\mathrm{Me}_{4} \mathrm{Si}$ at $\delta_{\mathrm{H}} 0 \mathrm{ppm}$). The chemical shifts (δ) were expressed in parts per million (ppm). First order J values were given in Hertz. Splitting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), and broad (br). High resolution mass spectra were recorded utilizing electrospray ionization (ESI) at the University of Notre Dame Mass Spectrometry facility. All compounds that were tested in the biological assays were analyzed by combustion analysis (CHN) to confirm the purity $>95 \%$. Elemental analyses were determined by Galbraith Laboratories, Inc. (Knoxville, TN). The HPLC system consisted of two Waters model 600 pumps, two Rheodyne model 7126 injectors, an in-line Waters model 441 UV detector (254 nm), and a single sodium iodide crystal flow radioactivity detector. All HPLC chromatograms were recorded with Varian Galaxy software (version 1.8). The analytical and semi-preparative chromatographies were performed using Waters XBridge C-18 $10 \mu \mathrm{~m}$ columns (analytical $4.6 \times 250 \mathrm{~mm}$ and preparative $10 \times 250 \mathrm{~mm}$).

A dose calibrator (Capintec 15R) was used for all radioactivity measurements. Radiofluorination was performed with a modified GE MicroLab radiochemistry box.

Chemistry

Typical procedure for reduction of nitro derivatives to anilines 12, 13, 19, 26,
27-A mixture of nitro compound (1 mmol), iron powder (4 mmol), ammonium chloride $(1.2 \mathrm{mmol})$ in methanol (6 mL), THF (6 mL) and water (2 mL) was heated to reflux $\left(80^{\circ} \mathrm{C}\right)$ for 3 hours. The resulted mixture was diluted with ethanol and concentrated and dried under vacuum. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / i-\mathrm{PrOH} /\right.$ $\mathrm{Et}_{3} \mathrm{~N} 10: 1: 0.1$ to $10: 30: 4$) to give the corresponding aniline derivative.

Typical procedure for bromination- N-bromosuccinimide (NBS) (1 mmol) was added to a solution of the starting 1,4-dibenzothiophene derivative (1 mmol) in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(3.6 \mathrm{~mL})$ at room temperature. After 24 h , the solution was carefully poured into ice/ water. The solids were filtered and washed with water and methanol. The obtained solids were recrystallized from $95 \% \mathrm{EtOH}$ to afford the bromo compounds.

Typical procedure for oxidation of 1,4-dibenzothiophene derivatives-1,4Dibenzothiophene derivative (1 mmol) was dissolved in glacial acetic acid $(2.8 \mathrm{~mL})$ at room temperature. Aqueous hydrogen peroxide $(30 \%, 1.4 \mathrm{~mL})$ was added in small portions to the stirred solution. The addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ resulted initially in some precipitation. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , then cooled to room temperature. The solid was filtered off, sequentially washed with 70% aqueous acetic acid, then 30% aqueous acetic acid, then water and dried to afford the title compound.

3-Bromo-6-fluorodibenzo[b,d]thiophene 5,5-dioxide (6a)—The typical procedure for oxidation of 1,4-dibenzothiophene was followed, starting with $20(600 \mathrm{mg}, 2.13 \mathrm{mmol})$. The title compound $\mathbf{6 a}(648 \mathrm{mg}, 97 \%)$ was obtained as white crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

3-Bromo-7-fluorodibenzo[b,d]thiophene 5,5-dioxide (6b)—A mixture of 26 (620 $\mathrm{mg}, 2 \mathrm{mmol})$ and 48% tetrafluoroboric acid $\left(\mathrm{HBF}_{4}\right)(4 \mathrm{~mL})$ was stirred at $0-5^{\circ} \mathrm{C}$ for 10 min . A cold solution of sodium nitrite (204 mg in 0.8 mL of water, 3 mmol) was added dropwise with stirring. After stirring for 1 h at $0-5^{\circ} \mathrm{C}$ the precipitated intermediate diazonium tetrafluoroborate was collected by filtration, washed with cold tetrafluoroboric acid (5\%) and water, $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum. The diazonium tetrafluoroborate was boiled in xylene ($135{ }^{\circ} \mathrm{C}$) for 120 min . The solvent was evaporated under reduced pressure. The residue was extracted with mixture of chloroform and water. The chloroform layer was separated and concentrated. The residue was chromatographed on silica gel using hexanes$\operatorname{EtOAc}(4: 1)$ as eluent to give $\mathbf{6 b}$ as a pale yellow solid ($330 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right.$, $400 \mathrm{MHz}) \delta 7.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H})$

7-Bromo-2-fluorodibenzo[b,d]thiophene 5,5-dioxide (6c)—A mixture of 27 (310 $\mathrm{mg}, 1 \mathrm{mmol})$ and 48% tetrafluoroboric acid $\left(\mathrm{HBF}_{4}\right)(2 \mathrm{~mL})$ was stirred at $0-5^{\circ} \mathrm{C}$ for 10 min . A cold solution of sodium nitrite ($102 \mathrm{mg}, 1.5 \mathrm{mmol}$) in 0.4 mL of water was added dropwise with stirring. After stirring for 1 h at $0-5^{\circ} \mathrm{C}$, the precipitated diazonium tetrafluoroborate was collected by filtration, washed with cold tetrafluoroboric acid (5\%) and water, $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum. The diazonium tetrafluoroborate was boiled in xylene $\left(135{ }^{\circ} \mathrm{C}\right)$ for 30 min . The solvent was evaporated under reduced pressure. The residue was treated with chloroform and water. The chloroform layer was separated and concentrated. The residue was chromatographed on silica gel using hexanes-EtOAc (4:1) as eluent to give $\mathbf{6 c}$ as a pale yellow solid ($156 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) δ $8.38(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

3-Bromo-4-fluorodibenzo[b,d]thiophene 5,5-dioxide (6d) and 1-bromo-4-

 fluorodibenzo[b,d]thiophene 5,5-dioxide (6e)-The typical procedure for bromination was followed, starting with 29 ($905 \mathrm{mg}, 3.86 \mathrm{mmol}$). Separation of the crude reaction product by silica gel chromatography using hexanes/ethyl acetate (5:2) yielded two isomers $\mathbf{6 d}(285 \mathrm{mg}, 0.91 \mathrm{mmol}, 23.6 \%)$ and $\mathbf{6 e}(160 \mathrm{mg}, 0.51 \mathrm{mmol}, 13 \%)$. The isomer $\mathbf{6 e}$ was in the first chromatography fraction, whereas $\mathbf{6 d}$ was in the second fraction.6d: $\mathrm{R}_{\mathrm{f}}=0.31$ (hexanes/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.86-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.70$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

6e : $\mathrm{R}_{\mathrm{f}}=0.5$ (hexanes/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for Buchwald-Hartwig cross-coupling reaction

3-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-6-fluorodibenzo[b,d]thiophene 5,5dioxide (7a)—A catalyst solution was prepared by mixing tris(dibenzylideneacetone)dipalladium $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3} ; 58 \mathrm{mg}, 0.063 \mathrm{mmol}\right.$; Aldrich) and racemic BINAP ($39 \mathrm{mg}, 0.125 \mathrm{mmol}$; Strem) in toluene (4 mL) and heating the mixture to $90^{\circ} \mathrm{C}$ for 15 min . The solution was cooled, and then added to a mixture of $1,4-$ diazabicyclo[3.2.2]nonane ($200 \mathrm{mg}, 1.58 \mathrm{mmol}$) and $\mathbf{6 a}(0.492 \mathrm{~g}, 1.58 \mathrm{mmol})$, in toluene (12 $\mathrm{mL}) . \mathrm{Cs}_{2} \mathrm{CO}_{3}(766 \mathrm{mg}, 2.4 \mathrm{mmol}$; Aldrich) was then added, and the reaction mixture was flushed with nitrogen and heated overnight at $80-85^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was concentrated and purified by silica gel flash chromatography $\left(\mathrm{CHCl}_{3}: i-\right.$ $\mathrm{PrOH}: \mathrm{Et}_{3} \mathrm{~N}$ 10:1:0.2). The title compound $7 \mathbf{a}$ ($227 \mathrm{mg}, 40 \%$ yield) was obtained as yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (t, J=8.0 Hz, 1H), 7.29-7.24 (m, 2H), $7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.67$ $(\mathrm{m}, 2 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H})$; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}([\mathrm{M}+\mathrm{H}]) 359.1224$; found, 359.1240 .

Preparation of $7 a \cdot p$-TSA salt

A mixture of $7 \mathbf{a}(30 \mathrm{mg}, 0.084 \mathrm{mmol})$ and p-toluenesulfonic acid monohydrate (19 mg , 0.099 mmol) was stirred in EtOAc-EtOH ($2 \mathrm{~mL}, 10: 1$) at room temperature for 2 h . The resulting solid was collected, washed with $\mathrm{EtOAc}-\mathrm{EtOH}(2 \mathrm{~mL}, 10: 1)$ and $\mathrm{EtOAc}(3 \mathrm{~mL})$ and dried under vacuum to afford the title compound as a yellow solid ($32 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.47$ (s, 1H), 3.95-3.93 (m, 2H), 3.49-3.39 (m, 6H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H})$; Elemental Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$, Calcd: C, 58.85; H, 5.13; N, 5.28; Found: C, 58.57; H, 5.04; N, 5.18.

4-(7-Fluorodibenzo[b,d]thiophen-3-yl)-1,4-diazabicyclo[3.2.2]nonane 5,5-

 dioxide (7b)—The typical procedure for Buchwald-Hartwig cross-coupling reaction was followed, starting with $\mathbf{6 b}(0.2 \mathrm{~g}, 0.64 \mathrm{mmol})$, the title compound $\mathbf{7 b}$ was obtained as a yellow solid ($104 \mathrm{mg}, 0.29 \mathrm{mmol}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta 7.99$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.25$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.91(\mathrm{~m}$, $3 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H})$. Elemental Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$, Calcd: C, 62.37; H, 5.17; N, 7.58; Found: C, $62.25 ; \mathrm{H}, 5.44 ; \mathrm{N}$, 7.19.7-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-2-fluorodibenzo[b,od]thiophene 5,5dioxide (7c)—The typical procedure for Buchwald-Hartwig cross-coupling reaction was followed, starting with $\mathbf{6 c}(0.226 \mathrm{~g}, 0.72 \mathrm{mmol})$ and the title compound $7 \mathbf{c}(140 \mathrm{mg}, 54 \%$ yield) was obtained as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) ~ \delta 7.93-7.87(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.83(\mathrm{~m}$, $6 \mathrm{H}), 2.00$ (br s, 2 H), 1.73-1.67 (m, 2H); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}([\mathrm{M}+\mathrm{H}])$ 359.1224; found, 359.1241.

TSA salt: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 10.08$ ($\mathrm{s}, 1 \mathrm{H}$), 8.00-7.94 (m, 3H), 7.48 (d, J=8.0 $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{br}, 1 \mathrm{H}), 7.10(\mathrm{br}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.94$ (m, 2H), 3.47-3.38 (m, 6H), 2.29 (s, 3H), 2.19 (m, 2H), 2.06-1.99 (m, 2H); Elemental Analysis for $\mathrm{C}_{26} \mathrm{H}_{2} 7 \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$, Calcd: C, $57.39 ; \mathrm{H}, 5.28 ; \mathrm{N}, 5.15$; Found: C, 57.22; H, 5.11; N, 5.12.

3-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-4-fluorodibenzo[b,d]thiophene 5,5dioxide (7d)—The typical procedure for Buchwald-Hartwig cross-coupling reaction was followed, starting with $6 \mathbf{d}(0.246 \mathrm{~g}, 0.78 \mathrm{mmol})$ and the title compound $7 \mathbf{d}$ was obtained as yellow solid ($170 \mathrm{mg}, 0.47 \mathrm{mmol}, 60 \%$ yield). Free base: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) δ $8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 2 \mathrm{H})$, 3.03-3.00 (m, 2H), 2.93-2.89 (m, 4H), 2.00-1.97 (m, 2H), 1.74-1.66 (m, 2H); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}([\mathrm{M}+\mathrm{H}]) 359.1224$; found, 359.1246 ; TSA salt: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1 H), 7.59 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50-7.40 (m, 3H), 7.12 (m, 2H), 4.01 ($\mathrm{s}, 1 \mathrm{H}), 3.54-3.38$ (m, $6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 2 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 2 \mathrm{H})$; Elemental Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, Calcd: C, 57.87 ; H, 5.23; N, 5.19; Found: C, $58.21 ;$ H, 5.56 ; N, 4.88.

1-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-4-fluorodibenzo[b,d]thiophene 5,5-

 dioxide (7e)-The typical procedure for Buchwald-Hartwig cross-coupling reaction was followed, starting with $6 \mathbf{e}(0.112 \mathrm{~g}, 0.36 \mathrm{mmol})$. The title compound $7 \mathbf{e}$ was obtained as a yellow solid ($52 \mathrm{mg}, 0.15 \mathrm{mmol}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 88.50(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}$, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 5 \mathrm{H}), 3.14-3.09$ $(\mathrm{m}, 2 \mathrm{H})$, 2.16-2.10 (m, 2H), 1.87-1.71 (m, 3H); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}([\mathrm{M}$ + H]) 359.1224; found, 359.1215. Elemental Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, Calcd: C, 59.20; H, 5.75; N, 7.27; Found: C, 58.90; H, 5.76; N, 7.10.3-Bromo-6-nitrodibenzo[b,d]thiophene 5,5-dioxide (8)—The typical procedure for bromination was followed, starting with $\mathbf{3 1}(1.96 \mathrm{~g}, 7.5 \mathrm{mmol})$ and compound $\mathbf{8}$ was obtained as a pale brown solid ($1.73 \mathrm{~g}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) 88.70$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45-8.43(\mathrm{~m}, 2 \mathrm{H}), 8.28$ (d, $J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.09(\mathrm{~m}, 2 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{BrNNaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$361.9093; found, 361.9080 .

7-Bromo-2-nitrodibenzo[b,d]thiophene 5,5-dioxide (9)—The typical procedure for bromination was followed, starting with $24(1.82 \mathrm{~g}, 6.95 \mathrm{mmol})$ and compound $\mathbf{9}(2.1 \mathrm{~g}$, 89%) was obtained as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H})$, 8.44-8.47 (m, 3H), $8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-6-nitrodibenzo[b,d]thiophene 5,5-dioxide (10)-The typical procedure for Buchwald-Hartwig cross-coupling reaction was followed starting with $\mathbf{8}(0.129 \mathrm{~g}, 0.38 \mathrm{mmol})$. Note: the reaction mixture was heated at $105^{\circ} \mathrm{C}$ for 48
h. The title compound $\mathbf{1 0}$ was obtained as a reddish solid ($80 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H})$; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}([\mathrm{M}+\mathrm{H}]) 386.1169$; found, 386.1150; Elemental Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$, Calcd: C, 56.56; H, 5.25; N, 10.42; Found: C, 56.65; H, 4.99; N, 10.50 .

7-(1, 4-Diazabicyclo[3.2.2]nonan-4-yl)-2-nitrodibenzo[b,d]thiophene 5,5-

dioxide (11)—The typical procedure for Buchwald-Hartwig cross-coupling reaction was followed, starting with $9(1.83 \mathrm{~g}, 5.38 \mathrm{mmol})$. The title compound $\mathbf{1 1}$ was obtained as a reddish solid ($0.836 \mathrm{~g}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.12$ $(\mathrm{m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H})$, 3.00-2.88 (m, 6H), $2.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H})$; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ $([\mathrm{M}+\mathrm{H}]) 386.1169$; found, 386.1152 . Elemental Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}$, Calcd.: C, 55.94; H, 5.31; N, 10.30; found: C, 55.98; H, 5.17; N, 10.15.

6-Amino-3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-dibenzo[b,d]thiophene 5,5-

 dioxide (12)—The typical procedure for reduction of nitro derivatives was followed starting with $10(0.34 \mathrm{~g}, 0.88 \mathrm{mmol})$ and compound $\mathbf{1 2}(146 \mathrm{mg}, 46 \%)$ was obtained as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 7.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H})$.2-Amino-7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5dioxide (13)—The typical procedure for reduction of nitro derivatives was followed starting with $\mathbf{1 1}(0.68 \mathrm{~g}, 1.76 \mathrm{mmol})$ and compound $\mathbf{1 3}$ was obtained as a yellow solid (585 $\mathrm{mg}, 93 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 7.67(\mathrm{~d}, J=12 \mathrm{~Hz} 1 \mathrm{H}), 7.43(\mathrm{~d}, J=12 \mathrm{~Hz} 1 \mathrm{H})$, 7.27 (s, 1H), 7.14 (d, J=8.0, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (s, 1H), 6.53 (d, J=8.0, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (s, 2 H), $4.40(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.02(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.20(\mathrm{~m}$, 2 H).

3-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-6-iododibenzo[b,d]thiophene 5,5-dioxide
(14)—Compound 12 ($143 \mathrm{mg}, 0.4 \mathrm{mmol}$) was dissolved in a mixture of $4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(0.8$ mL) and $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$, and the solution was cooled to $-5^{\circ} \mathrm{C}$. Sodium nitrite ($55 \mathrm{mg}, 0.8$ $\mathrm{mmol})$ dissolved in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added dropwise at the same temperature. After stirring for 60 min a solution of diazonium salt was formed. To a mixture of $\mathrm{CuI}(268 \mathrm{mg}$, $1.4 \mathrm{mmol})$ and saturated KI solution $(2.5 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ was added above prepared solution of diazonium salt dropwise over 10 min and further stirred at $70^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was cooled and 28% ammonia solution was added (2 mL). The aqueous suspension was repeatedly extracted with CHCl_{3} and the combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel $\left(\mathrm{CHCl}_{3} / i-\mathrm{PrOH} / \mathrm{Et}_{3} \mathrm{~N} 10: 1: 0.1\right.$ to $\left.3: 1: 0.2\right)$ to give $\mathbf{1 4}$ $(28 \mathrm{mg}, 15 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 6 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H})$; Elemental Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$, Calcd: C, 44.63 ; H, 4.73 ; N, 5.48 ; Found: C, 44.88; H, 4.41; N, 5.48.

7-(1,4-Diazabicyclo[3.2.2]nonan-4-yl)-2-iododibenzo[b,d]thiophene 5,5-dioxide (15)—Compound 13 ($285 \mathrm{mg}, 0.8 \mathrm{mmol}$) was dissolved in a mixture of $4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(1.5$ $\mathrm{mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and the solution was cooled to $-5^{\circ} \mathrm{C}$. $\mathrm{NaNO}_{2}(110 \mathrm{mg}, 1.6 \mathrm{mmol}$, 2 equiv) dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added dropwise at the same temperature. After
stirring for 60 min a solution of diazonium salt was formed. To a mixture of $\mathrm{CuI}(536 \mathrm{mg}$, $2.8 \mathrm{mmol}, 3.5$ eqiv.) and saturated KI solution (2.5 mL) at $70^{\circ} \mathrm{C}$ was added above prepared solution of diazonium salt dropwise over 10 min and further stirred at $70^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was cooled and sat. $\mathrm{NH}_{4} \mathrm{OH}$ was added $(4 \mathrm{~mL})$. The aqueous suspension was repeatedly extracted with CHCl_{3} and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel $\left(\mathrm{CHCl}_{3} / i-\mathrm{PrOH} / \mathrm{Et}_{3} \mathrm{~N} 10: 1: 0.1\right.$ to 3:1:0.2) to give $\mathbf{1 5}$ ($75 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~m}$, 2 H); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}([\mathrm{M}+\mathrm{H}]) 467.0285$; found, 467.0306; Elemental Analysis for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{IN}_{2} \mathrm{O}_{3} \mathrm{~S}$, Calcd: C, 47.12; H, 4.37; N, 5.78; Found: C, 47.24; H, 4.53; N, 5.87.
(5-Bromo-2-nitrophenyl)(2-fluorophenyl)sulfane (18)—Cesium carbonate (4.3 g, 13.2 mmol) was added to a solution of 4-bromo-2-fluoro-nitrobenzene $\mathbf{1 6}(2.42,11 \mathrm{mmol}$, Aldrich) and 2-fluorobenzene thiol $17(1.4 \mathrm{~g}, 11 \mathrm{mmol}$, Aldrich) in DMF (60 mL) and the mixture was stirred for 5 h at room temperature. Water $(200 \mathrm{~mL})$ and ethyl acetate (100 mL) were added, the organic layer was separated and washed sequentially with water (100 mL) then brine (100 mL). The organic phase was separated, dried and concentrated to yield a yellow solid that was purified by silica gel chromatography (Hexanes/EtOAc 8:1 to 3:1) to give $18(2.88 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$.

4-Bromo-2-((2-fluorophenyl)thio)aniline (19)—The typical procedure for reduction of nitro derivatives was followed, starting with $\mathbf{1 8}(3.2 \mathrm{~g}, 9.75 \mathrm{mmol})$ and the title compound 19 was obtained as a brown solid ($2.46 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.59(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.87 (m, 1H), $6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$.

3-Bromo-6-fluorodibenzo[b,d]thiophene (20)—Compound 19 ($1.18 \mathrm{~g}, 3.96 \mathrm{mmol}$) was dissolved in $37 \% \mathrm{HCl}(11 \mathrm{~mL})$ and the solution was cooled below $5^{\circ} \mathrm{C}$. To this reaction mixture, sodium nitrite ($408 \mathrm{mg}, 5.93 \mathrm{mmol}$) was added slowly at temperature below $5^{\circ} \mathrm{C}$. After addition, the reaction was stirred for 30 min below $5^{\circ} \mathrm{C}$. Then sodium tetrafluoroborate ($865 \mathrm{mg}, 7.92 \mathrm{mmol}$) was added and the reaction mixture was stirred for another 30 min at temperature below $5^{\circ} \mathrm{C}$. This reaction solution was then added to the stirred solution of copper (I) oxide ($1.14 \mathrm{mg}, 7.92 \mathrm{mmol}$) in 0.1 N sulfuric acid (390 mL) at $35-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for $15-30 \mathrm{~min}$. Ethyl acetate was added to the reaction mixture and the mixture was filtered to remove inorganic compound. The filtrate was then extracted with ethyl acetate $(3 \times 120 \mathrm{~mL})$. The organic extract was washed with water followed by brine and then concentrated under vacuum. The residue was purified by silica gel chromatography (hexanes) to give $20(600 \mathrm{mg}, 54 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 8.04(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (dd, $J=8.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, $J=12.0,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

3-Nitrodibenzo[b,d]thiophene 5,5-dioxide (23)—Dibenzo[b,d]thiophene 5,5-dioxide 21 ($10 \mathrm{~g}, 46 \mathrm{mmol}$, Aldrich) was slowly added to a stirred mixture of glacial acetic acid (34 mL) and sulfuric acid $(96 \%, 34 \mathrm{~mL}$). The slurry was stirred and red fuming nitric acid (36 mL) was added dropwise over a period of 90 min at temperature $-5^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}$. The slurry was stirred for another 30 min and poured over ice. The precipitate was filtered, rinsed with water and dried at room temperature. The crude product was recrystallized with acetonitrile to give $\mathbf{2 3}$ as yellow crystals ($8.7 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta 8.84(\mathrm{~d}, \mathrm{~J}=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 8.65$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (d, $J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (d, $J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H})$.

2-Nitro-dibenzo[b,d]thiophene 5,5-dioxide (24)—The typical procedure for oxidation of 1,4-dibenzothiophene was followed starting with 22 ($489 \mathrm{mg}, 2.13 \mathrm{mmol}$, Oakwood Chemical) and the title compound $24(510 \mathrm{mg}, 90 \%)$ was obtained as white crystals. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.66(\mathrm{~d}, J=4 \mathrm{~Hz} \mathrm{1H}), 8.43(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H})$.

3-Bromo-7-nitrodibenzo[b,d]thiophene 5,5-dioxide (25)—The typical procedure for bromination was followed starting with $23(2.59 \mathrm{~g}, 9.9 \mathrm{mmol})$ and brown solid was obtained and recrystallized with benzene to yield 25 as a yellow solid ($1.73 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.89(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52-8.49(\mathrm{~m}$, 2 H), 8.35 (d, $J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

7-Bromodibenzo[b,d]thiophen-3-amine 5,5-dioxide (26)-A solution of stannous chloride dihydrate ($12.4 \mathrm{~g}, 56 \mathrm{mmol}$) in 37% hydrochloric acid $(21 \mathrm{~mL})$ was added to a mixture of $\mathbf{2 5}(1.7 \mathrm{~g}, 5 \mathrm{mmol})$ in glacial acetic acid $(50 \mathrm{~mL})$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 60 min and cooled down to $5^{\circ} \mathrm{C}$. The precipitate was filtered off, rinsed with water on the filter and dispersed in water. The dispersion was made basic $(\mathrm{pH}=10)$ by addition of an excess of 1 M sodium hydroxide and stirred for 3 h . The precipitate was filtered off, rinsed with water and dried overnight on the filter to yield $\mathbf{2 6}(0.7 \mathrm{~g}, 45 \%)$ as a pale white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.77(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.87$ (dd, $J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20$ (br s, 2H).

2-Amino-7-bromodibenzo[b,d]thiophene 5,5-dioxide (27)—The typical procedure for reduction of nitro derivatives was followed staring with $9(0.60 \mathrm{~g}, 1.76 \mathrm{mmol})$. The title compound 27 ($496 \mathrm{mg}, 91 \%$) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta 8.16(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (br s, 2H).

4-Fluorodibenzo[b,d]thiophene 5,5-dioxide (29)—The typical procedure for oxidation of 1,4 -dibenzothiophene was followed starting with 4fluorodibenzo[$b, d]$ thiophene $2 \mathbf{2 8}^{45}(1.62 \mathrm{~g}, 8 \mathrm{mmol})$. The title compound $29(1.8 \mathrm{~g}, 96 \%)$ was obtained as white crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

4-Nitrodibenzo[b, $d]$ thiophene 5,5-dioxide (31)—The typical procedure for oxidation of 1,4-dibenzothiophene was followed starting with $\mathbf{3 0}^{46}$ ($1.08 \mathrm{~g}, 4.71 \mathrm{mmol}$). The final compound $31(1.1 \mathrm{~g}, 90 \%)$ was obtained as pale yellow crystals. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400$ $\mathrm{MHz}) \delta 8.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NNaO}_{4} \mathrm{~S}([\mathrm{M}+\mathrm{Na}]) 283.9988$; found, 283.9994.

Radiosynthesis of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$

The same radiolabeling method was used for both radioligands $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$. A solution of the [${ }^{18}$ F]fluoride, $15-20 \mathrm{mg}$ of Kryptofix 222^{\circledR}, and $1-2 \mathrm{mg}$ of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in 1 mL of 50% aqueous acetonitrile was added to a reaction vessel of a GE MicroLab box. The mixture was heated at $120-135^{\circ} \mathrm{C}$ under a stream of argon, while water was evaporated azeotropically after the additions of 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$. A solution of the corresponding nitro precursor ($\mathbf{1 0}$ or $\mathbf{1 1}$) (2 mg) in anhydrous DMSO $(0.8 \mathrm{~mL})$ was added to the reaction vessel
and heated at $160^{\circ} \mathrm{C}$ for 12 min . The reaction mixture was cooled, diluted with 0.7 mL of water, injected onto the reverse-phase semi-preparative HPLC column (Table 6). The radioactive peak was collected in 50 mL of HPLC water. The water solution was transferred through an activated Waters C-18 Oasis HLB light solid-phase extraction (SPE) cartridge. After washing the SPE with 10 mL saline, the product was eluted with a mixture of 1 mL of ethanol and 0.04 mL 1 N HCl through a $0.2 \mu \mathrm{M}$ sterile filter into a sterile, pyrogen-free multi-dose vial and 10 mL of 0.9% saline and 0.05 mL sterile 8.4% solution sodium bicarbonate was added through the same filter. The final products $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ or $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ were then analyzed by analytical HPLC (Table 6) using a UV detector at 340 nm to determine the radiochemical purity and specific radioactivity at the time synthesis ended. The total synthesis time including QC was 70-80 min.

In vitro binding assay

$\alpha 7-n A C h R$ assay with rat brain membranes-The assay was done commercially by Caliper PerkinElmer (Hanover, MD). In brief, rat cortical membranes were incubated with [$\left.{ }^{125} \mathrm{I}\right]$ a-Bungarotoxin ($K_{\mathrm{D}}=0.7 \mathrm{nM}$) at a concentration of 0.1 nM in a buffer consisting of 50 mM Tris, $120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{CaCl}_{2}, 1 \mathrm{mM} \mathrm{MgCl}_{2}, 0.003 \mathrm{mM}$ atropine sulfate at pH 7.4 for 150 min at $0^{\circ} \mathrm{C} .{ }^{63}$ The binding was terminated by rapid vacuum filtration of the assay contents onto GF/C filters presoaked in PEI. Radioactivity trapped onto the filters was assessed using a gamma-counter. Nonspecific binding was defined as that remaining in the presence of $1 \mu \mathrm{M} \alpha$-Bungarotoxin. The assays were done two times independently, each in duplicate, at multiple concentrations of the test compounds. Binding assay results were analyzed using a one-site competition model, and IC_{50} curves were generated based on a sigmoidal dose response with variable slope. The K_{i} values were calculated using the Cheng-Prusoff equation. Methyllycaconitine (MLA) was used as a reference compound in all assays.

HEK 293 Cell culture and stable transfections (heteromeric nAChR)—HEK 293 cells (ATCC CRL 1573) were maintained at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ in a humidified incubator. Growth medium for the HEK 293 cells was the minimum essential medium supplemented with 10% fetal bovine serum, 100 units $/ \mathrm{mL}$ penicillin G , and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin. Transfections of these cells, and selection and establishment of stable cell lines were carried out as described previously. ${ }^{52,55}$

Membrane homogenate preparation (heteromeric nAChR)—Membrane

 homogenates for ligand binding assays were made as described previously. ${ }^{52,55}$ Briefly, cultured cells at $>90 \%$ confluency were removed from the culture flask ($80 \mathrm{~cm}^{2}$) with a disposable cell scraper and placed in 10 mL of 50 mM Tris. HCl buffer ($\mathrm{pH} 7.4,4^{\circ} \mathrm{C}$). The cell suspension was centrifuged at $1,000 \times \mathrm{g}$ for 5 min and the pellet was collected. The cell pellet was then homogenized in 10 mL buffer with a polytron homogenizer for 20 s and centrifuged at $35,000 \mathrm{~g}$ for 10 min at $4^{\circ} \mathrm{C}$. Membrane pellets were resuspended in fresh buffer.Binding to heteromeric nAChR—subunit combinations, which represent possible heteromeric nAChRs, was measured with $0.5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ epibatidine in HEK cells expressing these subunits $\left(K_{D}=0.021 \mathrm{nM}(\alpha 2 \beta 2-n A C h R), K_{D}=0.084 \mathrm{nM}(\alpha 2 \beta 4-n A C h R), K_{D}=0.034\right.$ $\mathrm{nM}(\alpha 3 \beta 2-\mathrm{nAChR}), \mathrm{K}_{\mathrm{D}}=0.29 \mathrm{nM}(\alpha 3 \beta 4-\mathrm{nAChR}), \mathrm{K}_{\mathrm{D}}=0.046 \mathrm{nM}(\alpha 4 \beta 2-\mathrm{nAChR}), \mathrm{K}_{\mathrm{D}}=$ $0.094 \mathrm{nM}(\alpha 4 \beta 4-\mathrm{nAChR})) .{ }^{55}$ Aliquots of the membrane homogenates containing 30 to 200 $\mu \mathrm{g}$ protein were used for the binding assays, which were carried out in a final volume of 100 $\mu \mathrm{L}$ in borosilicate glass tubes. After incubation at $24^{\circ} \mathrm{C}$ for 2 h , the samples were collected with a cell harvester (Brandel M-48) onto Whatman GF/C filters pre-wet with 0.5% polyethylenimine. After harvesting the samples, the filters were washed three times with 5
mL of 50 mM Tris. HCl buffer, and then counted in a liquid scintillation counter. Nonspecific binding was measured in samples incubated in parallel containing $300 \mu \mathrm{M}$ nicotine for $\left[{ }^{3} \mathrm{H}\right]$ epibatidine binding. Specific binding was defined as the difference between total binding and nonspecific binding. Data from these competition binding assays were analyzed using Prism 5 (GraphPad Software, San Diego, CA).

5- $\mathrm{HT}_{3}(\mathrm{~h})$ binding assay-The assay was done commercially by Caliper PerkinElmer (Hanover, MD) using recombinant HEK293 cells and $0.35 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{GR} 65630\left(K_{\mathrm{D}}=0.5\right.$ $\mathrm{nM})$.

Biodistribution studies in CD-1 mice

Baseline study—Male, CD-1 mice weighing 25-30 g from Charles River Laboratories, (Wilmington, MA) were used for biodistribution studies. The animals were sacrificed by cervical dislocation at various times following injection of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ or $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}(70 \mu \mathrm{Ci}$, specific radioactivity $8000-12000 \mathrm{mCi} / \mu \mathrm{mol}$, in 0.2 mL saline) into a lateral tail vein; three animals per time point. The brains were rapidly removed and dissected on ice. The brain regions of interest were weighed and their radioactivity content was determined in an automated γ-counter with a counting error below 3%. Aliquots of the injectate were prepared as standards and their radioactivity content was counted along with the tissue samples. The percent of injected dose per gram of tissue (\%ID/g tissue) was calculated. All experimental protocols were approved by the Animal Care and Use Committee of the Johns Hopkins Medical Institutions.

Self-blockade of $\left[{ }^{18} \mathrm{~F}\right]$ 7a binding with 7a-In vivo saturation blockade studies were done by i.v. co-administration of the radiotracer [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}(70 \mu \mathrm{Ci}, \mathrm{SA}=9200 \mathrm{mCi} / \mu \mathrm{mol}, 0.2$ mL) with various doses of "cold" 7a per animal ($0 \mu \mathrm{~g}$ (vehicle); $0.0048 \mu \mathrm{~g} ; 7.2 \mu \mathrm{~g}$). Compound 7a was dissolved in saline at $\mathrm{pH}=5.5$. Ninety min after administration of the tracer and blocker, brain tissues were harvested, and their regional radioactivity content was determined. The self-blockade of $\left[{ }^{18} \mathrm{~F}\right] \mathbf{7} \mathbf{c}$ with $\mathbf{7 c}$ was done similarly.

Blockade of $\left[{ }^{18} \mathrm{~F}\right]$ 7a binding with 1—In vivo a7-nAChR receptor blocking studies were done by intravenous (i.v.) co-administration of the radiotracer $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}(70 \mu \mathrm{Ci}, \mathrm{SA}=$ $7900 \mathrm{mCi} / \mu \mathrm{mol}, 0.2 \mathrm{~mL}$) with various doses of $1(0 \mu \mathrm{~g}$ (vehicle); $0.02 \mathrm{mg} / \mathrm{kg} ; 0.2 \mathrm{mg} / \mathrm{kg}, 1$ $\mathrm{mg} / \mathrm{kg}$ and $3 \mathrm{mg} / \mathrm{kg}$). Three animals per dose were used. 1 was dissolved in a vehicle (saline:alcohol (9:1) at $\mathrm{pH}=5.5$). Ninety min after administration of the tracer, brain tissues were harvested, and their regional radioactivity content was determined. The dosedependent blockade study of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ with 5 was done the same way.

Blockade of [$\left.{ }^{18} \mathrm{~F}\right] 7$ 7a with nicotine and cytisine—In vivo CB 1 receptor blocking studies were carried out by subcutaneous (s.c.) administration of (-)nicotine tartrate (5 mg / kg) or cytisine ($1 \mathrm{mg} / \mathrm{kg}$) followed by i.v. injection of the radiotracer $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}(70 \mu \mathrm{Ci}$, specific radioactivity $\sim 14000 \mathrm{mCi} / \mu \mathrm{mol}, 0.2 \mathrm{~mL}$) 5 min thereafter. The drugs were dissolved in saline and administered in a volume of 0.1 mL . Control animals were injected with 0.1 mL of saline. Ninety min after administration of the tracer, brain tissues were harvested, and their radioactivity content was determined.

Blockade of $\left[{ }^{18} \mathrm{~F}\right]$ 7a with non-a7-nAChR drugs—In vivo receptor blocking studies were performed by administration of six drugs (Table 5), followed by i.v. injection of the radiotracer $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}(70 \mu \mathrm{Ci}$, specific radioactivity $\sim 14000 \mathrm{mCi} / \mu \mathrm{mol}, 0.2 \mathrm{~mL})$. The drugs $(2$ $\mathrm{mg} / \mathrm{kg}$, s.c.) were dissolved in a vehicle (saline:DMSO 5:1) and administered in a volume of 0.1 mL . Control animals were injected with 0.1 mL of the vehicle solution. Ninety min after
administration of the tracer, brain tissues were harvested, and their radioactivity content was determined.

Acknowledgments

> We thank Dr. Richard Wahl for fruitful discussions. We thank Dr. Hiroto Kuwabara for reading the manuscript and for his useful comments. We thank Dr. Yuchuan Wang for useful comments and references. We are grateful to Paige Finley and Gilbert Green for their valuable help with animal experiments. We are thankful to Judy W. Buchanan for editorial help. We very much thank Drs. Peter Brust (Helmholtz-Zentrum Dresden-Rossendorf Institute of Radiopharmacy) and Dan Peters (DanPET AB) for the samples of compounds 2 and $\mathbf{3}$ and Dr. Martin Pomper for the sample of $\mathbf{4}$ for our inhibition binding assay studies.

This research was supported by NIH Grants MH079017 and AG037298 (AGH) and, in part, by the Division of Nuclear Medicine of The Johns Hopkins University School of Medicine.

List of non-standard abbreviations and acronyms

BINAP	$2,2^{\prime}$-bis(diphenylphosphino)-1,1'-binaphthyl
$\mathbf{B}_{\text {max }}$	receptor density in tissue
$\mathbf{B P}_{\mathbf{N D}}$	binding potential
EtOAc	ethylacetate
$\mathbf{E t O H}$	ethanol
$\mathbf{E t}_{\mathbf{2}} \mathbf{O}$	diethylether
$\mathbf{E t}_{\mathbf{3}} \mathbf{N}$	triethylamine
$\mathbf{K}_{\mathbf{D}}$	dissociation constant of the radioligand-receptor complex
$\mathbf{n A C h R}$	nicotinic acetylcholine receptor
\boldsymbol{i}-PrOH	isopropyl alcohol

References

1. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004; 74:363-396. [PubMed: 15649582]
2. Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev. 1999; 51:397-401. [PubMed: 10353988]
3. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007; 47:699-729. [PubMed: 17009926]
4. Philip NS, Carpenter LL, Tyrka AR, Price LH. Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology (Berl). 2010; 212:1-12. [PubMed: 20614106]
5. Ishikawa M, Hashimoto K. alpha7 nicotinic acetylcholine receptor as a potential therapeutic target for schizophrenia. Curr Pharm Des. 2011; 17:121-129. [PubMed: 21355839]
6. Parri HR, Hernandez CM, Dineley KT. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer's disease. Biochem Pharmacol. 2011; 82:931-942. [PubMed: 21763291]
7. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009; 89:73-120. [PubMed: 19126755]
8. Woodruff-Pak DS, Gould TJ. Neuronal nicotinic acetylcholine receptors: involvement in Alzheimer's disease and schizophrenia. Behav Cogn Neurosci Rev. 2002; 1:5-20. [PubMed: 17715584]
9. D'Hoedt D, Bertrand D. Nicotinic acetylcholine receptors: an overview on drug discovery. Expert Opin Ther Targets. 2009; 13:395-411. [PubMed: 19335063]
10. Hoffmeister PG, Donat CK, Schuhmann MU, Voigt C, Walter B, Nieber K, Meixensberger J, Bauer R, Brust P. Traumatic brain injury elicits similar alterations in alpha7 nicotinic receptor density in two different experimental models. Neuromolecular Med. 2011; 13:44-53. [PubMed: 20857232]
11. Verbois SL, Sullivan PG, Scheff SW, Pauly JR. Traumatic brain injury reduces hippocampal alpha7 nicotinic cholinergic receptor binding. J Neurotrauma. 2000; 17:1001-1011. [PubMed: 11101204]
12. Verbois SL, Scheff SW, Pauly JR. Time-dependent changes in rat brain cholinergic receptor expression after experimental brain injury. J Neurotrauma. 2002; 19:1569-1585. [PubMed: 12542858]
13. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006; 63:630-638. [PubMed: 16754836]
14. Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des. 2010; 16:323-343. [PubMed: 20109142]
15. Mazurov AA, Speake JD, Yohannes D. Discovery and development of alpha7 nicotinic acetylcholine receptor modulators. J Med Chem. 2011; 54:7943-7961. [PubMed: 21919481]
16. Taly A, Charon S. alpha7 nicotinic acetylcholine receptors: a therapeutic target in the structure era. Curr Drug Targets. 2012; 13:695-706. [PubMed: 22300037]
17. Wallace TL, Bertrand D. Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opin Ther Targets. 2013; 17:139-155. [PubMed: 23231385]
18. Pomper MG, Phillips E, Fan H, McCarthy DJ, Keith RA, Gordon JC, Scheffel U, Dannals RF, Musachio JL. Synthesis and biodistribution of radiolabeled alpha 7 nicotinic acetylcholine receptor ligands. J Nucl Med. 2005; 46:326-334. [PubMed: 15695794]
19. Hashimoto K, Nishiyama S, Ohba H, Matsuo M, Kobashi T, Takahagi M, Iyo M, Kitashoji T, Tsukada H. [11C]CHIBA-1001 as a novel PET ligand for alpha7 nicotinic receptors in the brain: a PET study in conscious monkeys. PLoS One. 2008; 3:e3231. [PubMed: 18800169]
20. Ogawa M, Nishiyama S, Tsukada H, Hatano K, Fuchigami T, Yamaguchi H, Matsushima Y, Ito K, Magata Y. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor alpha7 subtype. Nucl Med Biol. 2010; 37:347-355. [PubMed: 20346874]
21. Dolle F, Valette H, Hinnen F, Vaufrey F, Demphel S, Coulon C, Ottaviani M, Bottlaender M, Crouzel C. Synthesis and preliminary evaluation of a carbon-11-labelled agonist of the a7 nicotinic acetylcholine receptor. J Label Compd Radiopharm. 2001; 44:785-795.
22. Toyohara J, Ishiwata K, Sakata M, Wu J, Nishiyama S, Tsukada H, Hashimoto K. In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS One. 2010; 5:e8961. [PubMed: 20126539]
23. Horti AG, Ravert HT, Gao Y, Holt DP, Bunnelle WH, Schrimpf MR, Li T, Ji J, Valentine H, Scheffel U, Kuwabara H, Wong DF, Dannals RF. Synthesis and evaluation of new radioligands [(11)C]A-833834 and [(11)C]A-752274 for positron-emission tomography of alpha7-nicotinic acetylcholine receptors. Nucl Med Biol. 2013; 40:395-402. [PubMed: 23294899]
24. Gao Y, Ravert HT, Valentine H, Scheffel U, Finley P, Wong DF, Dannals RF, Horti AG. 5-(5-(6-[(11)C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)pyridin-2-yl)-1H-indole as a potential PET radioligand for imaging cerebral alpha7-nAChR in mice. Bioorg Med Chem. 2012; 20:3698-3702. [PubMed: 22608919]
25. Toyohara J, Sakata M, Wu J, Ishikawa M, Oda K, Ishii K, Iyo M, Hashimoto K, Ishiwata K. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping alpha7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009; 23:301-309. [PubMed: 19337782]
26. Ettrup A, Mikkelsen JD, Lehel S, Madsen J, Nielsen EO, Palner M, Timmermann DB, Peters D, Knudsen GM. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic
acetylcholine receptors: in vivo evaluation and drug occupancy measurements. J Nucl Med. 2011; 52:1449-1456. [PubMed: 21828113]
27. Ravert HT, Dorff P, Foss CA, Mease RC, Fan H, Holmquist CR, Phillips E, McCarthy DJ, Heys JR, Holt DP, Wang Y, Endres CJ, Dannals RF, Pomper MG. Radiochemical synthesis and in vivo evaluation of [18F]AZ11637326: An agonist probe for the alpha7 nicotinic acetylcholine receptor. Nucl Med Biol. 2013; 40:731-739. [PubMed: 23680470]
28. Rotering S, Scheunemann M, Fischer S, Hiller A, Peters D, Deuther-Conrad W, Brust P. Radiosynthesis and first evaluation in mice of [(18)F]NS14490 for molecular imaging of alpha7 nicotinic acetylcholine receptors. Bioorg Med Chem. 2013; 21:2635-2642. [PubMed: 23507153]
29. Deuther-Conrad W, Fischer S, Hiller A, Becker G, Cumming P, Xiong G, Funke U, Sabri O, Peters D, Brust P. Assessment of alpha7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743. Eur J Nucl Med Mol Imaging. 2011; 38:1541-1549. [PubMed: 21484373]
30. Horti AG, Villemagne VL. The quest for Eldorado: development of radioligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Curr Pharm Design. 2006; 12:38773900.
31. Toyohara J, Wu J, Hashimoto K. Recent development of radioligands for imaging alpha7 nicotinic acetylcholine receptors in the brain. Curr Top Med Chem. 2010; 10:1544-1557. [PubMed: 20583992]
32. Brust P, Peters D, Deuther-Conrad W. Development of Radioligands for the Imaging of alpha7 Nicotinic Acetylcholine Receptors with Positron Emission Tomography. Curr Drug Targets. 2012; 13:594-601. [PubMed: 22300025]
33. Marutle A, Zhang X, Court J, Piggott M, Johnson M, Perry R, Perry E, Nordberg A. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat. 2001; 22:115-126. [PubMed: 11470559]
34. Kulak JM, Schneider JS. Differences in alpha7 nicotinic acetylcholine receptor binding in motor symptomatic and asymptomatic MPTP-treated monkeys. Brain Res. 2004; 999:193-202. [PubMed: 14759498]
35. Kulak JM, Carroll FI, Schneider JS. [125I]Iodomethyllycaconitine binds to alpha7 nicotinic acetylcholine receptors in monkey brain. Eur J Neurosci. 2006; 23:2604-2610. [PubMed: 16817863]
36. Zhang L, Villalobos A, Beck EM, Bocan T, Chappie TA, Chen L, Grimwood S, Heck SD, Helal CJ, Hou X, Humphrey JM, Lu J, Skaddan MB, McCarthy TJ, Verhoest PR, Wager TT, Zasadny K. Design and Selection Parameters to Accelerate the Discovery of Novel Central Nervous System Positron Emission Tomography (PET) Ligands and Their Application in the Development of a Novel Phosphodiesterase 2A PET Ligand. J Med Chem. 2013; 56:4568-4579. [PubMed: 23651455]
37. Eckelman WC, Reba RC, Gibson RE. Receptor-binding radiotracers: A class of potential radiopharmaceuticals. J Nucl Med. 1979; 20:350-357. [PubMed: 43884]
38. Tanibuchi Y, Wu J, Toyohara J, Fujita Y, Iyo M, Hashimoto K. Characterization of [(3)H]CHIBA-1001 binding to alpha7 nicotinic acetylcholine receptors in the brain from rat, monkey, and human. Brain Res. 2010; 1348:200-208. [PubMed: 20537987]
39. Ding M, Ghanekar S, Elmore CS, Zysk JR, Werkheiser JL, Lee CM, Liu J, Chhajlani V, Maier DL. $\left[{ }^{3} \mathrm{H}\right]$ Chiba-1001 (methyl-SSR180711) has low in vitro binding affinity and poor in vivo selectivity to nicotinic alpha-7 receptor in rodent brain. Synapse. 2012; 66:315-322. [PubMed: 22108786]
40. Maier DL, Hill G, Ding M, Tuke D, Einstein E, Gurley D, Gordon JC, Bock MJ, Smith JS, Bialecki R, Eisman M, Elmore CS, Werkheiser JL. Pre-clinical validation of a novel alpha-7 nicotinic receptor radiotracer, [3H]AZ11637326: target localization, biodistribution and ligand occupancy in the rat brain. Neuropharmacology. 2011; 61:161-171. [PubMed: 21497612]
41. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007; 27:1533-1539. [PubMed: 17519979]
42. Tichauer KM, Samkoe KS, Sexton KJ, Hextrum SK, Yang HH, Klubben WS, Gunn JR, Hasan T, Pogue BW. In Vivo Quantification of Tumor Receptor Binding Potential with Dual-Reporter Molecular Imaging. Mol Imaging Biol. 2011; 14:584-592. [PubMed: 22203241]
43. Schrimpf MR, Sippy KB, Briggs CA, Anderson DJ, Li T, Ji J, Frost JM, Surowy CS, Bunnelle WH, Gopalakrishnan M, Meyer MD. SAR of alpha7 nicotinic receptor agonists derived from tilorone: exploration of a novel nicotinic pharmacophore. Bioorg Med Chem Lett. 2012; 22:16331638. [PubMed: 22281189]
44. Muller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science. 2007; 317:1881-1886. [PubMed: 17901324]
45. Nag M, Jenks WS. Photochemistry of substituted dibenzothiophene oxides: the effect of trapping groups. J Org Chem. 2005; 70:3458-3463. [PubMed: 15844978]
46. Manna S, Maity S, Rana S, Agasti S, Maiti D. ipso-Nitration of arylboronic acids with bismuth nitrate and perdisulfate. Org Lett. 2012; 14:1736-1739. [PubMed: 22409632]
47. Smith, MB.; March, J. March's advanced organic chemistry. Hoboken, New Jersey: John Wiley \& Sons, Inc.; 2007. p. 853-869.
48. Kubinyi, H. The quantitative analysis of structure-activity relationships. In: Wolff, ME., editor. Burger's Medicinal Chemistry and Drug Discovery. New York: John Wiley \& Sons; 1995. p. 497-571.
49. Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Engl. 2008; 47:8998-9033. [PubMed: 18988199]
50. Hudlicky, M.; Pavlath, AE. Chemistry of organic fluorine compounds II. A critical review. Washington, DC: Americal Chemical Society; 1995. p. 286-289.
51. Clark JH, Wails D. Fluorodenitration of activated diphenyl sulphones using tetramethylammonium fluoride. J Fluor Chem. 1995; 70:201-205.
52. Xiao Y, Abdrakhmanova GR, Baydyuk M, Hernandez S, Kellar KJ. Rat neuronal nicotinic acetylcholine receptors containing alpha7 subunit: pharmacological properties of ligand binding and function. Acta Pharmacol Sin. 2009; 30:842-850. [PubMed: 19448648]
53. Anderson DJ, Bunnelle W, Surber B, Du J, Surowy C, Tribollet E, Marguerat A, Bertrand D, Gopalakrishnan M. [3H]A-585539 [(1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2azoniabicyclo[2.2.1]hept ane], a novel high-affinity alpha7 neuronal nicotinic receptor agonist: radioligand binding characterization to rat and human brain. J Pharmacol Exp Ther. 2008; 324:179-187. [PubMed: 17959745]
54. Navarro HA, Zhong D, Abrahm P, Xu H, Carroll FI. Synthesis and pharmacological characterization of ([125I]iodomethyllycaconitine ([125I]iodo-MLA). A new ligand for the a7 nicotinic acetylcholine receptor. J Med Chem. 2000; 43:142-145. [PubMed: 10649969]
55. Xiao Y, Kellar K. The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther. 2004; 310:98-107. [PubMed: 15016836]
56. Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci. 1985; 5:1307-1315. [PubMed: 3998824]
57. Whiteaker P, Davies AR, Marks MJ, Blagbrough IS, Potter BV, Wolstenholme AJ, Collins AC, Wonnacott S. An autoradiographic study of the distribution of binding sites for the novel alpha7selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci. 1999; 11:2689-2696. [PubMed: 10457165]
58. Biton B, Bergis OE, Galli F, Nedelec A, Lochead AW, Jegham S, Godet D, Lanneau C, Santamaria R, Chesney F, Leonardon J, Granger P, Debono MW, Bohme GA, Sgard F, Besnard F, Graham D, Coste A, Oblin A, Curet O, Vige X, Voltz C, Rouquier L, Souilhac J, Santucci V, Gueudet C, Francon D, Steinberg R, Griebel G, Oury-Donat F, George P, Avenet P, Scatton B. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology. 2007; 32:1-16. [PubMed: 17019409]
59. Hashimoto K, Ishima T, Fujita Y, Matsuo M, Kobashi T, Takahagi M, Tsukada H, Iyo M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic
administration of the novel selective alpha7 nicotinic receptor agonist SSR180711. Biol Psychiatry. 2008; 63:92-97. [PubMed: 17601496]
60. Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology. 2007; 32:17-34. [PubMed: 16936709]
61. Rollema H, Shrikhande A, Ward KM, Tingley FD 3rd, Coe JW, O'Neill BT, Tseng E, Wang EQ, Mather RJ, Hurst RS, Williams KE, de Vries M, Cremers T, Bertrand S, Bertrand D. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol. 2010; 160:334-345. [PubMed: 20331614]
62. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol. 1984; 15:217-227. [PubMed: 6609679]
63. Meyer EM, Kuryatov A, Gerzanich V, Lindstrom J, Papke RL. Analysis of 3-(4-hydroxy, 2Methoxybenzylidene)anabaseine selectivity and activity at human and rat alpha-7 nicotinic receptors. J Pharmacol Exp Ther. 1998; 287:918-925. [PubMed: 9864273]

Figure 2.
3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide 5, an a7-nAChR antagonist with very high binding affinity ${ }^{43}$ that was used as the lead compound in this report.

Figure 4.
Regional distribution of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ (Left) and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ (Right) in CD-1 mice. Data: mean \%injected dose/g tissue $\pm \mathrm{SD}(\mathrm{n}=3)$. Abbreviations: $\mathrm{Coll}=$ superior and inferior colliculus; Hipp = hippocampus; FrCtx = frontal cortex; Rest = rest of brain; $\mathrm{Th}=$ thalamus; $\mathrm{Str}=$ striatum; $\mathrm{CB}=$ cerebellum

Figure 5.
Self-blockade study of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ in CD-1 mice. Left panel: Inhibition of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ $(0.07 \mathrm{mCi}$, specific radioactivity $=9200 \mathrm{mCi} / \mu \mathrm{mol}$, i.v. $)$ accumulation by intravenous coinjection with $7 \mathbf{a}(0 \mathrm{mg} / \mathrm{kg}$ (white) and $0.3 \mathrm{mg} / \mathrm{kg}$ (black)) in the mouse brain regions 90 min after the injection. $* P<0.01$, significantly different from controls; $* * P=0.04$, insignificantly different from controls (ANOVA). Right panel: Inhibition of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}(0.07$ mCi , specific radioactivity $=12000 \mathrm{mCi} / \mu \mathrm{mol}$, i.v.) accumulation by intravenous coinjection with $7 \mathbf{c}(0 \mathrm{mg} / \mathrm{kg}$ (white) and $0.2 \mathrm{mg} / \mathrm{kg}$ (black)) in the mouse brain regions 90 min after the injection. $* P \leq 0.01, * * P=0.015$, significantly different from controls; and $* * * P=$ 0.5 , insignificantly different from controls (ANOVA). Data: mean \%injected dose/g tissue \pm SD ($\mathrm{n}=3$). Abbreviations: Coll = superior and inferior colliculus; Hipp = hippocampus; FrCtx = frontal cortex; $\mathrm{Str}=$ striatum; Rest $=$ rest of brain, $\mathrm{CB}=$ cerebellum.

Figure 6.
Blocking of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ with a7-nAChR - selective ligands in CD-1 mice. Left panel: Dose dependent blockade of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}(0.07 \mathrm{mCi}$, specific radioactivity $=7900 \mathrm{mCi} /$ $\mu \mathrm{mol}$, i.v.) accumulation by intravenous co-injection with 1 (doses $0.02 \mathrm{mg} / \mathrm{kg}, 0.2 \mathrm{mg} / \mathrm{kg}, 1$ $\mathrm{mg} / \mathrm{kg}, 3 \mathrm{mg} / \mathrm{kg}$) in the mouse brain regions 90 min after the injection. ${ }^{*} P \leq 0.01$, significantly different from controls (ANOVA). Right panel: Dose dependent blockade of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}(0.07 \mathrm{mCi}$, specific radioactivity $=11000 \mathrm{mCi} / \mu \mathrm{mol}$, i.v.) accumulation by intravenous co-injection with 5 (doses $0.001 \mathrm{mg} / \mathrm{kg}, 0.0045 \mathrm{mg} / \mathrm{kg}, 0.014 \mathrm{mg} / \mathrm{kg}$) in the mouse brain regions 90 min after the injection. $* P<0.01$, significantly different from controls; and ${ }^{* *} P=0.06$, insignificantly different from control (ANOVA). Data: mean \%injected dose/g tissue $\pm \mathrm{SD}(\mathrm{n}=3)$. Abbreviations: Coll = superior and inferior colliculus; Hipp = hippocampus; $\mathrm{Ctx}=$ cortex; $\mathrm{Str}=$ striatum; $\mathrm{Th}=$ thalamus; Rest $=$ rest of brain; $\mathrm{CB}=$ cerebellum.

Figure 7.
Blockade of $\left[{ }^{18} \mathrm{~F}\right] 7$ a accumulation in CD-1 mouse brain regions by injection of cytisine (1 $\mathrm{mg} / \mathrm{kg}$, s.c.) and nicotine ($5 \mathrm{mg} / \mathrm{kg}$, s.c.) (both 90 min after the injection). Data: mean \%injected dose/g tissue $\pm \mathrm{SD}(\mathrm{n}=3)$. Abbreviations: $\mathrm{Coll}=$ superior and inferior colliculus; Hipp = hippocampus; Ctx = cortex; $\mathrm{CB}=$ cerebellum; Rest $=$ rest of brain. The effect of cytisine was insignificant in all regions studied ($P>0.05$, asterisk is not shown). The difference between control and nicotine was significant ($* P \leq 0.01$) in all regions, except CB (${ }^{* *} P=0.9$) (ANOVA). The study demonstrates that $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ does not bind in vivo at the main cerebral a4ß2-nAChR subtype and it is suitable for nicotine blockade studies.

Figure 8.
Effect of various CNS drugs (Table 5) on accumulation of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ in CD-1 mouse brain regions 90 min after injection of tracer expressed as $\% \mathrm{ID} / \mathrm{g}$ tissue. Abbreviations: Coll = superior and inferior colliculus; Hipp = hippocampus; Ctx = cortex; CB = cerebellum; REST $=$ rest of brain. Data are mean $\pm \mathrm{SD}(\mathrm{n}=3) . * P<0.01$, significantly different from controls. Columns that do not include the asterisk are insignificantly different from controls ($P>$ 0.05) (ANOVA, single-factor analysis). The graph demonstrates that unlike the positive control (1) all non-a7-nAChR CNS drugs do not have an effect on the cerebral uptake of $\left.{ }^{[18} \mathrm{F}\right] 7 \mathrm{a}$ and the radiotracer is a7-nAChR selective in vivo.

Figure 9.
Correlation of the $\mathrm{BP}_{\mathrm{ND}}{ }^{\text {cortex }}$ (unitless) vs. $1 / \mathrm{K}_{\mathrm{i}}\left(\mathrm{nM}^{-1}\right)$ of $\alpha 7-\mathrm{nAChR}$ PET radioligands $\left[{ }^{11} \mathrm{C}\right] \mathbf{2},\left[{ }^{18} \mathrm{~F}\right] \mathbf{3},\left[{ }^{18} \mathrm{~F}\right] \mathbf{4},\left[{ }^{18} \mathrm{~F}\right] \mathbf{7 a}$ and $\left[{ }^{18} \mathrm{~F}\right] \mathbf{7 c}\left(\mathrm{y}=1.91 \mathrm{x}+0.52, R^{2}=0.98\right)$. The $\mathrm{BP}_{\mathrm{ND}}$ values are shown in the Tables 1 and 3 ; the SD values are available for $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ only. All K_{i} values were obtained in this study under the same binding assay conditions (Tables 2 and 3).

6a: $R_{1}=F, R_{2}=H, R_{3}=H, R_{4}=H$
6b: $R_{1}=H, R_{2}=F, R_{3}=H, R_{4}=H$
6c: $R_{1}=H, R_{2}=H, R_{3}=F, R_{4}=H$
6d: $R_{1}=H, R_{2}=H, R_{3}=H, R_{4}=F$

7a: $R_{1}=F, R_{2}=H, R_{3}=H, R_{4}=H$
7b: $R_{1}=H, R_{2}=F, R_{3}=H, R_{4}=H$
7c: $R_{1}=H, R_{2}=H, R_{3}=F, R_{4}=H$
7d: $R_{1}=H, R_{2}=H, R_{3}=H, R_{4}=F$

Scheme 1.
(a) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, r a c$-BINAP, toluene, 1,4-diazabicyclo[3.2.2]nonane, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 85^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Scheme 2.
(a) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, r a c$-BINAP, toluene, 1,4-diazabicyclo[3.2.2]nonane, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 85^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (b) iron powder, $\mathrm{NH}_{4} \mathrm{Cl}$, THF, MeOH , water, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) (i) $4 \mathrm{NH}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{NaNO}_{2}$, $-5^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) NaI, CuI, water $70^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Scheme 3.
Reagents and conditions: (a) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 5 \mathrm{~h}$; (b) iron powder, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{THF}, \mathrm{MeOH}$, water, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c)(i) $\mathrm{NaNO}_{2}, 50 \% \mathrm{HCl}, 0-5{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) $\mathrm{NaBF}_{4}, 0-5{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (iii) $\mathrm{Cu}_{2} \mathrm{O}, 0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 35-40^{\circ} \mathrm{C} 30 \mathrm{~min}$. (d) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, acetic acid, $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Scheme 4.

Reagents and conditions: (a) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, 0^{\circ} \mathrm{C}$; (b) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, acetic acid, $60^{\circ} \mathrm{C}$, 24 h ; (c) NBS, conc. $\mathrm{H}_{2} \mathrm{SO}_{4} 24 \mathrm{~h}$; (d) $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 37 \% \mathrm{HCl}, \mathrm{HOAc}, 100^{\circ} \mathrm{C}, 60 \mathrm{~min}$ or iron powder, $\mathrm{NH}_{4} \mathrm{Cl}$, THF, MeOH , water, $80^{\circ} \mathrm{C}$, 3 h ; (f) (i) $48 \% \mathrm{HBF}_{4}, 0-5{ }^{\circ} \mathrm{C} 10 \mathrm{~min}$; (ii) $\mathrm{NaNO}_{2}, 0-5{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iii) xylene, $135^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Scheme 5.
Reagents and conditions: (a) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, acetic acid, $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (b) NBS, $\mathrm{H}_{2} \mathrm{SO}_{4}, 24 \mathrm{~h}$.

Scheme 6.
Reagents and conditions: (a) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, acetic acid, $60^{\circ} \mathrm{C}$, 24 h ; (b) NBS, $\mathrm{H}_{2} \mathrm{SO}_{4}, 24 \mathrm{~h}$.

Scheme 7.
Radiosynthesis of [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$

Table 1
In vitro properties and binding potential in cortex $\left(\mathrm{BP}_{\mathrm{ND}}\right)$ of the previously published PET/SPECT radioligands for imaging of a7-nAChR.

Radioligand	$\begin{gathered} \text { a7-nAChR, } \\ \mathbf{K}_{\mathrm{i}}, \mathbf{n M} \end{gathered}$	$\mathrm{BP}_{\mathrm{ND}}{ }^{\text {a }}$		References
		Mice	$\underset{\text { pig or }}{\text { Monkey or }}$	
	0.26	0.6	-	18
	n/a	~ 0	-	${ }^{21}$
 [$\left.{ }^{11} \mathrm{C}\right] \mathrm{A}-582941$	10.8	0.2-0.5	0.3	22
 $\left[{ }^{11} \mathrm{C}\right] \mathrm{A}-844606$	11	0.6-0.7	0.5	22
 [$\left.{ }^{11} \mathrm{C}\right] \mathrm{A}-833834$	0.24, 1.53	0.5	-	${ }^{23}$
 [$\left.{ }^{11} \mathrm{C}\right]$ CHIBA-1001	46, 120, 193	~ 0.1	0.6	19, 25, 38, 39

Radioligand	$\begin{gathered} \text { a7-nAChR, } \\ \mathbf{K}_{\mathbf{i}}, \mathbf{n M} \end{gathered}$	$\mathrm{BP}_{\mathrm{ND}}{ }^{\text {a }}$		References
		Mice	$\underset{\text { pig or }}{\substack{\text { Monkey or }}}$	
 $\left[{ }^{11} \mathrm{C}\right](R)$-MeQAA	40.6	0.4	0.4	20
	0.092	low brain uptake	low brain uptake	${ }^{23}$
 rac- $\left[{ }^{11} \mathrm{C}\right] \mathrm{A}-859261$	0.5-0.6	1.9	-	24
	2.5	low brain uptake	-	28
$\left[{ }^{76} \mathrm{Br}\right] \mathbf{1}\left(\left[{ }^{76} \mathrm{Br}\right] \operatorname{SSR} 180711\right)$	24.9	-	0.7	19
$\left[{ }^{11} \mathrm{C}\right] 2\left(\left[{ }^{11} \mathrm{C}\right] \mathrm{NS} 14492\right)$	2.2	-	~ 1	26

Radioligand	$\underset{\mathbf{K}_{\mathrm{i}}, \mathbf{n M}}{\text { a7-nAChR, }}$	$\mathrm{BP}_{\mathrm{ND}}{ }^{\text {a }}$		References
		Mice	$\underset{\text { pig or }}{\substack{\text { Monkey or }}}$	
 $\left[{ }^{18} \mathrm{~F}\right] \mathbf{3}\left(\left[{ }^{18} \mathrm{~F}\right] \mathrm{NS} 10743\right)$	11.6	0.4	0.8	29
$\left[{ }^{18} \mathrm{~F}\right] 4\left(\left[{ }^{18} \mathrm{~F}\right] \mathrm{AZ} 11637326\right)$	0.2	0.8	-	27,40

[^1]| Compound | a7-nAChR ${ }^{\text {a }}$ | Heteromeric nAChR subtypes ${ }^{\text {b }}$ | | | | | | 5-HT ${ }^{\text {c }}$ c | Selectivity | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | ${ }^{2} 2 \beta 2$ | a $2 \beta 4$ | a332 | 2334 | a 432 | a434 | | a7/a432 | a7/5HT 3 |
| 7a | 0.37, 0.45 | >10000 | 4000 | 1000 | 709 | 562 | 1000 | 230 | 1370 | 561 |
| 7b | 1.02, 1.37 | nt^{d} | nt | nt | nt | nt | nt | nt | - | - |
| 7c | 1.32, 1.35 | 1000 | 8000 | 2000 | 5000 | 885 | 3000 | 505 | 663 | 378 |
| 7d | 1.83, 2.45 | 292 | 838 | 678 | 3000 | 141 | 1000 | nt | 66 | - |
| 7 e | 17.8, 20.3 | >10000 | 562 | 2000 | 261 | 4000 | 251 | nt | 210 | - |
| 10 | 0.34, 0.35 | nt | - | - |
| 11 | 3.41, 6.21 | nt | - | - |
| 14 | 0.93, 1.93 | nt | - | - |
| 15 | 6.46, 8.77 | 784 | 6000 | 1000 | 9000 | 477 | 5000 | nt | 63 | - | ${ }^{b}$ Inhibition in vitro binding assay of all heteromeric nAChR subtypes was performed with stably transfected HEK293 cells and $\left[{ }^{3} \mathrm{H}\right]$ epibatidine $(0.5 \mathrm{nM}), \mathrm{K}_{\mathrm{D}}=0.021 \mathrm{nM}(\mathrm{a} 2 \beta 2-\mathrm{nAChR}), \mathrm{K} \mathrm{D}=0.084 \mathrm{nM}$ $(a 2 \beta 4-n A C h R), K_{D}=0.034 n M(a 3 \beta 2-n A C h R), K_{D}=0.29 n M(a 3 \beta 4-n A C h R), K_{D}=0.046 n M(a 4 \beta 2-n A C h R), K_{D}=0.094 n M(a 4 \beta 4-n A C h R) .55$

${ }^{c}$ Human 5-HT3 recombinant/HEK293 cells, radiotracer [$\left.{ }^{3} \mathrm{H}\right]$ GR65630 $(0.35 \mathrm{nM}), \mathrm{KD}_{\mathrm{D}}=0.5 \mathrm{nM}$

[^2]

Table 3

Inhibition in vitro binding affinities $\left(\mathrm{K}_{\mathrm{i}}, \mathrm{nM}\right)$ of reference compounds toward $\mathrm{a} 7-\mathrm{nAChR}$. The binding assay conditions are the same as those in the Table 2.

Compound	$\mathbf{\alpha 7}$-nAChR
MLA	$2.91 \pm 0.76(\mathrm{n}=9)$
$\mathbf{2}$	20.4
$\mathbf{3}$	38.0
$\mathbf{4}$	3.3
$\mathbf{5}$	$0.30,0.50$

Table 4
Approximate $\mathrm{BP}_{\mathrm{ND}}$ values (unitless) of $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$ in the mouse brain regions. Data: mean $\pm \mathrm{SD}(\mathrm{n}=$ 6)

Region	Coll	Hipp	Ctx
Compound			
$\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{a}$	8.0 ± 1.6	5.5 ± 1.7	5.3 ± 1.2
$\left[{ }^{18} \mathrm{~F}\right] 7 \mathbf{c}$	2.0 ± 0.5	3.1 ± 0.7	2.0 ± 0.3

Abbreviations: Coll $=$ superior and inferior colliculus; Hipp $=$ hippocampus; Ctx $=$ cortex

Table 5
CNS drugs ($2 \mathrm{mg} / \mathrm{kg}$, s.c.) for a7-nAChR selectivity studies in mice

Drug	Target receptor	Dose (mg/kg)	Time of administration before radiotracer, min
$\mathbf{1}$	Selective a7-nAChR partial agonist	2	10
Ondansetron	Selective 5-HT ${ }_{3}$ antagonist	2	10
SCH23390	D_{1} - and D_{5}-antagonist and 5-HT ${ }_{1 \mathrm{C} / 2 \mathrm{C}}$ agonist	2	10
Spiperone	D_{2}-like and 5- $\mathrm{HT}_{2 \mathrm{~A}}$ receptor antagonist	2	10
Ketanserin	$5-\mathrm{HT}_{2} / 5-\mathrm{HT}_{2 \mathrm{C}}$ antagonist	2	10
Naltrindole	Selective δ-opioid antagonist 2	10	

5-HT $=$ 5-hydroxytryptoamine (serotonin)
ıd!uosnuew ıouın $\forall \forall d-H I N$
HPLC conditions for $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] \mathbf{c}$

[^0]: Corresponding author Information, Andrew G. Horti, PhD, PET Center, Division of Nuclear Medicine, Radiology, Johns Hopkins Medicine, 600 North Wolfe Street, Nelson B1-122, Baltimore, MD 21287-0816 USA, Phone: 410-614-5130, Fax: 410-614-0111, ahorti1@jhmi.edu.

[^1]: ${ }^{a}$ The BPND values in cortex were taken directly from the corresponding references or estimated as $\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{ND}}-1$ or (cortex uptake/cerebellum uptake) - $1.41,42$

[^2]: $d_{\text {nt }}=$ not tested

