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Abstract

We prove Bismut-type formulae for the first and second derivatives of a Feynman-Kac
semigroup on a complete Riemannian manifold. We derive local estimates and give
bounds on the logarithmic derivatives of the integral kernel. Stationary solutions
are also considered. The arguments are based on local martingales, although the
assumptions are purely geometric.
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1 Introduction

Suppose M is a complete Riemannian manifold of dimension n with Levi-Civita connec-
tion ∇. Denote by ∆ the Laplace-Beltrami operator, suppose Z is a smooth vector field
and set L := 1

2∆ + Z. Any elliptic diffusion operator on a smooth manifold induces,
via its principle symbol, a Riemannian metric with respect to which it takes this form.
Denote by xt a diffusion on M starting at x0 ∈ M with generator L and explosion time
ζ(x0). The explosion time is the random time at which the process leaves all compact
subsets of M . Suppose V : [0,∞) × M → R is a smooth function which is bounded
below and denote by PVt f the associated Feynman-Kac semigroup, acting on bounded
measurable functions f . For T > 0 fixed, PVt f is smooth and bounded on (0, T ] ×M ,
satisfies the parabolic equation

∂tφt = (L− Vt)φt (1)

on (0, T ]×M with φ0 = f and for

Vt := e−
∫ t
0
VT−s(xs)ds (2)

is represented probabilistically by the Feynman-Kac formula

PVT f(x0) = E
[
VT f(xT )1{T<ζ(x0)}

]
. (3)

In the self-adjoint case, equation (1) corresponds (via Wick rotation) to the Schrödinger
equation for a single non-relativistic particle moving in an electric field in curved space.
In this sense, the derivative dPVT f corresponds to the momentum of the particle and
LPVT f the kinetic energy.
In this article, we prove probabilistic formulae and estimates for dPVT f , LPVT f and
∇dPVT f . In doing so, we extend results in [18] (by including V ) and in [1] (by including
Z and V ). In each case, we allow for unbounded and time-dependent V . Our approach
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is more concise than that of [1], since we avoid the extrinsic argument in favour of
the differential Bianchi identity. Our results imply new Bismut-type formulae for the
derivatives of the heat kernel in the forward variable (see, for example, Corollary 2.3).
Our formula for dPVT f is given by Theorem 2.2. For v ∈ Tx0

M it states

(dPVT f)(v) = −E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈Ws(k̇sv), //sdBs〉+ dVT−s(Ws(ksv))ds

]
where //t and Wt are the usual parallel and damped parallel transports, respectively,
and Bt the martingale part of the antidevelopment of xt to Tx0

M . The process kt is
chosen so that it vanishes once xt exits a regular domain (an open connected subset with
compact closure and smooth boundary). Imposing this condition on kt obviates the need
for any assumptions on RicZ . Conversely, if we assume RicZ is bounded below then we
can choose kt = (T −t)/T and our formula for dPVt f reduces to that of [5, Theorem 5.2].
Formulae in [5] are derived from the assumption that one can differentiate under the
expectation, and thus require global assumptions. Our approach, on the other hand,
follows that of [18] and [1] in using local martingales to obtain local formula for which
no assumptions are needed.
Our formula for LPVT f is given by Theorem 2.6. It states

L(PVT f)(x0)

= E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈k̇sZ, //sdBs〉

]

+
1

2
E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈Ws l̇s, //sdBs〉+ dVT−s(Wsls)ds

)∫ T

0

k̇sW
−1
s //sdBs

]

where the processes k and l are assumed to vanish outside of a regular domain. A
formula for ∆PT (acting on differential forms) was previously given in [6], for the case
of a compact manifold with Z = 0 and V = 0.
Our formula for ∇dPtf is given by Theorem 2.8. For v, w ∈ Tx0M it states

(∇dPVT f)(v, w)

= − E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈W ′s(k̇sv, w), //sdBs〉

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(W
′
s(ksv, w)))ds

]

+ E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈Ws(l̇sw), //sdBs〉+ dVT−s(Ws(lsw))ds

)

·

(∫ T

0

〈Ws(k̇sv), //sdBs〉+ dVT−s(Ws(ksv))ds

)]

where W ′t solves a covariant Itô equation determined by the curvature tensor and its
derivative. This extends [1, Theorem 2.1] while avoiding the use of a stochastic differ-
ential equation.
The formulae mentioned above are derived in Section 2. Solutions to the time inde-
pendent equation

(L− V )φ = −Eφ
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with E ∈ R are subject to a similar analysis, as outlined in Section 3. In Section 4 we de-
rive local estimates, using the formulae of Section 2 and local assumptions on curvature
and the derivative of the potential function. We do so by choosing the processes k and
l appropriately, as in [18] and [1], and applying the Cauchy-Schwarz inequality. These
local estimates are given by Theorems 4.1, 4.3 and 4.5; global estimates are then given
as corollaries. The global estimates are derived under appropriate global assumptions
and imply the boundedness of dPVt f , LPVt f and ∇dPVt f on [ε, T ] ×M . These bounds
lead to the non-local formulae of Section 5, in which the processes k and l are chosen
deterministically. For the case in which Z is a gradient, estimates on the logarithmic
derivatives of the integral kernel can then be derived, using Jensen’s inequality. They
are given in Section 6 and extend those of [8] and [17].

2 Local Formulae

For the remainder of this article, we fix T > 0 and set ft := PVT−tf .

2.1 Gradient

Denote by Ric]Z := Ric] − 2∇Z the Bakry-Emery tensor (see [3]). Then the damped
parallel transport Wt : Tx0

M → Txt
M is the solution, along the paths of xt, to the

covariant ordinary differential equation

DWt = −1

2
Ric]ZWt (4)

with W0 = idTx0M
. Suppose D is a regular domain in M with x0 ∈ D and denote by τ

the first exit time of xt from D.

Lemma 2.1. Suppose v ∈ Tx0
M and that k is a bounded adapted process with paths in

the Cameron-Martin space L1,2([0, T ]; Aut(Tx0
M)) such that kt = 0 for t ≥ T − ε. Then

Vtdft(Wt(ktv))−Vtft(xt)
∫ t

0

〈Ws(k̇sv), //sdBs〉 −
∫ t

0

Vsfs(xs)dVT−s(Ws(ksv))ds (5)

is a local martingale on [0, τ ∧ T ).

Proof. Setting Nt(v) := dft(Wt(v)) we see by Itô’s formula and the relations

d∆f = tr∇2df − df(Ric])

dZf =∇Zdf + df(∇Z)

dVtf =fdVt + Vtdf

(the first one is the Weitzenböck formula) that

dNt(v)
m
= dft(DWt(v))dt+ (∂tdft)(Wt(v))dt+

(
1

2
tr∇2 +∇Z

)
(dft)(Wt(v))dt

= VT−tNt(v)dt+ ft(xt)dVT−t(Wt(v))dt

where
m
= denotes equality modulo the differential of a local martingale. Recalling the

definition of Vt given by equation (2), it follows that

d(VtNt(ktv))
m
= VtNt(k̇tv)dt+Vtft(xt)dVT−t(Wt(ktv))dt

so that

VtNt(ktv)−
∫ t

0

Vsdfs(Ws(k̇sv))ds−
∫ t

0

Vsfs(xs)dVT−s(Ws(ksv))ds
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is a local martingale. By the formula

Vtft(xt) = f0(x0) +

∫ t

0

Vsdfs(//sdBs)

and integration by parts we see that∫ t

0

Vsdfs(Ws(k̇sv))ds−Vtft(xt)
∫ t

0

〈Ws(k̇sv), //sdBs〉

is also a local martingale and so the lemma is proved.

Theorem 2.2. Suppose x0 ∈ D with v ∈ Tx0M , f ∈ Bb, V bounded below and T > 0.
Suppose k is a bounded adapted process with paths belonging to the Cameron-Martin
space L1,2([0, T ]; Aut(Tx0M)), such that k0 = 1, kt = 0 for t ≥ τ∧T and

∫ τ∧T
0
|k̇s|2ds ∈ L1.

Then

(dPVT f)(v) = −E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈Ws(k̇sv), //sdBs〉+ dVT−s(Ws(ksv))ds

]
. (6)

Proof. As in the proof of [18, Theorem 2.3], the process kt can be modified to kεt so that
kεt = kt for t ≤ τ ∧ (T − 2ε) and kεt = 0 for t ≥ τ ∧ (T − ε), cutting off appropriately
in between. Since (dft)x is smooth and therefore bounded for (t, x) ∈ [0, T − ε] × D, it
follows from Lemma 2.1 and the strong Markov property that formula (6) holds with kεt
in place of kt. The result follows by taking ε ↓ 0.

Denoting by pZT (x, y) the transition density of the diffusion with generator L, using The-
orem 2.2 we can easily obtain the following Bismut formula, for the derivative of pZT (x, y)

the in the forward variable y.

Corollary 2.3. Suppose x0 ∈ D with divZ bounded below and k as in Theorem 2.2.
Then

d log pZT (y, ·)x0 = −
E
[
e−

∫ T
0

divZ(xs)ds
∫ T
0
〈Wsk̇s, //sdBs〉+ d(divZ)(Wsks)ds

∣∣xT = y
]

E
[
e−

∫ T
0

divZ(xs)ds
∣∣xT = y

]
where here xt is a diffusion on M with generator 1

2∆− Z starting at x0.

Proof. According to the Fokker-Planck equation, we have

pZT (x, y) = p−Z,− divZ
T (y, x)

where p−Z,− divZ
T (y, x) denotes the minimal integral kernel for the semigroup gener-

ated by the operator L∗ = 1
2∆ − Z − divZ. The result is therefore obtained simply by

conditioning in Theorem 2.2, having replaced Z with −Z and V with divZ.

2.2 Generator

Now suppose D1 and D2 are regular domains with x0 ∈ D1 and D1 ⊂ D2. Denote by σ
and τ the first exit times of xt from D1 and D2, respectively.

Lemma 2.4. Suppose x0 ∈ D1 and 0 < S < T and that k, l are bounded adapted
processes with paths in the Cameron-Martin space L1,2([0, T ];R) such that ks = 0 for
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s ≥ σ ∧ S, ls = 1 for s ≤ σ ∧ S and ls = 0 for s ≥ τ ∧ (T − ε). Then

Vt(Lft)(xt)kt −
1

2
Vtdft

(
Wtlt

∫ t

0

k̇sW
−1
s //sdBs

)
+

1

2
Vtft(xt)

∫ t

0

〈Ws l̇s, //sdBs〉
∫ t

0

k̇sW
−1
s //sdBs

+
1

2

∫ t

0

Vsfs(xs)dVT−s(Wsls)ds

∫ t

0

k̇sW
−1
s //sdBs

+Vtft(xt)

∫ t

0

〈k̇sZ − ks∇VT−s, //sdBs〉

−
∫ t

0

VsfsksLVT−sds

is a local martingale on [0, τ ∧ T ).

Proof. Defining
nt := (Lft) (xt)

we have, by Itô’s formula, that

dnt = d(Lft)xt//tdBt + ∂t(Lft)(xt)dt+ L(Lft)(xt)dt

= d(Lft)xt
//tdBt + L(VT−tft)dt

= d(Lft)xt
//tdBt + (LVT−t)ftdt+ VT−tntdt+ 〈dft, dVT−t〉dt.

It follows that
d(Vtntkt)

m
= Vtntk̇t + ktVt(ftLVT−t + 〈dft, dVT−t〉)dt

and so

Vt(Lft)(xt)kt −
∫ t

0

Vs(Lfs)(xs)k̇sds−
∫ t

0

Vsks(fsLVT−s + 〈dfs, dVT−s〉)ds

is a local martingale, with

−(Lft)(xt)k̇tdt =

(
1

2
d∗d− Z

)
ft(xt)k̇tdt =

(
1

2
d∗(dft)− (dft)(Z)

)
k̇tdt.

By the Weitzenbock formula

d((dft)(Wt)) = (∇//tdBt
dft)(Wt)− VT−t(dft)(Wt)dt+ ft(xt)dVT−t(Wt)dt

from which it follows that

d(Vt(dft)(Wt)) = Vt(∇//tdBt
dft)(Wt) +Vtft(xt)dVT−t(Wt)dt.

Consequently, for an orthonormal basis {ei}ni=1 of Tx0M , by integration by parts we have

Vtd
∗(dft)k̇tdt =−

n∑
i=1

Vt(∇//teidft)(//tei)k̇tdt

m
=−Vt(∇//tdBt

dft)(Wtk̇tW
−1
t //tdBt)

=− d(Vtdft(Wt

∫ t

0

k̇sW
−1
s //sdBs))

+ d

(∫ t

0

Vsfs(xs)dVT−s(Ws)ds

∫ t

0

k̇sW
−1
s //sdBs

)
.
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Furthermore ∫ t

0

Vsdfs(Z)k̇sds−Vtft(xt)
∫ t

0

〈k̇sZ, //sdBs〉

is a local martingale and therefore∫ t

0

Vs(Lfs)(xs)k̇sds

− 1

2
Vtdft(Wt

∫ t

0

k̇sW
−1
s //sdBs) +

1

2

∫ t

0

Vsfs(xs)dVT−s(Ws)ds

∫ t

0

k̇sW
−1
s //sdBs

+Vtft(xt)

∫ t

0

〈k̇sZ, //sdBs〉

is also a local martingale. By the assumptions on k and l it follows from Lemma 2.1 that

O1
t = Vtdft(Wt((lt − 1)))−Vtft(xt)

∫ t

0

〈Ws(l̇s), //sdBs〉

−
∫ t

0

Vsfs(xs)dVT−s(Ws((ls − 1)))ds,

O2
t =

∫ t

0

k̇sW
−1
s //sdBs

are two local martingales. So the product O1
tO

2
t is also a local martingale, since O1 = 0

on [0, σ ∧ S] with O2 constant on [σ ∧ S, τ ∧ (T − ε)). Consequently

−Vtdft
(
Wt

∫ t

0

k̇sW
−1
s //sdBs

)
+Vtdft

(
Wtlt

∫ t

0

k̇sW
−1
s //sdBs

)
−Vtft(xt)

∫ t

0

〈Ws l̇s, //sdBs〉
∫ t

0

k̇sW
−1
s //sdBs

−
∫ t

0

Vsfs(xs)dVT−s(Ws((ls − 1)))ds

∫ t

0

k̇sW
−1
s //sdBs

is a local martingale and therefore so is

Vt(Lft)(xt)kt −
1

2
Vtdft

(
Wtlt

∫ t

0

k̇sW
−1
s //sdBs

)
+

1

2
Vtft(xt)

∫ t

0

〈Ws l̇s, //sdBs〉
∫ t

0

k̇sW
−1
s //sdBs

+
1

2

∫ t

0

Vsfs(xs)dVT−s(Wsls)ds

∫ t

0

k̇sW
−1
s //sdBs

+Vtft(xt)

∫ t

0

〈k̇sZ, //sdBs〉

−
∫ t

0

Vsks(fsLVT−s + 〈dfs, dVT−s〉)ds.

Since ∫ t

0

Vsdfs(∇VT−s)ksds−Vtft(xt)
∫ t

0

〈ks∇VT−s, //sdBs〉

is a local martingale, the result follows.
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Lemma 2.5. Suppose x0 ∈ D1, f ∈ Bb, V bounded below and 0 < S < T . Suppose k is
a bounded adapted process with paths in the Cameron-Martin space L1,2([0, T ];R) such

that ks = 0 for s ≥ σ ∧ S, k0 = 1 and
∫ σ∧S
0
|k̇s|2ds ∈ L1. Then

VT (x0)PVT f(x0) = E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

(ksV̇T−s(xs)− k̇sVT−s(xs))ds

]
.

Proof. By Itô’s formula, we have

d(VtVT−tftkt)
m
= −ktVtV̇T−tft + k̇tVtVT−tft

which implies

VtVT−tftkt −
∫ t

0

(k̇sVsVT−sfs − ksVsV̇T−sfs)ds

is a local martingale on [0, τ ∧ T ). The assumptions on f and V imply it is a martingale
on [0, τ ∧ T ], so result follows by taking expectations and applying the strong Markov
property.

Theorem 2.6. Suppose x0 ∈ D1, f ∈ Bb, V bounded below and 0 < S < T . Suppose k, l
are bounded adapted processes with paths in the Cameron-Martin space L1,2([0, T ];R)

such that ks = 0 for s ≥ σ ∧ S, k0 = 1, ls = 1 for s ≤ σ ∧ S, ls = 0 for s ≥ τ ∧ T ,∫ σ∧S
0
|k̇s|2ds ∈ L1 and

∫ τ∧T
σ∧S |l̇s|

2ds ∈ L1. Then

L(PVT f)(x0) =

E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈k̇sZ, //sdBs〉

]

+
1

2
E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈Ws l̇s, //sdBs〉+ dVT−s(Wsls)ds

)∫ T

0

k̇sW
−1
s //sdBs

]
.

Proof. Modifying the process lt to lεt as in the proof of Theorem 2.2, it follows from
Lemma 2.4, the strong Markov property, the boundedness of PVt f on [0, T ]×D2 and the
boundedness of dPVt f and LPVt f on [ε, T ]×D2 that the formula

L(PVT f)(x0)

= E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈k̇sZ, //sdBs〉 −
∫ T

0

ks (dVT−s(//sdBs) + LVT−sds)

)]

+
1

2
E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈Ws l̇s, //sdBs〉+ dVT−s(Wsls)ds

)∫ T

0

k̇sW
−1
s //sdBs

]

holds with lεt in place of lt. The formula also holds as stated, in terms of lt, by taking
ε ↓ 0. Applying the Itô formula yields∫ T

0

ks (dVT−s(//sdBs) + LVT−sds) = −VT (x0) +

∫ T

0

(ksV̇T−s(xs)− k̇sVT−s(xs))ds
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and therefore

(L− VT (x0))(PVT f)(x0) =

E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈k̇sZ, //sdBs〉 −
∫ T

0

(ksV̇T−s(xs)− k̇sVT−s(xs))ds

)]

+
1

2
E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈Ws l̇s, //sdBs〉+ dVT−s(Wsls)ds

)∫ T

0

k̇sW
−1
s //sdBs

]
.

The result follows from this by Lemma 2.5.

2.3 Hessian

For each w ∈ Tx0
M define an operator-valued process W ′t (·, w) : Tx0

M → Txt
M by

W ′s(·, w) := Ws

∫ s

0

W−1r R(//rdBr,Wr(·))Wr(w)

− 1

2
Ws

∫ s

0

W−1r (∇Ric]Z + d?R− 2R(Z))(Wr(·),Wr(w))dr.

Here the operator R(Z) is defined by R(Z)(v1, v2) := R(Z, v1)v2 and the operator d?R is
defined by d?R(v1)v2 := − tr∇·R(·, v1)v2 and satisfies

〈d?R(v1)v2, v3〉 = 〈(∇v3Ric])(v1), v2〉 − 〈(∇v2Ric])(v3), v1〉

for all v1, v2, v3 ∈ TxM and x ∈ M . The process W ′t (·, w) is the solution to the covariant
Itô equation

DW ′t (·, w) = R(//tdBt,Wt(·))Wt(w)

− 1

2

(
d?R− 2R(Z) +∇Ric]Z

)
(Wt(·),Wt(w))dt

− 1

2
Ric]Z(W ′t (·, w))dt

with W ′0(·, w) = 0. As in the previous section, suppose D1 and D2 are regular domains
with x0 ∈ D1 and D1 ⊂ D2. Denote by σ and τ the first exit times of xt from D1 and D2,
respectively.

Lemma 2.7. Suppose v, w ∈ Tx0
M , 0 < S < T and that k, l are bounded adapted

processes with paths in the Cameron-Martin space L1,2([0, T ]; Aut(Tx0
M)) such that

ks = 0 for s ≥ σ ∧ S, ls = 1 for s ≤ σ ∧ T and ls = 0 for s ≥ τ ∧ (T − ε). Then

Vt(∇dft)(Wt(ktv),Wt(w)) +Vt(dft)(W
′
t (ktv, w))−Vtft(xt)

∫ t

0

〈W ′s(k̇sv, w), //sdBs〉

−
∫ t

0

Vsfs(xs)((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(W
′
s(ksv, w)))ds

+Vtft(xt)

∫ t

0

〈Ws(l̇sw), //sdBs〉
∫ t

0

〈Ws(k̇sv), //sdBs〉

−Vtdft(Wt(ltw))

∫ t

0

〈Ws(k̇sv), //sdBs〉

+

∫ t

0

Vsfs(xs)dVT−s(Ws((ls − 1)w))ds

∫ t

0

〈Ws(k̇sv), //sdBs〉
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+

∫ t

0

Vsfs(xs)dVT−s(Ws(w))

∫ s

0

〈Wr(k̇rv), //rdBr〉ds

− 2

∫ t

0

Vs(dfs � dVT−s)(Ws(ksv),Ws(w))ds (2)

is a local martingale on [0, τ ∧ T ).

Proof. Setting
N ′t(v, w) := (∇dft)(Wt(v),Wt(w)) + (dft)(W

′
t (v, w))

and
R],]x (v1, v2) := Rx(·, v1, v2, ·)] ∈ TxM ⊗ TxM

we see by Itô’s formula and the relations

d∆f = tr∇2df − df(Ric])

dZf =∇Zdf + df(∇Z)

dV f =fdV + V df

∇d(∆f) = tr∇2(∇df)− 2(∇df)(Ric] � id−R],])− df(d?R+∇Ric])

∇d(Zf) =∇Z(∇df) + 2(∇df)(∇Z � id) + df(∇∇Z +R(Z))

∇d(Vtf) =f∇dVt + 2df � dVt + Vt∇df

(the fourth one is a consequence of the differential Bianchi identity; see [4, p. 219], and
the fifth one a consequence of the Ricci identity) that

dN ′t(v, w)

= (∇//tdBt
∇dft)(Wt(v),Wt(w)) + (∇dft)

(
D

dt
Wt(v),Wt(w)

)
dt

+ (∇dft)
(
Wt(v),

D

dt
Wt(w)

)
dt

+ ∂t(∇dft)(Wt(v),Wt(w))dt+

(
1

2
tr∇2 +∇Z

)
(∇dft)(Wt(v),Wt(w))dt

+ (∇//tdBt
dft)(W

′
t (v, w)) + (dft) (DW ′t (v, w)) + 〈d(dft), DW

′
t (v, w)〉

+ ∂t(dft)(W
′
t (v, w))dt+

(
1

2
tr∇2 +∇Z

)
(dft)(W

′
t (v, w))dt

m
= ft(xt)(∇dVT−t)(Wt(v),Wt(w))dt+ ft(xt)(dVT−t)(W

′
t (v, w))dt

+ 2(dft � dVT−t)(Wt(v),Wt(w))dt+ VT−tN
′
t(v, w)dt

for which we calculated

[d(df), DW ′(v, w)]t = (∇dft)(R],](Wt(v),Wt(w)))dt.

It follows that

d(VtN
′
t(ktv, w))

m
= Vtft(xt)((∇dVT−t)(Wt(ktv),Wt(w)) + (dVT−t)(W

′
t (ktv, w)))dt

+VtNt(k̇tv, w)dt+ 2Vt(dft � dVT−t)(Wt(ktv),Wt(w))dt

so that

VtN
′
t(ktv, w)−

∫ t

0

Vs(∇dfs)(Ws(k̇sv),Ws(w))ds−
∫ t

0

Vs(dfs)(W
′
s(k̇sv, w))ds

− 2

∫ t

0

Vs(dfs � dVT−s)(Ws(ksv),Ws(w))ds

−
∫ t

0

Vsfs(xs)((∇dVT−s)(Ws(ksv),Wsw)) + (dVT−s)(W
′
s(ksv, w)))ds

9



is a local martingale. By the formula

Vtft(xt) = f0(x0) +

∫ t

0

Vsdfs(//sdBs)

and integration by parts we see that∫ t

0

Vs(dfs)(W
′
s(k̇sv, w))ds−Vtft(xt)

∫ t

0

〈W ′s(k̇sv, w), //sdBs〉

is a local martingale. Similarly, by the formula

Vtdft(Wt) = df0 +

∫ t

0

Vs(∇dfs)(//sdBs,Ws) +

∫ t

0

Vsfs(xs)dVT−s(Ws)ds

and integration by parts we see that∫ t

0

Vs(∇dfs)(Ws(k̇sv),Ws(w))ds−Vtdft(Wt(w))

∫ t

0

〈Ws(k̇sv), //sdBs〉

+

∫ t

0

Vsfs(xs)dVT−s(Ws(w))

∫ s

0

〈Wr(k̇rv), //rdBr〉ds

is yet another local martingale. Therefore

Vt(∇dft)(Wt(ktv),Wt(w)) +Vt(dft)(W
′
t (ktv, w))

−
∫ t

0

Vsfs(xs)((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(ksW
′
s(v, w)))ds

−Vtft(xt)
∫ t

0

〈W ′s(k̇sv, w), //sdBs〉 − 2

∫ t

0

Vs(dfs � dVT−s)(Ws(ksv),Ws(w))ds

+

∫ t

0

Vsfs(xs)dVT−s(Ws(w))

∫ s

0

〈Wr(k̇rv), //rdBr〉ds

−Vtdft(Wt(w))

∫ t

0

〈Ws(k̇sv), //sdBs〉

is a local martingale. By Lemma 2.1 it follows that

O1
t = Vtdft(Wt((lt − 1)w))−Vtft(xt)

∫ t

0

〈Ws(l̇sw), //sdBs〉

−
∫ t

0

Vsfs(xs)dVT−s(Ws((ls − 1)w))ds,

O2
t =

∫ t

0

〈Ws(k̇sv), //sdBs〉

are two local martingales. So the product O1
tO

2
t is also a local martingale, since O1 = 0

on [0, σ ∧ S] with O2 constant on [σ ∧ S, τ ∧ (T − ε)). Applying this fact to the previous
equation completes the proof.

Theorem 2.8. Suppose x0 ∈ D1 with v, w ∈ Tx0
M , f ∈ Bb, V bounded below and

0 < S < T . Assume k, l are bounded adapted processes with paths in the Cameron-
Martin space L1,2([0, T ]; Aut(Tx0

M)) such that ks = 0 for s ≥ σ ∧ S, k0 = 1, ls = 1 for

10



s ≤ σ ∧ S, ls = 0 for s ≥ τ ∧ T ,
∫ σ∧S
0
|k̇s|2ds ∈ L1 and

∫ τ∧T
σ∧S |l̇s|

2ds ∈ L1. Then

(∇dPVT f)(v, w)

= − E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈W ′s(k̇sv, w), //sdBs〉

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(W
′
s(ksv, w)))ds

]

+ E

[
VT f(xT )1{T<ζ(x0)}

(∫ T

0

〈Ws(l̇sw), //sdBs〉+ dVT−s(Ws(lsw))ds

)

·

(∫ T

0

〈Ws(k̇sv), //sdBs〉+ dVT−s(Ws(ksv))ds

)]
.

Proof. Modifying the process lt to lεt as in the proof of Theorem 2.2, it follows from
Lemma 2.7, the strong Markov property, the boundedness of PVt f on [0, T ]×D2 and the
boundedness of dPVt f and ∇dPVt f on [ε, T ]×D2 that the formula

(∇dPVT f)(v, w)

= − E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈W ′s(k̇sv, w), //sdBs〉

]

+ E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈Ws(l̇sw), //sdBs〉
∫ T

0

〈Ws(k̇sv), //sdBs〉

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(W
′
s(ksv, w)))ds

]

+ E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

dVT−s(Ws(lsw))ds

∫ T

0

〈Ws(k̇sv), //sdBs〉

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

(∫ s

0

dV (Wr(w))dr

)
〈Ws(k̇sv), //sdBs〉

]

− E

[∫ T

0

Vsdfs(Ws(ksv))dVT−s(Ws(w))ds

]

− E

[∫ T

0

Vsdfs(Ws(w))dVT−s(Ws(ksv))ds

]

holds with lεt in place of lt, and therefore in terms of lt by taking ε ↓ 0. Paying close
attention to the assumptions on l and k, it follows from this, by Theorem 2.2 and the
strong Markov property, that

− E

[∫ T

0

Vsdfs(Ws(w))dVT−s(Ws(ksv))ds

]

= + E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

∫ T

r

〈Ws(l̇sw), //sdBs〉dVT−r(Wr(krv))dr

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

(∫ r

0

dVT−u(Wu(w))du

)
dVT−r(Wr(krv))dr

]
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+ E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

dVT−r(Wr(krv))dr

∫ T

0

dVT−s(Ws(lsw))ds

]

= + E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈Ws(l̇sw), //sdBs〉
∫ T

0

dVT−r(Wr(krv))dr

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

(∫ r

0

dVT−u(Wu(w))du

)
dVT−r(Wr(krv))dr

]

+ E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

dVT−r(Wr(krv))dr

∫ T

0

dVT−s(Ws(lsw))ds

]
from which it follows that

(∇dPVT f)(v, w)

= − E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈W ′s(k̇sv, w), //sdBs〉

]

+ E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

〈Ws(l̇sw), //sdBs〉
∫ T

0

〈Ws(k̇sv), //sdBs〉

]

− E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(W
′
s(ksv, w)))ds

]

+ E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

dVT−s(Ws(lsw))ds

∫ T

0

〈Ws(k̇sv), //sdBs〉

]

+ E

[
VT f(xT )1{T<ζ(x)}

∫ T

0

〈Ws l̇sw, //sdBs〉
∫ T

0

dVT−r(Wr(krv))dr

]

+ E

[
VT f(xT )1{T<ζ(x)}

∫ T

0

dVT−r(Wr(krv))dr

∫ T

0

dVT−s(Ws(lsw))ds

]

− E

[
VT f(xT )1{T<ζ(x)}

∫ T

0

(∫ s

0

dVT−r(Wr(w))dr

)
〈Ws(k̇sv), //sdBs〉

]

− E

[
VT f(xT )1{T<ζ(x)}

∫ T

0

(∫ s

0

dVT−r(Wr(w))dr

)
dVT−s(Ws(ksv))ds

]

− E

[∫ T

0

Vsdfs(Ws(ksv))dVT−s(Ws(w))ds

]
.

Finally, by the stochastic Fubini theorem [20, Theorem 2.2] we have

E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

∫ s

0

dVT−r(Wr(w))dr(〈Ws(k̇sv), //sdBs〉+ dVT−s(Wsksv)ds)

]
= E

[
VT f(xT )1{T<ζ(x0)}

∫ T

0

(∫ T

s

〈Wr(k̇rv), //rdBr〉+ dVT−r(Wrkrv)dr

)
dVT−s(Ws(w))ds

]
which cancels the final three terms in the previous equation, by the strong Markov
property, Theorem 2.2 and the assumptions on k.

For the case Z = 0 and V = 0, Theorem 2.8 reduces to [1, Theorem 2.1].

Remark 2.9. We have assumed that V is bounded below and smooth. However, so
long as V is bounded below and continuous with Vt ∈ C1 for each t ∈ [0, T ] and PV f ∈
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C1,3([ε, T ]×M) then the results of Subsection 2.1 evidently remain valid. Similarly, the
results of Subsection 2.2 evidently remain valid if V is bounded below, C1 with Vt ∈ C2

for each t ∈ [0, T ] and PV f ∈ C1,4([ε, T ] ×M). Similarly, the results of Subsection 2.3
evidently remain valid if V is bounded below and continuous with Vt ∈ C2 for each
t ∈ [0, T ] and PV f ∈ C1,4([ε, T ]×M).

3 Stationary Solutions

Now suppose φ ∈ C2(D) ∩ C(D) solves the eigenvalue equation

(L− V )φ = −Eφ

on the regular domain D, for some E ∈ R and a function V ∈ C2 which does not
depend on time and which is bounded below. Denoting by τ the first exit time from D

of the diffusion xt with generator L and assuming x0 ∈ D, one has, in analogy to the
Feynman-Kac formula (3), the formula

φ(x0) = E
[
Vτφ(xτ )eEτ

]
.

Furthermore, the methods of the previous section can easily be adapted to find formulae
for the derivatives of φ. In particular, one simply sets ft = φ, replaces VT−t with V − E
and the calculations carry over almost verbatim (although there is no application of
the strong Markov property; in this case the local martingale property is enough). In
particular, for the derivative dφ, supposing k is a bounded adapted process with paths
in the Cameron-Martin space L1,2([0,∞),Aut(Tx0

M)) with k0 = 1, kt = 0 for t ≥ τ and∫ τ
0
|k̇s|2ds ∈ L1, one obtains

(dφ)(v) = −E
[
Vτφ(xτ )eEτ

∫ τ

0

〈Ws(k̇sv), //sdBs〉+ dV (Ws(ksv))ds

]
for each v ∈ Tx0

M . When V = 0 and E = 0 this formulae reduces to the one given
in [18]. Similarly, denoting by D1 a regular domain with x0 ∈ D1 and D1 ⊂ D and by
σ the first exit time of xt from D1, supposing k, l are bounded adapted processes with
paths in the Cameron-Martin space L1,2([0,∞); Aut(Tx0

M)) such that ks = 0 for s ≥ σ,
k0 = 1, ls = 1 for s ≤ σ, ls = 0 for s ≥ τ ,

∫ σ
0
|k̇s|2ds ∈ L1 and

∫ τ
σ
|l̇s|2ds ∈ L1, for the

Hessian of φ one obtains

(∇dφ)(v, w)

= − E
[
Vσφ(xσ)eEσ

∫ σ

0

〈W ′s(k̇sv, w), //sdBs〉
]

− E
[
Vσφ(xσ)eEσ

∫ σ

0

((∇dV )(Ws(ksv),Ws(w)) + (dV )(W ′s(ksv, w)))ds

]
+ E

[
Vτφ(xτ )eEτ

(∫ τ

0

〈Ws(l̇sw), //sdBs〉+ dV (Ws(lsw))ds

)
·
(∫ σ

0

〈Ws(k̇sv), //sdBs〉+ dV (Ws(ksv))ds

)]
for all v, w ∈ Tx0

M .
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4 Local and Global Estimates

4.1 Gradient

Theorem 4.1. Suppose D0, D are regular domains with x0 ∈ D0 ⊂ D, V bounded below
and T > 0. Set

κD := inf{RicZ(v, v) : v ∈ TyM,y ∈ D, |v| = 1};
vD := sup{|(dVt)y(v)| : v ∈ TyM,y ∈ D, |v| = 1, t ∈ [0, T ]}.

Then there exists a positive constant

C ≡ C(n, T, inf V, κD, vD, d(∂D0, ∂D))

such that

|dPVt fx0
| ≤ C√

t
|f |∞ (13)

for all 0 < t ≤ T , x0 ∈ D0 and f ∈ Bb.

Proof. According to [1], the process kt appearing in Theorem 2.2 can be chosen so that
|ks| ≤ c(T ) for all s ∈ [0, T ], almost surely, with

E

[∫ T

0

|k̇s|2ds

] 1
2

≤ C̃√
1− e−C̃2T

for a positive constant C̃ which depends continuously on κ, n and d(∂D0, ∂D). The
details of this can be found in [19]. By Theorem 2.2 and the Cauchy-Schwarz inequality,
using equation (4) and the parameter κD to control the size of the damped parallel
transport, we have

|dPVT f | ≤ |f |∞e− inf V

E[1{T<ζ(x0)}

∫ T

0

|Ws|2|k̇s|2ds

] 1
2

+E

[
1{T<ζ(x0)}

∫ T

0

|dVT−s||Ws||ks|ds

])

≤ |f |∞e(− inf V− 1
2 (κD∧0))T

E[∫ T

0

|k̇s|2ds

] 1
2

+ vDE

[∫ T

0

|ks|ds

]
so the estimate (13) follows by substituting the bounds on k and k̇.

Note that in the above theorem, the dependence of the constant C on d(D0, D) is such
that if one tries to shrink D onto D0, so as to reduce the information needed about
RicZ and dV , then the constant blows up at rate 1/d(D0, D). There is therefore a trade-
off between the size of the domain and the size of the constant. This behaviour is
unavoidable and also occurs with respect to the domains D0, D1 and D2 which appear
in Theorems 4.3 and 4.5 below.

Corollary 4.2. Suppose RicZ is bounded below with |dV | bounded and V bounded
below. Then for all T > 0 there exists a positive constant C ≡ C(n, T ) such that

|dPVt fx| ≤
C√
t
|f |∞

for all 0 < t ≤ T , x ∈M and f ∈ Bb.
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Proof. As explained in the proof of Theorem 4.1, the dependence on D0 of the constant
appearing there is via the quantity d(∂D0, ∂D). If M is compact then the injectivity
radius inj(M) is positive and we can choose D0 = Binj(M)/4(x0) and D = Binj(M)/2(x0),
in which case d(∂D0, ∂D) = inj(M)/4. Conversely, if M is non-compact then for each
x0 ∈ M there exist D0, D with x0 ∈ D0 ⊂ D and d(∂D0, ∂D) = 1. Consequently, the
result follows from Theorem 4.1.

4.2 Generator

Theorem 4.3. Suppose D0, D1 and D2 are regular domains with x0 ∈ D0 ⊂ D1, D1 ⊂
D2, V bounded below and T > 0. Set

κD2
:= sup{|RicZ(v, v)| : v ∈ TyM,y ∈ D2, |v| = 1};

vD2
:= sup{|(dVt)y(v)| : v ∈ TyM,y ∈ D2, |v| = 1, t ∈ [0, T ]};

zD1 := sup{|Z|y : y ∈ D1}.

Then there exists a positive constant

C ≡ C(n, T, inf V, κD2 , vD2 , zD1 , d(∂D0, ∂D1), d(∂D0, ∂D2))

such that

|LPVt fx0 | ≤
C

t
|f |∞

for all 0 < t ≤ T , x0 ∈ D0 and f ∈ Bb.

Proof. According to [1], the processes kt and lt appearing in Theorem 2.6 can be chosen
so that

|ks| ≤ c1(n, κD1
, T, d(∂D0, ∂D1)),

|ls| ≤ c2(n, κD2
, T, d(∂D0, ∂D2))

for all s ∈ [0, T ], almost surely, with

E

[∫ T

0

|k̇s|2ds

] 1
2

≤ C̃1√
1− e−C̃2

1T
, E

[∫ T

0

|l̇s|2ds

] 1
2

≤ C̃2√
1− e−C̃2

2T

for positive constants C̃1 and C̃2 which depend continuously on κ, n and on d(∂D0, ∂D1)

and d(∂D0, ∂D2), respectively. By Theorem 2.6 and the Cauchy-Schwarz inequality we
have

|L(PVT f)(x0)|

≤ e− inf V |f |∞zD1
E

[∫ T

0

|k̇s|2ds

] 1
2

+
1

2
|f |∞eT (κD2

−inf V )E

[∫ T

0

|k̇s|2ds

] 1
2

E[∫ T

0

|l̇s|2ds

] 1
2

+ vD2
E

(∫ T

0

|ls|ds

)2
 1

2



so the result follows by substituting the bounds on k, k̇, l and l̇.

Corollary 4.4. Suppose |RicZ |, |dV |, |Z|, are bounded with V bounded below. Then
there exists a positive constant C ≡ C(n, T ) such that

|LPVt fx| ≤
C

t
|f |∞

for all 0 < t ≤ T , x ∈M and f ∈ Bb.
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Proof. The result follows from Theorem 4.3, since as in Corollary 4.2 any dependence
of the constant on D0, D1 and D2 can be eliminated.

4.3 Hessian

Theorem 4.5. Suppose D0, D1 and D2 are regular domains with x0 ∈ D0 ⊂ D1, D1 ⊂
D2, V bounded below and T > 0. Set

κD2 := sup{|RicZ(v, v)| : v ∈ TyM,y ∈ D2, |v| = 1};
vD2 := sup{|(dVt)y(v)| : v ∈ TyM,y ∈ D2, |v| = 1, t ∈ [0, T ]};
v′D1

:= sup{|(∇dVt)y(v, v)| : v ∈ TyM,y ∈ D1, |v| = 1, t ∈ [0, T ]};
ρD1

:= sup{|R(w, v)v| : v, w ∈ TyM,y ∈ D1, |v| = |w| = 1};

ρ′D1
:= sup{|(∇Ric]Z + d?R− 2R(Z))(v, v)| : v ∈ TyM,y ∈ D1, |v| = 1}.

Then there exists a positive constant

C ≡ C(n, T, inf V, κD2 , vD2 , v
′
D1
, ρD1 , ρ

′
D1
, d(∂D0, ∂D1), d(∂D0, ∂D2))

such that

|∇dPVt fx0
| ≤ C

t
|f |∞

for all 0 < t ≤ T , x0 ∈ D0 and f ∈ Bb.

Proof. Recalling the defining equation for W ′s(v, w) and choosing the processes kt and
lt as in the proof of Theorem 4.3, it follows for the process kt that

E

(∫ T

0

〈k̇sWs

∫ s

0

W−1r R(//rdBr,Wr)Wr, //sdBs〉

)2
 1

2

≤ C̃3e
κD1

T√
1− e−C̃2

3T
,

E

(∫ T

0

〈k̇sWs

∫ s

0

W−1r (∇Ric]Z + d?R)(Wr,Wr)dr, //sdBs〉

)2
 1

2

≤ C̃4e
κD1

T√
1− e−C̃2

4T

for positive constants C̃3 and C̃4 which depend continuously on κD1 , ρD1 , ρ′D1
, n and

on d(∂D0, ∂D1) and d(∂D0, ∂D2), respectively. The details of this, including explicit
bounds on these constants (and on those appearing in Theorems 4.1 and 4.3) are found
in [14, Section 4.2], with appropriate bounds for the radial part of the diffusion being
given as in the proof of [21, Corollary 2.1.2]. By Theorem 2.8 and the Cauchy-Schwarz
inequality we have

|∇dPVT f |

≤ |f |∞eT (κD2
−inf V )

(
C̃3√

1− e−C̃2
3T

+
1

2

C̃4√
1− e−C̃2

4T

)

+ |f |∞eT (κD2
−inf V )

v′D1
E

(∫ T

0

|ks|ds

)2
 1

2

+ vD2
c21(ρD1

∨ 1

2
ρ′D1

)
T 2

√
2


+ |f |∞eT (κD2

−inf V )

E[∫ T

0

|l̇s|2ds

] 1
2

+ vD2
E

(∫ T

0

|ls|ds

)2
 1

2


·

E[∫ T

0

|k̇s|2ds

] 1
2

+ vD2E

(∫ T

0

|ks|ds

)2
 1

2


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so the result follows by substituting the bounds on k, k̇, l and l̇.

Corollary 4.6. Suppose |RicZ |, |dV |, |∇dV |, |∇Ric]Z + d?R − 2R(Z)|, |R| are bounded
with V bounded below. Then there exists a positive constant C ≡ C(n, T ) such that

|∇dPVt fx| ≤
C

t
|f |∞

for all 0 < t ≤ T , x ∈M and f ∈ Bb.

Proof. The result follows from Theorem 4.5, since as in Corollaries 4.2 and 4.4 any
dependence of the constant on D0, D1 and D2 can be eliminated.

5 Non-local Formulae

If RicZ is bounded below then, by [21, Corollary 2.1.2], the diffusion xt is non-explosive,
which is to say ζ(x0) =∞, almost surely. While the formulae in this section require non-
explosion and global bounds on the various curvature operators, they are expressed in
terms of explicit and deterministic processes k and l.

Theorem 5.1. Suppose x0 ∈ M with v ∈ Tx0M , f ∈ Bb, V bounded below and T > 0.
Set

ks =
T − s
T

.

Suppose RicZ is bounded below with |dV | bounded and V bounded below. Then

(dPVT f)(v) = −E

[
VT f(xT )

∫ T

0

〈Ws(k̇sv), //sdBs〉+ dVT−s(Ws(ksv))ds

]
.

Proof. It follows from Corollary 4.2 that |dPVt | is bounded on [ε, T ]×M . Therefore, using

kεs =
T − ε− s
T − ε

∨ 0

the local martingale (5) is a true martingale. Taking expectations and eliminating ε with
dominated convergence yields the above formula.

Theorem 5.1 is precisely [5, Theorem 5.2], which was also obtained in [11] by a slightly
different method.

Theorem 5.2. Suppose x0 ∈M , f ∈ Bb, V bounded below and T > 0. Set

ks =
T − 2s

T
∨ 0, ls = 1 ∧ 2(T − s)

T
.

Suppose |RicZ |, |dV | and |Z| are bounded with V bounded below. Then

L(PVT f)(x0)

= E

[
VT f(xT )

∫ T

0

〈k̇sZ, //sdBs〉

]

+
1

2
E

[
VT f(xT )

(∫ T

0

〈Ws l̇s, //sdBs〉+ dVT−s(Wsls)ds

)∫ T

0

k̇sW
−1
s //sdBs

]
.
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Proof. It follows from Corollary 4.4 that |LPVt | is bounded on [ε, T ] × M . Therefore,
using ks and

lεs =

(
1 ∧ T − ε− s

T
2 − ε

)
∨ 0

the local martingale appearing in Lemma 2.4 is a true martingale. Taking expectations,
using Lemma 2.5 as in the proof of Theorem 2.6 and eliminating ε with dominated
convergence yields the above formula.

Theorem 5.3. Suppose x0 ∈M with v, w ∈ Tx0
M , f ∈ Bb, V bounded below and T > 0.

Define ks and ls as in Theorem 5.2. Suppose |RicZ |, |dV |, |∇dV |, |∇Ric]Z + d?R− 2R(Z)|
and |R| are bounded with V bounded below. Then

(∇dPVT f)(v, w)

= − E

[
VT f(xT )

∫ T

0

〈W ′s(k̇sv, w), //sdBs〉

]

− E

[
VT f(xT )

∫ T

0

((∇dVT−s)(Ws(ksv),Ws(w)) + (dVT−s)(W
′
s(ksv, w)))ds

]

+ E

[
VT f(xT )

(∫ T

0

〈Ws(l̇sw), //sdBs〉+ dVT−s(Ws(lsw))ds

)

·

(∫ T

0

〈Ws(k̇sv), //sdBs〉+ dVT−s(Ws(ksv))ds

)]
.

Proof. It follows from Corollary 4.6 that |dPVt | and |∇dPVt | are bounded on [ε, T ] ×M .
Therefore, using lεs defined as in the proof of Theorem 5.2, the local martingale ap-
pearing in Lemma 2.7 is a true martingale. Taking expectations, proceeding as in the
proof of Theorem 2.8 and eliminating ε with dominated convergence yields the above
formula.

For the case V = 0, Theorem 5.3 gives the filtered version of the second part of [5,
Theorem 3.1], which was proved by differentiating under the expectation for f ∈ BC2

and which, as observed in [14], contains a slight error, permuting the vectors v and w.

Remark 5.4. Our gradient and Hessian formulae require V ∈ C1 and V ∈ C2, respect-
ively (see Remark 2.9). More generally, it is desirable to consider possibly very singular
potentials, such as those which appear in many quantum mechanical problems. See,
for example, [7] and [15]. It was pointed out to the authors of [5] by G. Da Prato, and
to the author of this article by X.-M. Li, that non-smooth potentials V can be dealt with
using the variation of constants formula:

PVT f = PT f −
∫ T

0

PT−s(VsP
V
s f)ds (14)

where PT denotes the minimal semigroup associated to the operator L. So long as PVT f
is sufficiently regular, formulae and estimates dPVT f can be obtained from formulae
and estimates for dPT f , simply by differentiating the above formula. In particular, this
approach results in gradient estimates depending only on ‖V ‖∞ (like those in [15] for
domains in Rn). Our gradient estimate, Theorem 4.1, on the other hand, does not
require that V is bounded (only bounded below). For the second derivatives one must
take care in passing the derivatives through the integral in formula (14). For the case in
which the potential is a bounded Hölder continuous function V which does not depend
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on time, this can be achieved at each point x0 ∈ M by shifting V to V (x0) = 0. The
details of this for, the Hessian, are given in [10], where the approach taken in based on
that of [5].

6 Kernel Estimates

Now suppose Z = ∇h, for some h ∈ C2, and consider the m-dimensional Bakry-Emery
curvature tensor

Ricm,n := Ric] −∇dh− ∇h⊗∇h
m− n

where m ≥ n is a constant (see [13]). Denoting by pht (x, y) the density of the diffusion
with generator L, with respect to the weighted Riemannian measure ehdy, it follows,
as explained in the proof of [9, Theorem 1.4], that if Ricm,n ≥ −κ for some κ ≥ 0 then
there exists a positive constant C ≡ C(κ,m, T ) such that

log

(
pht

2
(x, z)

pht (x, y)

)
≤ C

(
1 +

d2(x, y)

t

)
for all x, y, z ∈ M and t ∈ (0, T ]. Assuming V is bounded, it follows that the same
inequality holds for the integral kernel ph,Vt (x, y) of the semigroup PVt f , since

ph,Vt (x, y) = pht (x, y)E [Vt|x0 = x, xt = y]

by the Feynman-Kac formula. We can therefore derive from Theorems 5.1, 5.2 and 5.3
estimates on the logarithmic derivatives of ph,Vt (x, y) by using Jensen’s inequality (as
in [16, Lemma 6.45]). In particular, the assumptions of Theorem 5.1 with Z = ∇h plus
boundedness of V and a lower bound on Ricm,n imply the existence of a constant C1(T )

such that

|d log ph,Vt (·, y)x|2 ≤ C1(T )

(
1

t
+
d2(x, y)

t2

)
for all x, y ∈M and t ∈ (0, T ]. The details of this (for the case h = 0) can be found in [11].
Similarly, the assumptions of Theorem 5.2 with Z = ∇h plus boundedness of V and a
lower bound on Ricm,n imply for the Witten Laplacian ∆h := 1

2∆ +∇h the existence of
a constant C2(T ) such that

|∆h log ph,Vt (·, y)(x)| ≤ C2(T )

(
1

t
+
d2(x, y)

t2

)
for all x, y ∈M and t ∈ (0, T ]. Finally, the assumptions of Theorem 5.3 with Z = ∇h plus
boundedness of V and a lower bound on Ricm,n imply the existence of a constant C3(T )

such that

|∇d log ph,Vt (·, y)x| ≤ C3(T )

(
1

t
+
d2(x, y)

t2

)
for all x, y ∈M and t ∈ (0, T ].
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