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Derivatives of probability functions and

some applications

Stanislav Uryasev*

International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

Probability functions depending upon parameters are represented as integrals over

sets given by inequalities. New derivative formulas for the intergrals over a volume are

considered. Derivatives are presented as sums of integrals over a volume and over a

surface. Two examples are discussed: probability functions with linear constraints

(random right-hand sides), and a dynamical shut-down problem with sensors.
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1. Introduction

Probability functions are important in many applications; they are widely
used for probabilistic risk analysis (see, for example [1, 18, 23]), in optimizing of

discrete event systems (see, for example [9, 17]), and other applications. Probability
functions can be represented as integrals over sets given by inequalities. The sensi-
tivity analysis and the optimization of these functions require the calculation of the
derivatives with respect to parameters. To date, the theory for the differentiation of

such integrals is not fully developed. Here, we discuss a general formula for the dif-

ferentiation of an integral over a volume given by many inequalities. A gradient of
the integral is represented as the sum of integrals taken over a volume and over a
surface. We have used these formulas for different applications - for calculating

the sensitivities of probability functions, and for chance-constrained optimization.
A full proof of the differentiation formula is presented in [22]. We give an idea

of the alternative proof of the main theorem in the appendix. The differentiation

formula is explained with two applications:

. The linear case - the probability functions with linear constraints and

random right-hand sides. The probability function with a random matrix is

considered in [22].

. A shutdown problem with sensors. The problem was studied by the author

jointly with Prof. Yu. Ermoliev. The approach can be used, for example, to
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monitor passive components (the vessel of the nuclear power plant [12, 13]).

This problem can be considered as a typical example of Discrete Event

Dynamic Systems (DEDS). Sensitivity analysis and optimization techniques
for similar problems can be found in [4, 5, 7, 17].

Let the function

F(x) J p(x,y) dy (1)

f(x,y) " 0

be defined in the Euclidean space ]Rn, where f : ]Rn x ]Rm -t ]Rk and p : ]Rn x Rm -t ]R

are some functions. The inequality f(x,y) ~ 0, actually, is a system of inequalities

Ji(x,y) ~O, i= I,...,k.

')
Stochastic programming problems lead to such functions. For example, let

F(x) = P{f(x, ()w)) ~ O} (2)

be a probability function, where ((w) is a random vector in Rm. The random vector
((w) is assumed to have a probability densityp(x,y) that depends on a parameter

XERn.
The differentiation formulas for function (1) in the case of only one inequality

(k = 1) are described in papers by Raik [14] and Roenko [15]. More general results

(k ~ 1) were given by Simon (see, for example, [19]). Special cases of probability

function (2) with normal and gamma distributions were investigated by Prekopa
[10], and Prekopa and Szantai [11]. In the forthcoming book by Pflug [9], the
gradient of function (1) is represented in the form of a conditional expectation
(k = 1). The gradient of the probability function can be approximated as the

gradient of some other smooth function; see, for example, Ermoliev et al. [2].
The gradient expressions given in [14, 15, 19] have the form of surface inte-

grals and are often inconvenient for computation, since the measure of a surface
in ]Rm equals zero.

In [20, 21], another type of formula was considered where the gradient is
an integral over a volume. For some applications, this type of formula is more

convenient. For example, stochastic quasi-gradient algorithms [3] can be used for
the minimization of function (1). Here, we consider the formula for the general
case of k ~ 1; the formulas in [14] and [20] are special cases of this general result.

Since the gradient of function (1) is presented in [20] and [21] as an integral over
a volume, in the case of k = 1 it is clear that this integral can be reduced to an

integral over a surface (see [14]). Furthermore, the gradient of function (1) can

also be represented as the sum of integrals taken over a volume and over a
surface (in the case of k ~ 1). This formula is especially convenient for the case
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when the inequalitiesf(x,y) ~ 0 include the simple constraints Yi ~ 0, i = 1"", m
(see also the examples in [22]),

It is also shown that the general differentiation formula covers the "change
of variables" approach, considered under different names: "transformation of
variables" method [8], and "push out" method [16, 17],

2. The general formula

Let us introduce the shorthand notations

(!I(X'Y) ) (!I(X'Y) )f(x,y) = : , fu(x,y) = : ,

fk(X,y) Ji(x,y)

lfl(X,y) Bfk(x,y)BYI' ,." --~

V yf(x,y) = :

lfl(X,y) Bfk(X,y)
BYm ' .,., --ay;;;-

A transposed matrix H is denoted by HT, and the Jacobian of the functionf(x,y) is
denoted by VJf(x,y) = (Vyf(x,y))T, Let H be some matrix

( hll' "." hIm

)H - ,- : ,

hnl, "" hnm

further, we need a definition of divergence for the matrix H

t~
i= 1 BYi

d ' H ' d d' T (~ahli ~Bhni )IVy = : an IVy H = L,; a-:- ' , . " L,; a-:- '

m i= 1 y, i= 1 y,

L~
i=1 BYi

We also define

j.t(x) = {y E Jim :f(x,y) ~ O} ~ {y E Jim :Ji(x,y) ~ 0, 1 ~ i ~ k},

. ,
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o,u(x) is the surface of the set ,u(x). We denote by Oi,u(X) a part of the surface which

corresponds to the function.fi(x,y):

Oi,u(X) = ,u(x) n{y E ]Rm :.fi(x,y) = O}.

Further, we consider that for a point x, all functions.fi(x,y), i = 1,..., k, are active,
i.e. Oi,u(X) # 0 for i = 1,... ,k. For y E o,u(x) we define

l(x,y) = {i :Ji(x,y) = O}.

If we split the set K~ {I,..., k} into two subsets Kl and K2, without loss ofgener-

ality we can consider

K1={I,...,1} and K2={1+1,...,k}.

We formulate a theorem about the derivatives of integral (1).

THEOREM 2.1

Let us assume that the following conditions are satisfied:

(1) at the point x, all functions.fi(x,y), i = 1,... ,k, are active;

(2) the set ,u(z) is bounded in a neighborhood of the point x;

(3) the function! : }Rn x }Rm -+ }Rk has continuous partial derivatives V x!(x,y),

Vy/(x,y);
(4) the function p : }Rn x }Rm -+ }R has continuous partial derivatives V xp(x,y),

V yp(x,y);
(5) there exists a continuous matrix function HI : }Rn x }Rm -+ }Rn x m satisfying

the equation

HI(X,y)Vy/ll(X,y)+Vxhl(X,y) =0; (3)

(6) the matrix function HI(X,y) has a continuous partial derivative V yHI(X,y);

(7) the gradient V y.fi(x,y) is not equal to zero on Oi,u(X) for i = 1,..., k;

(8) foreachy E o,u(x), the vectors V yJi(x,y), i E l(x,y), are linearly independent.

Then the function F(x) given by formula (1) is differentiable at the point x and the

gradient is equal to

V xF(x) = J [V xp(x,y) + divy(p(x,y)HI(x,y))] dy

J!(X)

~ J p(x,y)- i~l IIV y.fi(x,y)11 [V xJi(x,y) + HI(X,y)V yJi(x,y)] dS. (4)

8jJ!(x)

. ,
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Remark

In theorem 2.1 we consider the case when the subsets Kl and K2 are non-

empty. If the set Kl is empty, then matrix Hl(X,y) is not included in the formula and

J ~ J p(x,y)\7 xF(x) = \7 xp(x,y)dy - £1 nv;~(xJm \7 xJl(x,y) dS. (5)

p.(x) 8/p.(x)

If the set K2 is empty, then the integral over the surface is absent and

\7 xF(x) = J [\7 xp(x,y) + divy(p(x,y)Hk(x,y))] dy. (6)

p.(x)

A full proof of theorem 2.1 is presented in [22]. This proof contains all tech-

nical details which are difficult to understand. An alternative, much more trans-
parent idea of how to prove the main formula of theorem 2.1 is shown in the

appendix. The alternative proof has two major steps:

(1) presenting the gradient of the probability function as an integral over the

surface (extended variant of the Raik theorem);

(2) using the Ostrogradski-Gauss theorem to link the integral over surface and

volume.

2.1. DISCUSSION OF THE FORMULA FOR THE GRADIENT OF THE PROBABILITY

FUNCTIONS

The general formula (4) for calculating the derivatives of the probability func-

tions shows that there are many equivalent expressions for these derivatives. The

following components in this formula are not uniquely defined:

. two subsets Kl and K2,

. matrix Hl(X,y),

. different vector functionsf(x,y) may present the same integration set JL(x).

The set K2 defines an area integration over the surface. Usually, it is prefer-
able to choose the set K2 to be as small as possible, because the integral over the
surface is often difficult to calculate numerically. In most cases, it is possible to
set K2 = 0, so the gradient is presented as an integral over volume with formula (6).

The matrix Hl(X,y) is a solution of the nonlinear system of equations (3) and,
as a rule, is not uniquely defined. As indicated in [22], equation (3) can be solved

explicitly. The matrix

-\7xhl(X,y)(\7Jhl(X,y)\7yhl(X,y))-l\7Jhl(X,y) (7)

. ,
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is one possible solution, but it leads to complicated formulas, and, usually, is not

used in practice.
In many cases, there is a simple way to solve equations (3) using a change of

variables. Suppose that there is a change of variables

y="((x,z) (8)

which eliminates the vector x from the function .fi(x,y), i.e., the function
.fi(x, "((x, z)) does not depend upon the variable x. Denote by "(-1 (x,y) the inverse

function, defined by the equation

"(-1 (x, "((x,z)) = z.

In this case, equation (3) has the following solution

H[(x,y) = \7x"((x,z)lz=o.y-I(x,y)' (9)

Indeed, the gradient of the function "((x, y(x, z)) with respect to x equals zero;

therefore,

0 = \7 x.fi(x, "((x, z)) = \7 x"((x, z)\7 y.fi(x,y)ly=o.y(x,z) + \7 x.fi(x,y)ly=o.y(x,z),

i.e., function \7 x"((x, z)lz=o.y-l(X,y) is a solution of equation (3). This special case

covers the "change of variables" approach, considered previously under different
names: the "transformation of variables" method [8] and "push out" method
[16, 17]. This approach eliminates vector x from the integration set by changing
variables in integral (1) with formula (8). Then, the well-known formula for the

interchange of integral and gradient signs is used to calculate the gradient.
Further, inverse transformation z = "(-I(x,y) is applied to return back to the

original variables y. This multi-step procedure can be avoided by using the

special case formula (6) directly with matrix (9), i.e.,

\7xF(x) = J [\7xp(x,y) + divy(p(x,y)\7x"((x,z)lz=o.y-l(x,y))] dy. (10)

Jl(X)

There are two advantages in using formula (4) with matrix (9) compared to the
change of variables approach: First, it is not necessary to change variables twice,

and to calculate Jacobians of transformations. Second, the change of variables
approach is applicable only in a special case when the gradient can be presented
as an integral over volume with formula (10), but it is not applicable when the

gradient is presented with formula (4) as the sum of integrals over the volume

and over the surface.

. ,
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As mentioned above, different vector functionsf(x,y) may present the same

integration set J.I.(x), leading to quite different equivalent formulas for the gradients.
Moreover, with some vector functions f(x,y), it is possible to set K2 = 0 and

exclude integration over surface; with other functions, it is impossible. Different

gradient formulas, in turn, generate quite different stochastic estimates of gradients
(stochastic quasi-gradients [3]) with significantly different variance properties. Let

us explain this with a trivial example:

F(x)= J p(y)dy= J p(y)dy, (11)

0 ~ y ~ x f(x,y) ~ 0

where

f(x,y) = (ft(X'y) ) = (y-x ) .
f2(X,y) -y

It is not possible to set

Kl = {1,2} and K2 = 0

in this case, because equation (3) does not have any solution with I = 2. Using

formula (4) with

K} = {I} and K2 = {2},

the gradient of the function F(x) can be expressed by solving equation (3). This
equation links the gradients of the functionft(x,y) with respect to x and y

HI (x,y)V y/l(X,y) + V xft(x,y) = O.

The equation has an evident solution

HI (x,y) = 1. (12)

We also need the gradients of the functionf2(x,y) w.r.t. parameters y and x

V Y/2(X,y) = -1, V xf2(X,y) = O. (13)

The gradient of the function F(x) is calculated with formula (4)

V xF(x) = J [V xp(y) + divy(p(y)Hl(X,y))] dy

f(x,y) ~ 0

. ,
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- J IjV~~~"Y)Ti [\7 xf2(X,y) + Hl(X,Y)\7 yf2(X,y)] dS

y=o

= J \7 yp(y) dy +p(O). (14)

O~y~x

Thus, the derivative \7 xF(x) is expressed as the sum of an integral over a volume and

an integral over a surface.
If x ~ 0, then function F(x) defined by formula (11) can be equivalently

presented with the vector function

f(x,y) =
(h(X'y) ) = ( yjX-l ) .

f2(X,y) -yjx

Evidently, the change of variables

y = ,(x, z) = xz (15)

eliminates the vector x from the functionf(x,y). Therefore, we can set

K1={1,2}, K2=0, l=k=2,

and equation (3) has the solution defined by equation (9)

H2(X,y) = \7 x,(x, z)IZ='Y-I(X,y) = \7 xxzlz=y/x = yjx. (16)

Finally, with formula (6) or (10)

\7xF(x) =x-l J \7y(p(y)y))dy. (17)

O~y~x

Expressions (14) and (17) for the gradient do not coincide; it can be shown that they

are equivalent functions.
The next section describes two examples demonstrating possible applications

of the formula for the derivatives of probability functions.

3. Examples

3.1. EXAMPLE 1: LINEAR CASE - RANDOM RIGHT-HAND SIDES WITH SIMPLE

CONSTRAINTS

Here, we consider a probability linear function with right-hand sides. The

probability function with random matrix is considered in [22]. Let A be an

. ,
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m X n matrix, (P,:F, 0) be a probability space, and b(CIJ), CIJ E 0 be a random

m-dimensional vector with the joint density p(b). We define

F(x) = P{Ax ~ b(CIJ), b(CIJ) ~ O}, b = (bl (CIJ), . . . , bm(CIJ)) E JRm, x E JRn, (18)

i.e. F(x) is the probability that the linear constraints Ax ~ b(CIJ), b(CIJ) ~ 0 are satis-

fied. The constraint b(CIJ) ~ 0 means non-negativity of all elements bj(CIJ) of the

vector b(CIJ). Let us denote by Ai the ith row of the matrix A

-
( ~l ) - ( (all, ,aln)

)A- . - . .. .

Al (an,...,aln)

Define the functionf(x, b) as

Alx - bl

(h(X,b) ) : Alx - bl f(x,b) = : = , k=2m.

-bl
fk(X, b) .

-b m

The function F(x) equals

F(x) = J p(b) db = J p(b) db. (19)

f(x,b) ~ 0 Ax ~ b
b~O

PROPOSITION 3.1

The gradient of the function F(x) can be presented as a sum of an integral

over the volume and an integral over the surface

V'xF(x) = J ATV'bP(b)db+~ J ATp(b)dS; (20)

Ax~b Ax~b
b~O b/=O

if the density function p( b) equals zero on the boundary of the set {b E JRm : b ~ O},

. ,



296 S. Uryasev/ Derivatives of probability functions

then the integral over the surface equals zero, and

\7 xF(x) = I AT\7bP(b) db = I AT\7b(lnp(b))p(b) db. (21)

Ax~b Ax~b
b~O b~O

Remark

The integral over the surface

I AT p(b) dS

Ax~b
b.=OI

is, evidently, an integral over an (m - I)-dimensional volume, without variable hi,

which is fixed to zero.

We use formula (4) to calculate the gradient \7 xF(x). Let us consider that
l=m, Kl = {I,...,m} and K2 = {m+ I,...,k}. For this case, equation (3) is

presented as

H[(x, b)\7bh[(X, b) + \7xfu(x,b) = H[(x,b)(-E) + AT = O. (22)

Therefore,

H[(x,b) = AT.

Formula (4) and the last equality imply

\7 xF(x) = I divb(p(b)AT) db

Ax~b
b~O

~ I p(b) T
-i~l II\7b.!i(x,b)II[\7x.!i(x,b)+A \7b.!i(x,b)]dS. (23)

Ax~b
bi-/=O

Since

II\7b.!i(x,b)II=I, \7x.!i(x,b) =0; i=m,...,2m,

and

AT\7b.!i(x,b) =AT-m; i=m,...,2m,

then (23) implies (20).

. ,
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Formula (21) follows directly from (20), if the density function p(b) equals

zero on the boundary of the set {b E IRm : b ~ O}.

3.2. EXAMPLE 2: A "SHUTDOWN" PROBLEM WITH SENSORS

In this section, we discuss a shutdown problem for a system with sensors.

Usually, some measurements are made, and a decision to shut down the system is
based on these measurements. In different situations, different information is avail-

able. For example, for monitoring the vessel of a nuclear power plant, some esti-
mates of crack sizes can be used [12]; the time required to achieve full power,

leakages, vibration, and corrosion are of interest for diesels, pumps, and other

active components [6].
We consider that the dynamics of the system is described by discrete time

equations

zt+1 =1/Jt(zt,ut,(t), t= 1,...,T, (24)

where zt is a state vector in the Euclidean space IRj,. The functions

1/Jt:IRj,xIRn'xIR7'-+IRj,+1, t=l,...,T,

depend upon the state vector zt, control vector ut and random vector (I. The system

has been shut down at time t if an equality

<PI(ZI, ul, 1]t) ~ 0 (25)

is satisfied, where

<P, : IRj, x IRn, x IRm, -+ IR, t = 1, . . . , T,

and 1]1 is a random vector. If the system has not been shut down at time t, 1 ~ t ~ T,

then it finishes operation at time T + 1. Thus, the shutdown time 'T is given by the

equation

{ T+l, if<pt(zt,ut,1]t) >0, forl~t~T;
'T = min{t: 1 ~ t ~ T, <pt(ZI, UI,1]I) ~ O}, otherwise.

If the system has been shut down at time t, 1 ~ t ~ T, then the cost of this
1 ( II It ) h it ( It ) d It ( I I) devent equa s gt z , u , were z = z ,...,Z an u = U,..., U , an , at

time T + 1, the cost equals gT+ I (ziT, uIT). As a criterion function, we take the

expectation

G(uIT) = JEgT(zIT, uIT).

. ,

.
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Denote
1T ( 1 T )1] = 1] ,...,1] ,

j1(z1,U1,1]1) = <P1(z1,U1,1]1),

-<P1(z1,U1,1]1)

j l ( II 11 1/) . - 2 TZ ,u,1] = I-I I-I 1-1 ' t - ,. .., ,
-<PI-I(Z ,u ,1] )

<p,(ZI, Ul, 1]1)

( <P1 (zI, uI, 1]1)

)jT+1(z1T,U1T,1]IT) = - : ,

<PT(zT, uT, 1]T)

{ I, ifj'(z1/,u1/,1]1/) ~ OJ
I{f'(zl/, ul/, ,,1/) ~ O} = .

0, otherwIse.

Further, it is convenient to use the following notations:

zI,T+1=zIT, uI,T+I=u1T, 1]I,T+I=1]IT.

For example, jT+1(zIT,UIT,1]1T) can also be denoted by jT+I(z1,T+I,uI,T+1,

1]I,T+I). Suppose that there are density functions for the random vectors (I, 1]1,

t = 1,... , T. The criterion function can be presented as

[T+I ]G(uIT) = EgT(zIT, U1T) = E ~ gl(zI/, u1/)I{f'(zl/,ul/"I/) ~ O}

T+1
= ~E[g,(zI/,u1/)I{f/(zl/,ul/",1/)~O}]' (26)

1=1

With formula (6) we can express the gradient of the expectation of a product

of nonlinear and indicator functions as the expectation of a product of another

nonlinear and the same indicator function

\7 UITE[gl(zI/, u1/)I{f'(zl/,ul/"I/) ~ oJ] = E[al(z1/, u1/, (1', 1]1')I{f'(zl/,ul/"I/) ~ OJ]' (27)

. ,

...
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Thus, (26) and (27) imply

\7 U1TG(u1T) = \7 ulTJEgT(zlT, u1T)

T+1
= L \7 ulTJE[gt(zlt, u1t)/{fl(zl',UII"711) ~ O}]

t=l

T+1

= L JE[at(zlt, u1t, (t, 171t)/{fl(ZI', Ull, '711) ~ O}]

t=l

= JE aT(zlT, u1T, (T, 171T). (28)

Fonnula (28) is valid in rather general cases, but to use it we have to find the

functions

( 1t 1t j"lt It
) 1 T 1atZ,u,..,17, t= ,..., +.

We show with one special case how it can be done.

A special case

This is a special case of the problem of optimizing operational schedules
for mechanical components [12]. The mechanical component has some defects
(cracks) which evolve and increase the failure rate of the component. The com-

ponent is inspected periodically to assure that the failure rate is within specified
limits (safety constraints). If the estimate of the failure rate of the component
does not satisfy the safety constraints, the operation of the component is termi-
nated. The model originally considered in [12] also includes other actions and

decision rules:

. additional intensive testing;

. repair of the component.

Here, we consider only part of the model, related to shutting down the component.
In this case, the variables described in the general shutdown model (24) and

(25) have the following meaning:

t = 1,. . . , T - number of time points where inspections are perfonned;
r t - number of defects at time t;
(t = ((f,. .., (:,) - vector of the sizes of the defects (cracks);
17t = (17{,..., 17:/) - vector of uncertainties in the measurements of defects

(errors of sensors);
Zt - estimate of the failure rate of the component.

Two dynamic processes are modelled. The first stochastic process defines the

. ,

..
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evolution of crack sizes

(t+l=ht((t), t=l,...,T. (29)

The second stochastic process specifies the dynamics of the failure rate

Zt+1 ='l/Jt(Zt,(t), t= 1,...,T. (30)

Here, Zt is a scalar value and the function 'l/Jt does not depend on the control vector
ulT. The function CPt defines a shutdown condition:

if CPt(Zt, ut, 1]t) > 0, then continue operation of the component;

if CPt(Zt, Ut, 1]t) ~ 0, then shut down the component.

Crack sizes cannot be measured perfectly; therefore, uncertainties 1]t = (1]{, . . . ,1]:/)

in measurements influence the decision. In this special case, the function CPt is linear

with respect to Zt and scalar control Ut, i.e.,

CPt(Zt,Ut,1]t)=Zt-ut+b(1]t), (31)

where b(1]t) = lJr=1 (1]{)Q, a> O. Actually, the shutdown condition compares

failure rate Zt with cutoff value Uj. The function b(1]t) reflects the existence of

uncertainties in the shutdown condition. This is explained in detail in [12].
If the component has been shut down at time t, 1 ~ t ~ T, then the cost of

this event gt(Zt) depends only upon Zt and the function gT+ 1 (ZT) depends upon
ZT' The random vectors, 1]1, . . . , 1]T, specifying uncertainties in measurements, are

supposed to be independent and have density functions Pl(1]I),... ,PT(1]T), respec-
tively. Denote by IEc, the conditional expectation with respect to a-algebra :Fc, gener-
ated by the random values (t, t = 1, . . . , T. In this case, the criterion function can be

presented as

T+I
G(uIT) = IEgr(zr) = IEIEc,gr(zr) = L IEIEc,[gt(Zt)/{f/(zl/,ul/,l1l/) :EtO}].

t=1

. Since the value gt(Zt) is measurable with respect to a-algebra Fc" then

IEc,[gt(Zt)/{f'(zl/,Ul/,111/) :Et a}] = gt(Zt)IEc,/{f/(ZI/, ul/, 111/) :Et a}.

Therefore,

T+l
G(ulT) = L IE[gt(Zt)JEc,/{f/(ZI/, ul/, 111/) :EtO}]' (32)

t=1

. ,
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with respect to u1T. Since the function cPt(u1t) does not depend upon ut+ 1, . . . , UT,

then

\7 uITcPt(u1t) = (\7 ul'~(U1t)). (37)

Further, let us calculate the gradient \7 ullcPt(u1t) with formula (6). For this case,

equation (3) is presented as follows

Ht \7 7)llft(z1t, u1t, 1]1t) + \7 ullft(z1t, u1t, 1]1t) = o. (38)

Since

-Z1 + U1 - b(1]1)

f t ( 1t 1t 1t) : 2 TZ ,U,1] = , t= ,..., ,
-Zt-1 + Ut-1 - b(1]t-1)

Zt - Ut + b(1]t),

then gradients \7 7)llft(z1t, u1t, 1]1t) and \7 ullft(Z1t, ult, 1]lt) can be easily calculated

( (11l).a-1 )- : 0

(1]~)a-l

( (m-1)a-l )\7 7)llft(zlt, ult, 1]1t) = a_: '

(1]:n-1)a-1

0 ( (m):a-l )(1]:n)a-1

1 0

\7 ulT ft(z1t, ult, 1]1t) = .

1

0 -1

. ,
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The matrix

1
( ((1]I)I_a"",(1]~)I-a) 0

)Ht = - (39)
am .

0 (( t )l-a ( t )1-a
)1]1 ,...,1]m

is a solution of equation (38). Now formula (6) implies

\7 ul/4>t(ult) = J div171' (n PO(I)O)H,) d1]lt

JI(ZI/,ul/,17I/)~O

t m 8

II po(1]°) L ""iiT(pl(1]I)(1]I)I-a)
0=2 j= 1 1]j

= J -.!.- : d1]lt

am
f/(zl/,ul/,171/)~O t-l m 8

II Po (1]0) L~ (Pt(1]t)(1]:)I-a)
0=1 j=1 1]1

PII (1]1) t -£;r (PI (1]1 )(1]I )1-a)

J 1 . lIt ( 0)d It = - : Po 1] 1].

am 0=1
f'(zl/,ul/,17I/) ~ 0 m 8

PII (1]t) 6"8;jf (PI (1]t) (1]:) I-a)

(40)
Denote

PII (1]1) t.;, (PI (1]1 )(1]I )1-a)
j = 1 1]j

t( It ) 1 . V1] =- :
am

m 8

p-;1 (1]t) 6"8;jf (Pt(1]t) (1]:) I-a)

t((l - a)(171 )-a + (1]I )1-a ~ In PI (1]1))

j=1 81]j

= -.!.- : (41)
am

t((1 - a)('Y:)-a + (1]:)I-a~lnPt(1]t))
j= 1 1]1

. ,

,...-
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+ IE[gT+l (ZT )aT (TllT)I{fT+I(zIT ,ulT ,I)IT) ~ OJ]

= IE[gT(zT)aT(TllT)], (47)

where aT (TIlT) is given by equations (41) and (46).

Numerical implementation of the gradient formula

We show that gradient formula (47) can be easily calculated numerically. By
Monte Carlo simulation, each run generates a random trajectory with equations
(29) and (30) and generates a sample gT(ZT) of the criterion function
G(ulT) = IEgT(ZT). The estimate of the criterion function can be obtained with N

simulation runs as

N- IT -1 ~
G(u ) = N L..,gTv(ZTv)' (48)

v=l

Similarly, an estimate of the gradient V' uITG(ulT) = E[gT(zT)aT(TllT)] can be

obtained during the same runs as

N

V uITG(ulT) = N-l LgTv(zTv)aTv(TllTv). (49)

v=l

Let us explain how all the components of the vector aT (TIlT) can be calculated
with one simulation run of the model. The vector aT (TIlT) is defined by formulas (41)
and (46) and is a function of the vector vT(TllT). By (41), the component numberj of

the vector vT (TIlT) equals

vJ(TllT) = ~t((l - a)(1JI)-a + (TlI)l-a-;lnpj(1Jj)). (50)
am. 1 ~.

1= VIii

The density fu~ction Pj(Tlj), in the sP.ecial case considered, is the product of density

functions Pji(Tlt) for each variable TIt

7}

PATlj) = IIpji(TlI),
i=l

and random values Tli are normally distributed

1 { j j }j Tli - mi
Pji(Tli) = ":-J2~7exP - 2(~)2 .

. ,
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Therefore,

8 ,8 rj ,

jlnpj(1JJ) = j Llnpj;(1J!)
81J; 81J; ; = 1

8 '

= jlnpji(1J!)

01];

8 ( 1JI - ml
)= -a;;I - -'2(;rt

= -2-1 (u{)-2. (51)

Combining (41), (50), and (51),

m
L((l - a)(1Jl)-a - 2-I(u})-2(1Jl)l-a)

;=1

v1'(1Jl1') = ~ : . (52)
am

m

L((l - a)(1Jn-a - 2-1 (u[)-2(1JJ)I-a)]

;=1

The simulation run generates random vector 1Jl1' = (1J1, . . . ,1J;,), therefore, vector

a1'(1Jl1') can be easily calculated with formulas (46) and (52).
Actually, the estimate of the gradient (49) with respect to all variables

Ul, . . . , UT is available "free of charge" since it involves far fewer calculations

than generating N sample paths.

Appendix: Proof of theorem 2.1

Here, we do not prove all statements strictly. Our aim is only to demonstrate

that the differentiation formula for the probability functions can be obtained

relatively easily.
Let x E JRn and

F(x) = J p(x,y) dy = J p(x,y) dy.

f(x,y) ~ 0 ~(x)

We increment argument x with the vector ~x. The difference F(x + ~x) - F(x) can

. ,

'.'
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p,(x,i+ I,Ax)\jl(x,i,Ax)

8iJL(x + Ax)

jl(x,i,Ax)\jl(x,i+ I,Ax)

o(y,

Figure 2. The sets jl(x, i, Ax) \ jl(x, i + 1, Ax) and jj,(x, i + 1, Ax) \ jj,(x, i, Ax).

ji(x, 1, ~x) = J1,(x + ~x),

ji(x,.k + 1, ~x) = J1,(x).

With these definitions

J p(x,y) dy - J p(x,y) dy

IJ(X+~) IJ(X)

=t[ J p(x,y)dy- J P(X,y)dY]' (56)
1-1 {Jo(X, i, Ax) {Jo(x,i+I,~)

The difference

J p(x,)dz- J p(x,z)dz

{Jo(x,i,~) {Jo(x,i+I,~)

= J p(x,y)dy- J p(x,y)dyd;;JUi (57)

{Jo(x,i,~)\{Jo(x,i+I,Ax) {Jo(x,i+I,~)\{Jo(x,i,AX)

can be represented as a surface integral. Denote by ai(y, ~x) the thickness of the

layer ji(x, i, ~x) \ ji(x, i + 1, ~x) (see figure 2). This thickness ai(y, ~x) can be

found from the equation

( \7y.fi(x,y) ).fi x+~x,y+ai(y,~x)ll\7y.fi(x,Y)11 =.fi(x,y).

. ,
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The Taylor expansion theorem and condition 7 of theorem 2.1 imply

Ji(x,y) + V;Ji(x,y)~x + aj(Y, ~x)VJ.fi(x,y) il~~t~~~k ~ Ji(x,y),

Therefore T
( ) V xh(x,y)~x

aj y,~x ~ IIVy.fi(x,y)II'

Analogously, the thickness of the layer p,(x, i + 1, ~x) \ p,(x, i, ~x) approximately
equals -aj(Y, ~x), The integrals over the layers

p,(x, i, ~x) \ p,(x, i + 1, ~x) and p,(x, i + 1, ~x) \ p,(x, i, ~x)

can be presented approximately as an integral over surface

J ( A ) ( )d J V;.fi(x,y)~x ( )dUj~ ajY,~xpx,y s= -IIVy.fi(x,y)IIPx,y S

OjJl(X) OjJl(X)

= J -(Vx.fi(~,y),~x)p(x,Y)dS
IIVy.fi(x,y)11

OjJl(X)

/ J VxJi(x,y) ( ) A )= \ - IIVy.fi(x,y)IIP x,y dS,~x .

OIJl(X)

Therefore (see (56) and (57)),

k

J p(x,y)dy- J p(x,Y)dY=~Uj

Jl(x+~) Jl(x)

/ ~ J VxJi(x,y) ( ) ) ( )~ \ -£1 IIVy.fi(x,y)IIP x,y dS,~x . 58

OjJl(X)

Combining (53), (54), (55), and (58), we obtain

J ~ J p(x,y)VxF(x) = Vxp(x,y)dY-£1 n~~mVxJi(x,Y)dS. (59)

Jl(X) OIJl(X)

Thus, formula (5) is valid.

. "

.
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The Ostrogradski-Gauss theorem links the integral over a volume and the
integral over a surface (see definition of the matrix HI(X,y) in conditions 5 and 6

of theorem 2.1):

J divy(p(x,y)HI(X,y)) dy = t J P(X,Y)HI(X'Y)il~~t~~n dS

JJ.(X) 8IJl(x)

~ J ( ( V'yfi(x,y)= £"1 P x,y)HI x,y) IIV'yfi(x,y)11 dS

8IJl(x)

~ J ( ) V'yJi(x,y)
+ L,., p x,y HI(X,y) II V' 1: ( )11 dS. (60)

;=1+1 yJi x,y

81JJ.(x)

Since the matrix HI(X,y) satisfies equation (3), then

~ J ( ) ( ) V'yJi(x,y)£"1 p x,y HI x,y IIV' yJi(x,y)11 dS

8IJl(x)

~ J ( ) V'xfi(x,y)= - £"1 p x,y IIV'yJi(x,y)11 dS. (61)

8IJl(x)

With (60), and (61)

- ~ J P(X'Y)il~~t~~~1i dS = J divy(p(x,y)HI(X,y))dy

8IJl(x) Jl(X)

~ J ) V' yfi(x,y) - i~1 p(X,y)HI(X,y IIV'yfi(x,y)11 dS. (62)

8IJl(x)

Combining (59) and (62) we obtain (4). This concludes the proof. D
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