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Derivatives Pricing in Energy Markets: An Infinite-Dimensional Approach∗
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Abstract. Based on forward curves modelled as Hilbert-space valued processes, we analyze the pricing of
various options relevant in energy markets. In particular, we connect empirical evidence about
energy forward prices known from the literature to propose stochastic models. Forward prices can
be represented as linear functions on a Hilbert space, and options can thus be viewed as derivatives
on the whole curve. The value of these options are computed under various specifications, in addition
to their deltas. In a second part, cross-commodity models are investigated, leading to a study of
square integrable random variables with values in a two-dimensional Hilbert space. We analyze the
covariance operator and representations of such variables, as well as presenting applications to the
pricing of spread and energy quanto options.
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1. Introduction. In energy markets like NYMEX, CME, EEX, and NordPool, there is a
large trade in forwards and futures contracts. Forwards and futures on power and gas are
delivering the underlying commodity over a period of time rather than at a fixed delivery
time, as is the case for oil, say. Related markets, like shipping and weather, also trade in
futures and forwards settled on an index measured over a time period. We refer to Burger,
Graeber, and Schindlmayr [19], Eydeland and Wolyniec [26], and Geman [30] for a presenta-
tion and discussion of different energy markets and the traded derivatives contracts. For a
more technical analysis on modelling aspects of energy prices, we refer to Benth, Benth, and
Koekebakker [12].

Typically, many of the energy markets trade in European call and put options written
on the forward and futures contracts, including, for example, the power exchanges EEX in
Germany and NordPool in the Nordic area. At NYMEX, one finds options on the spread
between futures on different refined oil blends. Other cross-commodity derivatives include
options on the spread between power and fuels (dark and spark spreads, say; see Eydeland
and Wolyniec [26]) or quanto options which are settled on the product between a power price
and a weather index (see Benth, Lange, and Myklebust [10]).

In this paper, we analyze the pricing of options in the framework of forward curves mod-

∗Received by the editors January 5, 2015; accepted for publication (in revised form) July 8, 2015; published
electronically September 8, 2015. Financial support from “Managing Weather Risk in Energy Markets (MAWREM),”
funded by the Norwegian Research Council, is acknowledged.

http://www.siam.org/journals/sifin/6/100268.html
†Department of Mathematics, University of Oslo, Blindern, N–0316 Oslo, Norway (fredb@math.uio.no, http://

folk.uio.no/fredb/), and Centre of Advanced Study, N-0271 Oslo, Norway.
‡Department of Mathematics, University of Oslo, Blindern, N–0316 Oslo, Norway (paulkru@math.uio.no).

825

http://www.siam.org/journals/sifin/6/100268.html
mailto:fredb@math.uio.no
http://folk.uio.no/fredb/
http://folk.uio.no/fredb/
mailto:paulkru@math.uio.no


826 FRED ESPEN BENTH AND PAUL KRÜHNER

elled as Hilbert-space valued stochastic processes. Empirical studies reveal that energy for-
wards show a high degree of idiosyncratic risk across maturities. For example, a principal
component analysis of the NordPool power forward and futures market by Benth, Benth,
and Koekebakker [12] reveals that more than ten factors are needed to explain 95% of the
volatility. (This confirms earlier studies of the same market by Frestad [28] and Koekebakker
and Ollmar [32].) Using methods from spatial statistics (see Frestad [28], Frestad, Benth, and
Koekebakker [29], and Andresen, Koekebakker, and Westgaard [3]), studies of NordPool for-
ward and futures prices show a clear correlation structure across times to maturity. These em-
pirical studies point toward the need for modelling the time dynamics of the forward curve by
means of a Hilbert-space valued process. Moreover, the abovementioned studies also highlight
the leptokurtic behavior of price returns, motivating the introduction of infinite-dimensional
Lévy processes as the noise in the forward dynamics.

This paper significantly extends the analysis of forward curves by Benth and Krühner [15]
toward a theory for pricing options in energy markets. In particular, the present paper con-
tributes in two different, but related, directions. First, we provide a detailed analysis of the
pricing of typical European options traded in various energy markets. Our results include
expressions for the deltas. Second, we lay the theoretical foundation for a modelling of cross-
commodity forwards and futures markets in an infinite-dimensional framework. In addition,
we present a broad analysis of delivery period forwards much more far-reaching than what is
found in Benth and Krühner [15].

A European option of a forward contract can, in our context, be viewed as an option on the
forward curve. The payoff of the option will be represented as a linear functional acting on the
curve, followed by a nonlinear payoff function. We provide a detailed analysis on how to view
forwards and futures contracts as linear functionals on the forward curve, set in a Hilbert space
of absolutely continuous function on R+ . We present the explicit functionals based on various
typical contracts traded in power and weather (temperature) markets. Using a representation
theorem from Benth and Krühner [15], one can derive a real-valued stochastic process for the
forward contract underlying the option, which in some special cases can be further computed to
provided simple expressions for the option price. For example, for arithmetic (linear) forward
curve models, we can find expression of the option price, either analytical in the Gaussian
case or computable via fast Fourier transform in the more general Lévy case. The prices will
depend on the realized volatility of the infinite-dimensional forward curve dynamics, which
involves some linear functionals and their duals. In particular, we need to have available the
dual of the shift operator and some integral operators, which we derive explicitly in our chosen
Hilbert space.

Also, we derive the delta of these options. The delta of the option will be defined as the
derivative of the price with respect to the initial forward curve. Interestingly, the delta will
provide information on how sensitive the price is toward inaccuracies on the initial forward
curve. As we need to construct this curve from discretely observed data, the delta provides
valuable information on the robustness of the option price toward mis-specification in the
forward curve. We also show that the option price is Lipschitz continuous as a function of
the initial forward curve as long as the payoff function is Lipschitz. In this part of our paper,
we also discuss options written on the spread between two forward contracts on the same
commodity but with different delivery periods. This spread can effectively be represented as
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the difference of two linear functionals on the forward curve extracting two different pieces of
this curve. With such options, the covariance structure along the forward curve becomes an
important ingredient in the pricing.

In the second part of the paper, we turn the focus to modelling and pricing in cross-
commodity energy markets. Typically, one is interested in modelling the joint forward dy-
namics in two energy markets, for example, in two connected power markets or the markets for
gas and power. Alternatively, one may be interested in modelling the joint forward dynamics
between temperature contracts and power. We express a bivariate forward price dynamics
through a stochastic process with values in a two-dimensional Hilbert space. More specifi-
cally, we assume that the process is the mild solution of two Musiela stochastic partial differ-
ential equations, each taking values in a Hilbert space of absolutely continuous functions on
R+, where the dynamics is driven by two dependent Hilbert-space valued Wiener processes.
Furthermore, we allow for functional dependency in the volatility specifications of the two
stochastic partial differential equations. The crucial point in our analysis is the covariance
operator for the bivariate Hilbert-space valued Wiener process. We show that the covariance
operator can be expressed as a 2×2 matrix of operators, where we find the respective marginal
covariance operators on the diagonal and an operator describing the covariance between the
two Wiener processes on the off-diagonal, analogous to the situation of a bivariate Gaussian
random variable on R

2. We derive a decomposition of two square-integrable Hilbert space
valued random variables in terms of a common factor and an independent random variable.
This “linear regression” decomposition is expressed in terms of an operator which resembles
the correlation.

Our theoretical considerations are applied to the pricing of spread options. (See Carmona
and Durrleman [21] for an extensive account on the zoology of spread options in energy
and commodity markets.) Another interesting class of derivatives is the so-called energy
quanto options, which offer the holder a payoff depending on price and volume. The volume
component is measured in terms of some appropriate temperature index, which means that
the energy quanto option can be viewed as an option written on the forward prices of energy
and temperatures. We remark that there is a weather market at the Chicago Mercantile
Exchange trading in temperature futures.

Our infinite-dimensional approach to forward price modelling in energy markets builds
on the extensive theory in fixed-income markets. We refer to Filipovic [27] and Carmona
and Tehranchi [22] for an analysis of forward rates modelled as infinite-dimensional stochastic
processes. In Benth and Krühner [15], a particular Hilbert space proposed by Filipovic [27] to
realize forward curves plays a central role. Audet et al. [4] are, to the best of our knowledge,
the first to model power forward prices using infinite-dimensional processes. Exponential
and arithmetic energy forward curve models are analyzed in Barth and Benth [9] with an
emphasis on introducing numerical schemes to simulate the dynamics. Another path is taken
in Benth and Lempa [11], where optimal portfolio selection in commodity forward markets is
studied. Barndorff-Nielsen, Benth, and Veraart [7] propose using ambit fields, a class of spatio-
temporal random fields, as an alternative modelling approach to the dynamic specification of
forward curves used in the present paper. In a recent paper, Barndorff-Nielsen, Benth, and
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Veraart [8] have extended the ambit field idea to cross-commodity market modelling and the
pricing of spread options. We remark that there is a close relationship between ambit fields
and stochastic partial differential equations (see Barndorff-Nielsen, Benth, and Veraart [6]).

We present our results as follows: in section 2, we express energy forward and futures
delivering over a settlement period as linear operators on a Hilbert space of functions. Euro-
pean options on energy futures are analyzed in section 3, while we consider cross-commodity
futures price modelling and option pricing in section 4.

1.1. Some notation. As a final note in this introduction, throughout this paper we let
(Ω,F ,Ft, Q) be a filtered probability space, where Q denotes the risk-neutral probability. We
are working directly under risk-neutrality, as we have pricing of financial derivatives in mind.
Furthermore, we use the notation L(U, V ) for the space of bounded linear operators from the
Hilbert space U into the Hilbert space V . In the case U = V , we use the shorthand notation
L(U) for L(U,U). Throughout this paper, the Hilbert-spaces that we shall use will all be
assumed separable. Finally, LHS(U, V ) denotes the space of Hilbert–Schmidt operators from
U to V , and LHS(U) = LHS(U,U).

2. Hilbert-space realization of energy forwards and futures. In this section, we aim
at representing the forward and futures prices in energy markets as an element of a Hilbert
space of functions. Motivated from results in Benth and Krühner [15], we will see that various
relevant futures contracts traded in energy markets, which deliver the underlying over a period
rather than at a fixed time in the future, can be understood as a bounded operator on a suitable
Hilbert space.

Let us first introduce the Filipovic space (see Filipovic [27]), which will be the Hilbert
space appropriate for our considerations. Let Hα be defined as the space of all absolutely
continuous functions g : R+ → R for which

∫ ∞

0
α(x)g′(x)2 dx < ∞

for a given continuous and increasing weight function α : R+ → [1,∞) with α(0) = 1. The
norm of Hα is ‖g‖2α = 〈g, g〉 for the inner product

〈f, g〉 = f(0)g(0) +

∫ ∞

0
α(x)g′(x)f ′(x) dx .

Here, f, g ∈ Hα. We assume that
∫∞
0 α−1(x) dx < ∞. Remark that the typical choice of weight

function is that of an exponential function, α(x) = exp(α̃x) for a constant α̃ > 0, in which
case the integrability condition on the inverse of α is trivially satisfied. From Filipovic [27],
we know that Hα is a separable Hilbert space. As we shall see, one can realize energy forward
and futures prices as linear operators on Hα and in fact interpret energy forward and futures
prices as stochastic processes with values in this space.

Let us consider a simple example motivating the appropriateness of the choice of Hα. The
classical model for the dynamics of energy spot prices is the so-called Schwartz dynamics.
(See Schwartz [36] and Benth, Benth, and Koekebakker [12, Chap. 3] for an extension to the
Lévy case.) Here, the spot price S(t) at time t ≥ 0 is given by

S(t) = exp(X(t))
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for X(t) being an Ornstein–Uhlenbeck (OU) process

dX(t) = ρ(θ −X(t)) dt + dL(t) ,

driven by a Lévy process L. We assume that L(1) has exponential moments, ρ > 0, θ are
constants, and lnS(0) = X(0) = x ∈ R. From Benth, Benth, and Koekebakker [12, Prop. 4.6],
we find that the forward price f(t, T ) at time t ≥ 0, for a contract delivering at time T ≥ t, is

f(t, T ) = exp

(
e−ρ(T−t)X(t) + θ(1− e−ρ(T−t)) +

∫ T−t

0
φ(e−ρs) ds

)

with φ being the logarithm of the moment generating function of L(1). Recall that we model
the spot price directly under the pricing measure Q. Letting x = T − t ≥ 0, we find (by
slightly abusing the notation)

f(t, x) = exp

(
e−ρxX(t) + θ(1− e−ρx) +

∫ x

0
φ(e−ρs) ds

)
.

It is simple to see that x 	→ f(t, x) is continuously differentiable for every t, and

∂f

∂x
(t, x) = f(t, x)

(
ρe−ρx(θ −X(t)) + φ(e−ρx)

)
.

Assume that the weight function α is such that

α(x)e−2ρx ∈ L1(R+) , α(x)φ2(e−2ρx) ∈ L1(R+) .

Then it follows that
∫∞
0 |φ(exp(−ρs))| ds < ∞ from the Cauchy–Schwartz inequality and the

assumption
∫∞
0 α−1(x) dx < ∞. Hence, f is uniformly bounded in x since

|f(t, x)| ≤ exp

(
X(t) + θ +

∫ ∞

0
|φ(e−αs)| ds

)
.

But then

‖f(t, ·)‖2α = | exp(X(t))|2 +
∫ ∞

0
α(x)f2(t, x)(ρe−ρx(θ −X(t)) + φ(e−ρx))2 dx

≤ ce2X(t)

(
1 +

∫ ∞

0
α(x)e−2ρx dx+

∫ ∞

0
α(x)φ2(e−ρx) dx

)
,

which shows that f(t, ·) ∈ Hα. If L is a driftless Lévy process, the exponential moment
condition on L(1) yields that φ(x) has the representation

φ(x) =
1

2
σ2x2 +

∫

R

{exz − 1− xz} ℓ(dz)

for a constant σ ≥ 0 and Lévy measure ℓ(dz). But by the monotone convergence theorem and
L’Hopital’s rule, we find that

lim
xց0

1

x2

∫

R

{exz − 1− xz} ℓ(dz) = 1

2

∫

R

z2 ℓ(dz) ,
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and therefore φ(x) ∼ x2 when x is small. Thus, a sufficient condition for f(t, ·) ∈ Hα is
α(x) exp(−2ρx) ∈ L1(R+,R).

We now move our attention to the main theme of this section, namely, the realization
in Hα of general energy forward and futures contracts with a delivery period. Suppose that
F (t, T1, T2) is the swap price at time t of a contract on energy delivering over the time interval
[T1, T2], where 0 ≤ t ≤ T1 < T2. Then one can express (see Benth, Benth, and Koeke-
bakker [12, Prop. 4.1]) this price as

(2.1) F (t, T1, T2) =

∫ T2

T1

w̃(T ;T1, T2)f(t, T ) dT,

where f(t, T ), t ≤ T is the forward price for a contract “delivering energy” at the fixed
time time T , and w̃(T ;T1, T2) is a deterministic weight function. We will later make precise
assumptions on w̃, but for now we implicitly assume that the integral in (2.1) makes sense.
For example, at the NordPool and EEX power exchanges, swap contracts deliver electricity
over specific weeks, months, quarters, and even years and are of either forward or futures
style. The delivery is financial, meaning that the seller of a contract receives the accumulated
spot price of power over the specified period of delivery (forward style) or the interest-rate
discounted accumulated spot price (futures style), i.e., for these power swap contracts, we
have the weight function

(2.2) w̃(T ;T1, T2) =
1

T2 − T1

for the forward-style contracts and

(2.3) w̃(T ;T1, T2) =
e−rT

∫ T2

T1
e−rs ds

for the futures style. Here, r > 0 is the risk-free interest rate which we suppose to be constant.
The reason for the averaging is the market convention of denominating forward and futures
(swap) prices in terms of mega watt hours (MWh). In the gas market on NYMEX, say, gas
is delivered physically at a location (Henry Hub in the case of NYMEX) over a given delivery
period like month or quarter. We will therefore have the same expression (2.1) for the gas
swap prices as in the case of power swaps.

Futures on temperature indices like HDD, CDD, and CAT1 deliver the money-equivalent
from the aggregated index value over a specified period. Hence, the futures price can be
expressed as

F (t, T1, T2) =

∫ T2

T1

f(t, T ) dT ,

where f(t, T ) is the futures price of a contract that delivers the corresponding temperature
index at the fixed delivery time T ≥ t, i.e., temperature futures can be expressed by (2.1)
with

(2.4) w̃(T ;T1, T2) = 1

1HDD is shorthand for heating-degree days, CDD for cooling-degree days, and CAT for cumulative average
temperature.
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as the weight function. We refer to Benth and Benth [13] for a discussion on weather futures
as well as the definition of various temperature indices. Here, one may also find a discussion
of the more recent wind futures, which can be expressed as the temperature futures except
for a different index interpretation of f .

We aim at a so-called Musiela representation of F (t, T1, T2) in (2.1). Define x := T1− t as
the time until start of delivery of the swap and ℓ = T2 − T1 > 0 as the length of delivery of
the swap. With the notation g(t, y) := f(t, t+ y), one easily derives

(2.5) Gw
ℓ (t, x) := F (t, t+ x, t+ x+ ℓ) =

∫ x+ℓ

x
wℓ(t, x, y)g(t, y) dy

for the weight function wℓ(t, x, y) defined by

(2.6) wℓ(t, x, y) := w̃(t+ y; t+ x, t+ x+ ℓ) ,

where y ∈ [x, x + ℓ], x ≥ 0 and t ≥ 0. Referring to the different cases of the weight function
w̃, we find that wℓ(t, x, y) = 1 for a temperature (wind) contract (with w̃ as in (2.4)) and
wℓ(t, x, y) = 1/ℓ for the forward-style power (gas) swap (using w̃ as in (2.2)). Slightly more
interesting are the future-style power swaps, yielding

(2.7) wℓ(t, x, y) =
r

1− e−rℓ
e−r(y−x) .

Here, we used (2.3). Note that all these cases result in a weight function wℓ which is inde-
pendent of time. Furthermore, the only case that depend on x and y is given in (2.7), which
becomes in fact stationary in the sense that wℓ depends on y − x. We shall for simplicity re-
strict ourselves to the situation for which wℓ is time-independent and stationary. By slightly
abusing notation, we consider weight functions wℓ : R+ → R+, such that

(2.8) Gw
ℓ (t, x) =

∫ x+ℓ

x
wℓ(y − x)g(t, y) dy .

Based on the different cases above, we assume that the weight function u 	→ wℓ(u) is positive,
bounded, and measurable.

Following Benth and Krühner [15, sect. 4], we can represent Gw
ℓ as a linear operator on g

after performing a simple integration-by-parts, that is,

Gw
ℓ (t) = Dw

ℓ (g(t)),

where, for a generic function g ∈ Hα,

(2.9) Dw
ℓ (g) = Wℓ(ℓ)Id(g) + Iw

ℓ (g) .

Here, Id is the identity operator, and the function u 	→ Wℓ(u), u ≥ 0, is defined as

(2.10) Wℓ(u) =

∫ u

0
wℓ(v) dv .
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As wℓ is a measurable and bounded function, Wℓ is well-defined for every u ≥ 0. Note that
the limit of Wℓ(u) does not necessarily exist when u → ∞. For example, Wℓ tends to infinity
with u for wℓ = 1/ℓ or wℓ(u) = 1. However, when wℓ is as in (2.7), the limit of Wℓ exists.
Since wℓ is positive, the function u 	→ Wℓ(u) is increasing. Hence, Wℓ(ℓ) > 0, and the first
term of Dw

ℓ in (2.9) is simply the indicator operator on Hα scaled by the positive number
Wℓ(ℓ). Furthermore, Iw

ℓ in (2.9) is an integral operator

(2.11) Iw
ℓ (g) =

∫ ∞

0
qwℓ (·, y)g′(y) dy

with kernel

(2.12) qwℓ (x, y) = (Wℓ(ℓ)−Wℓ(y − x))1[0,ℓ](y − x) .

Before we show that Iw
ℓ is a bounded operator on Hα, we look at a special case.

Consider a simple forward-style power swap, i.e., wℓ(u) = 1/ℓ. We get Wℓ(u) = u/ℓ, and
therefore Wℓ(ℓ) = 1 yielding that first term in (2.9) is simply the identity operator on Hα.
The integral operator Iw

ℓ has the kernel

qwℓ (x, y) =
1

ℓ
(x+ ℓ− y)1[x,x+ℓ](y) .

This example is analyzed in Benth and Krühner [15, sect. 4]. They show that the integral
operator Iwℓ in this case is a bounded linear operator on Hα, implying that t 	→ Gw

ℓ (t) is a
stochastic process with values in Hα as long as t 	→ g(t) is an Hα-valued process. It turns out
that the boundedness property of the integral operator Iw

ℓ holds also for our class of more
general weight functions. This is shown in the next proposition.

Proposition 2.1. Under the assumption that u 	→ wℓ(u) for u ∈ R+ is positive, bounded,
and measurable, it holds that Iw

ℓ is a bounded linear operator on Hα.

Proof. Obviously, qwℓ (x, y) is measurable on R
2
+. Moreover, it is bounded since for y ∈

[x, x+ ℓ]

0 ≤ Wℓ(ℓ)−Wℓ(y − x) =

∫ ℓ

y−x
wℓ(u) du ≤ cℓ ,

where c is the constant majorizing wℓ. Hence, 0 ≤ qwℓ (x, y) ≤ cℓ. It follows that

∫ ∞

0
α−1(y)(qwℓ (x, y))

2 dy ≤ c2ℓ2
∫ ∞

0
α−1(y) dy < ∞

and part 1 of Corollary 4.5 in Benth and Krühner [15] holds. This implies that the integral
operator Iw

ℓ is defined for all g ∈ Hα. We continue to demonstrate that part 2 of the same
corollary also holds.

As shorthand notation, let, for a given g ∈ Hα,

ξ(x) :=

∫ ∞

0
qwℓ (x, y)g

′(y) dy =

∫ x+ℓ

x
(Wℓ(ℓ)−Wℓ(y − x))g′(y) dy .
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In particular,

ξ(0) =

∫ ℓ

0
(Wℓ(ℓ)−Wℓ(y))g

′(y) dy =

∫ ℓ

0

∫ ℓ

y
wℓ(u) du g

′(y) dy .

Hence, we find

ξ2(0) =

(∫ ℓ

0

∫ ℓ

y
wℓ(u) du g

′(y) dy

)2

≤
(∫ ℓ

0

∫ ℓ

y
wℓ(u) du|g′(y)| dy

)2

≤
(∫ ℓ

0
wℓ(u) du

)2(∫ ℓ

0
|g′(y)| dy

)2

= W 2
ℓ (ℓ)

(∫ ℓ

0

√
α(y)|g′(y)|

√
α(y)

−1
dy

)2

≤ W 2
ℓ (ℓ)

∫ ℓ

0
α−1(y) dy

∫ ℓ

0
α(y)g′(y)2 dy

≤ W 2
ℓ (ℓ)

∫ ℓ

0
α−1(y) dy‖g‖2α ,

where in the second inequality we used that wℓ is positive and in the third the Cauchy–
Schwartz inequality. Recall that by assumption,

∫∞
0 α−1(y) dy < ∞. Furthermore, it holds

that

ξ′(x) =
d

dx

∫ x+ℓ

x
(Wℓ(ℓ)−Wℓ(y − x))g′(y) dy

= (Wℓ(ℓ)−Wℓ(ℓ))g
′(x+ ℓ)− (Wℓ(ℓ)−Wℓ(0))g

′(x)

+

∫ x+ℓ

x
(−W ′

ℓ(y − x))(−1)g′(y) dy

=

∫ x+ℓ

x
wℓ(y − x)g′(y) dy −Wℓ(ℓ)g

′(x) ,

and therefore ξ has a (weak) derivative. By the triangle inequality,

ξ′(x)2 ≤ 2Wℓ(ℓ)g
′(x)2 + 2

(∫ x+ℓ

x
wℓ(y − x)g′(y) dy

)2

.

We consider the second term on the right-hand side: By the Cauchy–Schwartz inequality and
boundedness of wℓ,

∫ ∞

0
α(x)

(∫ x+ℓ

x
wℓ(y − x)g′(y) dy

)2

dx ≤
∫ ∞

0
α(x)

(∫ x+ℓ

x
wℓ(y − x)|g′(y)| dy

)2

dx

≤
∫ ∞

0
α(x)

∫ x+ℓ

x
w2
ℓ (y − x) dy

∫ x+ℓ

x
g′(y)2 dy dx
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≤ c2ℓ

∫ ∞

0

∫ x+ℓ

x
α(y)g′(y)2 dy dx

≤ c2ℓ2‖g‖2α ,

after using Fubini’s theorem and that α is nondecreasing. Wrapping up these estimates, we
majorize the Hα-norm of ξ

‖ξ‖2α = |ξ2(0)|+
∫ ∞

0
α(x)ξ′(x)2 dx

≤ W 2
ℓ (ℓ)

∫ ℓ

0
α−1(y) dy‖g‖2α + 2W 2

ℓ (ℓ)‖g‖2α + 2c2ℓ2‖g‖2α

≤ C‖g‖2α

for a positive constant C. But then ξ ∈ Hα, and we can conclude from Corollary 4.5 of
Benth and Krühner [15] that Iw

ℓ is a continuous linear operator on Hα. The proposition
follows.

From Proposition 2.1, it follows immediately that Dw
ℓ in (2.9) is a continuous linear op-

erator on Hα, as it is the sum of the scaled identity operator and the integral operator Iw
ℓ .

Moreover, for g ∈ Hα, it holds (by inspection of the proof of Proposition 2.1) that

‖|Dw
ℓ (g)‖α ≤

⎧
⎨
⎩Wℓ(ℓ) +

√

W 2
ℓ (ℓ)(2 +

∫ ℓ

0
α−1(y) dy) + 2c2ℓ2

⎫
⎬
⎭ ‖g‖α ,

which provides us with an upper bound on the operator norm of Dw
ℓ . Furthermore, it follows

immediately from Proposition 2.1 that we can realize the dynamics of swap price curves in
Hα, e.g., if g(t) is an Hα-valued stochastic process, then t 	→ Gw

ℓ (t) will be a stochastic process
with values in Hα as well.

3. European options on energy forwards and futures. At the energy exchanges, plain
vanilla call and put options are offered for trade on futures and forward contracts. For example,
at NordPool, one can buy and sell options on the quarterly settled power futures contracts,
while at CME, one can trade in options on weather futures, including HDD/CDD and CAT
temperature futures. NYMEX offers trade in options on gas futures, among a number of other
derivatives on energy and commodity futures (including different blends of oil).

Consider a European option on an energy forward contract delivering over the period
[T1, T2] and price F (t, T1, T2) at time t, where the option has exercise time 0 ≤ τ ≤ T1 and
payoff p(F (τ, T1, T2)) for some function p : R → R. For plain vanilla call and put options,
we have p(x) = max(x − K, 0) or p(x) = max(K − x, 0), respectively, with the strike price
denoted K. We assume in general p to be a measurable function of at most linear growth. We
recall the representation F (t, T1, T2) = Dw

ℓ (g(t))(T1 − t). The following proposition provides
the link to the infinite-dimensional swap prices.

Proposition 3.1. Suppose that p is of at most linear growth. It holds that

p(F (τ, T1, T2)) = Pℓ(T1 − τ, g(τ))
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for a nonlinear functional Pw
ℓ : R+ ×Hα → R defined by

Pw
ℓ (x, g) = p ◦ δx ◦ Dw

ℓ (g) .

Here, ℓ = T2 − T1. Moreover, there exists a constant cℓ > 0 depending on ℓ such that

|Pw
ℓ (·, g)|∞ ≤ cℓ(1 + ‖g‖α) .

Proof. Since we have F (τ, T1, T2) = Gw
T2−T1

(τ, T1 − τ), the first claim follows. From the
linear growth of p , we find

|Pw
ℓ (x, g)| = |p(Dw

ℓ (g)(x))| ≤ c1 (1 + |Dw
ℓ (g)(x)|)

for a positive constant c1. Since
∫∞
0 α−1(y) dy < ∞, we find by Lemma 3.2 in Benth and

Krühner [15]

|Pw
ℓ (·, g)|∞ = sup

x∈R+

|Pℓ(x, g)| ≤ c2 (1 + ‖Dw
ℓ (g)‖α)

for a positive constant c2 > 0. But Dw
ℓ is a continuous linear operator on Hα by Proposi-

tion 2.1, and hence so is Dw
ℓ . The last claim follows, and the proof is complete.

Consider the special case of power forwards, for which we recall that wℓ(u) = 1/ℓ. In this
case, we observe

lim
ℓ↓0

Gw
ℓ (t, x) =

∂

∂ℓ

∫ x+ℓ

x
g(t, y) dy|ℓ=0 = g(t, x) .

Hence, we can make sense out of Pw
0 for wℓ(u) = 1/ℓ as

(3.1) P0(x, g) = p ◦ δx(g) .

Here, x ∈ R+ and g ∈ Hα, and we use the simplified notation P0 instead of Pw
0 in this

particular case. We note that the nonlinear operator P0 will be the payoff from an option on
a forward with fixed time to delivery x instead of a delivery period which lasts ℓ > 0, since it
holds that

(3.2) p(f(τ, T )) = P0(T − τ, g(τ))

for τ ≤ T . The markets for oil at NYMEX, for example, trade in forwards and futures with
fixed delivery times and options on these contracts. It is straightforward from Lemma 3.2 in
Benth and Krühner [15] that

|P0(·, g)|∞ = sup
x∈R+

|p(g(x))| ≤ c1(1 + sup
x∈R+

|g(x)|) ≤ c2 (1 + ‖g‖α)

for g ∈ Hα and a payoff function p with at most linear growth.
Suppose now that g(t) is a stochastic process in Hα satisfying

(3.3) E [‖g(t)‖α] < ∞
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for all t ≥ 0. The price V (t) at time 0 ≤ t ≤ τ of the option with payoff p(F (τ ;T1, T2) at time
0 < τ ≤ T1 is given as

(3.4) V (t) = e−r(τ−t)
E [Pw

ℓ (T1 − τ, g(τ)) | Ft] .

The expectation is well-defined by Proposition 3.1 for any given ℓ > 0. If we select wℓ(u) = 1/ℓ,
then the option value in (3.4) also incorporates contracts written on fixed-delivery forwards,
that is, options with payoff p(f(τ, T )),

(3.5) V (t) = e−r(τ−t)
E [P0(T − τ, g(τ)) | Ft] .

This is also well-defined under the assumption (3.3).

3.1. Markovian forward curves. We want to analyze option prices for a class of Markovian
forward curve dynamics, where the process g(t) is specified as the solution of a (first-order)
stochastic partial differential equation. We shall be concerned with dynamics driven by an
infinite-dimensional Lévy process.

Before proceeding, let us first introduce some general notions (see, e.g., Peszat and
Zabczyk [34] for what follows): A random variable X with values in a separable Hilbert
space H is square integrable if E(‖X‖2) < ∞. If X is square integrable, Q ∈ L(H) is called
the covariance operator of X if

E (〈X,u〉〈X, v〉) = 〈Qu, v〉

for any u, v ∈ H. Here, 〈·, ·〉 is the inner product in H and ‖ · ‖ the associated norm. The
following result can be found in Peszat and Zabczyk [34, Thm. 4.44] and is stated here for
convenience.

Lemma 3.2. Let X be a square integrable H-valued random variable where H is a separable
Hilbert space. Then there is a unique operator Q ∈ L(H) such that Q is the covariance operator
of X. Moreover, Q is a positive semidefinite trace class operator. Consequently, there is an
orthonormal basis (en)n∈I of H and a sequence (λn)n∈I ∈ l1(I,R+) such that

Qu =
∑

n∈N
λn〈en, u〉en

for any u ∈ H.

For a separable Hilbert space H, L := {L(t)}t≥0 is an H-valued Lévy process if L has
independent and stationary increments and stochastically continuous paths and L(0) = 0.
This definition is found in Peszat and Zabczyk [34, Chap. 4] and can in fact be formulated on
a general Banach space. We remark in passing that Theorem. 4.44 in Peszat and Zabczyk [34]
is formulated for Lévy processes.

Let us now move our attention back to modelling the forward rate dynamics and suppose
that L is a square-integrable H-valued Lévy process with zero mean and denote its covariance
operator by Q. Furthermore, let σ : R+ ×Hα → L(H,Hα) be a measurable map, and assume
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there exists an increasing function K : R+ → R+ such that the following Lipschitz continuity
and linear growth holds: for any f, h ∈ Hα and t ∈ R+,

‖σ(t, f)− σ(t, h)‖op ≤ K(t)‖f − h‖α ,(3.6)

‖σ(t, f)‖op ≤ K(t)(1 + ‖f‖α) .(3.7)

Consider the dynamics of the Hα-valued stochastic process {g(t)}t≥0 defined by the stochastic
partial differential equation

(3.8) dg(t) = ∂xg(t) dt + σ(t, g(t)) dL(t) .

Let Sx, x ≥ 0 denote the right-shift operator on Hα, i.e., Sxf = f(x+ ·). Then Sx is the C0-
semigroup generated by the operator ∂x (see Filipovic [27, Theorem. 5.1.1]). From Lemma 3.5
in Benth and Krühner [15], Sx is quasi-contractive, i.e., there exists a positive constant c such
that ‖Sx‖op ≤ exp(ct) for t > 0. Hence, referring to Theorem 4.5 in Tappe [37] (or Albeverio,
Mandrekar, and Rüdiger [2] for the path-dependent case), there exists a unique mild solution
of (3.8) for s ≥ t, that is, a càdlàg process g ∈ Hα satisfying

(3.9) g(s) = Ss−tg(t) +

∫ s

t
Ss−uσ(u, g(u)) dL(u) .

The shift and the pricing operator for F (t, T1, T2) commute, which allows one to find the
dynamics of F (·, T1, T2). Moreover, this dynamics reveals that t 	→ F (t, T1, T2) is a martingale
in our setup, as desired.

Lemma 3.3. We have SxDw
ℓ = Dw

ℓ Sx for any x ≥ 0. Consequently, we have

(3.10) F (s, T1, T2) = δT1−tDw
ℓ g(t) +

∫ s

t
δT1−uDw

ℓ σ(u, g(u)) dL(u)

for any 0 ≤ t ≤ s.

Proof. The first equality follows from a straightforward computation. Applying the mild
solution in equation (3.9) to F (s, T1, T2) = δT1−sDw

ℓ g(s), the claim follows after using the
commutation property.

Remark 3.4. Lemma 3.3 reveals that the dynamics of s 	→ F (s, T1, T2) are martingales.
Conversely, if one assumes that dg(s) = β(s)ds + σ(s, g(s))dL(s) and that the dynamics of
s 	→ F (s, T1, T2) are martingales for any 0 ≤ T1 < T2, then sending T2 ց T1 shows that

g(s) = Ssg(0) +

∫ s

0
Ss−uσ(u, g(u)) dL(u)

for any s ≥ 0 which reveals that g is a solution to the stochastic partial differential equation
(3.8). Hence, it is somewhat equivalent to assume that the dynamics of s 	→ F (s, T1, T2) are
martingales and that the drift of g at time t is given by ∂xg(t).

Below, it will be convenient to know that Sx is uniformly bounded in the operator norm.

Lemma 3.5. It holds that ‖Sx‖2op ≤ 2max(1,
∫∞
0 α−1(y) dy) for x ≥ 0.
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Proof. This follows by a direct calculation: By the fundamental theorem of calculus, the
elementary inequality 2ab ≤ a2 + b2 and α being nondecreasing, we find for f ∈ Hα

‖Sxf‖2α = f2(x) +

∫ ∞

0
α(y)|f ′(x+ y)|2 dy

=

(
f(0) +

∫ x

0
f ′(y) dy

)2

+

∫ ∞

x
α(y − x)|f ′(y)|2 dy

≤ 2f2(0) + 2

(∫ x

0
α−1/2(y)α1/2(y)f ′(y) dy

)2

+

∫ ∞

x
α(y)|f ′(y)|2 dy .

Appealing to the Cauchy–Schwartz inequality, we find

‖Sxf‖2α ≤ 2f2(0) + 2

∫ x

0
α−1(y) dy

∫ x

0
α(y)|f ′(y)|2 dy +

∫ ∞

x
α(y)|f ′(y)|2 dy .

Hence, ‖Sxf‖2α ≤ max(2, 2
∫∞
0 α−1(y) dy)‖f‖2α, and the lemma follows.

From (3.9), the dynamics of g becomes Markovian. This means in particular that V (t)
defined in (3.4) can be expressed as V (t) = V (t, g(t)) (with a slight abuse of notation) for

(3.11) V (t, g) = e−r(τ−t)
E
[
Pℓ(g

t,g(τ))
]
.

Here, we have used the notation gt,g(s) s ≥ t for the process g(s), s ≥ t, starting in g at time
t, e.g., gt,g(t) = g, g ∈ Hα.

We shall use the continuity of the translation operator as a linear operator on Hα to prove
Lipschitz continuity of the functional g 	→ V (t, g), uniformly in t ≤ τ . Recall that τ is the
exercise time of the option in question.

Proposition 3.6. Assume that the payoff function p is Lipschitz continuous and volatility
functional g 	→ σ(s, g) satisfies the Lipschitz and linear growth conditions in (3.6), (3.7). Then
there exists a positive constant C (depending on τ) such that

sup
t≤τ

|V (t, g)− V (t, g̃)| ≤ C‖g − g̃‖α

for g, g̃ ∈ Hα.
Proof. As p is Lipschitz continuous, it follows that g 	→ Pℓ(x, g) is Lipschitz continuous

since Pℓ(x, ·) = p ◦ δx ◦Dw
ℓ , and δx,Dw

ℓ are bounded linear operators. Moreover, the Lipschitz
continuity is uniform in x, as it follows from Lemma 3.1 in Benth and Krühner [15] that the
operator norm of δx satisfies

‖δx‖2op = 1 +

∫ x

0
α−1(y) dy ≤ 1 +

∫ ∞

0
α−1(y) dy < ∞ .

Hence, there exists a constant CP > 0 such that

|Pℓ(x, g)− Pℓ(x, g̃)| ≤ CP‖g − g̃‖α .

Therefore,

|V (t, g)− V (t, g̃)| ≤ CPE
[
‖gt,g(τ)− gt,g̃(τ)‖α

]
.
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Since

gt,g(τ) = Sτ−tg +

∫ τ

t
Sτ−sσ(s, g

t,g(s)) dL(s),

we have by the triangle inequality and Lemma 3.5

‖gt,g(τ)− gt,g̃(τ)‖α ≤ ‖Sτ−t(g − g̃)‖α + ‖
∫ τ

t
Sτ−s

(
σ(s, gt,g(s))− σ(s, gt,g̃(s))

)
dL(s)‖α

≤ c‖g − g̃‖α + ‖
∫ τ

t
Sτ−s

(
σ(s, gt,g(s))− σ(s, gt,g̃(s))

)
dL(s)‖α ,

where the constant c is positive and in fact given explicitly in Lemma 3.5. By the Itô isometry,
it follows that

E

[
‖
∫ τ

t
Sτ−s

(
σ(s, gt,g(s))− σ(s, gt,g̃(s))

)
dL(s)‖2α

]

=

∫ τ

t
E

[
‖Sτ−s

(
σ(s, gt,g(s))− σ(s, gt,g̃(s))

)
Q1/2‖2LHS(H,Hα)

]
ds .

Now let T ∈ L(H,Hα). Then, we have

‖SxT Q1/2‖LHS(H,Hα) ≤ ‖Sx‖op‖T ‖op‖Q1/2‖LHS(H)

≤ c‖T ‖op‖Q1/2‖LHS(H).

Letting T = σ(s, gt,g(s)) − σ(s, gt,g̃(s)) and x = τ − s, we find from the Lipschitz continuity
of σ in (3.6)

‖Sτ−s

(
σ(s, gt,g(s))− σ(s, gt,g̃(s))

)
Q1/2‖2LHS(H,Hα)

≤ c2‖Q1/2‖2LHS(H)‖σ(s, gt,g(s))− σ(s, gt,g̃(s))‖2op
≤ c2K2(s)‖Q1/2‖2LHS(H)‖gt,g(s)− gt,g̃(s)‖2α .

But K is an increasing function in the Lipschitz continuity of σ, so K(s) ≤ K(τ). Hence,

E

[
‖
∫ τ

t
Sτ−s

(
σ(s, gt,g(s))− σ(s, gt,g̃(s))

)
dL(s)‖2α

]

≤ c2K2(τ)‖Q1/2‖2LHS(H)

∫ τ

t
E

[
‖gt,g(s)− gt,g̃(s)‖2α

]
ds .

If we now apply the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we derive

E

[
‖gt,g(τ)− gt,g̃(τ)‖2α

]
≤ 2c2‖g − g̃‖2α

+ 2c2‖Q1/2‖2LHS(H)K
2(τ)

∫ τ

t
E

[
‖gt,g(s)− gt,g̃(s)‖2α

]
ds .

Grönwall’s inequality then yields

E

[
‖gt,g(τ)− gt,g̃(τ)‖2α

]
≤ 2ce

2c‖Q1/2‖2
LHS(H)

K2(τ)(τ−t)‖g − g̃‖2α .
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From Jensen’s inequality, we thus derive

|V (t, g)− V (t, g̃)| ≤ CP
√
2ce

(2cK2(τ)‖Q1/2‖2
LHS(H)

τ‖g − g̃‖α ,

and the result follows.
The proposition shows that the option price is uniformly Lipschitz continuous in the initial

forward curve as long as we consider Lipschitz continuous payoff functions and volatility
operators σ. We remark that put and call options have Lipschitz continuous payoff functions.
One immediate interpretation of the uniform Lipschitz property of the functional g 	→ V (t, g)
is that the option price is stable with respect to small perturbations in the initial curve g.
This means, in practical terms, that the option price is robust toward small errors in the
specification of the initial curve. It is important to notice that we only have available a
discrete set of forward prices in practice, and thus the specification of the initial curve g may
be prone to error as it is not perfectly observable.

Another interesting application of Proposition 3.6 is the majorization of the option pricing
error in case we wish to compute the price for a finite-dimensional projection of the infinite-
dimensional curve g. Recall that from a practical market perspective, we only have knowledge
of a finite subset of values from the whole curve g. This is the situation we discuss now.

Let {ek}k∈N be an orthonormal basis of Hα, and define the projection operator Γn : Hα →
Hn

α by

(3.12) Γng =

n∑

k=1

〈g, ek〉αek ,

where Hn
α is the n-dimensional subspace of Hα spanned by the basis {e1, . . . , en}. The option

price with Γng as initial curve becomes Vn(t, g) := V (t,Γng), and we find from Proposition 3.6
that

sup
t≤τ

|V (t, g)− Vn(t, g)| ≤ C‖g − Γng‖α .

But, when n → ∞, it follows from Parseval’s identity

‖g − Γng‖2α =

∞∑

k=n+1

|〈g, ek〉α|2 → 0 ,

and we can approximate V (t, g) within a desirable error by choosing n sufficiently big. Note
that with

V̂ (t, x1, . . . , xn) := V (t,
n∑

k=1

xkek),

we have that Vn(t, g) = V̂ (t, 〈g, e1〉α, . . . , 〈g, en〉α). We can view V̂ (t, x1, . . . , xn) as the option
price on theHα-valued stochastic process g, which is started in the finite-dimensional subspace
Hn

α at time t with the values 〈Γng, ek〉α = xk, k = 1, . . . , n. By the dynamics of g, we have
no guarantee that the process g will remain in Hn

α , so that at time τ we have in general that
gt,Γng(τ) /∈ Hn

α . Indeed, it may truly be an infinite-dimensional object and thus not in any
Hm

α , m ∈ N. Furthermore, it is important to note that such an approximation Γng typically
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fails to be a martingale under the pricing measure Q, and hence the option price Vn(t, g) will
not be arbitrage-free. In a forthcoming paper [17], we study arbitrage-free finite-dimensional
approximations.

3.2. The arithmetic Gaussian case. Suppose that g solves the simple linear Musiela
equation

(3.13) dg(t) = ∂xg(t) dt+ σ(t) dB(t),

where B is an H-valued Wiener process with covariance operator Q and H being a separable
Hilbert space. The volatility σ is assumed to be a stochastic process σ : R+ 	→ L(H,Hα),
where σ ∈ L2

B
(Hα), the space of integrands for the stochastic integral with respect to B (see

section 8.2 in Peszat and Zabczyk [34]). This is indeed a special case of the general Markovian
dynamics presented above, and the mild solution becomes

(3.14) g(τ) = Sτ−tg(t) +

∫ τ

t
Sτ−sσ(s) dB(s)

for τ ≥ t. We now analyze V (t) defined in (3.4) and (3.5) for this particular dynamics. First,
recall from Lemma 3.3 that

F (τ, T1, T2) = δT1−tDw
ℓ g(t) +

∫ τ

t
δT1−sDw

ℓ σ(s) dB(s)

for any t ∈ [0, τ ].

It follows from Theorem 2.1 in Benth and Krühner [15] that

F (τ, T1, T2) = δT1−tDw
ℓ g(t) +

∫ τ

t
σ̃(s) dB(s)(3.15)

for any t ∈ [0, τ ] where

σ̃2(s) = (δT1−sDw
ℓ σ(s)Qσ∗(s)(δT1−sDw

ℓ )
∗)(1)

and B is a standard Brownian motion.

This implies

V (t, g(t)) = e−r(τ−t)
E[p(F (τ, T1, T2))].

We find the following particular result for V in the case of a nonrandom volatility.

Proposition 3.7. Let σ be nonrandom. Then we have

V (t, g) = e−r(τ−t)
E [p(m(g) + ξX)]

for any for t ≤ τ ≤ T1. Here, X is a standard normal distributed random variable,

ξ2 :=

∫ τ

t
σ̃2(s) ds =

∫ τ

t
(δT1−sDw

ℓ σ(s)Qσ∗(s)(δT1−sDw
ℓ )

∗)(1) ds
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for any t ∈ [0, τ ] and
m(g) := (δT1−t ◦ Dw

ℓ )(g) , g ∈ Hα.

Proof. In the case of σ being nonrandom, we find that the stochastic integral
∫ τ
t σ̃(s) dB(s)

in (3.15) is a centered normal distributed random variable. The variance is ξ2, which follows
straightforwardly by the Itô isometry. By the independent increment property of Brownian
motion, the result follows.

In order to compute the realized variance ξ2 in the proposition above, we must find the
dual operator of δT1−s ◦ Dw

ℓ . Obviously, it holds that

(δT1−s ◦ Dw
ℓ )

∗ = Dw∗
ℓ ◦ δ∗T1−s .

The dual operator of δy is found in Filipovic [27] (see also Lemma 3.1 in [15]) and is the
mapping δ∗y : R 	→ Hα defined as

(3.16) δ∗y(c) : x 	→ c+ c

∫ y∧x

0
α−1(u) du := chy(x)

for c ∈ R and x ≥ 0 and

(3.17) hy(x) = 1 +

∫ y∧x

0
α−1(u) du .

Thus, δ∗T1−s(1) is the function

(3.18) δ∗T1−s(1)(x) = hT1−s(x) = 1 +

∫ (T1−s)∧x

0
α−1(u) du

for x ≥ 0. Now we are left to derive the function Dw∗
ℓ (hT1−s).

Proposition 3.8.With the preceding notation we have

Dw∗
ℓ (hT1−s)(x) = Wℓ(ℓ)hT1−s(x) +

∫ x

0

qwℓ (T1 − s, z)

α(z)
dz

for any s ∈ [0, T1], x ≥ 0.
Proof. Let x ≥ 0 and s ∈ [0, T1]. Then we have

Dw∗
ℓ (hT1−s)(x) = 〈Dw∗

ℓ (hT1−s), hx〉
= 〈hT1−s,Dw

ℓ hx〉
= Dw

ℓ hx(T1 − s)

= Wℓ(ℓ)hT1−s(x) +

∫ x

0

qwℓ (T1 − s, z)

α(z)
dz.

If we define Σ(s) := σ̃(s)Qσ̃∗(s) and if we want to apply Proposition 3.7, then we need to
calculate

ζ2 =

∫ τ

t
(δT1−sDw

ℓ )Σ(s)(δT1−sDw
ℓ )

∗(1)ds.
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With a representation for (δT1−sDw
ℓ )

∗(1) = Dw∗
ℓ (hT1−s) at hand, we still need to calculate the

operator δT1−sDw
ℓ . However, we simply have

δT1−sDw
ℓ g = Wℓ(ℓ)g(T1 − s) +

∫ ∞

0
qwℓ (T1 − s, y)g′(y)dy

for any g ∈ Hα. Q and σ are—of course—up to the modeller’s choice. However, after σ and Q
have been picked, one does need to calculate σ∗(s). The following proposition gives a simple
formula for calculating the dual operator of a given operator. As a side remark, the next
proposition also shows that any linear operator T = (T ∗)∗ on Hα is the sum of an integral
operator and an operator which “only” acts on the initial value of the inserted function.

Proposition 3.9. Let T ∈ L(Hα). Then

T ∗g(x) = g(0)η(x) +

∫ ∞

0
q(x, y)g′(y)dy, g ∈ Hα ,

where

η(x) := (T hx)(0) = (T ∗h0)(x),

q(x, y) := (T hx)
′(y)α(y)

for any x, y ≥ 0 and hx is defined in (3.17).
Proof. Filipovic [27, Lem. 5.3.1] shows that g(x) = 〈g, hx〉 for any g ∈ Hα, x ≥ 0. Hence,

T ∗g(x) = 〈T ∗g, hx〉
= 〈g,T hx〉

= g(0)T hx(0) +

∫ ∞

0
g′(y)(T hx)

′(y)α(y) dy

= g(0)η(x) +

∫ ∞

0
q(x, y)g′(y) dy

for any g ∈ Hα, x ≥ 0. This proves the result.
Let us next move our attention to the so-called delta of the option price in Proposition 3.7.

We define the delta to be the Gâteaux derivative of the price V (t, g(t)) along some direction
h ∈ Hα. This will measure how sensitive the price functional is to perturbations along h of
the forward curve g(t). We have the following result.

Proposition 3.10. Assume that σ is nonrandom. Then the Gâteaux derivative of V (t, g(t))
in direction h ∈ Hα is

DhV (t, g) =
1

ξ
m(h)E [p(m(g) + ξX)X]

with m(g) and ξ defined in Proposition 3.7.
Proof. We apply the so-called density method (see Glasserman [31]) along with properties

of the Gâteaux derivative. For g ∈ Hα, it holds after a change of variables,

V (t, g) =

∫

R

p(m(g) + ξx)φ(x) dx =
1

ξ

∫

R

p(y)φ

(
y −m(g)

ξ

)
dy ,



844 FRED ESPEN BENTH AND PAUL KRÜHNER

where φ is the standard normal probability density function. By the linear growth of p and
integrability properties of the normal density function φ, it follows that

DhV (t, g) =
1

ξ

∫

R

p(y)Dhφ

(
y −m(g)

ξ

)
dy

=
1

ξ

∫

R

p(y)φ′
(
y −m(g)

ξ

)(
−1

ξ

)
Dhm(g) dy

=
1

ξ2
Dhm(g)

∫

R

p(y)

(
y −m(g)

ξ

)
φ

(
y −m(g)

ξ

)
dy

=
1

ξ
Dhm(g)

∫

R

p(m(g) + ξx)xφ(x) dx

=
1

ξ
Dhm(g)E [p(m(g) + ξX)X] .

But obviously

Dhm(g) =
d

dǫ
m(g + ǫh)ǫ=0 =

d

dǫ
(m(g) + ǫm(h))ǫ=0 = m(h) ,

and the proposition follows.
It is interesting to note here that the delta computed in the proposition above gives the

sensitivity of the option price to perturbations in the direction of a forward curve h. As
mentioned earlier, the market only quotes forward prices for a finite set of delivery periods,
and not for all delivery times. Hence, we do not have the forward curve accessible. Indeed, we
do not know g(t) at time t, but only a finite set of values of swap prices, which is equivalent
to a finite set of linear functionals on integral operators applied to g. It is market practice to
extract such a curve by appealing to some smoothing techniques. (See, for example, Benth,
Koekebakker, and Ollmar [14] for a spline approach.) From given observations of delivery-
period swap prices, one constructs a forward curve of continuous delivery times. This will
then give the observed curve g(t) at time t. Note that we need to have this curve accessible
to price the option at time t, as we can see from Proposition 3.7. The extraction of such a
curve from observations is by far a uniquely defined object (one can choose several different
ways to produce such a curve), and as such it is crucial to use the expression for the delta to
see how sensitive the price is toward perturbations of it.

We find the following explicit result for the price and sensitivity (delta) of call options.
Proposition 3.11. The price of a call option with strike K and exercise time τ ≤ T1 is

V (t, g(t)) = ξφ

(
m(g(t))−K

ξ

)
+ (m(g(t)) −K)Φ

(
m(g(t)) −K

ξ

)
,

where ξ and m(g) are defined in Proposition 3.7, Φ(x) is the cumulative standard normal
distribution function, and φ is its density, i.e., Φ′(x) = φ(x). Moreover,

DhV (t, g(t)) = m(h)Φ

(
m(g(t)) −K

ξ

)

for any h ∈ Hα.
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Proof. For a call option with strike K, we have p(F ) = max(F − K, 0). Hence, from
Proposition 3.7

V (t, g(t)) =

∫

R

max (m(g(t)) + ξx−K, 0) φ(x) dx .

The formula for V (t, g(t)) follows from standard calculations using the properties of the
normal distribution. As for the Gâteaux derivative of V , we calculate this directly from
V (t, g(t)).

Note that the expression for the sensitivity of V with respect to g is the classical delta of
a call option, scaled by m(h).

As a slight extension of the option pricing theory above, we discuss a class of spread
options written on forwards with different delivery periods. To this end, consider an option
written on two forwards with delivery periods being [T 1

1 , T
1
2 ] and [T 2

1 , T
2
2 ], respectively, where

the option pays p(F (τ, T 1
1 , T

1
2 ), F (τ, T 2

1 , T
2
2 )) at exercise time τ ≤ min(T 1

1 , T
2
1 ). We assume

that p : R2 → R is a measurable function of at most linear growth. For example, p(x, y) =
max(x − y, 0) will be the payoff from the spread between two forwards of different delivery
periods, a kind of calendar spread option. By following the arguments of Proposition 3.1, we
find that

(3.19) p((F (τ, T 1
1 , T

1
2 ), F (τ, T 2

1 , T
2
2 )) = Pℓ1,ℓ2(T

1
1 − τ, T 2

1 − τ, g(τ))

for Pℓ1,ℓ2 : R2
+ ×Hα → R defined as

(3.20) Pℓ1,ℓ2(x, y, g) = p ◦ (δx ◦ Dw
ℓ1(g), δy ◦ D

w
ℓ2(g)) .

Here, ℓi = T i
2 − T i

1, i = 1, 2. By the linear growth of p, we can show that Pℓ1,ℓ2 is at most
linearly growing in ‖g‖α, uniformly in x, y. By following the arguments for the univariate case
above, the price of the option at time t ≤ τ can be computed as follows:

V (t, g(t)) = e−r(τ−t)
E

[
p
(
δT 1

1 −τ ◦ Dw
ℓ1(g(τ)), δT 2

1 −τ ◦ Dw
ℓ2(g(τ))

)
| Ft

]

= e−r(τ−t)
E
[
p(F (τ, T 1

1 , T
1
2 ), F (τ, T 2

1 , T
2
2 )) | g(t)

]
.

Yet again, we find

(F (τ, T 1
1 , T

1
2 ), F (τ, T 2

1 , T
2
2 )) = (δT 1

1 −τ ◦ Dw
ℓ1(g(τ)), δT 2

1 −τ ◦ Dw
ℓ2(g(τ)))

= (δT 1
1 −t ◦ Dw

ℓ1(g(t)), δT 2
1 −t ◦ Dw

ℓ2(g(t)))

+

∫ τ

t
(δT 1

1 −sDw
ℓ1σ(s) dB(s), δT 2

1 −tDw
ℓ2σ(s) dB(s))

= (δT 1
1 −t ◦ Dw

ℓ1(g(t)), δT 2
1 −t ◦ Dw

ℓ2(g(t))) +

∫ τ

t
Σ(s)dB(s),

where B is some two-dimensional standard Brownian motion and Σ(s) is the positive semidef-
inite root of (

(δT i
1−sDw

ℓiσ(s))Q(δ
T j
1−s

Dw
ℓjσ(s))

∗)
i,j=1,2
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for any s ≥ 0. The matrix Σ2(s) can be computed as before and appears in the formula for
the realized variance. Hence,

V (t, g) = E

[
p

(
(δT 1

1 −t ◦ Dw
ℓ1(g), δT 2

1 −t ◦ Dw
ℓ2(g)) +

∫ τ

t
Σ(s)dB(s)

)]

for any t ∈ [0, τ ], g ∈ Hα.
In conclusion, we see that we get a two-dimensional stochastic Itô integral of a deter-

ministic integrand in the expectation defining the price V (t, g), yielding a bivariate Gaussian
random variable. Therefore, we can—after computing the correlation—represent the option
price as an expectation of a function of a bivariate Gaussian random variable. The correlation
will depend on Q, the spatial covariance structure of the noise B, the volatility σ(s) of the
forward curve σ, and the delivery periods of the two forwards. Roughly explained, we are
extracting two pieces of the forward curve (defined by the delivery periods), and constructing
a bivariate Gaussian random variable of it. Although the expression involved becomes rather
technical, we can obtain rather explicit option prices which honor the spatial dependency
structure of the forward curve.

3.3. The geometric Gaussian case. First, we show that the Hilbert space Hα is closed
under exponentiating.

Lemma 3.12. If g ∈ Hα, then exp(g) ∈ Hα, where exp(g) =
∑∞

n=0 g
n/n!.

Proof. First, if g ∈ Hα, then x 	→ exp(g(x)) is an absolutely continuous function from R+

into R+. Due to Proposition 4.18 in Benth and Krühner [15], Hα is a Banach algebra with
respect to the norm ‖ · ‖ := k1‖ · ‖α, where k1 =

√
5 + 4k2 and k2 =

∫∞
0 α−1(x) dx, i.e., if

f, g ∈ Hα, then ‖fg‖ ≤ ‖f‖‖g‖. By the triangle inequality, we therefore have ‖ exp(g)‖ ≤
exp(‖g‖) < ∞ for any g ∈ Hα, or, in other words,

‖ exp(g)‖α ≤ 1

k1
exp(k1‖g‖α) < ∞ .

Hence, exp(g) ∈ Hα, and the lemma follows.
Suppose that the forward prices are given as the exponential of a stochastic process in

Hα, i.e., of the form

(3.21) g(t) = exp(g̃(t)) ,

where

(3.22) dg̃(t) = (∂xg̃(t) + µ(t)) dt+ σ(t) dB(t) ,

where σ and B are as for the stochastic partial differential equation in (3.13), and µ a pre-
dictable Hα-valued stochastic process which is Bochner integrable on any finite time interval.
To have a no-arbitrage dynamics, we must impose the drift condition (see Barth and Benth [9])

(3.23) x 	→ µ(t, x) := −1

2
‖δxσ(t)Q1/2‖LHS(H,R) .

We assume that this drift condition holds from now on. The following simplification of the
drift condition holds true.
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Lemma 3.13. The drift condition for µ in (3.23) can be expressed as

µ(t, x) = −1

2
δxσ(t)Qσ∗(t)δ∗x(1) .

Proof. It follows from the definition of the Hilbert–Schmidt norm that

µ(t, x) = −1

2

∞∑

k=1

(δxσ(t)Q1/2ek)
2 ,

where {ek}k is a basis of H. But,

(δxσ(t)Q1/2)(ek) · 1 = 〈ek, (δxσ(t)Q1/2)∗(1)〉H = 〈ek,Q1/2σ∗(t)δ∗x(1)〉H .

Hence, by linearity of operators,

µ(t, x) = −1

2

∞∑

k=1

(δxσ(t)Q1/2ek)〈ek,Q1/2σ∗(t)δ∗x(1)〉H

= δxσ(t)Q1/2(
∞∑

k=1

〈ek,Q1/2σ∗(t)δ∗x(1)〉Hek)

= δxσ(t)Q1/2(Q1/2σ∗(t)δ∗x(1)) .

The result follows.
We recall that δ∗x(1) = hx, with the function y 	→ hx(y) defined in (3.17). Thus, we can

write µ(t, x) = −δxσ(t)Qσ∗(t)hx(·)/2.
As for (3.13) in the subsection above, we have a mild solution of the stochastic partial

differential equation (3.22) satisfying for τ ≥ t

g̃(τ) = Sτ−tg̃(t) +

∫ τ

t
Sτ−sµ(s) ds +

∫ τ

t
Sτ−sσ(s) dB(s) .

The following lemma states the dynamics of the curve-valued process g(t) := exp(g̃(t)),
t ≥ 0, revealing that g is Markovian as in section 3.1.

Lemma 3.14.Under the drift condition (3.23), we have

g(τ) = Sτ−tg(t) +

∫ τ

t
Sτ−sσ̂(s, g(s)) dB(s)

for any 0 ≤ t ≤ τ , where σ̂(s, g)h(x) := g(x)σ(s)h(x) for any x ≥ 0, g, h ∈ Hα. Consequently,
the forward dynamics are given by

F (τ, T1, T2) = δT1−tDw
ℓ g(t) +

∫ τ

t
δT1−sDw

ℓ σ̂(s, g(s)) dB(s),
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Proof. Recall that G(τ, T ) = g(τ)(T − τ) and define G̃(τ, T ) := g̃(τ)(T − τ). Then we
have

G(τ, T ) = g(τ)(T − τ)

= exp(g̃(τ)(T − τ))

= exp(G̃(τ, T ))

for any 0 ≤ τ ≤ T . Moreover, we have

G̃(τ, T ) = δT−tg̃(t) +

∫ τ

t
δT−s(µ(s)ds+ σ(s) dB(s)),

and hence Itô’s formula together with the drift condition (3.23) yields

G(τ, T ) = exp(G̃(τ, T ))

= δT−tg(t) +

∫ τ

t
G(s, T )δT−sσ(s) dB(s)

= δT−tg(t) +

∫ τ

t
δT−sσ̂(s, g(s)) dB(s)

for any 0 ≤ τ ≤ T . Since g(τ)(x) = G(τ, τ + x), we conclude that

g(τ) = Sτ−tg(t) +

∫ τ

t
Sτ−sσ̂(s, g(s)) dB(s)

for any 0 ≤ t ≤ τ .
The price of a European option with exercise time τ ≥ t on a forward delivering at time

T when σ is nonrandom can be easily derived as in the arithmetic case. Indeed, it holds that

(3.24) V (t, g̃) = e−r(τ−t)
E [p(exp(m̂(g̃) + ξX))] ,

where X is a standard normal distributed random variable, ξ is as in Proposition 3.7 (using
the T instead of T1), and

(3.25) m̂(g) = g̃(T − t)− 1

2

∫ τ

t
µ(s)(T − s) ds.

If we let p be the payoff function of a call option, then a simple calculation shows that we
recover the Black-76 formula. (See Black [18], or Benth, Benth, and Koekebakker [12] for a
more general version.)

Finally, we remark that if we are interested in pricing options written on a forward deliv-
ering over a period, the payoff function will become

p((δT−τ ◦ Dw
ℓ )(g(τ))) = p(F (τ, T1, T2)) .

The integral operator Dw
ℓ maps exp(g̃(τ)) ∈ Hα into Hα, but we do not have any nice rep-

resentation of it. The problem is, of course, that the integral of the exponent of a general
function is not analytically known. Thus, it seems difficult to obtain any tractable expression
yielding simple pricing formulas.
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3.4. Lévy models. We include a brief discussion of the pricing of options when the forward
curve is driven by a Lévy process L. We confine our analysis to the arithmetic model

(3.26) dg(t) = ∂xg(t) dt + σ(t) dL(t) ,

where L is a Lévy process with values in a separable Hilbert space H, having zero mean and
being square integrable. The stochastic process σ : R+ → L(H,Hα) is integrable with respect
to L, i.e., σ ∈ L2

L
(Hα). (See section 8.2 in Peszat and Zabczyk [34] for this notation.)

The price of an option given in (3.4) requires the computation of (δT1−τ ◦ Dw
ℓ )(g(τ)). As

for the Gaussian models, there exists a mild solution of (3.26) which for τ ≥ t ≥ 0 is given by

(3.27) g(τ) = Sτ−tg(t) +

∫ τ

t
Sτ−sσ(s) dL(s) .

From the linearity of the operators, it holds that

(δT1−τ ◦ Dw
ℓ )g(τ) = (δT1−t ◦ Dw

ℓ )g(t) +

∫ τ

t
(δT1−s ◦ Dw

ℓ )σ(s) dL(s)) .

The first term on the right-hand side is, not surprisingly, m(g(t)) with m defined in Proposi-
tion 3.7. For the Gaussian model, we used a result in Benth and Krühner [15] that provided us
with an explicit representation of a linear functional applied on a Hα-valued stochastic inte-
gral with respect to a H-valued Wiener process. One can write this functional as a stochastic
integral of a real-valued stochastic integrand with respect to a real-valued Brownian motion.
The integrand is, moreover, explicitly known. Something similar is known for the special class
of Lévy processes being subordinated Wiener processes.

Following Benth and Krühner [16], we introduceH-valued subordinated Brownian motion:
Denote by U(t)}t≥0 a Lévy process with values on the positive real line, that is, a nondecreasing
Lévy process. These processes are frequently called subordinators (see Sato [35]). Let L(t) :=
B(U(t)), which then becomes a Lévy process with values in H. In Benth and Krühner [16]
one finds conditions on U implying that L is a zero-mean square integrable Lévy process.

From Theorem 2.5 in Benth and Krühner [15], we find that

∫ τ

t
(δT1−s ◦ Dw

ℓ )σ(s) dL(s)) =

∫ τ

t
σ̃(s) dL(s) ,

where L is a real-valued subordinated Brownian motion L(t) := B(U(t)), B being a standard
Brownian motion. Moreover, the process σ̃(s) is given by

σ̃2(s) = (δT1−s ◦ Dw
ℓ )σ(s)Qσ∗(s)(δT1−s ◦ Dw

ℓ )
∗(1) ,

which is identical to the Gaussian case studied above.
For the problem of pricing options, we see that we are back to computing the expectation

of a functional of a univariate stochastic integral. If σ is nonrandom, we can use, for example,
Fourier techniques to compute this expectation, as we know the cumulant function of L from
the cumulant of U and Brownian motion. (See Carr and Madan [23] for an account on Fourier
methods in derivatives pricing, and Benth, Benth, and Koekebakker [12] for the application
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to energy markets.) This will provide us with an expression for the option price that can be
efficiently computed using fast Fourier transform techniques.

We next consider an example on a subordinated Lévy process of particular interest in
energy markets. Assume that U is an inverse Gaussian subordinator, that is, a Lévy process
with nondecreasing paths, and U(1) is inverse Gaussian distributed. Then L(t) = B(U(t))
becomes an H-valued normal inverse Gaussian (NIG) Lévy process in the sense defined by
Benth and Krühner [16, Def. 4.1]. In fact, for any functional L ∈ L(H,Rn), t 	→ L(L(t)) will
be an n-variate NIG Lévy process with the particular case L(t) introduced above defining an
NIG Lévy process on the real line. We refer to Barndorff-Nielsen [5] for details on the inverse
Gaussian subordinator and NIG Lévy processes. Several empirical studies have demonstrated
that returns of energy forward and futures prices can be conveniently modelled by the NIG
distribution. (See Benth, Benth, and Koekebakker [12] and the references therein for the case
of NordPool power prices.) Frestad, Benth, and Koekebakker [29] and Andresen, Koekebakker,
and Westgaard [3] find that the NIG distribution fits power forward returns with fixed time to
maturity and given delivery period. Their analysis covers time series of prices with different
times to maturity and different delivery periods (weekly, monthly, quarterly, say), where
these time series are constructed from a nonparametric smoothing of the original price data
observed in the market. In fact, in our modelling context, they are looking at time series
observations of the stochastic process t 	→ (δx ◦ Dw

ℓ )(g(t)). From the analysis above, we see
that choosing L to be an H-valued NIG (HNIG) Lévy process and g to be an arithmetic
dynamics will give price increments being NIG distributed. Of course, this is not the same
as the returns being NIG. As we have mentioned earlier, it is not straightforward to model
the price of forward with delivery period using an exponential dynamics. Frestad, Benth, and
Koekebakker [29] and Andresen, Koekebakker, and Westgaard [3] also estimate empirically
the volatility term structure and the spatial (in time to maturity) correlation structure, which
provides information on the volatility σ(t) and the covariance operator Q. Indeed, Andresen,
Koekebakker, and Westgaard [3] propose a multivariate NIG distribution to model the returns.

We end this section with a note on market completeness. The energy market seems to
be incomplete when analysing real data, e.g., a futures with a very short maturity cannot be
replicated by futures with delivery far in the future. If a model for all futures is driven by a low-
dimensional Brownian motion, then the resulting theoretical model is in most cases complete
and one needs as many futures as there are independent driving Brownian motions to explain
the theoretical behavior of any other security, like a future on the short end. Clearly, if one
either uses a high- or infinite-dimensional Brownian motion, this is no longer the case. Also,
jump-type noise excludes market completeness (except for some very simplistic cases), even
if the driving noise is only one-dimensional. Consequently, the only thing that remains from
the risk-neutral approach is the existence of at least one pricing measure in order to ensure
arbitrage-free price dynamics of the futures. However, this does not at all imply replication.

4. Cross-commodity modeling. In this section, we want to analyze a joint model for the
forward curve evolution in two commodity markets. For example, European power markets are
interconnected, and thus forward prices will be dependent. Also, the markets for gas and coal
will influence the power market, since gas and coal are important fuels for power generation in
many countries like for example UK and Germany. This links forward contracts on gas and coal
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to those traded in the power markets. Finally, weather clearly affects the demand (through
temperature) and supply (through precipitation and wind) of energy, and one can therefore
also claim a dependency between weather futures (traded at Chicago Mercantile Exchange
(CME), say) and power futures. These examples motivate the introduction of multivariate
dynamic models for the time evolution of forward curves across different markets. We will
restrict our attention merely to the bivariate case here and make some detailed analysis of a
two-dimensional forward curve dynamics.

Consider two commodity forward markets. We model the bivariate forward curve dynamics
t 	→ (g1(t), g2(t)) as the Hα×Hα-valued stochastic process being the solution of the stochastic
partial differential equation

dg1(t) = ∂xg1(t) dt+ σ1(t, g1(t), g2(t)) dL1(t),

dg2(t) = ∂xg2(t) dt+ σ2(t, g1(t), g2(t)) dL2(t)(4.1)

with (g1(0), g2(0) = (g01 , g
0
2) ∈ Hα × Hα given. We suppose that (L1,L2) is an H1 ×

H2-valued square-integrable zero-mean Lévy process, where Hi, i = 1, 2 are two separa-
ble Hilbert spaces and Qi, i = 1, 2 are the respective (marginal) covariance operators, i.e.,
E[〈Li(t), g〉〈Li(s), h〉] = (t ∧ s)〈Qig, h〉 for any t, s ≥ 0, g, h ∈ Hα, and i = 1, 2. Furthermore,
we assume that σi : R+ × Hα × Hα → L(Hi,Hα) for i = 1, 2 are measurable functions and
that there exists an increasing function K : R+ → R+ such that σi, i = 1, 2 are Lipschitz and
of linear growth, that is, for any (f1, f2), (h1, h2) ∈ Hα ×Hα and t ∈ R+,

‖σi(t, f1, f2)− σi(t, h1, h2)‖op ≤ K(t)‖(f1, f2)− (h1, h2)‖Hα×Hα ,(4.2)

‖σi(t, f1, f2)‖op ≤ K(t)(1 + ‖(f1, f2)‖Hα×Hα) .(4.3)

Note that since the product of two (separable) Hilbert space again is a (separable) Hilbert
space (using the canonical 2-norm, i.e., ‖(f, g)‖2Hα×Hα

:= ‖f‖2Hα
+‖g‖2Hα

), we can relate to the
theory of existence and uniqueness of mild solutions of stochastic partial differential equations
given by Tappe [37]: there exists a unique mild solution satisfying the integral equations

g1(t) = Stg
0
1 +

∫ t

0
St−sσ1(s, g1(s), g2(s)) dL1(s),

g2(t) = Stg
0
2 +

∫ t

0
St−sσ2(s, g1(s), g2(s)) dL2(s) .(4.4)

Observe that t 	→ (F1(t, T ), F2(t, T )) := (δT−tg1(t), δT−tg2(t)), t ≤ T , will be an Hα × Hα-
valued (local) martingale. Moreover, the marginal Hα-valued processes t 	→ Fi(t, T ) :=
δT−tgi(t), i = 1, 2, t ≤ T will also be (local) martingales, ensuring that we have an arbitrage-
free model for the forward price dynamics in the two commodity markets.

Our main concern in the rest of this section is to analyze in detail the bivariate Lévy
process (L1,L2). We are interested in its probabilistic properties in terms of representation of
the covariance operator and linear decomposition. Since (L1(1),L2(1)) is an H1 ×H2-valued
square-integrable variable, we analyze general square-integrable random variables (X1,X2) in
H1 ×H2.
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Before we set off, we recall the spectral theorem for normal compact operators on Hilbert
spaces (see, e.g., [24, Stat. 7.6]).

Proposition 4.1. Let H be a separable Hilbert space and T be a symmetric compact operator.
Then there is an orthonormal basis {ei}i∈N of H and a family {λi}i∈N of real numbers such
that

T f =
∑

i∈N
λi〈ei, f〉ei

for any f ∈ H. Let φ : R → R be measurable. Then

φ(T ) :

{
f ∈ H :

∑

i∈N
|φ(λi)|2〈ei, f〉2 < ∞

}
→ H, f 	→

∑

i∈N
φ(λi)〈ei, f〉ei ,

defines a closed linear symmetric operator which is bounded and everywhere defined if φ is
bounded on {λi : i ∈ N}. For measurable φ,ψ : R → R with ψ bounded, we have (φ+ψ)(T ) =
φ(T ) + ψ(T ) and (φψ)(T ) = φ(T )ψ(T ).

We will apply this result in particular to define the square-root and the pseudoinverse of
a compact operator. We shall use the definition of a pseudoinverse given in Albert [1].

Definition 4.2. Let P be a positive semidefinite compact operator on a separable Hilbert
space H. Then R :=

√
P is the square-root of P. The pseudoinverse J of P is defined by

J := φ(P), where φ : R → R, x 	→ 1{x =0}/x.
Next, we want to represent covariance operators of square-integrable random variables in

H1×H2 in terms of operators on H1, H2, and between thoose spaces. To this end, we will need
the natural projectors Π1 : H1 × H2 → H1, (x, y) 	→ x and Π2 : H1 × H2 → H2, (x, y) 	→ y.
We have the following general statement on the representation of the covariance operator of
square-integrable random variables in H1 ×H2.

Theorem 4.3. For i = 1, 2, let Xi be a square integrable Hi-valued random variable and
Qi be its covariance operator. Denote the positive semidefinite square-root of Qi by Ri for
i = 1, 2. Then there is a linear operator Q12 ∈ L(H1,H2) such that

(i) Q :=

(
Q1 Q∗

12

Q12 Q2

)
is the covariance operator of the H1 ×H2-valued square integrable

random variable (X1,X2),
(ii) |〈Q12u, v〉| ≤ ‖R1u‖1‖R2v‖2 for any u ∈ H1, v ∈ H2, and
(iii) ran(Q12) ⊆ ran(Q2) and ran(Q∗

12) ⊆ ran(Q1).

Proof.

(i) Let Q be the covariance operator of (X1,X2) and Φi : Hi → H1 ×H2 be the natural
embedding, i.e., Φi = Π∗

i for i = 1, 2. Define

Q12 := Π2QΦ1 .

Then the first assertion is evident.

(ii) Let u ∈ H1, v ∈ H2, and β ∈ R. We have

0 ≤ 〈Q(βu, v), (βu, v)〉
= β2〈Q1u, u〉+ 〈Q2v, v〉 + 2β〈Q12u, v〉
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= β2‖R1u‖21 + ‖R2v‖22 + 2β〈Q12u, v〉 ,

and hence

−β〈Q12u, v〉 ≤
1

2

(
β2‖R1u‖21 + ‖R2v‖22

)
.

Letting β have the same sign as −〈Q12u, v〉 yields

|β||〈Q12u, v〉| ≤
1

2

(
β2‖R1u‖21 + ‖R2v‖22

)
.

If ‖R1u‖1 = 0, then with |β| → ∞ we see that |〈Q12u, v〉| = 0 and hence the claimed inequality

holds. Thus, we may assume that ‖R1u‖1 �= 0. Choosing β = ‖R2v‖2
‖R1u‖1 yields

|〈Q12u, v〉| ≤ ‖R1u‖1‖R2v‖2,

as claimed.
(iii) We show that Q12u is orthogonal to any v ∈ Kern(Q2) for any u ∈ H1. If that is

done, then the claim follows because Q2 is positive semidefinite, and hence its kernel and the
closure of its range are closed orthogonal spaces. Let u ∈ H1, v ∈ H2 such that Q2v = 0.
Then, R2v = 0, and hence (ii) yields

|〈Q12u, v〉| ≤ ‖R1u|‖1‖R2v‖2 = 0.

The corresponding arguments show that Q∗
12 maps into the closure of the range of Q1.

Consider now Hi = Hαi , Hαi being the Filipovic space with weight function αi, i = 1, 2.
We suppose that both weight functions α1, α2 satisfy the hypotheses stated at the beginning
of section 2. We first demonstrate that the operator Q12 yields the covariance between L1(t)
and L2(t) evaluated at two different maturities x and y with x, y ∈ R+. To this end, recall
the function hx in (3.17). Then we have for any x ∈ R+ and X ∈ Hα,

δxX = 〈X, δ∗x(1)〉 = 〈X,hx〉 ,

by (3.16). Hence, with hix being the function hx defined in (3.17) using the weight function
αi,

δiz(Li(t)) = 〈Li(t), h
i
z〉 .

Thus, with (L1,L2) being a zero mean Lévy process, we find for x, y ∈ R+,

Cov(L1(t, x),L2(t, y)) = E
[
δ1x(L1(t))δ

2
y(L2(t))

]

= E
[
〈L1(t), h

1
x〉〈L2(t), h

2
y〉
]

= E
[
〈(L1(t),L2(t)),Π

∗
1h

1
x〉〈(L1(t),L2(t)),Π

∗
2h

2
y〉
]

= t〈QΠ∗
1h

1
x,Π

∗
2h

2
y〉

= t〈Π2QΠ∗
1h

1
x, h

2
y〉 .

We have Π2QΠ∗
1 = Q12, and it follows that

(4.5) Cov(L1(t, x),L2(t, y)) = t〈Q12h
1
x, h

2
y〉 ,

as claimed.
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Let us analyze a very simple case of the bivariate forward dynamics in (4.1), where α1 =
α2 = α and σi = Id, the identity operator on Hα, i = 1, 2, and (L1,L2) = (B1,B2) is a Wiener
process. The mild solution in (4.4) takes the form

gi(t) = Stg
0
i +

∫ t

0
St−s dBi(s)

for i = 1, 2. We find similar to above that, for x, y ∈ R+,

Cov(g1(t, x), g2(t, y)) = E

[
δx

∫ t

0
St−s dB1(s) · δy

∫ t

0
St−sB2(s)

]

= E

[〈(∫ t

0
St−s dB1(s),

∫ t

0
St−s dB2(s)

)
,Π∗

1hx

〉

×
〈(∫ t

0
St−s dB1(s),

∫ t

0
St−s dB2(s)

)
,Π∗

2hy

〉]
.

We show that (
∫ t
0 St−s dB1(s),

∫ t
0 St−s dB(s)) is a Gaussian Hα×Hα-valued stochastic process.

Lemma 4.4. Suppose that Hi = Hα for i = 1, 2. The process t 	→ (
∫ t
0 St−s dB1(s),

∫ t
0 St−s dB2(s))

is a mean-zero Gaussian Hα ×Hα-valued process with covariance operator Qt for each t ≥ 0
given by

Qt =

[ ∫ t
0 SsQ1S∗

s ds
∫ t
0 SsQ∗

12Ss ds∫ t
0 SsQ12S∗

s ds
∫ t
0 SsQ2S∗

s ds

]
.

The integrals in Qt are interpreted as Bochner integrals in the space of Hilbert–Schmidt oper-
ators.

Proof. First, note that all the integrals in Qt are well-defined as Bochner integrals because
the operator norm of the involved operators are bounded uniformly in time by Lemma 3.5.

Consider the characteristic function of the process at time t ≥ 0. A straightforward
computation gives

E

[
exp

(
i

〈(∫ t

0
St−s dB1(s),

∫ t

0
St−s dB(s)

)
, (u, v)

〉)]

= exp

(
−1

2

∫ t

0
〈Q(S∗

t−su,S∗
t−sv), (S∗

t−su,S∗
t−sv)〉 ds

)
.

Using the definition of Q shows that

E

[
exp

(
i

〈(∫ t

0
St−s dB1(s),

∫ t

0
St−s dB(s)

)
, (u, v)

〉)]
= exp

(
−1

2
〈Qt(u, v), (u, v)〉

)
,

and the result follows.
It follows from this lemma that

Cov(g1(t, x), g2(t, y)) = 〈QtΠ
∗
1hx,Π

∗
2hy〉

= 〈Π2QtΠ
∗
1hx, hy〉

=

〈∫ t

0
SsQ12Sshx ds, hy

〉
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=

∫ t

0
〈SsQ12S∗

shx, hy〉 ds

=

∫ t

0
δySsQ12S∗

s δ
∗
x(1) ds

=

∫ t

0
δy+sQ12δ

∗
x+s(1) ds .

This provides us with an explicit expression for the covariance between the forward prices
g1(t) and g2(t) at two different maturities x and y.

An application of the above considerations is the pricing of so-called energy quanto options.
Such options have gained some attention in recent years since they offer a hedge against both
price and volume risk in energy production. A typical payoff function at exercise time τ from
a quanto option takes the form

p(Fenergy(τ, T1, T2))× q(Ftemp(τ, T1, T2)) ,

where Fenergy is the forward price on some energy like power or gas, and Ftemp is the forward
price on some temperature index. Both forwards have a delivery2 period [T1, T2], and it is
assumed that τ ≤ T1. The functions p and q are real-valued and of linear growth and typically
given by call and put option payoff functions. Temperature is closely linked to the demand
for power, and the quanto options are structured to yield a payoff which depends on the
product of price and volume. We refer to Caporin, Pres, and Torro [20] and Benth, Lange,
and Myklebust [10] for a detailed discussion of energy quanto options. From the considerations
in section 2, we can express the price at t ≤ τ of the quanto options as

(4.6) V (t, g1(t), g2(t)) = e−r(τ−t)
E [p(Lenergy(g1(τ))q(Ltemp(g2(τ)) | g1(t), g2(t)] .

Here, we have assumed that

Fenergy(t, T1, T2) := Lenergy(g1(t)) := δT1−t ◦ Dw,1
ℓ (g1(t)),(4.7)

Ftemp(t, T1, T2) := Ltemp(g1(t)) := δT1−t ◦ Dw,2
ℓ (g2(t))(4.8)

with Dw,i
ℓ defined as in (2.9) using the obvious meaning of the indexing by i = 1, 2. Since

Lenergy and Ltemp are linear functionals on Hα, it follows from Theorem 2.1 in Benth and
Krühner [15] that

(Fenergy(t, T1, T2), Ftemp(t, T1, T2))

is a bivariate Gaussian random variable on R
2. From Lemma 4.4, we can compute the covari-

ance as

Cov(Fenergy(t, T1, T2), Ftemp(t, T1, T2)) = E

[
Lenergy

∫
t

0

St−s dB1(s) · Ltemp

∫
t

0

St−s dB2(s)

]

= E

[
〈(
∫

t

0

St−s dB1(s),

∫
t

0

St−s dB2(s)),Π
∗

1L∗

energy(1)〉

2Obviously, temperature is not delivered, but the temperature futures are settled against the measured
temperature index over this period.
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×〈(
∫

t

0

St−s dB1(s),

∫
t

0

St−s dB2(s)),Π
∗

2L∗

temp(1)〉
]

= 〈Qt(Π
∗

1L∗

energy(1),Π
∗

2L∗

temp(1)), (Π
∗

1L∗

energy(1),Π
∗

2L∗

temp(1))〉

=

∫
t

0

C12(s) ds ,

where

C12(s) = LenergyΠ1SsQ1S∗
sΠ

∗
1L∗

energy(1) + LenergyΠ1SsQ∗
12S∗

sΠ
∗
2L∗

temp(1)

+ LtempΠ2SsQ12S∗
sΠ

∗
1L∗

energy(1) + LtempΠ2SsQ2S∗
sΠ

∗
2L∗

temp(1) .

Thus, we can obtain a price V (t, g1(t), g2(t)) in terms of an integral with respect to a Gaussian
bivariate probability distribution, involving similar operators (and their duals) as for the Eu-
ropean options studied in section 3. We remark in passing that Benth, Lange, and Myklebust
[10] derive a Black and Scholes-like pricing formula for a call-call quanto options, which is
applied to price such derivatives written on Henry Hub gas futures traded at NYMEX and
HDD/CDD temperature futures traded at CME.

We next return back to the general considerations on the factorization of the covariance
operatorQ of a bivariate square-integrable random variable inH1×H2. If we want to construct
an operator Q as in Theorem 4.3, then the operator Q12 appearing there necessarily has to
satisfy condition (ii). As we will show in the next theorem, condition (ii) of Theorem 4.3 is
sufficient as well.

Theorem 4.5. Let Hi be a separable Hilbert space and Qi be a positive semidefinite trace
class operator on Hi and define Ri :=

√
Qi for i = 1, 2. Let Q12 ∈ L(H1,H2) such that

|〈Q12u, v〉| ≤ ‖R1u‖1‖R2v‖2

for any u ∈ H1, v ∈ H2. Then

Q :=

(
Q1 Q∗

12

Q12 Q2

)

defines a positive semidefinite operator on H1 × H2. Moreover, Q is positive definite if and
only if Q1, Q2 are positive definite and

|〈Q12u, v〉| < ‖R1u‖1‖R2v‖2

for any u ∈ H1\{0}, v ∈ H2\{0}.
Proof. Let u ∈ H1 and v ∈ H2. Then

〈Q(u, v), (u, v)〉 = 〈Q1u, u〉+ 〈Q2v, v〉+ 2〈Q12u, v〉
≥ ‖R1u‖21 + ‖R2v‖22 − 2‖R1u‖1‖R2v‖2
= (‖R1u‖1 − ‖R2v‖2)2

≥ 0.

Under the additional assumptions, the first inequality is strict.
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We now analyze the pricing of spread options in a simple setting: Let us consider a
bivariate exponential model gi(t) = exp(g̃i(t)), i = 1, 2, defined on the space Hα × Hα by a
dynamics similar to (4.1) (but with a drift) driven by (L1(t),L2(t)) = (B1(t),B2(t)):

dg̃1(t) = ∂xg̃1(t) dt+ µ1(t) dt+ σ1(t) dB1(t),

dg̃2(t) = ∂xg̃2(t) dt+ µ2(t) dt+ σ2(t) dB2(t)

Here, we suppose that σi : R+ → L(Hα) is nonrandom and σi ∈ L2
Bi
(Hα), i = 1, 2. Thus, we

have the forward price dynamics fi(τ, T ) given fi(t, T ) for t ≤ τ ≤ T ,

(4.9) fi(τ, T ) = fi(t, T ) exp

(∫ τ

t
δT−sµi(s) ds + δT−τ

∫ τ

t
Sτ−sσi(s) dBi(s)

)

for i = 1, 2. Introduce the notation

(4.10) σ̃2
i (s, T ) = δT−sσi(s)Qiσ

∗
i (s)δ

∗
T−s(1)

for i = 1, 2. From Theorem 2.1 in Benth and Krühner [15], it follows for i = 1, 2,

δT−τ

∫ τ

t
Sτ−sσi(s) dBi(s) =

∫ τ

t
σ̃i(s, T ) dBi(s) ,

where Bi is a real-valued Brownian motion. By Lemma 3.13, we have the no-arbitrage drift
condition

(4.11) µ̃i(s, T ) := δT−sµi(s) = −1

2
σ̃2
i (s, T ) .

Remark that, as a consequence of the nonrandom assumption on σi(s),
∫ τ
t σ̃i(s, T ) dBi(s), i =

1, 2, are two Gaussian random variables on R with mean zero and variance
∫ τ
t σ̃2

i (s, T ) ds, i =
1, 2, respectively Moreover, a direct computation using the above theory reveals the covariance
between these two random variables:

E

[∫ τ

t
σ̃1(s, T ) dB1(s)

∫ τ

t
σ̃2(s, T ) dB2(s)

]

= E

[
δT−τ

∫ τ

t
Sτ−sσ1(s) dB1(s)× δT−τ

∫ τ

t
Sτ−sσ2(s) dB2(s)

]

= E

[
〈
∫ τ

t
Sτ−sσ1(s) dB1(s), hT−τ 〉〈

∫ τ

t
Sτ−sσ2(s) dB2(s), hT−τ 〉

]

=

∫ τ

t
〈QΠ∗

1σ
∗
1(s)S∗

τ−shT−τ ,Π
∗
2σ

∗
2(s)S∗

τ−shT−τ 〉 ds

=

∫ τ

t
δT−sσ2(s)Q12σ

∗
1(s)δ

∗
T−s(1) ds

:=

∫ τ

t
σ̃12(s, T ) ds .
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Hence, for i = 1, 2,

(4.12) fi(τ, T ) = fi(t, T ) exp

(
−1

2

∫ τ

t
σ̃2
i (s, T ) ds+

∫ τ

t
σ̃i(s) dBi(s)

)
,

where we know that the two stochastic integrals form a bivariate Gaussian random variable
with known variance-covariance matrix. The price at time t of a call option written on the
spread between the two forwards with exercise at time t ≤ τ ≤ T will be

V (t) = e−r(τ−t)
E [max (f1(τ, T )− f2(τ, T ), 0) | Ft] .

Using the representation of the forward prices in (4.12), we find the spread option pricing
formula

(4.13) V (t) = e−r(τ−t) {f1(t, T )Φ(d+)− f2(t, T )Φ(d−)} ,

where Φ is the cumulative standard normal distribution function,

d± =
ln(f1(t, T )/f2(t, T ))± Σ2(t, τ, T )/2

Σ(t, τ, T )
,

and

Σ2(t, τ, T ) =

∫ τ

t
σ̃2
1 − 2σ̃12(s, T ) + σ̃2

2(s, T ) ds .

We have recovered the Margrabe formula (see Margrabe [33]) with time-dependent volatility
and correlation. Observe that the spread option price becomes a function of the initial forward
prices at time t with delivery at time T .

We proceed with some more general considerations on bivariate random variables in
Hilbert spaces and their representation. If (X,Y ) is a two-dimensional Gaussian random
variable, we know from classical probability theory that there exist a Gaussian random vari-
able Z being independent of X and a ∈ R such that Y = aX + Z. The next Proposition is a
generalization of this statement to square-integrable Hilbert-space valued random variables.

Proposition 4.6. Let Xi be an Hi-valued square-integrable random variable with covariance
Qi and let Q12 ∈ L(H1,H2) be the operator given in Theorem 4.3 such that

Q :=

(
Q1 Q∗

12

Q12 Q2

)

is the covariance operator of (X1,X2). Assume that ran(Q∗
12) ⊆ ran(Q1). Then the closure B

of the densely defined operator Q12Q−1
1 is in L(H1,H2), where Q−1

1 denotes the pseudoinverse
of Q1. Define Z := X2−BX1. Then Z is a centered, square integrable, and H2-valued random
variable with E(〈X1, u〉〈Z, v〉) = 0 for any u ∈ H1, v ∈ H2, i.e., X1 and Z are uncorrelated.

In particular, the covariance operator of (X1, Z) is given by

QX1,Z :=

(
Q1 0
0 QZ

)
,

where QZ denotes the covariance operator of Z.
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Proof. Q12Q−1
1 is densely defined because its domain is the domain of Q−1

1 . Define C :=
Q−1

1 Q∗
12, which is a closed operator whose domain is H2 by assumption. The closed graph

theorem yields that C is continuous and linear. Consequently, its dual is a continuous linear
continuation of Q12Q−1

1 . However, the latter operator is densely defined, and hence B := C∗

is its closure. Now, let u ∈ H1, v ∈ H2. Then

E[〈X1, u〉〈BX1, v〉] = 〈Q1u,B∗v〉
= 〈Q1u,Q−1

1 Q∗
12v〉

= 〈Q12u, v〉
= E[〈X1, u〉〈X2, v〉].

Thus, X1 and Z are uncorrelated, and the claim follows.
This result can be applied to state a representation of the H1×H2-valued Wiener process

(B1,B2).
Proposition 4.7. Let B1, B2 be H1, respectively H2-valued Brownian motions where H1,

H2 are separable Hilbert spaces. Suppose that the random variables Bi(1), i = 1, 2, satisfy
the conditions in Proposition 4.6. Then, there exists an operator B ∈ L(H1,H2) such that
W := B2 − BB1 is an H2-valued Brownian motion which is independent of H1.

Proof. Let B be the operator given in Proposition 4.6 for the random variables B1 and B2.
Then, (B1,W) is an other Brownian motion. Moreover,

E[〈B1(t), u〉〈W(t), v〉] = tE[〈B1(1), u〉〈W(1), v〉] = 0

for any t ≥ 0. The claim follows.
The proposition allows us to model a bivariate forward dynamics driven by two dependent

Brownian motions

dg1(t) = ∂xg1(t) dt+ σ1(t, g1(t), g2(t)) dB1(t),

dg2(t) = ∂xg2(t) dt+ σ2(t, g1(t), g2(t)) dB2(t)

by a dynamics driven by two independent Brownian motions,

dg1(t) = ∂xg1(t) dt+ σ1(t, g1(t), g2(t)) dB1(t),

dg2(t) = ∂xg2(t) dt+ σ2(t, g1(t), g2(t)) dW(t) − σ2(t, g1(t), g2(t))B dB1(t) .

Here, the operator B plays the role of a correlation coefficient, describing how the two noises
B1 and B2 depend. Indeed, choosing Hi = Hα, i = 1, 2 to be the Filipovic space, we see that

E[δxB1(t)δyB2(t)] = E[〈B1(t), hx〉〈B2(t), hy〉]
= E[〈B1(t), hx〉〈BB1(t), hy〉]
= t〈BQ1hx, hy〉
= tδyBQ1δ

∗
x(1)

for x, y ∈ R+. Hence, the correlation between B1(t, x) and B2(t, y) is modelled by the operator
B. We can derive a similar representation for two Lévy processes, but they will not be
independent but only uncorrelated in most cases.
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As a final remark, we like to note that the “odd” range condition in Proposition 4.7 is
needed to ensure the existence of a linear operator from H1 to H2. However, in the Gaussian
case it is possible to find a linear operator T from L2(Ω,A, P,H1) to L2(Ω,A, P,H2) yielding
an independent decomposition of the second factor. We now give the precise statement.

Proposition 4.8. Let H1, H2 be separable Hilbert spaces and (X1,X2) be an H1×H2-valued
Gaussian random variable. Let B be the closure of Q∗

12Q
−1
1 . Then, P (X1 ∈ dom(B)) = 1 and

Z := X2 −BX1 is Gaussian and X1, Z are independent.
Proof. Let (en)n∈N be an orthonormal basis of H1 such that X1 =

∑∞
n=1

√
λnΦnen, where

(Φn)n∈N is a sequence of i.i.d. standard normal random variables λn ≥ 0 and
∑

n∈N λn < ∞;

cf. Peszat and Zabczyk [34, Thm. 4.20]. Define Yk :=
∑k

n=1

√
λnΦnen for any k ∈ N. Clearly,

we have Yk → X1 for k → ∞. We now want to show that BYk converges to E[X2|X1], which
will complete the proof.

Let (pj)j∈N be the hermite polynomials on R. Then E[pj(Φ1)pi(Φ1)] = 1{i=j} for any
i, j ∈ N. For an H2-valued square integrable random variable A, we have

E[A|X1] =

∞∑

n,m,j=1

E[〈A, fm〉pj(Φn)]pj(Φn)fm,

where (fm)m∈N is an orthonormal basis of H2. Since (X1,X2) is Gaussian, (Φn, 〈X2, fm〉) is
Gaussian for any n,m ∈ N. Thus, we have

E[X2|X1] =
∞∑

n,m,j=1

E[〈X2, fm〉pj(Φn)]pj(Φn)fm

=

∞∑

n,m=1

E[〈X2, fm〉Φn]Φnfm

because E[Apj(B)] = 0 whenever (A,B) is a normal random variable in R
2, B is standard

normal, and j �= 1. Moreover, Φn = 〈X1,en〉√
λn

, and hence

E[〈X2, fm〉Φn] =
〈Q12en, fm〉√

λn
,

Φn =
√

λn〈X1,Q−1
1 en〉,

E[X2|X1] =

∞∑

n,m=1

〈Q12en, fm〉〈X1,Q−1
1 en〉fm

=
∞∑

n=1

〈X1,Q−1
1 en〉Q12en.
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Thus, we have

BYk =
k∑

n=1

〈Yk,Q−1
1 en〉Q12en

=
k∑

n=1

〈X1,Q−1
1 en〉Q12en

→ E[X2|X1]

for k → ∞, where we used Parseval’s identity for the first equality. Since B is closed, we have
X1 ∈ dom(B) P -a.s. and BX1 = E[X2|X1].

5. Numerical illustration. In this section, we look at a simplified setup to illustrate the
power of the tools developed in this paper. We do compare three different models, namely, a
classical “sum of two OU-processes spot model,” a truly infinite-dimensional Gaussian model
with clear interpretation of its parameters and an infinite-dimensional HNIG with the same
correlation structure as the infinite-dimensional Gaussian model (cf. [16, sect. 5.1] for the
definition of HNIG processes).

In each of the three cases, the model for the underlying forward curve can be written as

df(t) = ∂xf(t)dt+ dL(t), f(0) = f0 ∈ Hα ,(5.1)

under the pricing measure, where L is some Hα-valued Lévy process. The futures prices of
contracts with delivery period [T1, T2] can be recovered by

F (t, T1, T2) = F (0, T1, T2) +
1

T2 − T1

∫ T2

T1

∫ t

0
δτ−s dL(s) dτ

for any t ≤ T1, where L[T1,T2](t) :=
1

T2−T1

∫ T2

T1

∫ t
0 δτ−s dL(s) dτ is a centered one-dimensional

Lévy process. In particular, if L = W is Gaussian, then W[T1,T2](t) := L[T1,T2](t) is a one-
dimensional Brownian motion and

E
[
W[T1,T2](t)W[S1,S2](t)

]
=

1

T2 − T1

1

S2 − S1

∫ T2

T1

∫ S2

S1

∫ t

0
q(τ1 − s, τ2 − s) ds dτ1 dτ2

(5.2)

=

∫ t

0

(
1

T2 − T1

1

S2 − S1

∫ T2

T1

∫ S2

S1

q(τ1 − s, τ2 − s) dτ1 dτ2

)
ds(5.3)

for any t ≤ T1 ∧ S1, 0 ≤ S1 ≤ S2, 0 ≤ T1 ≤ T2, where

q(x, y) := 〈Qhx, hy〉, x, y ≥ 0,

and Q is the covariance operator of W.
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In order to get simple structural formulae, we define the two covariance functions

q1(x, y) := a1e
−λ1(x+y) + a2e

−λ2(x+y) ,

q2(x, y) := ae−λ(x+y)−µ|x−y|

for any x, y ≥ 0, where a1, a2, a ≥ 0, λ1, λ2, λ, µ > 0, and their associated covariance operators

Q1h(x) := 〈h, q1(x, ·)〉 ,
Q2h(x) := 〈h, q2(x, ·)〉

for x ≥ 0. The covariance function qj(x, y) roughly determines the local quadratic covariation
between two futures with instantaneous delivery and time to delivery x and y; cf. (5.3).

We record that the first covariance function does indeed belong to a sum of OU spot-model.
The following proposition has an obvious generalisation to multi-factor OU spot-models.

Proposition 5.1. Assume that (5.1) holds and that W := L is an Hα-valued Brownian
motion with covariance operator Q1. Then, the spot price process S(t) := δ0(f(t)) is given by

S(t) = f0(t) +

2∑

i=1

√
ai

∫ t

0
e−λi(t−s)dWi(s)

for any t ≥ 0, where W1, W2 are two independent standard Brownian motions.

Proof. Let (W1,W2) be independent standard Brownian motions and define

W̃(t, x) =

2∑

j=1

√
aje

−λjxWj(t).

Then W̃ is an Hα-valued Brownian motion, and we have

E
[
〈h1, W̃〉〈h2, W̃〉

]
=

2∑

j=1

〈h1, bj〉〈h2, bj〉(5.4)

= 〈Q1h1, h2〉(5.5)

for any h1, h2 ∈ Hα, where bj(x) :=
√
aje

−λjx for x ≥ 0 and obviously bj ∈ Hα. Thus, Q1 is

the covariance operator W̃. Since W is an other Brownian motion with covariance operator
Q1, we have that W̃ and W have the same law. Hence, we may assume W̃ = W. Now, we get

S(t) = δ0(Stf0) +

∫ t

0
δ0St−sd(b1W1 + b2W2)(s)

= f0(t) +

∫ t

0
b1(t− s) dW1(s) +

∫ t

0
b2(t− s) dW2(s)

for any t ≥ 0, as claimed.
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Next, we show that a Wiener process with covariance Q2 cannot be finite-dimensional. We
would like to stress that in practice the aim is to explain the presented correlation structure
given by real world data. Applying techniques from spatial statistics (see Cressie and Wikle
[25]), one can estimate the parameters of low-parametric correlation functions like q2. Such
correlation functions typically do not belong to a finite-dimensional noise term representation,
and it is possible that reasonable finite-dimensional approximations might need a lot of factors.
Since the numerical handling of a lot of factors (like ≥ 10 as argued for by Benth, Benth, and
Koekebakker [12] in the Nordic power market NordPool) compared to theoretically infinitely
many is not very different, we see no advantage in restricting oneself to a finite amount of
driving factors. Indeed, the infinite-dimensional case is based on low-parametric correlation
structures. Moreover, one has to bear in mind that a finite-dimensional approximation induces
an additional approximation error.

Lemma 5.2. Let W := L be an Hα-valued Brownian motion with covariance operator Q2.
Then, there is no finite-dimensional subspace V ⊆ Hα such that P (W(t) ∈ V ) = 1 for any
t > 0.

Proof. Assume by contradiction that there is a finite-dimensional subspace V ⊆ Hα such
that P (W(t) ∈ V ) = 1 for any t > 0. Let b1, . . . , bd be the eigenvectors of the positive operator
Q2, where d := dim(V ). Then, we have

E(〈bj ,W(t)〉〈bk,W(t)〉 = 〈Qbj , bk〉 = 1{j=k}λj〈bj , bj〉 ,

where λj denotes the eigenvalue corresponding to bj. Hence, Wj(t) := 〈bj ,W(t)〉 is an R-valued
Brownian motion and Parseval’s identity yields

W(t) =

d∑

j=1

bjWj(t), t ≥ 0 .

As in the proof of Propositon 5.1, we can now deduce that

q2(x, y) =

d∑

j=1

bj(x)bj(y),

which obviously is not the case.
It is easily seen that more summands for a covariance function, i.e.,

q3(x, y) =

N∑

j=1

aje
−λj(x+y) ,

leads to more OU-factors for the spot price process. However, instead of adding an appropriate
number of factors — either for the spot or the futures dynamics directly — we aim at a specific
covariance structure. The intuitive meaning of the parameters of the covariance function q2
are as follows. The parameter λ determines how quickly the local covariance of an asset
decays the further its delivery date/period is in the future. It is quite clear that a security
with a delivery far in the future has less volatility than a derivative with delivery in short
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Figure 1. Spot (black) and futures prices for contracts with delivery in October (blue), November (green),
and December (red); generated with the model (5.1) based on a covariance operator Q1 and a Brownian driving
noise. Here, the spot is driven by two independent OU processes; cf. Proposition 5.1. The parameters have been
chosen to be a1 = 0.5 = a2, λ1 = 5, λ2 = 50, and f0(t) = 30.

time. The parameter µ determines the covariance between derivatives with different delivery
dates/periods, namely, the higher µ is, the quicker the covariance between the assets vanishes.
Finally, the parameter a determines the overall volatility level, i.e., the higher it is, the higher
is the total volatility of any security.

The covariance function q2, however, belongs to an infinite-dimensional Brownian motion,
while the proof of Proposition 5.1 reveals that the covariance function q1 essentially belongs
to a two-dimensional Brownian motion in the sense that it takes values in a two-dimensional
subspace of Hα, namely, in the span of b1, b2, where b1, b2 are the basis functions appearing
in the proof of Proposition 5.1.

Since the joint law of the futures is jointly Gaussian and its covariance is determined by
the covariance operator if we assume (5.1) and that the driving law is an Hα-valued Brownian
motion W := L, it is simple and straightforward to run simulations or to find simulated values
for spread options on futures with different delivery periods.

At the end of the paper, we provide our simulations, all of them with the same total
theoretical volatility of 100% annually for the spot. In our simulations, we have not taken
into account any seasonal effects—which of course should be captured in the initial forward
curve f0. The model run by two OU-type processes (see Figure 1) clearly shows that the
futures with different delivery periods are strongly correlated, and in fact any two of them can
be used to perfectly hedge any other instrument on that market until the first delivery period of
the two futures starts. This market completeness effect can only be removed by either having
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Figure 2. Spread option price dynamics between the December and November futures with delivery on
October 31 and strike equal to zero. Dynamics is computed based on the OU model.

more Brownian motions than there are securities or by introducing jumps. The Gaussian
driven model with covariance operator Q2 shows (see Figure 3) a very clear decoupling of
the futures prices which is even more clear for futures with far distant delivery periods—or
with a higher µ parameter. Finally, we added simulation with HNIG processes which can
be easily generated by subordination, i.e., in a first step, one generates an inverse Gaussian
random variable with mean 1, uses its value as a factor on the covariance operator for the
next simulation step, and generates one Gaussian increment. Then, one repeats this for the
next time step. Visually, the paths look as random as for the Gaussian case (see Figure 5),
but a finer analysis would reveal NIG distributed price differentials. These are likely to be
more in line with actual market behavior (see Andresen, Koekebakker, and Westgaard [3],
Frestad [28], Frestad, Benth, and Koekebakker [29] for evidence of NIG distributed returns in
power markets). The leptokurtic behavior is more pronounced in the spot price than in the
smoothed (by delivery period averaging) monthly contracts. The Samuelson effect is evident
in all three models.

The values for the spread options can be calculated directly because the conditional laws
of the futures are Gaussian if the driving noise was a Wiener process. Indeed, if X, Y are

N

(
(µ1, µ2),

(
c1 c12
c12 c2

))
distributed, then

E((X − Y −K)+) = µΦ(µ/
√
c) +

√
cφ(µ/

√
c),
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Figure 3. Spot (black) and futures prices for contracts with delivery in October (blue), November (green),
and December (red); generated with the model (5.1) based on a covariance operator Q2 and a Brownian driving
noise. The parameters have been chosen to be a = 1, λ = 5, µ = 5, and f0(t) = 30.

Figure 4. Spread option price dynamics between the December and November futures with delivery on
October 31 and strike equal to zero. Dynamics is computed based on the Gaussian model.
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Figure 5. Spot (black) and futures prices for contracts with delivery in October (blue), November (green),
and December (red); generated with the model (5.1) based on a covariance operator Q2 and an HNIG driving
noise. The parameters have been chosen to be a = 1, λ = 5, µ = 5, and f0(t) = 30.

Figure 6. Spread option price dynamics (cyan) between the December and November futures with delivery
on October 31 and strike equal to zero. Dynamics is computed based on the HNIG model.
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where c := c1+c2−c12 is the variance of X−Y and µ := µ1−µ2−K is the mean of X−Y −K.
Since the law of the NIG distribution is known, similar calculations lead to a semiclosed form
expression, i.e., up to one integral expression which has to be solved numerically; compare
Proposition 3.11 for the Gaussian case and Proposition 3.7 for the more general price formula.
The dynamics of the spread option price is shown for the three different spot-futures models
above in Figures 2, 4, and 6. The price dynamics look qualitatively slightly different, with
the OU model more volatile than the Gaussian and HNIG. This is an implication of the
stronger correlation implied by the infinite-dimensional models compared with the two-factor
OU model. We have used the simulated paths from the examples above as the underlying
futures prices.
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