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Abstract We prove that the derived McKay correspondence holds for the cases of
finite abelian groups and subgroups of GL(2,C). We also prove that K -equivalent
toric birational maps are decomposed into toric flops.
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1 Introduction

This is a continuation of papers [16,18].We have studied the effect of each elementary
birational map in the minimal model program to the derived categories in the case of
toric pairs. In this paper we consider problems of more global nature. We add some
cases to the list of affirmative answers to the derivedMcKay correspondence conjecture
and its generalization, the “K implies D conjecture” ([14]).

The conjecture states that, if there is an inequality of canonical divisors between
birationally equivalent algebraic varieties, then there is a semi-orthogonal decom-
position of the derived category with larger canonical divisor into that with smaller
canonical divisor and other factors. In particular, if the canonical divisors are equiva-
lent, then so are the derived categories. The reason for the conjecture is the following;
the canonical divisor is the key ingredient of the minimal model theory, and we believe
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Derived categories of toric varieties III 197

that the corresponding Serre functor should control the behavior of the derived cate-
gory.

First we remark that the results in [16,18] are easily extended to the relative situation
(Theorem 1.1). Then we remark that the derived McKay correspondence holds for
any abelian quotient singularity in the following sense; the derived category defined
by a finite abelian group contained in a general linear group is semi-orthogonally
decomposed into derived categories of a relative minimal model and subvarieties
of the quotient space (Theorem 1.3). As an application, we prove that such derived
McKay correspondence also holds for arbitrary quotient singularities in dimension 2
(Theorem 1.4).

Next we prove that any proper birational morphism between toric pairs which is
a K -equivalence is decomposed into a sequence of flops (Theorem 1.5). This is a
generalization, in the toric case, of a theorem in [17], which states that any birational
morphism between minimal models is decomposed into a sequence of flops. We note
that the latter case is easier because the log canonical divisor stays at the bottom and
cannot be decreasedwhen themodels areminimal, while it is more difficult to preserve
the level of the log canonical divisor in the former case.

Now we state the theorems in details. We refer the terminology to the next section.
The following is the reformulation of the results of [16,18] to the relative case.

Theorem 1.1 Let (X, B) and (Y,C) be Q-factorial toric pairs whose coefficients
belong to the standard set {1−1/m : m ∈ N}, let ˜X and˜Y be smoothDeligne–Mumford
stacks associated to the pairs (X, B) and (Y,C), respectively, and let f : X ��� Y be
a toric rational map. Assume one of the following conditions:

(a) f is the identity morphism, and B ≥ C.
(b) f is a flip, C = f∗B, and KX + B ≥ KY + C.
(c) f is a divisorial contraction, C = f∗B, and KX + B ≥ KY + C.
(d) f is a divisorial contraction, C = f∗B, and KX + B ≤ KY + C.
(e) f is a Mori fiber space and C is determined by (X, B) and f as explained in [16].

Then the following hold:

(a), (b), (c) There are toric closed subvarieties Zi , 1 ≤ i ≤ l, of Y such that Zi �= Y
for some l ≥ 0, and fully faithful functors � : Db(coh(˜Y )) → Db(coh(˜X)) and
�i : Db(coh(˜Zi )) → Db(coh(˜X)) for the smooth Deligne–Mumford stacks ˜Zi

associated to Zi such that there is a semi-orthogonal decomposition of triangu-
lated categories

Db(coh(˜X)) = 〈

�1
(

Db(coh(˜Z1))
)

, . . . , �l
(

Db(coh(˜Zl))
)

,�
(

Db(coh(˜Y ))
)〉

.

(d) There are toric closed subvarieties Zi ⊂ Y , 1 ≤ i ≤ l, as in (c), and
fully faithful functors � : Db(coh(˜X)) → Db(coh(˜Y )) and �i : Db(coh(˜Zi ))

→ Db(coh(˜Y )) such that there is a semi-orthogonal decomposition

Db(coh(˜Y )) = 〈

�1
(

Db(coh(˜Z1))
)

, . . . , �l
(

Db(coh(˜Zl))
)

,�
(

Db(coh(˜X))
)〉

.
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198 Y. Kawamata

(e) There are fully faithful functors � j : Db(coh(˜Y )) → Db(coh(˜X)), 1 ≤ j ≤ m,
for some m ≥ 2 and a semi-orthogonal decomposition

Db(coh(˜X)) = 〈

�1
(

Db(coh(˜Y ))
)

, . . . , �m
(

Db(coh(˜Y ))
)〉

.

Moreover, if KX + B = KY + C in the cases (b) or (c), then � is an equivalence.

We note that, when f is a divisorial contraction, the direction of the inclusion of the
derived categories is unrelated to the direction of the morphism, but is the same as the
direction of the inequality of the canonical divisors.

If X and Y are smooth and f is a blowing up of a smooth center in the case (b),
or if X and Y are smooth and f is a standard flip in the case (c), then it is a theorem
by Bondal–Orlov [4]. The derived equivalence in the case of flops (case (c) with
KX + B = KY + C) was proved for general (non-toric) case under the additional
assumptions: if dim X = 3 and X is smooth by Bridgeland [5], if dim X = 3 and
X has only Gorenstein terminal singularities by Chen [8] and Van den Bergh [20], if
dim X = 3 and X has only terminal singularities by [14], and if X is a holomorphic
symplectic manifold by Kaledin [12]. There are also interesting results concerning
the last case by Cautis [7] by using the categorification of linear group actions, and
by Donovan–Segal [9], Ballard–Favero–Katzarkov [1] and Halpern-Leistner [10] by
using the theory of variations of GIT quotients.

As a corollary we obtain

Corollary 1.2 Let (X, B) be aQ-factorial toric pair whose coefficients belong to the
standard set {1 − 1/m : m ∈ N}. Assume that there is a projective toric morphism
f : X → Z to another Q-factorial toric variety. Then there exist toric closed subva-
rieties Zi , 1 ≤ i ≤ m, of Z for some m ≥ 1 such that there are fully faithful functors
�i : Db(coh(˜Zi )) → Db(coh(˜X)) with a semi-orthogonal decomposition

Db(coh(˜X)) ∼= 〈

�1
(

Db(coh(˜Z1))
)

, . . . , �m
(

Db(coh(˜Zm))
)〉

,

where ˜X and the ˜Zi are smooth Deligne–Mumford stacks associated to (X, B) and
Zi .

In other words, one can say that the derived category Db(coh ˜X) is generated by
a relative exceptional collection. The proofs of the above statements are the same as
in [15,16,18] except Theorem 1.1 (a).More precisely, the existence of the fully faithful
functors� in Theorem 1.1 in the cases (a), (b), (c) and (d) is proved in [15]. The semi-
orthogonal complements in the cases (b) and (c) are described in [16], and (d) in [18].
Moreover the case (e) is described in [16]. We shall give a proof of Theorem 1.1 (a)
in Sect. 4.

The following is the derived McKay correspondence for finite abelian groups.

Theorem 1.3 Let G ⊂ GL(n,C) be a finite abelian subgroup acting naturally on
an affine space A = Cn, and let X = A/G be the quotient space. Let f : Y → X
be a Q-factorial terminal relative minimal model of X. Then there exist toric closed
subvarieties Zi , 1 ≤ i ≤ m, of X with Zi �= X for some m ≥ 0, with possible
repetitions, such that there is a semi-orthogonal decomposition
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Derived categories of toric varieties III 199

Db(coh([A/G])) ∼= 〈

Db(coh(˜Z1)), . . . , D
b(coh(˜Zm)), Db(coh(˜Y ))

〉

,

where ˜Y and ˜Zi are smooth Deligne–Mumford stacks associated to Y and Zi , respec-
tively. Moreover if G ⊂ SL(n,C), then m = 0.

In the case of dimension 2, we do not need the assumption that the group is abelian.

Theorem 1.4 Let G ⊂ GL(2,C) be a finite subgroup acting naturally on an affine
space A = C2, let X = A/G, and let f : Y → X be the minimal resolution. Then
there exist closed subvarieties Zi , 1 ≤ i ≤ m, of X with Zi �= X for some m ≥ 0,
with possible repetitions, such that there is a semi-orthogonal decomposition

Db(coh([A/G])) ∼= 〈

Db(coh(Zν
1 )), . . . , D

b(coh(Zν
m)), Db(coh(Y ))

〉

,

where Zν
i are normalizations of Zi . Moreover if there are no quasi-reflections in G,

the elements whose invariant subspaces are of codimension 1, then dim Zi = 0 for
all i . Thus the semi-orthogonal complement of Db(coh(Y )) in Db(coh([A/G])) is
generated by an exceptional collection in this case.

The derived McKay correspondence was already proved for finite subgroups of
SL(2,C), SL(3,C) (Bridgeland–King–Reid [6]), and Sp(2n,C) (Bezrukavnikov–
Kaledin [2]).

Finally, we prove the following decomposition theorem for K -equivalent toric bira-
tional map.

Theorem 1.5 Let f : X ��� Y be a toric birational map between projective Q-
factorial toric varieties which is an isomorphism in codimension 1, let B be a toric
R-divisor on X whose coefficients belong to the interval (0, 1), and let f∗B = C.
Assume that KX + B = KY + C. Then the birational map f : (X, B) ��� (Y,C) is
decomposed into a sequence of flops.

As a corollary of Theorems 1.1 and 1.5, we obtain an affirmative answer to “K implies
D conjecture” in the toric case.

Corollary 1.6 Assume additionally that the coefficients of B belong to a set {1−1/m :
m ∈ Z>0}. Let ˜X and ˜Y be the smooth Deligne–Mumford stacks associated to the
pairs (X, B) and (Y,C), respectively. Then there is an equivalence of triangulated
categories Db(coh(˜X)) ∼= Db(coh(˜Y )).

We note that “K implies D conjecture” is known to be true only for 3-dimensional
varieties with terminal singularities but without boundary divisors by [5,8,14,20] with
the help of Proposition 3.4.

Sasha Kuznetsov kindly informed the author that Ishii and Ueda [11] proved The-
orem 1.5 in the case where the action of G is free in codimension 1, i.e., if there are
no quasi-reflections, using the method of dimer models.

2 Preliminaries

We fix terminology in this section. A pair (X, B) consisting of a normal algebraic
variety and an effective R-divisor is said to be KLT (resp. terminal) if there is a
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200 Y. Kawamata

projective birational morphism p : Z → X from a smooth variety with an R-divisor
D whose support is a normal crossing divisor such that an equality p∗(KX +B) =
KZ + D holds and all coefficients of D are smaller than 1 (resp. all coefficients of
D− p−1∗ B are smaller than 0), where the canonical divisors KX and KZ are defined by
using the same rational differential forms. It is calledQ-factorial if any prime divisor
on X is a Q-Cartier divisor.

A rational number is said to be standard if it is of the form 1 − 1/m for a positive
integer m.

A toric pair (X, B) consists of a toric variety and an effective R-divisor whose
irreducible components are invariant under the torus action. It is KLT if and only if
the coefficients of B belong to an interval [0, 1). A toric variety X is Q-factorial if
and only if the corresponding fan is simplicial. In this case it has only abelian quotient
singularities. Conversely, the quotient of an affine space by any finite abelian group is
a Q-factorial toric variety.

A birational map h : X ��� Y between varieties is said to be proper if there exists
a third variety Z with proper birational morphisms f : Z → X and g : Z → Y such
that g = h◦ f .

Let f : (X, B) ��� (Y,C) be a proper birational map between KLT pairs. We say
that there is an equality of log canonical divisors KX+B = KY +C (resp. an inequality
KX +B ≥ KY +C), if p∗(KX +B) = q∗(KY +C) (resp. p∗(KX +B) ≥ q∗(KY +C))
as an equality (resp. an inequality) of R-divisors for some p, q as above. We note that
such equality or inequality can be defined only when the birational map f is fixed,
and the definition is independent of the choice of p, q. Such an equality (resp. an
inequality) is called a K -equivalence (resp. K -inequality). The birational map f is
also said to be crepant if it is a K -equivalence.

A proper birational map f : X ��� Y is said to be isomorphic in codimension 1
(resp. surjective in codimension 1) if it induces a bijection (resp. surjection) between
the sets of prime divisors.

A flop (resp. flip) is a proper birational map f : (X, B) ��� (Y,C) between Q-
factorial KLT pairs satisfying the following conditions: f∗B = C , KX + B = KY +C
(resp. KX +B > KY +C), and there exist projective birational morphisms s : X → W
and t : Y → W to a normal variety which are isomorphisms in codimension 1 and the
relative Picard numbers ρ(X/W ) and ρ(Y/W ) are equal to 1.

A divisorial contraction is a projective birational morphism f : (X, B) → (Y,C)

betweenQ-factorial KLT pairs satisfying the following conditions: f∗B = C , and the
exceptional locus of f consists of a single prime divisor.We have always ρ(X/Y ) = 1,
and we have either KX +B = KY +C , KX +B > KY +C , or KX +B < KY +C . The
inverse birational map f −1 : (Y,C) ��� (X, B) of a divisorial contraction is called a
divisorial extraction.

A Mori fiber space is a projective morphism f : (X, B) → Y from a Q-factorial
KLT pair to a normal variety satisfying the following conditions: ρ(X/Y ) = 1,
−(KX + B) is ample, and dim X > dim Y .

For a Q-factorial KLT pair (X, B), there exists a sequence of crepant divisorial
contractions

(Y,C) = (Xm, Bm) → · · · → (X1, B1) → (X0, B0) = (X, B)
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Derived categories of toric varieties III 201

such that (Y,C) is terminal andQ-factorial [3]. The composition f : (Y,C) → (X, B)

is called a Q-factorial crepant terminalization of the pair (X, B). We note that even
if B has standard coefficients, C may not be so.

Let f : (Y,C) → (X, B) be a projective birational morphism from a Q-factorial
terminal pair to a KLT pair. It is called a Q-factorial terminal relative minimal model
if C = f −1∗ B and KY + C is relatively nef over X . We note that f is not necessarily
crepant. The existence of such a model is also proved in [3].

Any Q-factorial crepant terminalization and Q-factorial terminal relative minimal
model of a toric pair are both toric.

A KLT pair (X, B) is said to be of quotient type, if there is a quasi-finite surjective
morphismπ ′ : X ′ → X from a smooth variety X ′, which is not necessarily irreducible,
such that KX ′ = (π ′)∗(KX + B). In this case B has only standard coefficients, and X
is automatically Q-factorial. If the pair (X, B) is toric, X is Q-factorial, and if B has
standard coefficients, then it is of quotient type.

There is a smooth Deligne–Mumford stack ˜X associated to the pair (X, B) of quo-
tient type in such a way that a sheaf F on ˜X is nothing but a sheaf F ′ on X ′ equipped
with an isomorphism h21 : p∗

1F
′ ∼= p∗

2F
′, where pi : (X ′×X X ′)ν → X ′, i = 1, 2,

are the projections from the normalization of the fiber product, satisfying the cocycle
condition h32h21 = h31 for pi : (X ′×X X ′×X X ′)ν → X ′, i = 1, 2, 3. If B = 0, we
simply say that ˜X is an associated Deligne–Mumford stack to X .

By the construction, there is a finite birational morphism π : ˜X → X such that
π∗(KX +B) = K

˜X , cf. [15].
We note that the construction of ˜X does not depend on the choice of the covering

π ′ : X ′ → X . Indeed if π ′
1 : X ′

1 → X is another covering, then the normalization of
the fiber product X ′

2 = (X ′×X X ′
1)

ν is étale over X ′ and X ′
1, so that X ′

2 defines the
same set of sheaves as X ′ and X ′

1 by the étale descent.
For an algebraic variety or a Deligne–Mumford stack X , let Db(coh(X)) denote the

bounded derived category of coherent sheaves on X . There are variants of this notation;
if a finite groupG acts on X , then Db(cohG(X)) denotes the bounded derived category
of G-equivariant coherent sheaves on X . Thus Db(cohG(X)) ∼= Db(coh([X/G])).

A triangulated category T is said to have a semi-orthogonal decomposition T =
〈T1, . . . ,Tm〉 by triangulated full subcategories Ti if the following conditions are
satisfied: (a) Hom(a, b) = 0 for a ∈ Ti and b ∈ T j if i > j , and (b) for any object
a ∈ T there is a sequence of objects ai ∈ T for 1 ≤ i ≤ m + 1 such that a = a1,
am+1 = 0, and that there are distinguished triangles ai+1 → ai → bi with bi ∈ Ti
for 1 ≤ i ≤ m. In particular, if Ti are equivalent to Db(Spec k) for all i , then T is said
to have a full exceptional collection.

For a pair of quotient type, we can define an abelian category whose homological
dimension is finite. Therefore we would like to ask the following

Question 2.1 Let f : (X, B) ��� (Y,C) be a flop or a flip. If (X, B) is of quotient
type, then is (Y,C) too?

We note that a divisorial contraction of a smooth threefold may produce a singularity
of non-quotient type even if it is crepant. We note also that even if X is smooth and
f is a flop, Y is not necessarily smooth, but we have still the derived equivalence in
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202 Y. Kawamata

some examples when we consider the associated Deligne–Mumford stacks, cf. [13].
The following lemma is standard.

Lemma 2.2 Let f : (X, B) ��� (Y,C) be a proper birational map between Q-
factorial terminal pairs, and assume that KX + B ≥ KY + C. Then f is surjective
in codimension 1, and f∗B ≥ C. Moreover if KX + B = KY + C, then f is an
isomorphism in codimension 1.

Proof Suppose that there is a prime divisor C1 on Y which is not the strict transform
of a prime divisor on X . Let c1 ≥ 0 be the coefficient of C1 in C . Let p : Z → X and
q : Z → Y be projective birational morphisms from a smooth variety, and let D1 be
the strict transform of C1. Since we have an inequality p∗(KX +B) ≥ q∗(KY +C),
the coefficient of D1 in p∗(KX +B) − KZ should be non-negative, a contradiction
to the fact that (X, B) is terminal. Therefore f is surjective in codimension 1. If we
apply the first assertion to f and f −1, then we obtain the second assertion. ��

3 Decomposition theorem for toric pairs

Weprove Theorem 1.5 in this section. First we prove a condition for the decomposition
theorem that is also valid for the non-toric case. Let f : (X, B) ��� (Y,C) be a
birational map between projective Q-factorial KLT pairs which is an isomorphism in
codimension 1 and such that KX + B = KY + C . Let p : Z → X and q : Z → Y be
projective birational morphisms such that f ◦ p = q.

Lemma 3.1 Assume that there is a set of curves {lλ} on X whose classes generate the
cone of curvesNE(X) as a closed convex cone and such that the following condition is
satisfied: for any fixed λ, if there is an ample divisor LY on Y such that (LX , lλ) < 0 for
the strict transform LX = f −1∗ LY , then ((KX +B), lλ) = 0. Then f is decomposed
into a sequence of flops.

It is important to note that {lλ} is not necessarily the set of all curves.

Proof We shall find suitable extremal rays in order to find a path from (X, B) to
(Y,C).

We take an ample and effective divisor LY on Y such that LY − (KY +C) is also
ample, and let LX = f −1∗ LY be the strict transform.

Assume first LX is nef. We claim that LX − (KX +B) is also nef. Otherwise, there
exists a curve lλ such that ((LX − (KX +B)), lλ) < 0. By the assumption, it follows
that ((KX +B), lλ) = 0. Therefore (LX , lλ) < 0, a contradiction.

By the base point free theorem [19], LX is semiample. Since f is an isomorphism
in codimension 1, the associated morphism coincides with f . Since both X and Y are
Q-factorial, we conclude that f is an isomorphism.

Next assume that LX is not nef. We take a small positive number ε such that the
pair (X, B+εLX ) is KLT. We would like to run a minimal model program for this
pair in order to move from the pair (X, B) to the pair (Y,C). Here we have to note that
there may be extremal rays of (X, B+εLX ) which do not come from the negativity
of LX .
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Derived categories of toric varieties III 203

Since LX is not nef, there exists a curve lλ such that (LX , lλ) < 0. By the assump-
tion, ((KX +B), lλ) = 0 for such curve. Therefore KX + B + εLX is not nef.

The part of the closed cone of curves NE(X) where LX is negative is contained
in the part where KX + B + εLX is negative. Thus there exists an extremal ray R of
NE(X) on which LX is negative. Since KX + B is numerically trivial on R, the flip of
R for the pair (X, B+εLX ) is a flop for (X, B). Since B + εLX is big, this process
terminates by [3], and f is decomposed into the flops. ��
It is important note that {lλ}λ∈	 is not necessarily the set of all curves.

Now we consider the toric case. We take p : Z → X , q : Z → Y and LY to be
also toric. Since the coefficients of B belong to (0, 1), the pairs (X, B) and (Y,C) are
KLT.

Let 
X and 
Y be the simplicial fans corresponding to X and Y , respectively, in
the same vector space NR. By assumption, the sets of primitive vectors on the edges
of 
X and 
Y coincide. Since NE(X) is generated by toric curves, Theorem 1.5 is a
consequence of the following result.

Lemma 3.2 (i) Let LY be an ample divisor on Y and LX = f −1∗ LY . Let w be a wall
in 
X and let lw be the corresponding curve on X. Assume that (LX , lw) ≤ 0.
Then w is not a wall in 
Y .

(ii) Let w be a wall in 
X which does not belong to 
Y . Then ((KX +B), lw) = 0.

Proof (i) Since f is an isomorphism in codimension 1, the sets of primitive vectors {vi }
on the edges of
X and
Y coincide. Let gX and gY be functions on NR corresponding
to the divisors LX and LY , respectively. The functions gX and gY have the same values
at vi , and are linear inside each simplex belonging to 
X and 
Y , respectively. Since
LY is ample, gY is convex along the walls of 
Y .

Assuming that w is also a wall in 
Y , we shall derive a contradiction. Under this
assumption, the values of gX and gY are equal on w.

Let v1, v2 be two vertexes adjacent to w in 
X . We take a general point P on w

such that the line segments Ii connecting P to vi for i = 1, 2 pass only through the
interiors of simplexes and walls of 
Y . Then the function gY is convex along Ii .

Since gX is linear on Ii and coincideswith gY at the endpoints,wehave an inequality
gX ≥ gY on I1 ∪ I2. On the other hand, gX = gY on w. Since gY is convex along w,
we conclude that gX is also convex along w, hence (LX , lw) > 0, a contradiction.

(ii) Let Di be the prime divisors on X corresponding to vi . We write B = ∑

di Di ,
and let h be the function on the vector space NR which takes values 1 − di at vi and
linear inside each simplex of 
X . Since KX + B = KY + C , h is also linear inside
each simplex of 
Y . There is a point inside w which is an interior point of a simplex
in 
Y . Then h is linear across w. Therefore ((KX +B), lw) = 0. ��
Remark 3.3 The relative version is similarly proved. We need to assume that X and
Y are projective and toric over a toric variety S and f is a toric birational map over S.
We only consider curves relative over S, i.e., those mapped to single points on S.

If dim X = 3, then the condition of Lemma 3.1 is easily verified even in the non-toric
case.
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204 Y. Kawamata

Proposition 3.4 Assume that dim X = 3. Then any K -equivalent birational map
between projective Q-factorial KLT pairs f : (X, B) ��� (Y,C) which is an isomor-
phism in codimension 1 is decomposed into a sequence of flops.

Proof Assume that (LX , l) ≤ 0 for a curve l. Since dim X = 3, there are only finitely
many such curves l. Then l is the image of a fiber of q by p. Therefore we have
((KX +B), l) = 0. ��

4 Derived McKay correspondence

We prove Theorems 1.3 and 1.4 as well as Theorem 1.1 (a) in this section.

Proof of Theorem 1.3 Let B be aQ-divisor on X such that p∗(KX + B) = KA. Since
the action of G is diagonalizable, the pair (X, B) is toric. We have Db(coh([A/G]) ∼=
Db(coh(˜X)) for the smooth Deligne–Mumford stack ˜X associated to the pair (X, B).

There exists a toric relative minimal model of X . Any other relative minimal model
is obtained by a sequence of flops from the toric relative minimal model by [17]. Since
the extremal rays are toric, the sequence is automatically toric, hence any relative
minimal model is again toric. By Theorem 1.1, it is sufficient to prove the theorem for
a particular relative minimal model.

Since X is Q-factorial and (X, B) is KLT, we can construct a sequence toric bira-
tional morphisms

(Xt , Bt ) → (Xt−1, Bt−1) → · · · → (X0, B0) = (X, B)

which satisfy the following conditions:

• Each step fi : (Xi , Bi ) → (Xi−1, Bi−1) is a divisorial contraction such that Bi
= f −1

i∗ Bi−1 and KXi + Bi ≤ KXi−1 + Bi−1 for 1 ≤ i ≤ t .
• The pair (Xt , Bt ) is terminal.

We note that the coefficients of Bi are standard because the exceptional divisors have
coefficients 0.

Next we run a toric minimal model program for Xt over X to obtain a sequence of
birational maps

Xt = Y0 ��� Y1 ��� · · · ��� Ys = Y

consisting of divisorial contractions and flips such that KY is nef over X . We have
KYj−1 > KYj for 1 ≤ j ≤ s.

We apply Theorem 1.1 and Corollary 1.2 to each step of the above sequences to
obtain our result.

If G ⊂ SL(n,C), then it follows that B = 0 and X is Gorenstein and canonical. In
this case, the morphisms fi are crepant with Bi = 0 for all i , and KXt is already nef
over X because it is trivial. Therefore m = 0. ��
Proof of Theorem 1.4 Let H be the normal subgroup of G defined by H
= G ∩ SL(2,C). The residue group is a cyclic group Zr = G/H for r = [G :
H ]. By [6], a component of the Hilbert scheme of H -invariant subschemes of A
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gives a crepant resolution f : M → A/H , and there is a derived equivalence
� : Db(coh(M)) → Db(cohH (A)) = Db(coh([A/H ])). More precisely, M is the
moduli space of closed subschemes P ⊂ A which are H -invariant and such that
lengthOP = # H . For a generic point [P] ∈ M , P is a reduced subscheme, and corre-
sponds to a generic orbit of H in A. There exists a universal subscheme W ⊂ M ×A
with projections p : W → M and q : W → A such that the functor � = q∗ p∗ gives
the equivalence.

For [P] ∈ M and g ∈ G, gP is also H -invariant, since H is a normal subgroup.
Hence [gP] ∈ M , and G acts on M such that its subgroup H acts trivially. The
equivariant derived category Db(cohZr (M)) is identified with the category where the
objects are G-equivariant complexes on which H acts trivially, and the morphisms are
G-equivariant morphisms.

The subgroupG acts on the productM×A diagonally and preserves the subscheme
W . We claim that the functor

�′ = q∗ p∗ : Db(cohZr (M)) → Db(cohG(A))

is an equivalence. Indeed if a, b are Zr -equivariant objects, then the isomorphism

HomM (a, b) ∼= HomA(�(a),�(b))H

implies an isomorphism

HomM (a, b)Zr ∼= (

HomA(�(a),�(b))H
)Zr = HomA(�(a),�(b))G.

Let g : M → M/Zr be the map to the quotient space. We define a boundary divisor
BM/Zr on M/Zr by g∗(KM/Zr +BM/Zr ) = KM . Since M is smooth, M/Zr has only
cyclic quotient singularities. Let h : Y ′ → M/Zr be the minimal resolution, and let
k : Y ′ → Y be the contraction morphism to the minimal resolution of A/G. The
former is a toroidal morphism, and decomposed into toroidal divisorial contractions.
The latter is a composition of divisorial contractions of (−1)-curves, which are toroidal
too.

The canonical divisors satisfy the following inequalities:

KY ≤ KY ′ ≤ KM/Zr ≤ KM/Zr +BM/Zr = KA/G .

By Theorem 1.1, we obtain fully faithful embeddings

Db(coh(˜Y )) → Db(coh(˜Y ′)) → Db(coh([M/Zr ])) = Db(coh([A/G]))

whose semi-orthogonal complements are generated by the derived categories of sub-
varieties of X = A/G.

The positive dimensional subvarieties among Zi appear in the process to decrease
the coefficients of the irreducible components of BM/Zr which are mapped to positive
dimensional subvarieties of X . All other Zi coincide with the singular point of X ,
and each corresponding semi-orthogonal component is generated by an exceptional
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object. If there are no quasi-reflections, then the action of G is free outside the origin
of A, and only the latter case occurs. ��

Proof of Theorem 1.1 (a) It is sufficient to consider the following situation: X = Y
is an affine toric variety corresponding to a simplicial cone σ ⊂ NR generated by
primitive vectors v1, . . . , vn ∈ N . Let Bi be prime divisors on X corresponding to vi ,
and let B = ∑

(1 − 1/ri )Bi and C = ∑

(1− 1/si )Bi , where r1 > s1 and ri = si for
i = 2, . . . , n. Let t1 = LCM(r1, s1) and ti = ri for i = 2, . . . , n.

The stacks ˜X , ˜Y and ˜W are defined by the coverings which correspond to the
sublattices NX , NY and NW of N generated by rivi , sivi and tivi , respectively. Let
˜BX
i , ˜BY

i and ˜BW
i be prime divisors on ˜X , ˜Y and ˜W over Bi , respectively. They corre-

spond to primitive vectors rivi , sivi and tivi , respectively. Let p : ˜W → ˜X and q : ˜W
→ ˜Y be the natural morphisms. Then the fully faithful functor � : Db(coh(˜Y ))

→ Db(coh(˜X)) is constructed as � = p∗q∗ in [15, Theorem 4.2 (1)]. We have

�

(

O
˜Y

( n
∑

i=1

ki ˜B
Y
i

))

= O
˜X

(⌊

k1r1
s1

⌋

˜BX
1 +

n
∑

i=2

ki ˜B
X
i

)

for ki = 0, . . . , si − 1.
We define a toric boundary D on B1 from the pair (X, B) as follows (cf. [16,

Section 5]). Let N = N/Zv1, and write vi + Zv1 = divi ∈ N for primitive vectors
vi , i = 2, . . . , n. Then define D = ∑n

i=2(1 − 1/diri )Di for Di = B1 ∩ Bi . Let
˜B1 be the associated smooth Deligne–Mumford stack above (B1, D). Let ˜B ′

1 be the
normalization of the fiber product ˜B1×X ˜X with natural morphisms p1 : ˜B ′

1 → ˜B1
and p2 : ˜B ′

1 → ˜X .
We consider the semi-orthogonal complement of �(Db(coh(˜Y ))). We have exact

sequences

0 → O
˜X

(

(k1 − 1)˜BX
1 +

n
∑

i=2

ki ˜B
X
i

)

→ O
˜X

( n
∑

i=1

ki ˜B
X
i

)

→ p2∗ p∗
1O˜BX

1
⊗O

˜X

( n
∑

i=1

ki ˜B
X
i

)

→ 0.

Therefore Db(coh(˜X)) is generated by �(Db(coh(˜Y ))) and the sheaves p2∗ p∗
1O˜BX

1

⊗O
˜X

(∑n
i=1 li ˜B

X
i

)

for 0 ≤ li ≤ ri − 1 such that l1 �= �k1r1/s1� for any k1.
We have the following vanishing:

• If l1 �= �k′
1r1/s1� for any k′

1, then

RHom
˜X

(

O
˜X

(⌊

k1r1
s1

⌋

˜BX
1 +

n
∑

i=2

ki ˜B
X
i

)

, p2∗ p∗
1O˜BX

1
⊗O

˜X

( n
∑

i=1

li ˜B
X
i

))

= 0.
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• If l1, l ′1 �= �k′
1r1/s1� for any k′

1 and if l < l ′, then

RHom
˜X

(

p2∗ p∗
1O˜BX

1
⊗O

˜X

( n
∑

i=1

li ˜B
X
i

)

, p2∗ p∗
1O˜BX

1
⊗O

˜X

( n
∑

i=1

li ˜B
X
i

))

= 0.

Therefore the semi-orthogonal complement is generated by subcategories

p2∗ p∗
1D

b(coh(˜B1))⊗O
˜X (l1˜B

X
1 ),

1 ≤ l1 ≤ r1−1, such that l1 �= �k1r1/s1� for any k1 as in [16], and there is nomorphism
between objects belonging to different l1. Therefore we conclude the proof. ��

References

1. Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived
categories (2012). arXiv:1203.6643

2. Bezrukavnikov, R.V., Kaledin, D.B.: McKay equivalence for symplectic resolutions of quotient singu-
larities. Proc. Steklov Inst. Math. 246, 13–33 (2004)

3. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log
general type. J. Amer. Math. Soc. 23(2), 405–468 (2010)

4. Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Tatsien, L. (ed.) Proceedings of the
International Congress of Mathematicians (Beijing 2002), vol. II, pp. 47–56. Higher Education Press,
Beijing (2002)

5. Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002)
6. Bridgeland, T., King,A., Reid,M.: TheMcKay correspondence as an equivalence of derived categories.

J. Amer. Math. Soc. 14(3), 535–554 (2001)
7. Cautis, S.: Equivalences and stratified flops. Compos. Math. 148(1), 185–208 (2012)
8. Chen, J.-C.: Flops and equivalences of derived categories for threefolds with only terminal Gorenstein

singularities. J. Differential Geom. 61(2), 227–261 (2002)
9. Donovan, W., Segal, E.: Window shifts, flop equivalences and Grassmannian twists. Compos. Math.

150(6), 942–978 (2014)
10. Halpern-Leistner, D.S.: Geometric Invariant Theory and Derived Categories of Coherent Sheaves.

Ph.D. thesis, University of California, Berkeley. ProQuest LLC, Ann Arbor (2013)
11. Ishii, A., Ueda, K.: The special McKay correspondence and exceptional collections (2011).

arXiv:1104.2381
12. Kaledin, D.: Derived equivalences by quantization. Geom. Funct. Anal. 17(6), 1968–2004 (2008)
13. Kawamata, Y.: Francia’s flip and derived categories. In: Beltrametti, M.C. et al. (eds.) Algebraic

Geometry. De Gruyter Proceedings in Mathematics, pp. 197–215. De Gruyter, Berlin (2002)
14. Kawamata, Y.: D-equivalence and K -equivalence. J. Differential Geom. 61(1), 147–171 (2002)
15. Kawamata, Y.: Log crepant birational maps and derived categories. J. Math. Sci. Univ. Tokyo 12(2),

211–231 (2005)
16. Kawamata, Y.: Derived categories of toric varieties. Michigan Math. J. 54(3), 517–535 (2006)
17. Kawamata, Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008)
18. Kawamata, Y.: Derived categories of toric varieties II. Michigan Math. J. 62(2), 353–363 (2013)
19. Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Oda, T. (ed.)

Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10, pp. 283–360.
North-Holland, Amsterdam (1987)

20. Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–
455 (2004)

123

http://arxiv.org/abs/1203.6643
http://arxiv.org/abs/1104.2381

	Derived categories of toric varieties III
	Abstract
	1 Introduction
	2 Preliminaries
	3 Decomposition theorem for toric pairs
	4 Derived McKay correspondence
	References


