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Abstract

Following the approach of Haiden–Katzarkov–Kontsevich (Publ Math Inst Hautes
Études Sci 126:247–318, 2017), to any homologically smooth Z-graded gentle algebra
A we associate a triple (�A,�A; ηA), where �A is an oriented smooth surface with
non-empty boundary, �A is a set of stops on ∂�A and ηA is a line field on �A, such that
the derived category of perfect dg-modules of A is equivalent to the partially wrapped
Fukaya category of (�A,�A; ηA). Modifying arguments of Johnson and Kawazumi,
we classify the orbit decomposition of the action of the (symplectic) mapping class
group of �A on the homotopy classes of line fields. As a result we obtain a sufficient
criterion for homologically smooth graded gentle algebras to be derived equivalent.
Our criterion uses numerical invariants generalizing those given by Avella–Alaminos–
Geiss in Avella et al. (J Pure Appl Algebra 212(1):228–243, 2008), as well as some
other numerical invariants. As an application, we find many new cases when the AAG-
invariants determine the derived Morita class. As another application, we establish
some derived equivalences between the stacky nodal curves considered in Lekili and
Polishchuk (J Topology 11:615–444, 2018)

Introduction

Given a Liouville manifold (M, ω = dλ), a rigorous definition of the compact Fukaya
category, F(M), appears in the monograph [27]. This is a triangulated A∞-category
linear over some base ring K. Roughly speaking, the objects of F(M) are com-
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188 Y. Lekili, A. Polishchuk

pact, exact, oriented Lagrangian submanifolds in M , equipped with spin structures
(if charK �= 2). The orientations on each Lagrangian determine a Z2-grading on
F(M), and the spin structures enter in orienting the moduli spaces of holomorphic
polygons that enter into the definition of structure constants of the A∞ operations. It
is often convenient to upgrade the Z2-grading on F(M) to a Z-grading, which can
be done under the additional assumption that 2c1(M) = 0 (see [20,26]). Under this
assumption, one defines a notion of a grading structure on M , and correspondingly
considers only graded Lagrangians as objects of F(M), which now becomes a Z-
graded category. We refer to [26] for these general notions. In this paper, we focus
our attention to the case where M = � is a punctured (real) 2-dimensional surface,
equipped with an area form. A grading structure on � can be concretely described as
a homotopy class of a section η of the projectivized tangent bundle of P(T �). Note
that there is an effective H1(�)’s worth of choices (see Sect. 1). A Lagrangian can be
graded if the winding number of η along L vanishes, and in such a situation a grading
is a choice of a homotopy from the tangent lift L → T L ⊂ T � to η|L along L . These
gradings extend in a straightforward manner to the wrapped Fukaya category W(�)

which contains F(�) as a full subcategory, but also allows non-compact Lagrangians
in � and more generally, partially wrapped category W(�,�), as studied in [15, Sec.
2.1], where � is a surface with boundary and � is a collection of stops (i.e., marked
points) on ∂�.

By a graded surface (�,�; η) we mean an oriented surface with boundary �,
together with a set � of marked points on the boundary and a line field η. Given
two graded surfaces with stops, (�i ,�i ; ηi ) for i = 1, 2, and a homeomorphism
φ : �1 → �2, such that φ(�1) = �2, and φ∗(η1) is homotopic to η2 (we refer to such
homeomorphisms as graded), one gets an equivalence between the partially wrapped
Fukaya categories W(�1,�1; η1) and W(�2,�2; η2). Thus, it is important to have
a set of explicit computable invariants of a line field η on a surface with boundary
that determine the orbit of η under the action of the mapping class group of �. Our
first result (see Theorem 1.8) gives such invariants in terms of winding numbers of η.
In the most interesting case when genus is ≥ 2, the invariants consist of the winding
numbers along all the boundary components, plus two more invariants, each taking
values 0 and 1. The first of them decides whether the line field η is induced by a
non-vanishing vector field, while the second is the Arf-invariant of a certain quadratic
form over Z2. The cases of genus 1 and 0 are special due to the special nature of the
corresponding mapping class groups. In the case of genus 1 there is a certain Z-valued
invariant in addition to the winding numbers along boundary components. Note that
from the numerical invariants of Theorem 1.8 one can also recover the genus of the
surface and the numbers of stops on the boundary components, so if these invariants
match then the corresponding partially wrapped Fukaya categories are equivalent.

Next, we use this result to construct derived equivalences between gentle algebras,
introduced by Assem and Skowrónski in [3]. This is a remarkable class algebras
with monomial quadratic relations of special kind with a well understood structure
of indecomposable modules. Furthermore, their derived categories of modules also
enjoy many nice properties (see [11] and references therein). Avella-Alaminos and
Geiss [7] gave a combinatorial definition of derived invariants of finite-dimensional
gentle algebras, which form a collection of pairs of non-negative integers (m, n) with
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Derived equivalences of gentle algebras via Fukaya categories 189

multiplicities. We refer to these as AAG-invariants. It is known that these invariants
do not completely determine the derived Morita class of a gentle algebra in general
(for example, see [1]).

We consider Z-graded gentle algebras and their perfect derived categories (the
classical case corresponds to algebras concentrated in degree 0). For such an algebra
A, we denote by D(A) the perfect derived category of dg-modules over A viewed as
a dg-algebra with zero differential. The category D(A) has a natural dg-enhancement
which we take into account when talking about equivalences involving D(A).

The connection between graded gentle algebras and Fukaya categories was
established by Haiden, Katzarkov and Kontsevich [15] (cf. [10]): they constructed
collections of formal generators in some partially wrapped Fukaya categories whose
endomorphism algebras are graded gentle algebras. In Theorem 3.11 we give an inverse
construction1: starting from a homologically smooth graded gentle algebra A we con-
struct a graded surface with stops (�A,�A; ηA) together with a set formal generators
whose endomorphism algebra is isomorphic to A. This leads to an equivalence of
the partially wrapped Fukaya category W(�,�) with the derived category D(A). In
addition, we generalize the combinatorial definition of AAG-invariants to possibly
infinite-dimensional graded gentle algebras and show that they can be recovered from
the winding numbers of ηA along all boundary components.

Now recalling our numerical invariants of graded surfaces with stops from Theo-
rem 1.8 we obtain a sufficient criterion for derived equivalence between homologically
smooth graded gentle algebras. Namely, if we start with two such algebras A and A′

and find that the corresponding invariants from Theorem 1.8, determined by winding
numbers of ηA and ηA′ , coincide then we get a derived equivalence between A and A′.
More precisely, the first step is to check that A and A′ have the same AAG-invariants.
In the case of genus 0, this suffices. For genus 1, one has to compute a certain invariant
with values in Z≥0, while for genus > 1 one has to check that two invariants with
values in {0, 1} match. Note that the genus can be computed from the AAG-invariants.

As an application, using the above approach we obtain a sufficient criterion for
derived equivalence of homologically smooth graded gentle algebras given purely in
terms of AAG-invariants (see Corollary 3.14). Using Koszul duality, we also get a
sufficient criterion for derived equivalence of finite-dimensional gentle algebras with
grading in degree 0 (see Corollary 3.16).

In a different direction, we construct derived equivalences between stacky nodal
curves studied in [21]. Namely, these are either chains or rings of weighted projective
lines glued to form stacky nodes, locally modelled by quotients (xy = 0)/(x, y) ∼
(ζ k x, ζ y), where ζ r = 1 and k ∈ (Z/r)∗. In [21, Thm. B] we constructed an equiv-
alence of the derived category of coherent sheaves on such a stacky curve with the
partially wrapped Fukaya category of some graded surface with stops (this can be
viewed as an instance of homological mirror symmetry). Thus, using Theorem 1.8 we
get many nontrivial derived equivalences between our stacky curves. In the case of
balanced nodes (those with k = −1) we recover the equivalences between tcnc curves
from [28].

1 The existence of such construction is mentioned in [15].
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190 Y. Lekili, A. Polishchuk

1 Line fields on surfaces

1.1 Basics on line fields

Let � be an oriented smooth surface of genus g(�) with non-empty boundary with
connected components ∂� =

⊔d
i=1 ∂i�. The pure mapping class group of � is

M(�) = π0(Homeo+(�, ∂�)),

where Homeo+(�, ∂�) is the space of orientation preserving homeomorphism of �

which are the identity pointwise on ∂�.

Definition 1.1 An (unoriented) line field η on � is a section of the projectivized tangent
bundle P(T �). We denote by

G(�) = π0(Ŵ(�, P(T �)))

the set of homotopy classes of unoriented line fields.

A non-vanishing vector field gives a section of the tangent circle bundle S�. Such
a section induces a line field via the bundle map S� → P(T �) which is a fibrewise
double covering. However, not all line fields come from non-vanishing vector fields:
a section of P(T �) may not lift to a section of S� (in Lemma 1.4 below we will get
a criterion for this).

The trivial circle fibration

S1 ι−→ P(T �)
p−→ � (1.1)

induces an exact sequence

0 → H1(�)
p∗
−→ H1(P(T �))

ι∗−→ H1(S1) → 0 (1.2)

(here and below, when the coefficient group is omitted it is assumed to be Z). Note that
the orientation on � induces orientations on the tangent circles, so that the inclusion
ι used in the above sequence is canonical up to homotopy.

We can think of line fields as trivializations of the circle fibration (1.1), in particular,
the set G(�) has a natural structure of a torsor over the group of homotopy classes of
maps � → S1, i.e., with H1(�). We denote the corresponding action of c ∈ H1(�)

on G(�) by η �→ η + c.
Let us associate with a line field η the class [η] ∈ H1(P(T �)), such that

ι∗[η]([S1]) = 1, by taking the Poincaré-Lefschetz dual of the class of the image
[η(�)] ⊂ H2(P(T �), ∂P(T �)).

Lemma 1.2 The map η �→ [η] gives an identification

G(�) = (ι∗)−1(ζ ) ⊂ H1(P(T �)),

where ζ ∈ H1(S1) is the generator which integrates to 1 along S1.
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Derived equivalences of gentle algebras via Fukaya categories 191

Proof The exact sequence (1.2) shows that set (ι∗)−1(ζ ) is a torsor over H1(�). It is
easy to check that the map η �→ [η] is compatible with the H1(�)-actions, i.e.,

[η + c] = [η] + p∗c.

The assertion follows immediately from this. ⊓⊔

The mapping class group M(�) acts on G(�) on the right. Our goal in this section
is to understand the orbit decomposition of G(�) with respect to this action.

Given an immersed curve γ : S1 → �, one can consider its tangent lift γ̃ : S1 →
P(T �) given by (γ, T γ ), where T γ is the tangent space to the curve γ .

Definition 1.3 Given a line field η and an immersed curve γ , define the winding
number of γ with respect to η to be

wη(γ ) := 〈[η], [γ̃ ]〉,

where 〈 , 〉 : H1(P(T �)) × H1(P(T �)) → Z is the natural pairing.

The winding number wη(γ ) with respect to η only depends on the homotopy class
of η and the regular homotopy class of γ . From the definition we immediately get the
following compatibility with the action of H1(�):

wη+c(γ ) = wη(γ ) + 〈c, [γ ]〉.

Throughout, ∂� is oriented with respect to the natural orientation as the boundary
of �. In particular, wη(∂D

2) = 2 for the unique homotopy class of line fields on
D

2. For a boundary component B ⊂ ∂� with the opposite orientation, we write −B.
Then, we have wη(−B) = −wη(B).

Every nonvanishing vector field v on � defines naturally a line field. In this way
we get a map

V (�) → G(�) : v �→ 〈v〉

from the set of homotopy classes of nonvanishing vector fields V (�). We can think of
nonvanishing vector fields as trivializations of the tangent circle bundle, so V (�) has
a natural action of the group of homotopy classes of maps � → S1, i.e., of H1(�).
It is easy to check that the above map is compatible with the H1(�)-actions via the
multiplication by 2:

〈v + c〉 = 〈v〉 + 2c

for c ∈ H1(�). Also, for any nonvanishing vector field v, the winding number of
the corresponding line field 〈v〉 along an immersed curve γ is related to the winding
number of v itself by

w〈v〉(γ ) = 2wv(γ ).
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192 Y. Lekili, A. Polishchuk

Lemma 1.4 A line field η comes from a vector field if an only if all of its winding

numbers are even.

Proof The “only if” part is clear. Now let η be a line field with even winding numbers
and let v be some nonvanishing vector field (it exists since � is noncompact). Then
η = 〈v〉 + c for some c ∈ H1(�) such that 〈c, [γ ]〉 is even for every homology class
[γ ]. But this implies that c = 2c′, so η = 〈v + c′〉. ⊓⊔

1.2 Invariants under the action of themapping class group

Recall that ∂i�, i = 1, . . . , d are the components of the boundary of �. Given a line
field η, the winding numbers

wη(∂i�) for i = 1, . . . d,

depend only on the homotopy class of η and are invariant under the action of the
mapping class group M(�). This gives us the first set of invariants of elements of
G(�).

To go further, we need to study the winding numbers along non-separating curves
on �. As is well-known, the winding number invariants do not descend to a map from
H1(�). Indeed, if S ⊂ � is a compact subsurface with boundary ∂S =

⊔d
i=1 ∂i S, by

Poincaré-Hopf index theorem (see [16, Ch. 3]), we have:

d∑

i=1

wη(∂i S) = 2χ(S) (1.3)

However, considering the reduction modulo 2 we still get a well-defined homomor-
phism (see [17]):

[wη](2) : H1(�; Z2) → Z2

i.e an element H1(�; Z2).

Definition 1.5 We define the Z2-valued invariant

σ : G(�) → Z2

η �→
{

0 if [wη](2) = 0

1 otherwise

We have a natural map induced by the inclusion ∂� → �,

i : H1(∂�; Z2) ∼= Z
d
2 → H1(�; Z2) ∼= Z

2g+d−1
2 .

Note that the image of i is precisely the kernel of the intersection pairing on H1(�, Z2),
and the induced pairing on the cokernel of i is non-degenerate. In fact, this cokernel is
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Derived equivalences of gentle algebras via Fukaya categories 193

naturally isomorphic to H1(�; Z2) ≃ Z
2g
2 , where � is the surface without boundary

obtained from � by capping off all the boundary components.
Note that the values of [wη](2) on the boundary cycles are given by wη(∂i�) modulo

2. Thus, if at least one of these numbers is odd then σ(η) = 1. If all the boundary
winding numbers are even then we can check whether σ(η) = 0 by looking at the
winding numbers of a collection of cycles that form a basis in the homology of �.

Proposition 1.6 Suppose η is a line field on � defined by the class [η] ∈ H1(P(T �)).

There is a well defined map

qη : H1(�; Z4) → Z4

given by

qη

(
m∑

i=1

αi

)
=

m∑

i=1

wη(αi ) + 2m ∈ Z4,

where αi are simple closed curves. It satisfies

qη(a + b) = qη(a) + qη(b) + 2(a · b) ∈ Z4

where a, b ∈ H1(�; Z4), and a · b denotes the intersection pairing on H1(�; Z4).

Proof In the case when η comes from a non-vanishing vector field v, we have wη(a) =
2wv(a), where wv(·) is the winding number of the vector field. Hence, the assertion in
this case follows from [17, Thm 1A, Thm 1B]. In general, we have η = η0 + c, where
η0 comes from a non-vanishing vector field (which exists because � is non-compact)
and c is a class in H1(�). Thus, the function qη(a) := qη0(a)+〈c, a〉 has the claimed
properties. ⊓⊔

Lemma 1.7 Suppose that g(�) ≥ 2. Assume that line fields η and θ have wη(∂i�) =
wθ (∂i�) for i = 1, . . . , d, and qη = qθ . Then their homotopy classes lie in the same

M(�)-orbit.

Proof The assumption qη = qθ implies that wη(a) ≡ wθ (a) mod 4 for any a ∈
H1(�). Thus, we have θ = η + 4c for some c ∈ H1(�). Furthermore, the condition
wη(∂i�) = wθ (∂i�) implies that c has zero restriction to H1(∂�). Hence, there exists
α ∈ H1(�), such that 〈c, γ 〉 = (α · γ ) for any γ ∈ H1(�). Now the fact that η and θ

lie in the same M(�)-orbit is proved in exactly the same way as in the proof of [18,
Thm. 2.5]. Namely, for each standard generator of the homology, α, one can construct
an explicit element in the mapping class fα (expressed in terms of Dehn twists along
certain curves related to α) such that the action of fα on a line field has the same effect
as adding the class dual to 4α. ⊓⊔

Thus, for g(�) ≥ 2, the study of the M(�)-orbits on G(�) reduces to the study
of M(�)-orbits on the set of functions q : H1(�, Z4) → Z4 satisfying

q(a + b) = q(a) + q(b) + 2(a · b). (1.4)
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194 Y. Lekili, A. Polishchuk

Let us denote by Quad4 = Quad4(�) the set of all such functions (it is an H1(�, Z4)-
torsor).

Recall that given a symplectic vector space V , (− · −) over Z2, one can consider
the set Quad(V ) of quadratic forms q : V → Z2 satisfying

q(x + y) = q(x) + q(y) + (x · y). (1.5)

For every q ∈ Quad(V ), the Arf-invariant ([2,12]) is the element of Z2 given by

A(q) =
n∑

i=1

q(ai )q(bi ),

where (ai , bi ) is a symplectic basis of V . The Arf invariant is the value that q attains
on the majority of vectors in V .

In the case whenwη(∂i�) ≡ 2 mod 4 for every i = 1, . . . , d, and the quadratic func-
tion q = qη takes values in 2Z4, we can associate to q an element in Quad(H1(�, Z2))

whose Arf-invariant will give us an additional invariant of η modulo the mapping class
group action.

Namely, it is easy to see that if q ∈ Quad4 takes values in 2Z4 then we have a well
defined function q/2 : H1(�, Z2) → Z2 satisfying (1.5) such that q = 2 · q/2. Now
the condition wη(∂i�) ≡ 2 mod 4 is equivalent to q/2(∂i�) = 0, so this is precisely
the condition for the quadratic function q/2 to descend to a form q in Quad(H1(�, Z2))

(recall that H1(�, Z2) is the quotient of H1(�, Z2) by the boundary classes).
Thus, in the case when σ(η) = 0 and wη(∂i�) ≡ 2 mod 4 for every i = 1, . . . , d,

we can apply the above construction to qη and define the quadratic form qη in
Quad(H1(�, Z2)). In this case we set

A(η) := A(qη).

In the case g(�) = 1 we will use a different invariant of a line field, Ã(η), defined
by

Ã(η) := gcd({wη(α),wη(β),wη(∂1�) + 2, . . . , wη(∂d�) + 2}), (1.6)

where α, β are non-separating curves in � such that [α] and [β] project to a basis of
H1(�)/ im(i∗). It can be shown as in [18, Lemma 2.6] that

Ã(η) = gcd({wη(γ ) : γ non-separating })

which implies that Ã(·) is indeed invariant under the mapping class group. We
also note that in the case d = 1, wη(∂�) = −2, hence this invariant reduces to
gcd(wη(α),wη(β)) considered in [1].
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Derived equivalences of gentle algebras via Fukaya categories 195

Theorem 1.8 (i) Suppose g(�) = 0. Then the action of M(�) on G(�) is trivial.

Moreover, two line fields η and θ are homotopic if and only if

wη(∂i�) = wθ (∂i�) for all i = 1, . . . d.

(ii) Suppose g(�) = 1. Then two line fields η and θ are in the same M(�)-orbit if

and only if

wη(∂i�) = wθ (∂i�) for all i = 1, . . . d.

and

Ã(η) = Ã(θ) ∈ Z≥0,

where Ã(η) is defined by (1.6).
(iii) Suppose g(�) ≥ 2. Then two line fields η and θ are in the same M(�) orbit if

and only if the following conditions are satisfied:

(1) wη(∂i�) = wθ (∂i�) for all i = 1, . . . d;
(2) σ(η) = σ(θ) (this only needs to be checked if all wη(∂i�) are even);

(3) if wη(∂i�) = wθ (∂i�) ∈ 2 + 4Z and σ(η) = σ(θ) = 0 then additionally

one must have

A(η) = A(θ),

where A is an Arf invariant defined above.

Proof (i) This follows immediately from the fact that G(�) is an H1(�)-torsor and
the boundary curves ∂i� generate the group H1(�).

(ii) This is proved in the same way as Theorem 2.8 in [18]. The main idea is to use the
fact that for the standard choice of simple curves α and β, the Dehn twists with
respect to α and β generate an action of SL2(Z) on the pair (wη(α),wη(β)) (one
also uses some other Dehn twists, as in the proof of [18, Thm. 2.8]).

(iii) We need to prove that if the invariants match then η and θ are in the same M(�)-
orbit. Note that σ(η) is determined by whether the quadratic function qη is trivial
modulo 2 or not. By Lemma 1.7, it is enough to prove that the quadratic functions
qη and qθ are in the same M(�)-orbit.

First, let us analyze the result of the action of a transvection

Ta(x) = x + (a · x)a

on quadratic functions in Quad4. Note that all such transvections can be realized by
elements of the mapping class group: if the class a is not divisible by 2 then we can
lift it to a primitive element of the homology, and hence, Ta is realized by some Dehn
twist. On the other hand, if a is divisible by 2 then Ta = id.
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196 Y. Lekili, A. Polishchuk

We have

q(Ta(x)) = q(x) + (a · x)q(a) + 2(a · x)(x · a) = q(x) + (q(a) + 2)(a · x).(1.7)

In particular, if q(a) = −1 then q(Ta(x)) = q(x) + (a · x).
Let us set

H := H1(�, Z4), K = im(i∗ : H1(∂�, Z4) → H1(�, Z4)).

If q, q ′ ∈ Quad4 have q|K = q ′|K then (q ′ − q) is a homomorphism H → Z4,
vanishing on K , hence it has form x �→ (a · x) for some a ∈ H .

Assume now that q ∈ Quad4 is such that q|K is surjective, i.e., the reduction of
q|K modulo 2 is nonzero. Then we claim that any q ′ ∈ Quad4 with q ′|K = q|K lies
in the M(�)-orbit of q. Indeed, we have q ′(x) − q(x) = (a · x) for some a ∈ H . By
surjectivity of q|K we can find k ∈ K such that q(k) = −1−q(a), i.e., q(a+k) = −1.
Then from (1.7) we get

qTa+k = q ′.

Next, let us consider q ∈ Quad4 such that q|K takes values in 2Z4. Assume also
that q mod 2 �= 0. We claim that in this case the M(�)-orbit of q is determined
by q|K . Note that q mod 2 is a homomorphism H → Z2 trivial on K , so it is an
element of Hom(H/K , Z2). Since M(�) acts transitively on nonzero elements in
Hom(H/K , Z2), it is enough to prove that if q ′ ≡ q mod 2 and q ′|K = q|K then q ′

and q are in the same M(�)-orbit. As before we deduce that q ′(x) − q(x) = 2(a · x)

for some a ∈ H . If q(a) ≡ 1 mod 2 then this immediately gives q ′ = qT 2
a . On the

other hand, if q ′(a) ≡ q(a) ≡ 0 mod 2 then for any element b with q(b) ≡ 1 mod 2
we have

qT 2
a+b(x) = q(x) + 2((a + b) · x) = q ′(x) + 2(b · x) = q ′T 2

b (x),

so q ′ and q are in the same orbit.
Finally, if q takes values in 2Z4 then we have q = 2 · q/2 for a quadratic form q/2

on H/2H satisfying (1.5), and we can use the description of M(�)-orbits on such
forms from [18, Thm. 1.3] (based on the work of Johnson [17]). ⊓⊔

Remark 1.9 1. It follows from (1.3) that the genus of the surface is determined by the
boundary winding numbers of η via the formula

4 − 4g(�) =
d∑

i=1

(wη(∂i�) + 2). (1.8)

2. In the case σ(η) = 0, the line field η is induced by a non-vanishing vector field v

(see Lemma 1.4). This induces a spin structure on the surface � (by considering
its mod 2 reduction). The condition that wη(∂i�) ≡ 2 mod 4, for i = 1, . . . , d,
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Derived equivalences of gentle algebras via Fukaya categories 197

means that this spin structure extends to a spin structure on the compact surface
obtained from � by capping off the boundaries with a disk. Now, it is a theorem
of Atiyah [4] (see also [17]) that the action of the mapping class group on the spin
structures on a compact Riemann surface has exactly 2 orbits distinguished by the
Arf invariant.

Theorem 1.8 can be used to get a criterion for a homeomorphism between two
different graded surfaces.

Corollary 1.10 Let (�1,�1; η1) and (�2,�2; η2) be graded surfaces (where �i are

sets of marked points on the boundary and ηi are line fields) with the same number of

boundary components d. Then there exists an orientation preserving homeomorphism

φ : �1 → �2 such that φ(�1) = �2 and φ∗(η1) is homotopic to η2 if and only if

there exists a numbering of boundary components on �1 and �2 such that for each

i = 1, . . . , d, one has

#(�1 ∩ ∂i�1) = #(�2 ∩ ∂i�2),

wη1(∂i�1) = wη2(∂i�2),

and in addition,

• if g(�1) = g(�2) = 1 then Ã(η1) = Ã(η2);

• if g(�1) = g(�2) ≥ 2 then σ(η1) = σ(η2) and A(η1) = A(η2) whenever the

latter two invariants are defined.

Proof The “only if” part is clear. For the “if” part, since g(�1) = g(�2) [due to (1.8)],
we can find a homeomorphism φ̃ : �1 → �2 sending ∂i�1 to ∂i�2 and �1 to �2.
Applying Theorem 1.8 to φ̃∗η1 and η2 we deduce the existence of an element ψ ∈
M(�2) such that ψ∗(φ̃∗η1) = η2. Thus, the homeomorphism φ = ψ ◦ φ̃ : �1 → �2
has the required properties. ⊓⊔

2 Partially wrapped Fukaya categories

The partially wrapped Fukaya category W(�,�; η) (with coefficients in a field K)
is associated to a graded surface (�,�; η), where � is a connected compact surface
with non-empty boundary ∂�, � ⊂ ∂� is a collection of marked points called stops,
and η is a line field on �. Partially wrapped Fukaya categories were first introduced
in the work of Auroux [5] in arbitrary dimension. In the case the symplectic manifold
is a surface, which is our focus in this paper, there is a combinatorial description of
W(�,�; η) provided in [15]. The latter not only gives a topological computation of
the partially wrapped Fukaya category defined by symplectic machinery in [5], but also
provides an independent, purely topological proof of the invariance of W(�,�; η)

using the well-known contractibility result of Harer’s arc complex. In particular, it
follows from this topological description that given two graded surfaces with stops,
(�i ,�i , ηi ) for i = 1, 2, a homeomorphism φ : �1 → �2 which restricts to a
bijection �1 → �2 and a homotopy between φ∗(η1) to η2, we get an equivalence
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between the partially wrapped Fukaya categories W(�1,�1; η1) and W(�2,�2; η2).
The proof of the equivalence of the two approaches, [5] and [15] given by Abouzaid
in the case � = ∅ in the appendix of [10] easily extends to the general case. Another
possible approach to this equivalence is via the definition of wrapped Fukaya categories
given in [13] which uses the symplectic field theory formulation. We note that we do
not need to appeal to any of these equivalences for the applications in this paper, we
simply work with with the definition and the established results given in [15]. We next
recall this combinatorial description of the partially wrapped Fukaya categories from
[15].

A set of pairwise disjoint and non-isotopic Lagrangians {L i } in �\� generates
the partially wrapped Fukaya category W(�,�; η) as a triangulated category if the
complement of the Lagrangians

� \
{

⊔

i

L i

}
=

⋃

f

D f

is a union of disks D f each of which has at most one stop on its boundary. Furthermore,
if each D f has exactly one stop in its boundary, the associative K-algebra

AL• :=
⊕

i, j

hom(L i , L j )

is formal, and it can be described by a graded gentle algebra (see Definition 3.1).
Figure 1 illustrates how each D f may look like, where the blue arcs are in

⊔
i L i

while the black arcs lie in ∂�.
The algebra AL• can easily be described by a quiver following the flow lines

corresponding to rotation around the boundary components of � connecting the
Lagrangians. Note that each boundary component of � is an oriented circle (where the
boundary orientation is induced by the area form on �). Specifically, a flowline that
goes from L j to L i gives a generator for hom(L i , L j ) (note the reversal of indices).
The data of � enters by disallowing flows that pass through a marked point. The alge-
bra structure is given by concatenation of flow lines. Given αi ∈ hom(L i , L i+1) for
i = 1, . . . , n, we write

Fig. 1 An example of a disk D f

Lm

Lm−1

L
·

L2

L1
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αnαn−1 . . . α1 ∈ hom(L1, Ln+1)

for their product, read from right to left, and if non-zero, this expression corresponds
to a flow from Ln+1 to L1.

Finally, the line field η is used to grade the morphism spaces. A convenient way
to determine the line field η is by describing its restrictions along each of the disks
D f . Each such disk is as in Fig. 1. Different disks are glued along the curves L i

(the blue parts in their boundary). As L i are contractible, changing a line field by
homotopy, we can arrange that it is transverse to L i everywhere along L i . Every
line field on � (up to homotopy) can be glued out of such line fields on the disks
D f .

Note that if we have an embedded segment c ⊂ � and a line field η, which is
transversal to c at the ends p1, p2 of c, then we can define the winding number wη(c)

(first, one can trivialize T � along c in such a way that the tangent line to c is constant,
then count the number of times (with sign) η coincides with the tangent line to c along
c. An equivalent definition is given in [15, Sec. 3.2]). Now a line field on a disk D f ,
transverse to {L i }, is determined (up to homotopy) by the integers θi , for i = 1, . . . , m,
given by its winding numbers along the boundary parts on ∂� (the black parts in Fig. 1).
By definition, these numbers are the degrees of the corresponding morphisms in the
wrapped Fukaya category.

The numbers θi can be chosen arbitrarily subject to the constraint

m∑

i=1

θi = m − 2. (2.1)

This last constraint is the topological condition that needs to be satisfied in order for
the line field to extend to the interior of the disk. (Note that the stops do not play a
role in this discussion.)

The gentle algebra AL• is always homologically smooth since so is W(�,�; η).
The algebra AL• is proper (i.e., finite-dimensional) if and only if there is at least one
marked point on every boundary component. The “if” part is [15, Cor. 3.1]. On the
other hand, if there is a boundary component with no stops, then we can compose
flows along this boundary indefinitely, so AL• is not proper.

In what follows, it will be convenient to consider A
op
L•

as a quiver algebra KQ/I ,

so that flow lines from L i to L j correspond to arrows from the i th vertex to j th

vertex. Note that the collection {L i } generates the partially wrapped Fukaya category
W(�,�; η). Therefore, we have an equivalence

D(A
op
L•

) ∼= W(�,�; η),

where the category on the left denotes the bounded derived category of perfect (left)
dg-modules over A

op
L•

.
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3 Gentle algebras and Fukaya categories

3.1 Graded gentle algebras and AAG-invariants

A quiver is a tuple Q = (Q0, Q1, s, t) where Q0 is the set of vertices, Q1 is the set
of arrows, s, t : Q1 → Q0 is the functions that determine the source and target of
the arrows. We always assume Q to be finite. A path in Q is a sequence of arrows
αn . . . α2α1 such that s(αi+1) = t(αi ) for i = 1, . . . , (n − 1). A cycle in Q is a path
of length ≥ 1 in which the beginning and the end vertices coincide but otherwise the
vertices are distinct. For K a field, let KQ be the path algebra, with paths in Q as a
basis and multiplication induced by concatenation. Note that the source s and target t

maps have obvious extensions to paths in Q.

Definition 3.1 A gentle algebra2 A = KQ/I is given by a quiver Q with relations I

such that

(1) Each vertex has at most two incoming and at most two outgoing edges.
(2) The ideal I is generated by composable paths of length 2.
(3) For each arrow α, there is at most one arrow β such that αβ ∈ I and there is at

most one arrow β such that βα ∈ I .
(4) For each arrow α, there is at most one arrow β such that αβ /∈ I and there is at

most one arrow β such that βα /∈ I .

In addition, we always assume Q to be connected.

We will consider Z-graded gentle algebras, i.e., every arrow in Q should have a
degree assigned to it. For a Z-graded gentle algebra A we denote by D(A) the derived
category of perfect dg-modules over A, where A is viewed as a dg-algebra with its
natural grading and zero differential.

Remark 3.2 Note that D(A) is different from the derived category of graded A-
modules. In fact, the former category is obtained from the latter as a suitable orbit
category (see the discussion in [24, Sec. 1.3]). On the other hand, it is well known that
if the grading of A is zero then D(A) is equivalent to the perfect derived category of
ungraded A-modules. Indeed, in this case a dg-module over A is the same thing as a
complex of A-modules.

Lemma 3.3 (i) A gentle algebra is homologically smooth if and only if there are no

forbidden cycles i.e. cycles αn . . . α2α1 in KQ such that αi+1αi ∈ I for i ∈ Z/n.

(ii) A gentle algebra is proper (i.e., finite-dimensional) if and only if there are no

permitted cycles i.e. paths αn . . . α2α1 in KQ such that αi+1αi /∈ I for i ∈ Z/n.

Proof The “if” direction is proved in [15, Prop. 3.4(1)] using an explicit form of
the resolution of the diagonal bimodule. Note that such a resolution goes back to
Bardzell’s work [8] (where the case of arbitrary monomial relations is considered). It

2 Our terminology is the same as in [25], so we do not impose the condition of finite-dimensionality in the
definition of a gentle algebras. What we call “gentle algebra” is sometimes referred to as “locally gentle
algebra”.
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remains to prove that if a gentle algebra A is homologically smooth then there are no
forbidden cycles. Since A is homologically smooth, the diagonal bimodule is a perfect
dg-module over Aop ⊗ A. Thus, for every simple A-module S (corresponding to one
of the vertices), we get a quasi-isomorphism of S with a perfect dg-module over A. It
follows that the space Ext∗A−dgmod(S, S) is finite-dimensional. Equivalently, the space
Ext∗A(S, S), computed in the category of ungraded A-modules, is finite-dimensional
(see [24, Thm. 1.3.3]). But the latter space can be computed using the standard Koszul
complex, and the presence of forbidden cycles would mean that for some S the space
Ext∗A(S, S) is infinite-dimensional.
(ii) This is straightforward as properness is equivalent to having only finite number of
paths that are nonzero in A (see [15, Prop. 3.4(2)]). ⊓⊔

We will use the following notions from [7].

Definition 3.4 A forbidden path is a path in Q of the form

f = αn−1 . . . α2α1 ∈ KQ

such that all (αi ) are distinct and for all i = 1, . . . , (n−2), αi+1αi ∈ I . It is a forbidden

thread if for all β ∈ Q1 neither βαn . . . α2α1 nor αn . . . α2α1β is a forbidden path. In
addition, if v ∈ Q0 with #{α ∈ Q1|s(α) = v} ≤ 1, #{α ∈ Q1|t(α) = v} ≤ 1, then
we consider the idempotent ev as a (trivial) forbidden thread in the following cases:

• either there are no α with s(α) = v or there are no α with t(α) = v;
• we have β, γ ∈ Q1 with s(γ ) = v = t(β) and γβ ∈ I .

The grading of a forbidden thread is defined by

| f | =
n−1∑

i=1

|αi | − (n − 2).

Definition 3.5 A permitted path is a path in Q of the form

p = αn . . . α2α1 ∈ KQ

such that all (αi ) are distinct and for all i = 1, . . . , (n − 1), αi+1αi /∈ I , and it is a
permitted thread if for all β ∈ Q1 neither βαn . . . α2α1 nor αn . . . α2α1β is a permitted
path. In addition, if v ∈ Q0 with #{α ∈ Q1|s(α) = v} ≤ 1, #{α ∈ Q1|t(α) = v} ≤ 1,
then we consider the idempotent ev as a (trivial) permitted thread in the following
cases:

• either there are no α with s(α) = v or there are no α with t(α) = v;
• we have β, γ ∈ Q1 with s(γ ) = v = t(β) and γβ /∈ I .

The grading of a permitted thread is defined by

|p| = −
n∑

i=1

|αi |.
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Remark 3.6 Inclusion of the idempotents as forbidden and permitted threads ensures
that every vertex appears in exactly two forbidden threads/cycles and exactly two
permitted threads/cycles.

Definition 3.7 For a gentle algebra A, a combinatorial boundary component of type I

is an alternating cyclic sequence of forbidden and permitted threads:

b = pn fn . . . p2 f2 p1 f1

such that s( fi ) = s(pi ) for i ∈ Z/n, and t(pi ) = t( fi+1) for i ∈ Z/n with the
following condition:

(⋆) For each i ∈ Z/n, if fi+1 = αk . . . α1, pi = βm . . . β1, and fi = γn . . . γ1 such
that s( fi ) = s(pi ) and t(pi ) = t( fi+1), we have

γ1 �= β1 and βm �= αk .

The winding number associated to a combinatorial boundary component b of type
I is defined to be

w(b) :=
r∑

i=1

(|pi | + | fi |).

We also denote the number n of forbidden threads in b as n(b).
A combinatorial boundary component of type II (that can appear only if A is not

proper) is simply a permitted cycle

pc = αm . . . α1.

The winding number associated to such a cycle is

w(pc) := −
m∑

i=1

|αi |.

A combinatorial boundary component of type II’ (that can appear only if A is not
homologically smooth) is simply a forbidden cycle

f c = αm . . . α1.

The winding number associated to such a cycle is

w( f c) :=
m∑

i=1

|αi | − m.

For combinatorial boundary components of types II and II’ we set n(b) = 0.
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Lemma 3.8 Let A be a proper gentle algebra, with grading in degree zero. Then the

collection of pairs (n(b), n(b)−w(b)), over all combinatorial boundary components

(taken with multiplicities) coincides with AAG-invariants of A.

Proof This follows directly from the description of the AAG-invariants in [7, Sec. 3].
Note that the pair (0, m) in Step (3) of the algorithm of [7, Sec. 3] associated to a
forbidden cycle f c = αm . . . α1 matches with the pair (0, w( f c)) associated with the
corresponding combinatorial component of type II’. Indeed, w( f c) = m since the
grading of A is in degree 0. ⊓⊔

From now on we will always assume that our gentle algebras are homologically

smooth, with the exception of Remark 3.20.
Motivated by Lemma 3.8 we extend the definition of the AAG-invariants to graded

gentle algebras.

Definition 3.9 For a graded gentle algebra A we define the AAG-invariants to be the
collection of pairs (n(b), n(b) − w(b)), taken with multiplicities, where b runs over
all combinatorial boundary components of A.

3.2 Relation to Fukaya categories

The definition of the combinatorial boundary component for a gentle algebra is moti-
vated by the following proposition:

Proposition 3.10 Suppose � is a surface with a collection of marked points � ⊂ ∂�,

and a line field η. Let {L i } be a collection of Lagrangians such that the complement

of
⊔

i L i is a union of disks each of which has exactly one stop on its boundary. Then

the combinatorial boundary components of the homologically smooth gentle algebra

A =
(⊕

i, j hom(L i , L j )
)op

are in natural bijection with the boundary components

of ∂�. Furthermore, if a combinatorial boundary component b corresponds to a

boundary component B ⊂ ∂� then the number of forbidden threads in b is equal to

the number of stops on B and the winding numbers match:

wη(B) = w(b).

Proof Figure 2 shows an example of the way the surface � looks around a boundary
component B. Assume first that there is at least one stop on B. Let

q1(1), . . . , q1(k1), q2(1), . . . , q2(k2), . . . , qn(1), . . . , qn(kn)

be the endpoints of the Lagrangians ending on B, ordered compatibly with the ori-
entation of B. Here we assume that there are no stops between qi ( j) and qi ( j + 1)

and there is exactly one stop si between qi (ki ) and qi+1(1), for i ∈ Z/n. Then for
every i ∈ Z/n we have a permitted thread pi = βi (ki − 1) . . . βi (1), where βi ( j)

is the generator of A corresponding to the flow on B from qi ( j) to qi ( j + 1). On
the other hand, each stop si lies on a unique disk D, and by looking at the pieces
of ∂ D formed by other boundary components of �, we obtain a forbidden thread
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Fig. 2 The boundary component
is given by the cyclic sequence
p2 f2 p1 f1 where f1 = α3α2α1,
p1 = β2β1, f2 = γ2γ1 and
p2 = δ1. Note that if instead of
f1, we considered the forbidden
thread f̃1 = β̃2β1, the condition
(⋆) is violated

α1

α2

α3

β1

β2

γ1

γ2

δ1

β̃2

fi = αmi
. . . α1 starting at the Lagrangian corresponding to qi (1) and ending at the

one corresponding to qi−1(ki−1). Thus, we get a combinatorial boundary component
of type I, b = pn fn . . . p1 f1.

The winding number of η along the arc passing through the stop, oriented in the
opposite direction to the boundary direction, is determined using the constraint (2.1)
to be

| f | =
n−1∑

i=1

|αi | − (n − 2)

On the other hand, the winding number of η along the arc corresponding to the per-
mitted thread p is simply |p|. Thus, we get the equality wη(B) = w(b).

In the case of a boundary component B ⊂ ∂� with no stops, the sequence of flows
between the corresponding ends of Lagrangians on B gives a permitted cycle, i.e., a
combinatorial boundary component of type II. Again, the winding numbers match.

It is easy to see that in this way we get a bijection between the boundary components
B and the combinatorial boundary components of A. ⊓⊔

Let A be a homologically smooth gentle algebra. We associate with A a ribbon
graph RA whose vertices are in bijection with the collection of forbidden threads in
Q, and whose edges are in bijection with vertices of Q. More precisely, recall that there
are precisely two forbidden threads that pass through a vertex of Q. The corresponding
edge on RA is defined to connect the two forbidden threads.

Next, we will define a ribbon structure, i.e., a cyclic order on the set of edges
incident to each vertex. In fact, we will equip each such set of edges with a total order
which will induce a cyclic order. (Thus, we get what is called a ciliated fat graph [14].)
Namely, the set of edges incident to a vertex f of R is in bijection with the set of
vertices of Q which appear in the forbidden thread f . Now we use the order in which
these vertices appear in the forbidden thread f .
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Thus, we can consider the associated thickened surface �A such that RA is embed-
ded as a deformation retract of �A. More specifically, to construct �A we replace each
vertex of RA with a 2-disk D

2 and each edge with a strip, a thin oriented rectangle
[−ǫ, ǫ]×[0, 1], where the rectangles are attached to the boundary of the disks accord-
ing to the given cyclic orders at the vertices. On the boundary of each disk associated
to the vertex of RA we also mark a point, called a stop as follows. If the linear order
on edges incident to this vertex is given by e1 < e2 < . . . < ek , the stop e0 appears
in the circular order such that ek < e0 < e1. We define �A by taking the union of all
such points. In particular, the cardinality of �A, is equal to the number of forbidden
threads in A.

Theorem 3.11 (i) Given a homologically smooth gentle algebra A over a field K

(with |Q1| > 0), let (�A,�A) be the corresponding surface with stops defined

above. Then �A is connected with non-empty boundary, and for each Z-grading

on A there is a natural line field η on � such that we have a derived equivalence

D(A) ∼= W(�A,�A; ηA).

Furthermore, the AAG-invariants of A are given by the collection of pairs

(ni , ni − wηA
(∂i�A)),

where (∂i�A)i=1,...,N ) are all boundary components of �A and ni ∈ Z≥0 is the

number of marked points on ∂i�A.

(ii) One has

χ(�A) = χ(Q) = |Q0| − |Q1|.

Proof (i) First, let us check that the ribbon graph RA and hence the associated surface
�A is connected. Indeed, for every vertex v of Q let e(v) be the corresponding edge
in RA, viewed as a subgraph in RA. Since Q is connected, it is enough to check that if
v and v′ are connected by an edge α in Q then e(v) and e(v′) intersect in RA. Indeed,
let f be a forbidden thread containing α (it always exists). Then f is a vertex of both
e(v) and e(v′). This proves our claim that RA is connected.

Dual to the edges of RA we obtain a disjoint collection of non-compact arcs Lv

indexed by vertices of Q. Thus, �A is a surface with non-empty oriented boundary, �A

is a set of marked points in its boundary, and {Lv : v ∈ Q0} is a collection pair-wise
disjoint and non-isotopic Lagrangian arcs in �A \�A. Furthermore, the complement

�A \
{

⊔

v

Lv

}
=

⋃

f

D f

is a union of disks D f indexed by forbidden threads f in Q, with exactly one marked
point on its boundary (see Examples 3.17, 3.18 below). In particular, the collection
{Lv} gives a generating set.
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By construction, there is a bijection between arrows in the quiver Q and the gen-
erators of the endomorphism algebra AL :=

⊕
v,w hom(Lv, Lw) since each edge α

in Q is in exactly one forbidden thread f , and the corresponding D f has a flow asso-
ciated to α. Furthermore, two flows α1 : Lv2 → Lv1 and α2 : Lv3 → Lv2 can be
composed in AL if and only if αi is in a forbidden thread fi , for i = 1, 2, such that
the disks D f1 and D f2 are glued along the edge corresponding to v2. But this means
that the corresponding elements of A satisfy α2α1 /∈ I , as otherwise condition (3) of
Definition 3.1 would be violated. This implies that A is naturally identified with A

op

L

as an ungraded algebra.
We define the line field ηA on �A as follows. We require that the line field

is transverse to each Lv . Then it suffices to describe its restrictions to the disks
D f . Each D f is a 2m-gon as in Fig. 1. As explained in Sect. 2, the homo-
topy class of a line field on D f is determined by the winding numbers θi along
the boundary arcs of D f , αi , for i = 1, . . . , (m − 1), avoiding the unique
stop (black in Fig. 1) between the Lagrangians (blue in Fig. 1). Indeed, the
remaining winding number θm along the boundary arc that passes through the
stop is determined by the condition

∑m
i=1 θi = m − 2, and we can define

ηA|D f
as the unique line field with these winding numbers. Now we set θi ,

for i = 1, . . . , m − 1, to be the degree of the generator of A corresponding
to αi .

With this definition A and A
op
L are identified as graded algebras. Since we also

know that the collection {Lv} generates W(�A,�A; ηA), we conclude that

D(A) ∼= W(�A,�A; ηA).

Finally, the last statement follows from Proposition 3.10.
(ii) We have χ(�A) = χ(RA). Let us denote by v(RA) and e(RA) the numbers of
vertices and edges in RA. We have e(R1) = |Q0|, while v(RA) is the number of
forbidden threads. Let f1, . . . , fm be all forbidden threads. Since every edge of Q

belongs to the unique forbidden thread, we have

∑
ℓ( fi ) = |Q1|

(where ℓ(·) is the length). On the other hand, since every vertex is contained in exactly
two forbidden threads, we have

∑
(ℓ( fi ) + 1) = 2|Q0|.

Combining this with the previous formula we get

v(RA) = 2|Q0| − |Q1|,

so we deduce that χ(RA) = χ(Q). ⊓⊔

Using formula (1.8) we derive the following property of the AAG-invariants.
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Corollary 3.12 Let {(ni , mi )}i=1,...,d be the AAG-invariants of a homologically smooth

graded gentle algebra A. Then

d∑

i=1

(ni − mi + 2) = 4 − 4g,

where g ≥ 0 is the genus of the corresponding surface �A.

Combining Theorem 3.11 with Corollary 1.10, we get the following result.

Corollary 3.13 Given two homologically smooth graded gentle algebras A and B,

assume that the AAG-invariants of A and B are the same, and in addition, the invariants

Ã(·), σ(·) and A(·) (see Theorem 1.8) of the line fields ηA (on �A) and ηB (on �B)

are the same whenever they are defined. Then D(A) ≃ D(B).

As a particular case of the last Corollary, we can describe some cases when already
looking at the AAG-invariants gives the derived equivalence.

Corollary 3.14 Assume that A and B are homologically smooth graded gentle alge-

bras, such that the AAG-invariants of A and B coincide (up to permutation) and are

given by a collection {(ni , mi )}i=1,...,d . Assume in addition that one of the following

conditions holds:

(a)
∑

i (ni − mi + 2) = 4;

(b)
∑

i (ni − mi + 2) = 0 and gcd(n1 − m1 + 2, . . . , nd − md + 2) = 1;

(c)
∑

i (ni − mi + 2) < 0 and at least one of the numbers ni − mi is odd.

Then D(A) ≃ D(B).

Proof By Corollary 3.12, the three cases are distinguished by the genus g(�A): in
case (a) it is 0, in case (b) it is 1, and in case (c) it is > 1. Now the assertion follows
from Corollary 1.10. ⊓⊔

Remark 3.15 There is a simple combinatorial recipe for calculating winding numbers
of the line field η on �A, along the loops corresponding to cycles in the graph RA.
Note that knowing these numbers is enough to calculate all the invariants of η.

Indeed, a cycle in the graph RA is an alternating sequence . . . vi fivi+1 fi+1 . . . of
vertices and forbidden threads in Q. Since η is transverse to each arc Lvi

, we can
calculate the winding number as the sum of winding numbers of the segments of the
cycle connecting a point in Lvi

with a point in Lvi+1 through the disk D fi
. Recall that

the boundary of this disk is formed by the arcs Lv where v runs through vertices in
the thread fi , and the parts of the boundary labeled by arrows in fi (as in Fig. 2). Now
we claim that the contribution to the winding number from the segment vi fivi+1 is
equal to

wη(vi fivi+1) =
{

1 − m +
∑m

j=1 deg(α j ), vi
α1−→ · · · αm−→ vi+1 ⊂ fi

−1 + m −
∑m

j=1 deg(β j ), vi+1
β1−→ · · · βm−→ vi ⊂ fi .
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Indeed, this follows immediately by looking at the polygon formed by the arcs Lvi

and Lvi+1 , by the segment of our cycle between them, and by the part of the boundary
of D fi

between these arcs.

3.3 Application to finite-dimensional gentle algebras and examples

It is well known that gentle algebras are Koszul and that the Koszul dual of a gentle
algebra is again gentle, corresponding to the dual combinatorial data (see [9, Sec. 3.3]
where what we call “gentle” is called “locally gentle”). Furthermore, under this duality
homologically smooth graded gentle algebras are exchanged with finite-dimensional
ones. Thus, using Koszul duality we can convert our results into those about finite-
dimensional gentle algebras.

Let A be a finite-dimensional gentle algebra with grading in degree 0. Let A! be
the Koszul dual gentle algebra (with respect to the generators given by the edges). We
equip A! with the grading for which all edges have degree 1 (i.e., path-length grading).
Then the result of Keller in [19, Sec. 10.5] (“exterior” case) gives an equivalence

D f (A) ≃ D(A!),

where D f (A) is the bounded derived category of finite-dimensional A-modules (and
D(A!) is the perfect derived category of A! viewed as a dg-algebra, as before).

Furthermore, it is easy to check that the AAG-invariants of A and A! are the same.
Thus, Corollary 3.14 leads to the following result.

Corollary 3.16 Let A and B be finite-dimensional gentle algebras with grading in

degree 0, such that the AAG-invariants of A and B coincide (up to permutation) and

satisfy one of the conditions (a)–(c) of Corollary 3.14. Then

D f (A) ≃ D f (B).

Example 3.17 Here is an example illustrating the construction of associating a surface
to a gentle algebra. Consider the gentle algebra given in Fig. 3.

The forbidden threads are given by {a, bd, c, e4}. The permitted threads are
given by {cba, d, e3, e4}. The combinatorial boundary components are given by
{p3 f3 p2 f2 p1 f1, p4 f4} where, f1 = e4, p1 = e4, f2 = c, p2 = e3, f3 = bd,
p3 = cba, and f4 = a, p4 = d.

The associated ribbon graph is given in Fig. 4, where the cyclic order at vertices
are given by counter-clockwise rotation.

Figure 5 depicts the corresponding surface, together with the dual arcs L1, L2, L3, L4.
As this is a genus zero surface, the line field is determined by the winding numbers

along the boundary components. The winding number along the interior puncture

Fig. 3 An example of gentle
algebra 1 2 3 4

d

a

b c
bd = 0
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Fig. 4 Ribbon graph associated
to a gentle algebra

a bd c e4

2

1

43

Fig. 5 Surface associated to a
gentle algebra

L3

L4

a

b

c

d

L1

L2

1 2 3

4 5 6

a b

c

d

t x

y

z
za = by = xc = dt = 0

Fig. 6 Another example of a gentle algebra

which corresponds to the combinatorial boundary component p4 f4 is given by |a|−|d|
and the winding number along the outer boundary component which corresponds to
the combinatorial boundary component p3 f3 p2 f2 p1 f1 is the negative of this (since
the two boundary components are homotopic but oriented in an opposite way) but can
also be computed as (−|a| − |b| − |c|) + (|b| + |d| − 1) + |c| + 1 = |d| − |a|.

Example 3.18 Here is another example that produces a genus 1 surface with 2 boundary
components. Consider the gentle algebra given by Fig. 6.

The forbidden threads are given by {za, by, xc, dt}, and the permitted threads
are given by {ba, dc, xt, zy}. The combinatorial boundary components are given
by {p2 f2 p1 f1, p4 f4 p3 f3} where f1 = dt, p1 = zy, f2 = xc, p2 = ba, and
f3 = za, p3 = dc, f4 = by, p4 = xt .

The corresponding surface is given in Fig. 7.
This is a genus 1 surface with 2 boundary components. To determine the line

field we need to compute its winding number along the booundary components
corresponding to b1 = p2 f2 p1 f1 and b2 = p4 f4 p3 f3 as well as winding num-
bers along non-separating curves depicted in grey. The horizontal one corresponds
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3 6

3 6

1 2

4

5

5

a

b

c

d

t

x

y

z

Fig. 7 Genus 1 surface with 2 boundary components. Left-right and top-bottom are identified

to the cycle α = f2v5 f1v4 f4v2 f3v1, and the vertical one corresponds to the cycle
β = f1v5 f2v1 f3v2 f4v3. From the formulae given, it is easy to compute

wη(b1) = −|a| − |b| + (|x | + |c| − 1) − |z| − |y| + (|d| + |t | − 1)

wη(b2) = −|t | − |x | + (|y| + |b| − 1) − |c| − |d| + (|z| + |a| − 1)

wη(α) = |t | − |y| + |a| − |c|
wη(β) = −|b| − |a| + |c| + |d|

Remark 3.19 An optimist’s conjecture would be that conversely if A and B are homo-
logically smooth graded gentle algebras which are derived equivalent, then there exists
a homeomorphism φ : �A → �B inducing a bijection �A → �B and such that
φ∗(ηA) is homotopic to ηB . Note that to prove this, one needs to show that the topo-
logical type of (�A,�A; ηA) is a derived invariant of A. This is encoded by the
numerical invariants of ηA introduced in Theorem 1.8 (from which one can recover
the topological type of the surface), together with the numbers of marked points on
each boundary component.

Remark 3.20 In Theorem 3.11, it is possible to drop the assumption that A is smooth.
Assume for simplicity that A is proper. In this case, the surface � would be glued
together from the disks D f associated to forbidden threads as before, and also disks
Dc with an interior hole, associated with forbidden cycles. In other words, Dc is an
annulus whose inner boundary component has no marked points and is not glued to
anything, while its outer boundary component is connected by strips, corresponding
to the vertices in c, to other disks (this boundary component of Dc still has no stops).
In the presence of unmarked boundary components, there is a dual construction to
the construction of partially wrapped Fukaya categories, W(�,�; η), namely, the
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Derived equivalences of gentle algebras via Fukaya categories 211

infinitesimal wrapped Fukaya categories F(�,�; η), originally introduced for general
symplectic manifolds in [22] and studied in the case of surfaces in [21]. Its objects are
graded Lagrangians which do not end on the unmarked components of the boundary.
Thus, for non-smooth proper gentle algebras, a version of Theorem 3.11 should state
the equivalence

D(A) ≃ F(�A,�A; ηA)

However, we have not checked that the collection of Lagrangians {Lv} given by the
construction in Theorem 3.11 (and modified as above) generates F(�A,�A; ηA).

Remark 3.21 We note that the statement of Theorem 3.11 is mentioned in Section 3.4
of [15]. In the special case when the gentle algebra is trivially graded, the construction
of the surface � and the dual set of Lagrangians to {L i } appeared again in [23] after
this work was posted on arXiv. The authors of [23] work with the Kozsul dual gentle
algebra from a representation theoretical perspective. From the point of view of [15],
these Koszul dual algebras can be understood as the infinitesimal Fukaya categories as
explained in the previous remark. Note also that when every boundary component has
at least one stop which is equivalent to requiring that corresponding gentle algebras
are homologically smooth and proper, infinitesimal and partially wrapped Fukaya
categories are equivalent. We refer to [13] for general results about Koszul duality in
the setting of Fukaya categories.

4 Derived equivalences between stacky curves

4.1 Chains

Recall that in [21] we considered stacky curves C(r0, . . . , rn; k1, . . . , kn−1) obtained
by gluing weighted projective lines

B(r0, r1), B(r1, r2), . . . , B(rn−1, rn)

into a chain, where ki ∈ (Z/ri )
∗ are used to determine the stacky structure of the

nodes in this chain.
Here B(a, b), for a, b > 0, denotes the weighted projective line stack (A2 \0)/Gm ,

where Gm acts with weights (a, b) (see e.g., [6, Sec. 2] and references therein). It has
two stacky points q− and q+ such that Aut(q−) = μa , Aut(q+) = μb. To form the
chain C(r0, . . . , rn; k1, . . . , kn−1), we glue the point q+ in B(ri−1, ri ) with the point
q− in B(ri , ri+1), so that the obtained stacky node locally looks like the quotient of
xy = 0 by the action of μri

of the form ζ · (x, y) = (ζ ki x, ζ y).
Note that in [29] similar stacky curves are considered but with all ki = −1 (the

corresponding stacky nodes are called balanced).
We also allow the possibility for r0 = 0 (resp., rn = 0): in this case B(0, r1)

(resp. B(rn−1, 0)) denotes the weighted affine line A
1(r1) = B(1, r1) \ {q−} (resp.

A
1(rn−1) = B(rn−1, 1) \ {q+}).
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Fig. 8 Surface glued from annuli (top and bottom are identified). (r0, r1, r2, r3) = (2, 3, 3, 1), σ1 = σ2 :
(1, 2, 3) → (2, 1, 3)

We showed in [21, Thm. B] that the bounded derived category of coherent sheaves
on such a stacky curve is equivalent to the partially wrapped Fukaya category of a
surface obtained by a certain gluing of the annuli that we will now describe.

Namely, let A(r , r ′) denote the annulus with ordered boundary components that has
r marked points p−

1 , . . . , p−
r on the first component and r ′ marked points p+

1 , . . . , p+
r ′

on the second boundary component. We visualize A(r , r ′) as a rectangle with upper and
lower sides glued, the left side containing the points p−

i and the right side containing the
points p+

i , where the points are ordered vertically (the index increases when moving
up).

Given a collection of permutations σi ∈ Sri
, i = 1, . . . , n − 1, we consider the

surface �lin(r0, . . . , rn; σ1, . . . , σn−1) obtained by gluing the annuli

A(r0, r1), A(r1, r2), . . . , A(rn−1, rn)

in the following way (“lin” stands for “linear”, since we place annuli in a line). For
each i = 1, . . . , n −1, j = 1, . . . , ri , we glue a small segment of the boundary around
the marked point p+

j in A(ri−1, ri ) with a small segment of the boundary around the

point p−
σi ( j) in A(ri , ri+1) by attaching a strip, as in Fig. 8.

Note that the resulting surface has two special boundary components equipped
with r0 and rn marked points, respectively (there are no other marked points on the
other boundary components). There are also other boundary components that arise in
the process of gluing. Namely, for each i = 1, . . . , n − 1, the boundary components
situated between the i th and the (i +1)st annuli are in bijection with cycles in the cycle
decomposition of the commutator [σi , τ ] ∈ Sri

, where τ is the cyclic permutation
j �→ j − 1.

We equip �lin(r0, . . . , rn; σ1, . . . , σn−1) with a line field η that corresponds to the
horizontal direction in Fig. 8. Note that its restriction to each annulus is the standard
line field that has zero winding numbers on both boundary components (this is the
same choice of a line field that was made in [21, Sec. 2]).

It is easy to see that the winding numbers of η on boundary components are given as
follows. For the two special boundary components the winding numbers are equal to
zero. For a boundary component corresponding to a k-cycle in the cycle decomposition
of [σi , τ ], the winding number is −2k.
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We are going to prove that in fact all winding numbers associated with η are even.
For this it is useful to construct a graph

Ŵ(r1, . . . , rn−1) ⊂ �lin(r0, . . . , rn; σ1, . . . , σn−1),

which is a homotopy retract of the surface. Namely, we take one vertex in the interior
of each annulus: this gives us n vertices v1, . . . , vn . Then we add a loop γi at each vi ,
corresponding to the vertical circle in the i th annulus. Then for each of the ri strips
connecting the i th annulus with the (i + 1)st we add an edge from vi to vi+1.

Lemma 4.1 One has [wη](2) = 0, i.e., all winding numbers of η are even.

Proof The embedding of the graphŴ(r1, . . . , rn−1) into�lin(r0, . . . , rn; σ1, . . . , σn−1)

induces an isomorphism on homology. Hence, H1(�
lin(r0, . . . , rn; σ1, . . . , σn−1)) is

spanned by the loops γi together with the loops formed by pairs of edges connecting
vi with vi+1. The latter loops can have plane projections of one of the two types: they
look either like circles or like figure eight curves, depending on whether the projec-
tions of the corresponding edges cross or not. The winding number of η along a circle
in the plane is −2, while the winding number along a figure eight curve is 0. Since
η is constant along vertical lines, its winding numbers along γi are 0. Now the result
follows from the fact that [wη](2) is a homomorphism. ⊓⊔

To get the surface related to the stacky curve C(r0, . . . , rn; k1, . . . , kn−1), we now
take permutations σi of a special kind. Namely, for each i = 1, . . . , n −1, we consider
the permutation

σi : x �→ −ki x (4.1)

of Z/ri Z. We denote the resulting surface by �lin(r0, . . . , rn; k1, . . . , kn−1). We equip
it with r0 and rn stops on two special boundary components, and denote this set of
stops as �r0,rn . Now [21, Thm. B] states that

Db(Coh C(r0, . . . , rn; k1, . . . , kn−1)) ∼= W(�lin(r0, . . . , rn; k1, . . . , kn−1), �r0,rn ; η).

For example, taking r0 = rn = 0, which corresponds to replacing the first and last
weighted projective line by weighted affine lines, we will get the fully wrapped Fukaya
categories (with no stops).

Note that for each i the commutator [σi , τ ] is given by x �→ x + ki + 1 mod(ri ),
so its cycle decomposition has pi = gcd(ki + 1, ri ) cycles of length ri/pi . Thus, the
boundary winding numbers of η on �lin(r0, . . . , rn; k1, . . . , kn−1) are

• 0 on each of the two special boundary components (that have marked points);
• for each i = 1, . . . , n − 1, the winding number −2ri/pi repeated pi times.

The genus of the surface �lin(r0, . . . , rn; k1, . . . , kn−1) is given by

g =
1

2

n−1∑

i=1

(ri − pi ).
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Now we are going to apply Corollary 1.10 to construct examples of different data
(r0, . . . , rn; k1, . . . , kn−1) that lead to surfaces which are homeomorphic in a way
preserving the marked points on boundary components and the line fields. This will
give equivalences between corresponding partially wrapped Fukaya categories and
hence between the corresponding derived categories of stacky curves.

Theorem 4.2 The graded surface with stops �lin(r0, . . . , rn; k1, . . . , kn−1) is deter-

mined up to a graded homeomorphism by the unordered pair of numbers (r0, rn) and

by the unordered collection of numbers

((r1/p1)
p1 , . . . , (rn−1/pn−1)

pn−1), (4.2)

where (ri/pi )
pi denotes the number ri/pi repeated pi times. Hence, the same data

determines the category Db(Coh C(r0, . . . , rn; k1, . . . , kn−1)) up to equivalence.

Proof The two special components (that have stops on them) are the only ones that have
the winding number 0. The winding numbers of all the other boundary components
are determined by the sequence (4.2). Thus, our claim is that our graded surfaces
are determined by their boundary invariants (numbers of points on components and
winding numbers). We want to deduce this from Corollary 1.10.

In the case when genus is 0, there is nothing more to check. In the case when genus
is ≥ 2, we observe that by Lemma 4.1, the invariant σ vanishes for our line field η.
On the other hand, because of the two special components with the winding number
0, the Arf-invariant does not appear, so we are done in this case.

Finally, if the surface �lin(r0, . . . , rn; k1, . . . , kn−1) has genus 1 then we claim that
Ã(η) = 2. Indeed, by Lemma 4.1, Ã(η) is even, so this follows from the existence of
a boundary component with the winding number 0. ⊓⊔

4.1.1 Merging stacky nodes into one

Note that if ki = −1 for some i (which means that the corresponding node on the
stacky curve is balanced) then gluing of A(ri−1, ri ) with A(ri , ri+1) results in ri

boundary components on which η has the winding number −2. Thus, if I ⊂ [1, n −1]
is a subset of indices i such that ki = −1, then setting rI =

∑
i∈I ri , we get a graded

homeomorphism

�lin(r0, . . . , rn; k1, . . . , kn−1) ≃ �lin(r0, rI , (ri )i /∈I , rn;−1, (ki )i /∈I ).

Corollary 4.3 Let I ⊂ [1, n − 1] is a subset such that ki = −1 for i ∈ I , and let

rI =
∑

i∈I ri . Then there is an equivalence

Db(Coh C(r0, . . . , rn; k1, . . . , kn−1)) ≃ Db(Coh C(r0, rI , (ri )i /∈I , rn;−1, (ki )i /∈I )).

In the particular case I = [1, n − 1] (corresponding to surfaces of genus 0), the
derived equivalence of the above Corollary,

Db(Coh C(r0, . . . , rn;−1, . . . ,−1)) ∼= Db(Coh C(r0, r1 + . . . + rn−1, rn;−1)),

was proved in [28].
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Note that the surfaces �lin(r•; k•) can have genus 1 only when ri0 − pi0 = 2 for
some i0 ∈ [1, n − 1] and ri = pi for i �= i0. This can happen only when either ri0 = 3
or ri0 = 4 and ki0 = 1. These cases are distinguished by the presence of the boundary
components with the winding number either −6 or −4. So in the cases when the genus
is 0 or 1 we do not get any other derived equivalences between our stacky chain curves
except those due to merging of balanced nodes.

In higher genus we can sometimes merge unbalanced nodes as well. For example,
if gcd(k + 1, r) = 1 then for any divisor d of k + 1, d stacky nodes of type (r; k) can
be merged into one stacky node of type (dr; k).

Corollary 4.4 Assume that for k ∈ Z
∗
r one has gcd(k + 1, r) = 1, and let d > 0 be a

divisor of k + 1. Then we have an equivalence

Db(Coh C(r0, (r)d , rd+1, . . . , rn; (k)d , kd+1, . . . , kn−1))

≃ Db(Coh C(r0, dr , rd+1, . . . , rn; k, kd+1, . . . , kn−1)).

Proof We have gcd(k+1, dr) = d ·gcd( k+1
d

, r) = d. Thus, the pair (dr; k) contributes
dp boundary components with the winding number −2r , which is the same as the
contribution of d pairs (r; k). ⊓⊔

4.1.2 Derived equivalent quotients of the coordinate cross

To get a more interesting derived equivalence in the case of genus ≥ 2, let us specialize
to the case n = 2, r0 = r2 = 0, r1 = r . Note that the corresponding stacky curve
C(0, r , 0; k) is the global quotient of the affine coordinate cross xy = 0 by the μr -
action ζ · (x, y) = (ζ k x, ζ y). We obtain the following derived equivalences between
these affine stacky curves.

Corollary 4.5 For k, k′ ∈ (Z/r)∗, such that gcd(k +1, r) = gcd(k′ +1, r), there exists

an equivalence

Db Coh(C(0, r , 0; k)) ≃ Db Coh(C(0, r , 0; k′)).

Note that if k · k′ ≡ 1 mod r then we have an isomorphism C(0, r , 0; k) ≃
C(0, r , 0; k′) induced by the involution (x, y) �→ (y, x) on the coordinate cross.
The simplest example of a nontrivial derived equivalence of this kind is when r = 5,
k = 1 and k′ = 2. It would be interesting to explain this derived equivalence in a
purely algebro-geometric way. Our guess is that this can be done using the variation
of GIT quotient technique.

4.2 Rings

Now let us consider another class of stacky curves considered in [21], denoted by
R(r1, . . . , rn; k1, . . . , kn). They are defined by gluing the weighted projective lines
B(r1, r2), B(r2, r3), . . . , B(rn, r1) into a ring, where as before ki ∈ (Z/ri )

∗ are used
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to determine the stacky structure of the nodes. Thus, the point q+ in B(ri−1, ri ) is
glued with the point q− in B(ri , ri+1) for all i ∈ Z/n.

On the symplectic side we modify our definition of the surfaces �lin(r0, . . . , rn; σ1,

. . . , σn−1) as follows. Starting with the annuli A(r1, r2), A(r2, r3), . . . , A(rn, r1) we
now glue them circularly using permutations σ1, . . . , σn , so that A(ri−1, ri ) is con-
nected by ri strips with A(ri , ri+1), for i ∈ Z/n. Thus, the corresponding surface could
be represented similarly to Fig. 8 but with the right and left ends identified (so that the
corresponding boundary components disappear). We denote the resulting surface by
�cir (r1, . . . , rn; σ1, . . . , σn).

Similarly to the case of a linear gluing it is equipped with a natural line field η

that corresponds to the horizontal direction when the surface is depicted as on Fig. 8.
As before, the winding numbers of η on the boundary component corresponding to a
k-cycle in [σi , τ ] is equal to −2k.

The analog of the graph Ŵ(r1, . . . , rn−1) for circular gluing is given by the graph

Ŵcir (r1, . . . , rn) ⊂ �cir (r1, . . . , rn; σ1, . . . , σn)

that still has n vertices v1, . . . , vn , a loop γi at each vi , and ri edges connecting vi to
vi+1, for i ∈ Z/n. This graph is a homotopy retract of the surface, so we can calculate
the homology just by analyzing loops in Ŵcir (r1, . . . , rn). In particular, we see that the
homology is spanned by the loops γi , the loops formed by pairs of edges connecting
vi with vi+1, and by one more loop β corresponding to a horizontal line in Fig. 8
The analog of Lemma 4.1 still holds in this case and is proved similarly: all winding
numbers of η are even. Note that winding number along β is zero since η is constant
along horizontal lines.

As before, we specialize to the case of permutations of the form (4.1) and denote the
corresponding surface by �cir (r1, . . . , rn; k1, . . . , kn). The boundary winding num-
bers of η on this surface are calculated as before (but now we do not have two special
boundary components). The genus of this surface is given by

g = 1 +
1

2

n∑

i=1

(ri − pi ),

where pi = gcd(ki + 1, ri ).
By [21, Thm. B], we have an equivalence

Db(Coh R(r1, . . . , rn; k1, . . . , kn)) ∼= W(�cir (r1, . . . , rn; k1, . . . , kn); η).

As before, we can use Corollary 1.10 to get derived equivalences between the corre-
sponding stacky curves.

We have σ(η) = 0 for our line field, so in the case when ri/pi is odd for all i , the
corresponding quadratic form qη on Z

2g
2 is well defined and we have to calculate its

Arf-invariant.
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Definition 4.6 For a permutation σ ∈ Sd , let us consider the vector space V (σ ) over
Z2 with the basis α1, . . . , αd , the even pairing such that αi · α j for i < j is given by

αi · α j =
{

0 σ(i) < σ( j),

1 σ(i) > σ( j),

and the unique quadratic form qσ compatible with this pairing such that qσ (αi ) = 0
for all i . Let V (σ ) be the quotient of V (σ ) by the kernel of the pairing. If the restriction
of qσ to the kernel of the pairing is zero then qσ descends to a quadratic form qσ on
V (σ ).

Lemma 4.7 (i) For k ∈ Z
∗
r , let us consider the permutation σr (k) of Zr \ {0} =

{1, . . . , r − 1} given by x �→ −kx. Then the corresponding quadratic form

q(r , k) := qσr (k) is trivial on the kernel of the pairing on V (σr (k)) if and only if

r/p is odd, where p = gcd(k + 1, r). If this is the case then q(r , k) descends to a

nondegenerate quadratic form q(r , k) on the (r − p)-dimensional space V (σr (k)).

(ii) Consider the standard line field η on the surface �cir (r1, . . . , rn; k1, . . . , kn).

Assume that all ri/pi are odd, where pi = gcd(ki + 1, ri ). Then the quadratic

form qη is well defined, and is the direct sum of q(ri , ki ) over i = 1, . . . , n, and

the form x2 + y2 + xy on Z2 ⊕ Z2. Hence, in this case

A(η) =
n∑

i=1

A(q(ri , ki )) + 1 mod(2). (4.3)

Proof We are going to study the quadratic form associated with the the surface � =
�cir (r; k). Let us look at the simple curves αi , i = 1, . . . , r − 1, on �, depicted on
Fig. 9. In addition, we have two simple curves, β and γ , corresponding to a horizontal
and a vertical line on Fig. 9.

Using the graph Ŵcir (r), we see that the classes [β], [γ ] and ([αi ])i=1,...,r−1 span
H1(�, Z2). Furthermore, the restriction of the intersection pairing to the subspace
generated by ([αi ]) gives precisely the pairing on V (σr (k)). On the other hand, both
[β] and [γ ] are orthogonal to this subspace and β · γ = 1. It follows that the kernel of
the intersection pairing on H1(�, Z2) is equal to the kernel of the pairing on V (σr (k)),
and the quotient of H1(�, Z2) by this kernel is the direct sum of V (σr (k)) and the 2-
dimensional space spanned by [β] and [γ ]. Since the kernel of the intersection pairing
is spanned by the classes of the p boundary components and is (p − 1)-dimensional,
we deduce that dim V (σr (k)) = r − p.

Furthermore, the winding number along each αi is −2 so qη(αi ) = 0 mod(4).
Thus, the restriction of the Z2-valued form qη/2 to the subspace V (σr (k)) is precisely
q(r , k). It follows that q(r , k) vanishes on the kernel of the pairing if and only if qη

vanishes on the boundary cycles, which happens exactly when r/p is odd (recall that
the value of qη on any boundary cycle is 2 − 2r/p mod(4)).
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α1

α2

α3

α4

β

γ

Fig. 9 Circular gluing with r = 5, k = 1 (left-right, top-bottom are identified)

Next, we observe that the winding numbers along either β and γ is zero, so qη(β) =
qη(γ ) = 2, and hence,

(qη/2)(xβ + yγ ) = x2 + y2 + xy mod(2).

This immediately implies (i) and (ii) in the case of �cir (r; k). In the case of a general
surface �cir (r1, . . . , rn; k1, . . . , kn), the space H1(�, Z2) is spanned by the classes
of loops (αi, j ) j=1,...,ri −1 connecting i th and (i + 1)st annuli (defined in the same way
as (α j )), as well as by the classes of vertical loops γi , one in each annulus, and by
the horizontal loop β. The restriction of qη/2 to the set of classes (αi, j ), for fixed i ,
agrees with the form q(ri , ki ) on V (σri

(ki )). Furthermore, all the classes γi −γ j lie in
the kernel of the intersection form, and the classes γi and β are orthogonal to (αi, j ).
It follows that the quotient of H1(�, Z2) by the kernel of the intersection form splits
into a direct sum of V (σri

(ki )) over i = 1, . . . , n, and the 2-dimensional subspace
generated by the classes of the loops β, γ = γ1. Now the result follows as in the case
n = 1. ⊓⊔

We have the following analog of Theorem 4.2 for the circular gluing.

Theorem 4.8 The graded surface �cir (r1, . . . , rn; k1, . . . , kn) is determined up to a

graded homeomorphism by the unordered collection of numbers

((r1/p1)
p1 , . . . , (rn/pn)pn ),
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and in addition, in the case when all ri/pi are odd, by the invariant A(η) given by (4.3).
Hence, the same data determines the category Db(Coh R(r1, . . . , rn; k1, . . . , kn)) up

to equivalence.

Proof As before, this follows from Corollary 1.10. In the case when the genus is ≥ 2,
we know that the invariant σ vanishes for our line field η, and the assertion follows
from Lemma 4.7.

The case of genus 1 appears only when ki = −1 for all i , in which case one
immediately verifies that Ã(η) = 0. ⊓⊔

4.2.1 Case of irreducible stacky curves

Assume that n = 1. Using Theorem 4.8 we can find examples of different k and k′

such that the surfaces �cir (r; k) and �cir (r; k′) are graded homeomorphic, so we get
interesting examples of derived equivalences between irreducible stacky curves.

Corollary 4.9 Assume that r ≡ 0 mod(4), and k, k′ ∈ Z
∗
r are such that k ≡ 1 mod(4),

k′ ≡ 1mod(4), and gcd(k + 1, r) = gcd(k′ + 1, r). Then we have an equivalence

Db(Coh R(r; k)) ≃ Db(Coh R(r; k′)).

Proof In this case k + 1 ≡ 2 mod(4), so p = gcd(k + 1, r) ≡ 2 mod(4) and hence,
r/p is even. It follows that the winding numbers of boundary components are divisible
by 4, so the Arf-invariant does not appear. ⊓⊔

Now let us consider the case when k ∈ Z
∗
r satisfies gcd(k +1, r) = 1. Note that this

is possible only when r is odd, and by Theorem 4.8, the graded surface �cir (r; k) (that
has genus g = (r + 1)/2) depends on k only through the Arf-invariant A(q(r , k)).

We will compute this Arf-invariant for k = 1 and k = 2 in Sect. 4.3 below. By
Theorem 4.8, this leads to the following derived equivalence.

Corollary 4.10 Assume that r ≥ 7 is not divisible by 3 and r ≡ ±1 mod(8). Then we

have an equivalence

Db(Coh R(r; 1)) ≃ Db(Coh R(r; 2)).

Proof By Lemma 4.14 below, for odd r , we have

A(q(r , 1)) =
(

(r − 1)/2

2

)
mod 2.

On the other hand, by Lemma 4.15, we have

A(q(r , 2)) = (r − 1)/2 mod 2.

One can easily check that these two invariants are the same precisely when r ≡
±1 mod(8). ⊓⊔
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4.2.2 Merging stacky nodes

Note that the pairs (ri , ki ) with ki = −1 do not contribute to the Arf-invariant A(η)

since in this case V (σri
(−1)) = 0. Thus, the analog of Corollary 4.3 still holds.

Corollary 4.11 Let I ⊂ [1, n − 1] is a subset such that ki = −1 for i ∈ I , and let

rI =
∑

i∈I ri . Then there is an equivalence

Db(Coh R(r1, . . . , rn; k1, . . . , kn)) ≃ Db(Coh R(rI , (ri )i /∈I ;−1, (ki )i /∈I )).

One has to be more careful with finding an analog of Corollary 4.4 since sometimes
one has to compare the Arf-invariants. However, if some other winding numbers are
divisible by 4 then the Arf-invariant does not appear.

Corollary 4.12 Assume that for k ∈ Z
∗
r one has gcd(k + 1, r) = 1, and let d be a

divisor of k + 1. Assume also that there exists i > d such that ri/di is even. Then we

have an equivalence

Db(Coh R((r)d , rd+1, . . . , rn; (k)d , kd+1, . . . , kn))

≃ Db(Coh R(dr , rd+1, . . . , rn; k, kd+1, . . . , kn)).

Now let us consider an example where Arf-invariant does appear. Namely, for odd
r , let us consider merging of two stacky nodes of type (r; 1) into one stacky node of
type (2r; 1). It turns out that the corresponding surfaces are homeomorphic but not
necessarily graded homeomorphic.

Corollary 4.13 For oddr, there exists a graded homeomorphism between�cir (r , r; 1, 1)

and �cir (2r; 1) if and only if r ≡ 1 mod(4). Hence, for r ≡ 1 mod(4), we have an

equivalence

Db(Coh R(r , r; 1, 1)) ≡ Db(Coh R(2r; 1)).

Proof For the graded surface �cir (r , r; 1, 1), we have

A(η) = 2A(q(r , 1)) + 1 = 1 mod(2).

On the other hand, for �cir (2r; 1), we have

A(η) = A(q(2r , 1) + 1 =
r + 1

2
mod(2)

by Lemma 4.14. Thus, the two Arf-invariants match exactly when r ≡ 1 mod(4). ⊓⊔
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4.3 Computation of the Arf-invariants

Lemma 4.14 For odd r one has

A(q(r , 1)) =
(

(r − 1)/2

2

)
mod(2),

A(q(2r , 1) =
r − 1

2
mod(2).

Proof Since σr (1) is the order reversing permutation of {1, . . . , r −1}, q = q(r , 1) =
q(r , 1) is the unique quadratic form on the Z2-vector space V = V (σr (1)) with the
basis α1, . . . , αr−1, compatible with the symplectic pairing given by

αi · α j = 1 for i �= j, (4.4)

and satisfying q(αi ) = 0 for all i .
It is well known that the Gauss sum

G(q) :=
∑

x∈V

(−1)q(x)

is equal to ±2(r−1)/2 and its sign determines the Arf-invariant. It is easy to see that
for any x ∈ V , one has

q(x) = (−1)(
k
2),

where k is the number of nonzero coordinates of x . Thus, we have

G(q) =
r−1∑

k=0

(
r − 1

k

)
(−1)(

k
2).

Now we observe that

(−1)(
k
2) =

1 − i

2
· ik +

1 + i

2
· (−i)k,

where i =
√

−1. Thus, we have

r−1∑

k=0

(
r − 1

k

)
(−1)(

k
2) =

1 − i

2
· (1 + i)r−1 +

1 + i

2
· (1 − i)r−1

= 2(r−1)/2 ·
[

1 − i

2
· i (r−1)/2 +

1 + i

2
· (−i)(r−1)/2

]
= 2(r−1)/2 · (−1)(

(r−1)/2
2 ),

which proves our formula for the Arf-invariant of q(r , 1).
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Now, let us consider the form q = q(2r , 1) on the vector space W = V (σ2r (1))

with the basis α1, . . . , α2r−1, equipped with the even pairing given by (4.4), where
q is compatible with the pairing and satisfies q(αi ) = 0. Note that the kernel of the
pairing is spanned by the vector v0 =

∑2r−1
k=1 αk , and we have

q(v0) =
(

2r − 1

2

)
= 0 mod(2),

since r is odd. Thus, the form q descends to a nondegenerate quadratic form q =
q(2r , 1) on W = W/〈v0〉. We claim that its Arf-invariant is

A(q) =
r − 1

2
mod 2.

Indeed, again we consider the Gauss sum

G(q) :=
∑

x∈W

(−1)q(x).

We have

G(q) =
1

2
· G(q) =

1

2

2r−1∑

k=0

(
2r − 1

k

)
(−1)(

k
2)

=
1 − i

4
· (1 + i)2r−1 +

1 + i

4
(1 − i)2r−1 = (−4)(r−1)/2.

⊓⊔

Lemma 4.15 Assume that r is odd and not divisible by 3. Then

A(q(r , 2)) =
r − 1

2
mod(2).

Proof The form q = q(r , 2) = q(r , 2) is in Quad(V ), where V is the Z2-space with
the basis α1, . . . , αr−1 and the symplectic pairing given by

αi · α j =
{

0, i < j < i + (r − 1)/2,

1, otherwise,

where i < j . Furthermore, q is determined by q(αi ) = 0 for all i . It is easy to see that
by renumbering the classes (αi ) as follows:

α′
1 = α(r−1)/2, . . . , α

′
(r−1)/2 = α1, α

′
(r−1)/2+1 = αr−1, . . . , α

′
r−1 = α′

(r−1)/2+1,
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we get

α′
i · α′

j =
{

1, i < j < i + (r − 1)/2,

0, j ≥ i + (r − 1)/2,

and q ∈ Quad(V ) still satisfies q(α′
i ) = 0 for all i .

We will compute the Arf-invariant by relating (V , q) to another space with a
quadratic form. For every k ≥ 0, such that k �≡ 2 mod(3), let us consider a Z2-vector
space Wk with the basis β1, γ1, . . . , βk, γk , the even pairing given by the rule

βi · β j = 1 for i �= j; γi · γ j = 1 for i �= j;
βi · γ j = 1 for i ≤ j; βi · γ j = 0 for i > j,

and the quadratic form qk in Quad(Wk) such that qk(βi ) = q(γi ) = 1 for all i .
First, we will prove that A(q) = A(q(r−1)/2−2) and then we will prove that

A(qk) = k mod(2). (4.5)

To relate (V , q) with (W(r−1)/2−2, q(r−1)/2−2) let us consider the 2-dimensional
isotropic subspace I ⊂ V spanned by α′

1 and α′
r−1. We have q|I ≡ 0, so the Arf-

invariant of q is equal to that of the induced quadratic form on I ⊥/I . Now setting

γi = α′
2 + α′

2+i , βi = α′
(r−1)/2+1 + α(r−1)/2+1+i ,

for i = 1, . . . , (r − 1)/2 − 2, we get an identification of I ⊥/I with W(r−1)/2−2,
compatible with the quadratic forms. Hence, A(q) = A(q(r−1)/2−2).

To prove (4.5) we use induction on k. It is easy to check that A(q1) = 1 (and
A(q0) = 0 for trivial reasons), so it is enough to establish the formula

A(qk) = A(qk−3) + 1.

To this end we consider the 2-dimensional isotropic subspace J ⊂ Wk spanned by
βk + γ1 and β1 + βk + γk . We have qk |J = 0, and our formula follows from the
identification

J⊥/J ≃ Wk−3 ⊕ W1,

where the standard basis of Wk−3 corresponds to the elements

(β2 + β2+i mod J , γ2 + γ2+i mod J )1≤i≤k−3

while a copy of W1 spanned by βk mod J and γk mod J . ⊓⊔
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