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Abstract. Let G be a finite solvable group. Assume that the degree graph of
G has exactly two connected components that do not contain 1. Suppose that
one of these connected components contains the subset {a1, . . . , an}, where ai
and aj are coprime when i 6= j. Then the derived length of G is less than or
equal to | cd(G)| − n + 1.

1. Introduction

In the theory of solvable groups, a long-standing conjecture of G. Seitz says that
if G is a finite solvable group, then dl(G) ≤ | cd(G)|, where dl(G) is the derived
length of G and cd(G) is the set of distinct irreducible character degrees of G. For
M–groups this is just Taketa’s theorem (Corollary 5.13 of [4]). When | cd(G)| = 2,
3, or 4, this has been verified in Corollary 12.6 of [4], Theorem 12.15 of [4], and
[2], respectively. Berger showed that the conjecture is true for groups having odd
order (see Corollary 16.7 of [9]). In this paper, we offer further evidence that this
conjecture is true.

The situation of interest involves the character degree graph of a group. We
defined the degree graph Γ(G) of G in [6] to be the graph having cd(G) as
vertices and with two character degrees being adjacent if they have a common
divisor larger than 1. Note that 1 is an isolated vertex in this graph. We proved
in [6] that when G is a solvable group this graph has at most two more connected
components. In this paper, our interest is in those solvable groups where both of
these connected components are not empty. This case has been studied in several
places. In particular, this situation is the subject of Section 19 of [9]. (Note that
their degree graph is not the same graph as ours. However, it is not difficult to prove
that the number of connected components in their graph is equal to the number
of connected components in our graph that do not contain 1.) This situation is
also the subject of the papers [8] and [10]. (In the terminology of those papers,
the group is said to be a character π–separable group, where π is the set of primes
dividing the degrees in one of the connected components of the graph.)

Theorem A. Let G be a solvable group. Assume that Γ(G) has exactly two con-
nected components not containing 1. Then dl(G) ≤ | cd(G)|.

It is a widely held belief that the derived length of a solvable group is actually
strictly less than | cd(G)| when | cd(G)| is large enough (i.e., greater than 4). In
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our case, we will show that with an additional piece of information we can break
through this barrier.

Theorem B. Let G be a solvable group. Assume that Γ(G) has exactly two con-
nected components not containing 1. Furthermore, suppose that one of the connected
components of Γ(G) has a subset {a1, a2, . . . , an} where ai and aj are coprime when
i 6= j. Then dl(G) ≤ | cd(G)| − n+ 1.

Observe that Theorem A is a corollary of Theorem B. In particular, since there
are exactly two connected components not containing 1, we can choose a character
degree a1 in one of them, and then apply Theorem B with n = 1.

In proving Theorem B, we need to consider an action where all the nonlinear
irreducible characters are invariant. That this situation arises in our case is not a
surprise, since it seems to occur whenever one wants to consider solvable groups G
such that Γ(G) has exactly two connected components that do not contain 1 (see
Section 19 of [9]). In this situation, we prove the following theorem. Note that the
content of this theorem is the bound on the derived length, since Isaacs proved in
Theorem A of [5] that the group N in this theorem is solvable.

Theorem C. Let H act nontrivially via automorphisms on N fixing every non-
linear irreducible character, where (|H |, |N |) = 1. Then N is a solvable group
satisfying dl(N) ≤ | cd(N)|.

We note that the class of groups that are covered by the hypotheses of these
theorems is very restrictive. In particular, if G is a group satisfying the hypotheses
of Theorem A, then the Fitting height of G is between 2 and 4 and the derived
length of G/F is less than or equal to 4, where F is the Fitting subgroup of G (see
Theorem 19.6 of [9]). Also, in Theorem 3.3 of [5] (or Theorem 19.3 of [9]), Isaacs
found a classification for those groups that satisfy the hypotheses of Theorem C.
Despite this, we believe that our result has merit, since both classes contain groups
of arbitrarily large derived length. For those groups satisfying Theorem C, a class
of examples can be found in Theorem 4.9 of [5]. In Section 4, we will use this class
of examples to prove that there exist groups of arbitrarily large derived length that
satisfy the hypotheses of Theorem A.

We would like to conclude this introduction by thanking Professor Gagola for
pointing out that this result might be possible and for his many helpful conver-
sations while working out the result. Also, we would like to thank the referee for
pointing out a nice simplification in the proof of Lemma 1.

2. Actions fixing every nonlinear irreducible character

In this section, we consider an action where every nonlinear irreducible character
is fixed. When this action is coprime, we are in the situation of Theorem C. To
prove Theorem B, we use a generalization of Theorem C where the action is not
necessarily coprime. To that end, we present the following technical lemma. Note
that Theorem C is just the case in this lemma when N is coprime to H . It is easy
to see that the extra hypotheses found in this lemma are satisfied in the case of
Theorem C. If Theorem C were the only result needed from this lemma, the proof
would be quite a bit shorter, i.e., it would consist only of the first two steps of our
proof.

Lemma 1. Let π be a set of primes. Suppose that a π–group H acts via auto-
morphisms on a π–separable group N such that H acts nontrivially on N/Oπ′

(N).
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Furthermore, assume that every nonlinear irreducible character of N has π′–degree
and is invariant under the action of H. Then N is solvable, and dl(N) ≤ | cd(N)|.
Proof. By a theorem of Gallagher in [1], since every irreducible character of N has
π′–degree it can be shown that N has a normal abelian Hall π–subgroup Q. This
implies that Oπ′

(N) = Q. Now, H acts coprimely and nontrivially on N/Q, fixing
every nonlinear irreducible character. By Theorem A of [5], N/Q is solvable, and
hence N is solvable. We now work to show that dl(N) ≤ | cd(N)|.

We suppose that this result is not true, and we take N to be a counterexample
with |N | minimal. That is, N is a solvable group with the property that dl(N) >
| cd(N)|. In particular, N is not an M–group.

Step 1. [N,H ]Q/Q is a Frobenius group with kernel [N,H ]′Q/Q = N ′Q/Q.

Proof of Step 1. As we observed before, H acts coprimely and nontrivially on N/Q,
fixing every nonlinear irreducible character. We are now in the situation of Theorem
19.3 of [9]. From that theorem, we know that N ′Q = [N,H ]′Q and that one of the
following holds: (1) [N,H ]Q/Q is abelian, (2) [N,H ]Q/Q is a class 2 p–group for
some prime p, or (3) [N,H ]Q/Q is a Frobenius group with kernel N ′Q/Q.

Assume we are in Case (1), so that [N,H ]Q/Q is abelian. This implies that
[N,H ]′ ⊆ Q. Since N ′Q = [N,H ]′Q, it follows that N ′ ⊆ Q. We know that Q is an
abelian Hall subgroup and N/Q is abelian, so it follows that every Sylow subgroup
of N is abelian. From Theorem 6.23 of [4], N is now an M–group, contradicting
the choice of N . Thus, we are not in Case (1).

Assume now that we are in Case (2), so that [N,H ]Q/Q is a class 2 p–group
for some prime p. Write C/N ′Q = CN/N ′Q(H). Since N ′ ⊆ C, we have that C
is normal in N . Observe that N = [N,H ]C. This implies that N/C is isomor-
phic to the group [N,H ]Q/([N,H ]Q ∩ C). Since C contains N ′Q, we see that
[N,H ]Q/([N,H ]Q ∩ C) is a quotient of [N,H ]Q/Q, and so it follows that N/C
is a p–group. If C = N , then H fixes every irreducible character of N/Q. By
Lemma 12.2 of [9], H centralizes N/Q, in contradiction to the hypothesis that H
acts nontrivially on N/Q. Therefore, we conclude that C < N . Observe that H
fixes only the identity coset of N/C. Since N/C is abelian, H acts on the conjugacy
classes of N/C, fixing only the identity conjugacy class. By a theorem of Brauer,
Theorem 6.32 of [4], H fixes the same number of characters in Irr(N/C) as the
number of conjugacy classes of N/C. Thus, H fixes only the principal character
of N/C. Consider characters ν ∈ Irr(N) with ν(1) > 1 and λ ∈ Irr(N/C). Since
ν and νλ are nonlinear irreducible characters of N , they are both invariant under
the action of H . Thus, we have that νλ = (νλ)h = νλh for every element h ∈ H .
Rewriting this equation, we obtain the following: ν = νλ−1λh. This implies that ν
must take the value 0 on those elements outside the kernel of [λ, h]. Because every
character in Irr(N/C) has this form, this implies that the vanishing-off subgroup
of ν is contained in C. Since N/C is a p–group, it follows that p divides ν(1).
This is true for every nonlinear character of N . Thus, by a theorem of Thompson
(Corollary 12.2 of [4]), N has a normal p–complement M .

Observe that Q ⊆M and M ∩ [N,H ]Q = Q. Hence, M/Q is isomorphic to the
group [N,H ]M/[N,H ]Q. Since N ′ ⊆ [N,H ]Q, we have that M/Q is abelian. As
in Case (1), this implies that every Sylow subgroup of M is abelian. Because N/M
is a p–group, we apply Theorem 6.22 of [4] to see that N is a relative M–group
with respect to M . From Theorem 6.23 of [4], we conclude that N is an M–group,
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in contradiction to the choice of N . Therefore, we are left with Case (3), which is
the desired result.

Step 2. If M 6= 1 is an abelian subgroup of N which is normal in NH , then
cd(N/M) = cd(N). Furthermore, NH has a unique minimal normal subgroup
contained in N .

Proof of Step 2. By Step 1, we know that [N,H ]Q/Q is not an abelian group, and
so we cannot have that [N,H ] ⊆ MQ. Therefore, the action of H on N/MQ is
still nontrivial. Hence, we may apply the induction hypothesis to N/M to see that
dl(N/M) ≤ | cd(N/M)|. Since M is abelian, it follows that dl(N) ≤ | cd(N/M)|+1.
If dl(N) = dl(N/M), then dl(N) ≤ | cd(N/M)| ≤ | cd(N)|, contradicting the choice
of N . Because dl(N) ≤ dl(N/M) + 1, we conclude that dl(N) = dl(N/M) + 1. If
cd(N) > cd(N/M), then | cd(N)| ≥ | cd(N/M)|+1 ≥ dl(N/M)+1 = dl(N). Again
this contradicts the choice of N , so we have that cd(N) = cd(N/M).

Suppose now that M1 and M2 are distinct minimal normal subgroups of NH
contained in N . Take m = | cd(N/M)|, so that from the previous paragraph we
see that N (m) ⊆ Mi for i = 1, 2, where N (m) is the mth derived subgroup of N .
This implies that Nm ⊆ M1 ∩M2 = 1. Therefore, we conclude that dl(N) ≤ m ≤
| cd(N)|, which is a contradiction to the choice of N , and so we have completed this
step.

We now show that Q > 1. In the application of this lemma to the situation
where N is a π′–group, Step 2 completes the proof. In general, N need not be a
π′–group.

Step 3. Q > 1.

Proof of Step 3. Assume that Q = 1. By Step 1, N ′ is a Frobenius kernel, and
hence it is nilpotent by a theorem of Thompson, Satz V.8.7 of [3]. From Step 2, we
know that NH has a unique minimal normal subgroup contained in N . It follows
that N ′ has a unique subgroup that is minimal normal in NH , and this can only
happen when N ′ is a p–group for some prime p.

Let P be a Sylow p subgroup of N . Since N ′ is a normal p–subgroup, we see
that N ′ ⊆ P , and so P is normal in N . Consider characters ϕ ∈ Irr(P ) and
ν ∈ Irr(N |ϕ). Observe that ν(1)p = ϕ(1). If γ ∈ Irr(P ) with γ(1) 6= ϕ(1) and
µ ∈ Irr(N |γ), then µ(1)p = γ(1) 6= ϕ(1) = ν(1)p. It follows that µ(1) 6= ν(1) and
that | cd(N)| ≥ | cd(P )|. Since P is a p–group, we know that dl(P ) ≤ | cd(P )|.
We have that P ′ ⊆ N ′. If P ′ = N ′, then dl(N) = dl(P ) ≤ | cd(P )| ≤ | cd(N)|, in
contradiction to the choice of N . This implies that P ′ < N ′. Thus, there is a linear
character λ ∈ Irr(P ) so that λN ′ 6= 1N ′ . Since [N,H ] is a Frobenius group with
kernel N ′, λN ′ lies in an [N,H ]–orbit of size |[N,H ] : N ′|. It follows that λ lies in an
orbit of size divisible by |[N,H ] : N ′|. If the character ν ∈ Irr(P |λ), then ν(1) 6= 1
and ν(1)p = λ(1) = 1. We conclude that | cd(N)| ≥ | cd(P )|+1 ≥ dl(P )+1 ≥ dl(N),
which contradicts the choice of N . Therefore, Q > 1.

Step 4. Q is the Fitting subgroup of N .

Proof of Step 4. Consider a Hall π′–subgroup B of CN(Q). Since B centralizes
Q, it follows that B is normal in CN (Q), and so B is characteristic in CN (Q).
Observe that CN (Q) is normal in N . Also, since H normalizes both N and Q, we
determine that H normalizes CN (Q). Therefore, CN (Q) is normal in NH , and so
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we conclude that B is normal in N . By Step 3, we know that Q is nontrivial. This
implies that Q contains a minimal normal subgroup of NH . From Step 2, this is
the only minimal normal subgroup of NH in N , and hence B does not contain any
minimal normal subgroup of NH . This can only occur if B = 1. Therefore, we
have that Q = CN (Q). Since the Hall π–complement of the Fitting subgroup of N
must centralize Q, we conclude that Q is the Fitting subgroup of N .

Step 5. Final contradiction.

Proof of Step 5. Since Q is abelian, we apply Step 2, to see that cd(N) = cd(N/Q).
From Step 3, we know that Q > 1, and applying the induction hypothesis to N/Q,
we see that dl(N/Q) ≤ | cd(N/Q)|. We use the fact from Step 4 that Q is the Fitting
subgroup of N along with a theorem of Broline and Garrison, Theorem 12.19 of [4],
to see that there is at least one character degree in the set cd(N) that is not in the
set cd(N/Q). Therefore, we have that dl(N) ≤ dl(N/Q) + 1 ≤ | cd(N/Q)| + 1 ≤
| cd(N)|. This contradicts the choice of N , and proves the lemma.

3. Proof of Theorem B

We are now prepared to prove Theorem B. The argument found here was moti-
vated by the simplified version found in Lemma 2.4 of [7].

Proof of Theorem B. Let K be a subgroup of G that is maximal with the prop-
erty that K is normal in G and G/K is nonabelian. Since Γ(G) has exactly two
connected components that do not contain 1, it is easy to see that G/K is a Frobe-
nius group with cyclic complement and elementary abelian p–group kernel N/K
for some prime p. (A proof of this result can be found as Lemma 2.3 of [7].) Write
f = |G : N |, so that cd(G/K) = {1, f}. Let X and Y be the connected compo-
nents of Γ(G) that do not contain 1. Without loss of generality, we may assume
that f ∈ Y . From Theorem 12.4 of [4], we know that p divides every element in X .
Therefore, if n > 1, then the set {a1, a2, . . . , an} must be a subset of Y .

Consider a character χ ∈ Irr(G) such that χ(1) ∈ X . We know that χ(1) is
relatively prime to f = |G : N |, and so χN ∈ Irr(N). This implies that X ⊆ cd(N).
Now, suppose we have a character θ ∈ Irr(N) such that θ(1) ∈ X . When we pick
a character χ ∈ Irr(G|θ), it is clear that χ(1) ∈ X , and so χN = θ. Thus, every
irreducible character of N having degree in X extends to G. On the other hand,
assume that the character θ ∈ Irr(N) has θ(1) 6= 1 and θ(1) 6∈ X . Thus, if we look
at a character χ ∈ Irr(G|θ), then we observe that χ(1) ∈ Y . This implies that p
does not divide θ(1), and so, by Theorem 12.4 of [4], we know that θ(1)f ∈ Irr(G).
Therefore, we see that cd(N) = 1 ∪X ∪ Y ∗, where Y ∗ = {a ∈ cd(N)|a 6= 1, af ∈
cd(G)}. It is not hard to determine that X and Y ∗ are connected components
for Γ(N). We note that the map a 7→ af is a one-to-one function from Y ∗ to Y .
Since 1 6∈ Y ∗, it follows that f is not in the image of Y ∗ under this map. Also,
when n > 1, at most one of the ai is divisible by f , so the remaining n − 1 of the
ai are not in the image of Y ∗ under this map. Regardless of whether n = 1 or
n > 1, we conclude that |Y ∗| ≤ |Y | − n. Since cd(G) = 1 ∪X ∪ Y , it follows that
cd(N) ≤ cd(G) − n. If |Y ∗| ≥ 1, then there exists an integer a1 ∈ Y ∗, and so the
hypotheses of the theorem hold for N with n = 1. By the induction hypothesis,
we see that dl(G) ≤ dl(N) + 1 ≤ (| cd(N)| − 1 + 1) + 1 ≤ (| cd(G)| − n) + 1, and
the result holds in this case. Thus, we have that |Y ∗| = 0, and we conclude that
cd(N) = 1 ∪X .
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Take π to be the set of primes dividing integers in Y , and write H for a Hall π–
subgroup of G. Thus, H is a π–group acting on N . Since every nonlinear irreducible
character of N has degree lying in X , it is extendible to G. Hence, we see that
the action of H fixes every nonlinear irreducible character of N and that every
irreducible character of N has π′–degree. Since the action of H/(H ∩N) on N/K

is a Frobenius action and since N/K is a π′–group, the action of H on N/Oπ′
(N)

is nontrivial. We are now in the situation of Lemma 1. From that lemma we have
that

dl(G) ≤ dl(N) + 1 ≤ | cd(N)|+ 1 ≤ | cd(G)| − n+ 1,

proving the theorem.

4. Arbitrarily large derived lengths

We now use the examples found in Theorem 4.9 of [5] to show that there exist
groups G of arbitrarily large derived length that satisfy the hypotheses of Theorem
A.

Lemma 2. Given a prime number p and an integer n ≥ 1, choose a prime number
m > max(p, n). Then there is a group G such that one connected component of
Γ(G) has the isolated vertex m, another connected component of Γ(G) consists of
powers of p, and dl(G) > log2(n).

Proof. Take N and H to be groups that satisfy Theorem 4.9 of [5], so that H is a
cyclic group of order m acting coprimely on the p–group N fixing every nonlinear
irreducible character of N . That theorem also tells us that H fixes none of the
nontrivial linear characters of N and that dl(N) > log2(n). Now take G to be
the semi-direct product of H acting on N , so that dl(G) ≥ dl(N) > log2(n).
Because H is cyclic and every nonlinear character of N is H–invariant, it follows
that every irreducible character of G whose restriction to N contains a nonlinear
irreducible constituent must have p–power degree. On the other hand, we may
use Ito’s theorem (Theorem 6.15 of [4]) to see that every irreducible character of
G/N ′ has degree dividing m. The fact that m occurs in cd(G) follows since H
fixes no nontrivial linear character of N . Therefore, we conclude that cd(G) =
{1} ∪ {m} ∪ cd(N), as desired.
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