Canadian Journal of Forest Research

Deriving a Tree Growth Model from Any Existing Stand Growth Model

Journal:	Canadian Journal of Forest Research			
Manuscript ID	cjfr-2021-0106.R1			
Manuscript Type:	Article			
Date Submitted by the				
Author:		16-Jul-2021 \quad Keyword:	Complete List of Authors:	Cao, Quang; Louisiana State University, Renewable Natural Resources
---:	:---			
Is the invited manuscript for consideration in a Special Issue?	Not applicable (regular submission) individual-tree model, least squares, seemingly			

SCHOLARONE" ${ }^{\text {T }}$
 Manuscripts

Deriving a Tree Growth Model from Any Existing Stand Growth Model

Quang V. Cao
School of Renewable Natural Resources
Louisiana State University Agricultural Center
Baton Rouge, LA 70803
qcao@lsu.edu

Acknowledgement

This project was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, McIntire-Stennis project LAB94379.

Deriving a Tree-Level Growth Model from

 Any Existing Stand-Level Growth Model
Abstract

In this study, a new method was developed to derive a tree survival and diameter growth model from any existing stand-level model, without the need for individual-tree growth data. Predictions from the derived tree model are constrained to match number of trees and basal area per ha as outputted by the stand model. The tree models derived from three different stand models were evaluated against a tree model, in both unadjusted and disaggregated forms.

For the same stand-level model, the derived tree model outperformed its counterpart, the disaggregated tree model. Furthermore, except for one stand model with poor performance, the tree models derived from the remaining two stand models delivered comparable results to those obtained from the unadjusted tree model. The tree model derived from one stand model even performed slightly better than the unadjusted tree model. This is significant because the coefficients of the unadjusted and disaggregated tree models had to be estimated from tree-level growth data, whereas the derived tree model required no tree growth data at all. The methodology presented in this study should be applicable when there is no ingrowth or recruitment.

Keywords: disaggregation; individual-tree model; least squares; seemingly unrelated regression.

1. Introduction

Growth and yield models have been extensively used by forest managers in order to make informed decisions on managing forest resources. These models can produce outputs that ranged from high-resolution (individual-tree simulation models), to medium-resolution (size-class models), to low-resolution (whole-stand models) (Burkhart and Tomé 2012).

Whole-stand models are relatively simple models that provide information for the entire stand. The predicted stand attributes can be stand survival (Zhang et al. 1993, Diéguez-Aranda et al. 2005, Tewari et al. 2014, Stankova 2016), basal area per unit area (Cao and Durand 1991, Barrio Anta et al. 2006, Naing 2020), or both (Somers and Farrar 1991, Erikäinen 2002, Garcia 2011, Dean et al. 2013).

Size-class models deal with diameter classes. These models can be stand table-projection models that projects the number of trees in each diameter class into the future (Clutter and Jones 1980, Nepal and Somers 1992, Cao and Baldwin 1999, Allen et al. 2011), or diameterdistribution models that use a probability density function (pdf) to model the frequency of tree diameters (Smalley and Bailey 1974, Matney and Sullivan 1982, Jiang and Brooks 2009, Carretero and Alvarez 2013).

Individual-tree models deliver detailed information for each tree. This information can be tree survival (Guan and Gerner 1991a, 1991b, Monserud and Sterba 1999, Kjell and Lennart 2005, Cao 2006, 2017), tree diameter growth (Andreassena and Tomter 2003, Sánchez-González et al. 2006, Subedi and Sharma 2011, Bohora and Cao 2014), or both tree survival and diameter growth (Cao 1994, 2000, Palahía et al. 2003, Coble et al. 2012, Sun et al. 2019).

Because outputs from models of different resolutions might be inconsistent with one another, linking models having different levels of resolution have recently received a lot of
attention. Bridges have been established to connect a whole-stand model to a diameterdistribution model (Matney and Sullivan 1982; Baldwin and Feduccia 1987), to a stand table projection model (Clutter and Jones 1980, Nepal and Somers 1992, Cao and Baldwin 1999, Cao 2007, Allen et al. 2011), or to an individual-tree model (Yue et al. 2008, Zhang et al. 2010, Hevia et al. 2015, Cao 2014, 2017). The latter is called the disaggregation approach (Ritchie and Hann 1997), in which information obtained from the tree model is used to disaggregate stand growth (predicted by a whole-stand model) among trees in the tree list. Recently, Cao (2019) showed how one can derive a tree survival model from any existing stand survival model; the level of accuracy and precision depended on the stand model performance and on whether or not tree-level survival data were available.

The objective of this study was to develop a method to derive a tree-level growth model for tree survival and diameter growth predictions from stand survival and basal area values predicted from any existing stand-level model.

2. Data

Data used in this study were from the Southwide Seed Source Study, which included 15 loblolly pine (Pinus taeda L.) seed sources planted at 13 locations across 10 southern states (Wells and Wakeley 1966). A total of 200 plots were randomly selected from this data set; each 0.0164 ha plot consisted of 49 trees, planted at a $1.8 \mathrm{~m} \times 1.8 \mathrm{~m}$ spacing. Only one 5 -year growth period was randomly selected for each plot to avoid correlation problems caused by repeated measurements. Measurements for growth periods 10-15, 15-20, and 20-25 years were randomly divided into two groups of 100 plots each. The distribution of number of plots for each growth
period is presented in Table 1. Table 2 shows the means and standard deviations of stand-level and tree-level attributes.

The two-fold evaluation scheme was applied in this study. Parameters of both stand and tree models were estimated from the fit data (group 1), and then used to predict for the validation data (group 2). The same procedure was repeated with group 2 being the fit data and group 1 the validation data. Predictions from both groups were finally pooled to compute evaluation statistics for the different methods.

3. Methods

3.1 Tree-Level Prediction

3.1.1 Method 1: Deriving a Tree Model

In this method, an individual-tree model was derived from an existing stand-level model, assuming that no tree survival and growth data was available. For this purpose, Cao (2019) employed the cumulative distribution function (CDF) of the negative exponential distribution to replace the often-used logistic function to model tree survival probability.

$$
\begin{equation*}
p_{i j}=1-\exp \left(\alpha_{1} d_{1 i j}\right), \tag{1}
\end{equation*}
$$

where $p_{i j}$ is the survival probability of tree j in plot i having diameter $d_{1 i j}$ (in cm) at time 1 (beginning of the growth period); and α_{1} is a coefficient to be determined so that the number of surviving trees sum up to the stand-level output.

In this study, preliminary analysis showed that better results were obtained when a location parameter (a) was added to the CDF function as follows:

$$
\begin{equation*}
p_{i j}=1-\exp \left[\alpha_{1}\left(d_{1 i j}-a\right)\right], \tag{2}
\end{equation*}
$$

where $a=0.95 \operatorname{Dmin}_{1 i}$; and $\operatorname{Dmin}_{1 i}=$ minimum diameter (cm) in plot i. The coefficient 0.95 above ensures that a is less than $\operatorname{Dmin}_{1 i}$. A sensitivity analysis evaluating different coefficient values from 0.90 to 0.99 revealed that 0.95 produced best results.

Future tree diameter $\left(\hat{d}_{2 i j}\right)$ was predicted from current diameter $\left(d_{1 i j}\right)$ by use of the following simple function:

$$
\begin{equation*}
\hat{d}_{2 i j}=d_{1 i j} \exp \left(\alpha_{2} d_{1 i j}\right) \tag{3}
\end{equation*}
$$

By use of SAS proc MODEL (SAS Institute Inc. 2004), the parameters α_{1} and α_{2} in equations (2) and (3) were solved such that

$$
\begin{gather*}
\hat{N}_{2 i}=\sum_{j=1}^{n_{1 i}} p_{i j} / s, \text { and } \tag{4}\\
\hat{B}_{2 i}=\sum_{j=1}^{n_{1 i}} K p_{i j} d_{1 i j}^{2} / s, \tag{5}
\end{gather*}
$$

where $\hat{N}_{2 i}$ and $\hat{B}_{2 i}$ are stand survival (number of trees per ha) and basal area ($\mathrm{m}^{2} / \mathrm{ha}$) of plot i at time 2 , respectively, predicted from any existing stand growth model; $K=\pi / 40000$; and $s=$ plot size in ha.

3.1.2 Method 2: Unadjusted Tree Model

The tree model form used in this study consisted of the survival function by Cao (2014) and the tree diameter growth function by Cao (2021):

$$
\begin{gather*}
p_{i j}=\left[1+\exp \left\{1+\exp \left(b_{0}+b_{1} R S_{1 i}+b_{2} H_{1 i}+b_{3} d_{1 i j} / Q_{1 i}\right)\right\}\right]^{-1} \tag{6}\\
\hat{d}_{2 i j}=d_{1 i j}\left\{1+\exp \left[b_{4}+b_{5} N_{1 i} / A_{1 i}+b_{6} / A_{1 i}+b_{7} Q_{1 i}+b_{8}\left(d_{1 i j}^{2}-Q_{1 i}^{2}\right)\right]\right\}, \tag{7}
\end{gather*}
$$

where $\hat{d}_{2 i j}$ is predicted diameter at time 2 (end of the growth period); $A_{1 i}, H_{1 i}, N_{1 i}$, and $Q_{1 i}$ are, respectively, age (years), dominant height (m), number of trees per ha, and quadratic mean

111
diameter (cm) for plot i at time $1 ; R S_{1 i}=\frac{\sqrt{10000 / N_{1 i}}}{H_{1 i}}=$ relative spacing; and the b 's are regression coefficients.

3.1.3 Method 3: Disaggregating a Tree Model

Cao (2010) suggested the following method to adjust the predicted tree survival probability $\left(p_{i j}\right)$ and diameter at the end of the growth period $\left(\hat{d}_{2 i j}\right)$ such that the resulting aggregated values match predicted number of trees per ha $\left(\hat{N}_{2 i}\right)$ and basal area per ha $\left(\hat{B}_{2 i}\right)$ from any existing stand model, respectively:

$$
\begin{gather*}
p_{i j}^{*}=p_{i j}^{\beta_{1 i}}, \text { such that } \sum_{j} p_{i j}^{*}=s_{i} \hat{N}_{2 i} \tag{8}\\
d_{2 i j}^{* 2}=d_{1 i j}^{2}+\beta_{2 i}\left(\hat{d}_{2 i j}^{2}-d_{1 i j}^{2}\right), \text { where } \beta_{2 i}=\frac{\left(s_{i} \hat{B}_{2 i} / K\right)-\sum_{j}\left(p_{i j}^{*} d_{1 i j}^{2}\right)}{\sum_{j i}\left[p_{i j}^{*}\left(\hat{d}_{2 i j}^{2}-d_{1 i j}^{2}\right]\right.} \tag{9}
\end{gather*}
$$

3.2 Stand-Level Models

3.2.1 Model a : Cao (2021)

The growth model by Cao (2021) has components to predict stand survival (N, number of trees per ha) and quadratic mean diameter $(Q, \mathrm{~cm})$ as follows:

$$
\begin{gather*}
\hat{N}_{2 i}=N_{1 i} /\left[1+\exp \left\{a_{0}+a_{1} R S_{1 i}+a_{2} H_{1 i}+a_{3} N_{1 i} / A_{1 i}+a_{4} / A_{1 i}\right\}\right] \tag{10}\\
\hat{Q}_{2 i}=Q_{1 i}\left\{1+\exp \left[a_{5}+a_{6} N_{1 i} / A_{1 i}+a_{7} / A_{1 i}+a_{8} Q_{1 i}\right]\right\} \tag{11}\\
\hat{B}_{2 i}=K \hat{N}_{2 i} \hat{Q}_{2 i}^{2} \tag{12}
\end{gather*}
$$

where $\hat{N}_{2 i}, \hat{B}_{2 i}$, and $\hat{Q}_{2 i}$ are, respectively, predicted number of trees and basal area $\left(\mathrm{m}^{2}\right)$ per ha and quadratic mean diameter (cm) for plot i at time 2 ; and the a 's are regression coefficients.

3.2.2 Model b: Clutter and Jones (1980)

Clutter and Jones (1980) predicted stand survival and basal area as follows:

$$
\begin{equation*}
\hat{N}_{2 i}=1000\left\{\left(\frac{N_{1 i}}{1000}\right)^{a_{1}}+a_{2}\left[\left(\frac{A_{2 i}}{10}\right)^{a_{3}}-\left(\frac{A_{1 i}}{10}\right)^{a_{3}}\right]\right\}^{1 / a_{1}}, \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{B}_{2 i}=\exp \left\{\left(\frac{A_{1 i}}{A_{2 i}}\right)^{a_{4}} \ln \left(B_{1 i}\right)+a_{5}\left[1-\left(\frac{A_{1 i}}{A_{2 i}}\right)^{a_{4}}\right]\right\} . \tag{14}
\end{equation*}
$$

Note that models a and c (below) predict future stand attributes for defined time intervals (5 years in this case) and therefore do not need the future projection age $\left(A_{2 i}\right)$. On the other hand, model b can be used for any projection length and consequently requires $A_{2 i}$.

3.2.3 Model c : New model

A new stand-level growth model was developed in this study to predict stand survival and quadratic mean diameter as follows:

$$
\begin{gather*}
\hat{N}_{2 i}=N_{1 i}-\exp \left[1+\exp \left\{a_{0}+a_{1} R S_{1 i}+a_{2} H_{1 i}+a_{3} N_{1 i} / A_{1 i}+a_{4} A_{1 i}\right\}\right] \tag{15}\\
\hat{Q}_{2 i}=Q_{1 i}+\exp \left[a_{5}+a_{6} N_{1 i} / A_{1 i}+a_{7} A_{1 i}\right] \tag{16}\\
\hat{B}_{2 i}=K \hat{N}_{2 i} \hat{Q}_{2 i}^{2} \tag{17}
\end{gather*}
$$

and

The Seemingly Unrelated Regressions (SUR) method (SAS proc MODEL, SAS Institute Inc., 2004) was used to estimate parameters of the systems of equations listed in the three stand models.

3.3 Evaluation

After the coefficients were obtained from one group, they were used to predict for the other group. Predicted values from both groups were then pooled for the computation of evaluation statistics.

3.3.1 Stand-level prediction

The following statistics were computed for evaluation of the three stand models:

$$
\begin{array}{ll}
\text { Mean difference: } & M D=\frac{1}{m} \sum_{i}\left(y_{2 i}-\hat{y}_{2 i}\right), \\
\text { Mean absolute difference: } & M A D=\frac{1}{m} \sum_{i}\left|y_{2 i}-\hat{y}_{2 i}\right|, \\
\text { Fit index: } & F I=1-\frac{\sum_{i}\left(y_{2 i}-\hat{y}_{2 i}\right)^{2}}{\sum_{i}\left(y_{2 i}-\bar{y}_{2}\right)^{2}}, \tag{18c}
\end{array}
$$

where $m=$ number of plots; $y_{2 i}$ and $\hat{y}_{2 i}$ are, respectively, observed and predicted values of N, Q, or B of plot i at the end of the growth period; and $\bar{y}_{2}=$ average of $y_{2 i}$.

3.2.2 Tree-level prediction

The seven methods ($1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 2,3 \mathrm{a}, 3 \mathrm{~b}$, and 3 c) were evaluated for tree-level prediction. Method 2 is independent of the stand models used. The remaining methods are combinations of tree-level and stand-level prediction methods. For example, method $3 b$ refers to the tree model disaggregated from the Clutter and Jones (1980) model.

Evaluation statistics for tree diameter predictions were similar to those presented in equations (18a-18c). Tree-level survival predictions were evaluated from:

$$
\begin{equation*}
\text { Mean difference: } \quad M D=\frac{\sum_{i} \sum_{j}\left(y_{i j}-p_{i j}\right)}{\sum_{i} 1_{1 i}} \tag{19a}
\end{equation*}
$$

where $y_{i j}=1$ if tree j in plot i was alive and 0 if it was dead; Σ_{i} denotes the sum for i from 1 to m; Σ_{j} denotes the sum for j from 1 to $n_{1 i}$; and $n_{1 i}=$ number of trees in plot i at the beginning of the growth period.

$$
\begin{equation*}
\text { Mean absolute difference: } \quad M A D=\frac{\sum_{i} \Sigma_{j}\left|y_{i j}-p_{i j}\right|}{\sum_{i} n_{1 i}}, \tag{19b}
\end{equation*}
$$

$\boldsymbol{A} \boldsymbol{U C}$: area under the ROC (Receiver Operating Characteristic) curve. The range for AUC is between 0.5 (poorest fit) and 1 (perfect fit).

Poudel and Cao's (2013) relative rank system was used to describe the relative position of each method for stand- and tree-level prediction. The best and worst methods received relative ranks of 1 and m, respectively, in this ranking system for m methods. The remaining methods were ranked as real numbers between 1 and m. Because the magnitude as well as the order of each evaluation statistic were taken into consideration, this ranking system should provide more information than the traditional ordinal ranks.

4. Results and Discussion

Table 3 shows parameter estimates by group for each of the three stand-level models. Parameter estimates of the individual-tree model for each group were also presented (Table 4). All parameter estimates were significant at the 5\% level. Evaluation statistics are shown for predicting attributes at the stand level for the stand models (Table 5). After a relative rank was computed separately for each statistic of each method, an overall rank was calculated based on the sum of all ranks for each method. Based on the overall ranks, the new stand model (c) was first, achieving the best statistics in all categories but two (MD for N and B). Model a (Cao 2021) was second with a rank of 1.80 , and model b (Clutter and Jones 1980) was a distant third (Table 5).

Table 6 presents evaluation statistics for predicting tree diameter and survival probability, for each of the seven methods. Method $1 c$ had the best overall rank (1.00), followed closely by method 2 (1.68) and method 1a (1.77). The bottom methods include method $1 b$ (4.89) and method $3 b$ (7.00), both associated with stand model b (Clutter and Jones 1980).

4.1 Method 2 versus method 3

Method 2 is the unadjusted tree model, whereas method 3 is the disaggregated tree model. The success of disaggregation depends largely on how well the stand attributes are predicted. Using observed stand attributes (to simulate a perfect stand model) for adjustment resulted in improvement of tree-level predictions (Cao 2010). On the other hand, disaggregation from a poor stand-level model might hurt rather than help the performance of the tree model (Cao 2017). The tree model (method $3 b$) that was disaggregated from the worst stand model in this study (Clutter and Jones 1980, Table 5) also ranked last among the seven tree models (Table 6).

The disaggregated tree models over-predicted tree survival, which is a direct result of over-prediction by the stand survival models (negative MD for both tree and stand levels). The fact that method 2 was better than method 3 in terms of MD for tree survival (Table 5) is consistent with findings from Cao (2017). He stated that tree survival MDs was better for the disaggregated tree models if the FI from the stand survival model exceeded 0.93 , which was not the case for any of the three stand survival models tested in this study. Cao (2017) also found through simulation that the disaggregated tree models produced better tree survival MADs and AUCs if the FI from the stand survival model exceeded 0.81 . From Table 5, this was true for models a and $c(\mathrm{FI}=0.85$ and 0.86 , respectively), whereas the reverse was true for model $b(\mathrm{FI}=$ $0.74)$.

Similar to the stand survival component, the three stand-level models over-predicted basal area per ha (negative MD, Table 5), leading to over-prediction of tree diameters by the disaggregated tree models (Table 6). On the other hand, except for method $3 b$, the disaggregated
tree models (methods $3 a$ and $3 c$) outperformed the unadjusted tree model (method 2) in terms of MAD and FI.

4.2 Method 1 versus method 3

The derived tree survival function (Equation 1) was revised from the one by Cao (2019) by adding a location parameter $\left(a=0.95 \operatorname{Dmin}_{1 i}\right)$. This simple modification improved the AUC range from $0.70-0.72$ (Cao 2019) to $0.76-0.81$ in this study (Table 6). The coefficients (α_{1} in Equation 1 for tree survival and α_{2} in Equation 2 for tree diameter) were solved such that the tree-level predictions summed up to outputs obtained from the stand models.

Methods 1 and 3 are similar in that their individual tree predictions summed up to the predictions from the stand-level models. In this respect, the derived tree models (method 1) can be considered a form of disaggregated tree models. However, the main difference between the two methods is that method 3 requires individual tree growth and survival data whereas method 1 does not.

For the same stand-level model, the derived tree models (method 1) always fared better than the disaggregated models (method 3): overall rank of 1.77 vs. 2.83 for Cao (2021), 4.89 vs. 7.00 for Clutter and Jones (1980), and 1.00 vs. 2.02 for the new stand model. Similar to the disaggregated models, the performance of the derived tree models depended on the quality of the corresponding stand models.

4.3 Method 1 versus method 2

With the exception of method $1 b$ (derived from Clutter and Jones 1980), the derived tree model compared favorably with the unadjusted tree model (method 2). The overall rank of
method 2 (1.68) was sandwiched between methods $1 a(1.77)$ and $1 c(1.00)$. It is amazing that the derived tree models did that well, considering that they required no tree-level growth data, and were completely based on existing stand models. In fact, method $1 c$, which was derived from the best-ranked stand model (c), even outperformed method 2. Figure 1 shows 5 -year survival probabilities and future diameters, derived from method $1 c$, for current diameters of trees in three different plots.

5. Summary and Conclusions

In this study, a new method was developed to derive a tree survival and diameter growth model from any existing stand-level model, without the need for individual-tree growth data. Predictions from the derived tree model are constrained to match number of trees and basal area per ha as outputted by the stand model. The tree models derived from three different stand models were evaluated against a tree model, in both unadjusted and disaggregated forms.

For the same stand-level model, the derived tree model outperformed its counterpart, the disaggregated tree model. Furthermore, except for one stand model with poor performance, the tree models derived from the remaining two stand models delivered comparable results to those obtained from the unadjusted tree model. The tree model derived from one stand model even performed slightly better than the unadjusted tree model. This is significant because the coefficients of the unadjusted and disaggregated tree models had to be estimated from tree-level growth data, whereas the derived tree model required no tree growth data at all. The methodology presented in this study should be applicable when there is no ingrowth or recruitment.

References

Allen II, M.G., Coble, D.W., Cao, Q.V., Yeiser, J., and Hung, I. 2011. A modified stand table projection growth model for unmanaged loblolly and slash pine plantations in east Texas. So. J. Appl. For. 35:115-122.

Andreassena, K., and Tomter, S. M. 2003. Basal area growth models for individual trees of Norway spruce, Scots pine, birch and other broadleaves in Norway. For. Ecol. Mgt. 180:1124.

Baldwin, V.C., Jr., and Feduccia D.P. 1087. Loblolly pine growth and yield prediction for managed West Gulf plantations. USDA For. Ser. Res. Pap. SO-236. 27 p.

Barrio Anta, M., Castedo Dorado, F., Diéguez-Aranda, U., Álvarez González, J.G, Parresol, B.R., and Rodríguez Soalleiro, R. 2006. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can. J. For. Res. 36:1461-1474.

Bohora, S.B., and Cao, Q.V., 2014. Prediction of tree diameter growth using quantile regression and mixed-effects models. For. Ecol. Mgt. 319:62-66.

Burkhart, H.E., and Tomé, M. 2012. Modeling forest trees and stands. Springer Science and Business Media, Dordrecht, The Netherlands, 458 p.

Cao, Q. V. 1994. A tree survival equation and diameter growth model for loblolly pine based on the self-thinning rule. J. Appl. Ecol. 31:693-698.

Cao, Q. V. 2000. Prediction of annual diameter growth and survival for individual trees from periodic measurements. For. Sci. 46:127-131.

Cao, Q.V. 2006. Predictions of individual-tree and whole-stand attributes for loblolly pine plantations. For. Ecol. Mgt. 236:342-347.

Cao, Q. V. 2007. Incorporating whole-stand and individual-tree models in a stand-table projection system. For. Sci. 53:45-49.

Cao, Q.V. 2010. Adjustments of individual-tree survival and diameter growth equations to match whole-stand attributes. P. 369-373 in Proc. of the South. Silvic. Res. Conf. USDA For. Serv. Gen. Tech. Rep. SRS-121.

Cao, Q.V. 2014. Linking individual-tree and whole-stand models for forest growth and yield prediction. For. Ecosys. 1:18.

Cao, Q. V. 2017. Evaluation of methods for modeling individual tree survival. For. Sci. 63:356361.

Cao, Q. V. 2019. A method to derive a tree survival model from any existing stand survival model. Can. J. For. Res. 49:1598-1603.

Cao, Q. V. 2021. A unified system for tree- and stand-level predictions. For. Ecol. Mgt. 481:118713.

Cao, Q.V., and Baldwin, V.C. 1999. A new algorithm for stand table projection models. For. Sci. 45:506-511.

Cao, Q.V., and Durand, K.M. 1991. A growth and yield model for improved eastern cottonwood plantations in the lower Mississippi Delta. South. J. Appl. For. 15:213-216.

Carretero, A.C., and Alvarez, E.T. 2013. Modelling diameter distributions of Quercus suber L. stands in "Los Alcornocales" Natural Park (Cádiz-Málaga, Spain) by using the twoparameter Weibull functions. For. Syst. 22:15-24.

Clutter, J.L, and Jones, E.P.:1980. Predicting of growth after thinning in old-field slash pine plantations. USDA Forest Serv. Res. Pap. SE-217, 14 p.

Coble, D.W., Cao, Q.V., and Jordan, L., 2012. An annual tree survival and diameter growth model for loblolly and slash pine plantations in east Texas. South. J. Appl. For. 36:79-84.

Dean, T.J., Jerez, M., and Cao, Q.V., 2013. A simple stand growth model based on canopy dynamics and biomechanics. For. Sci. 59:335-344.

Diéguez-Aranda, U., Castedo Dorado, F., Álvarez González, J.G., and Rodriguez Soalleiro, R. 2005. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur. J. For. Res. 124:143-153.

Erikäinen K. 2002. A site dependent simultaneous growth projection model for Pinus kesiya plantations in Zambia and Zimbabwe. For. Sci. 48:518-529.

Garcia, O. 2011. A parsimonious dynamic stand model for interior spruce in British Columbia. For. Sci. 57:265-280.

Guan, B.T., and Gertner, G. 1991a. Using a parallel distributed processing system to model individual tree mortality. For. Sci. 37:871-885.

Guan, B.T., and Gertner, G., 1991b. Modeling red pine tree survival with an artificial neural network. For. Sci. 37:1429-1440.

Hevia, A., Cao, Q. V., Álvarez-González, J. G., Ruiz-González, A. D., and von Gadow, K. 2015. Compatibility of whole-stand and individual-tree models using composite estimators and disaggregation. For. Ecol. Mgt. 348:46-56.

Jiang, L.C., and Brooks, J.R., 2009. Predicting diameter distributions for young longleaf pine plantations in southwest Georgia. South. J. Appl. For. 33:25-28.

Kjell, K., and Lennart, N. 2005. Modelling survival probability of individual trees in Norway spruce stands under different thinning regimes. Can. J. For. Res. 35:113-121.

Matney, T.G., and Sullivan, A.D. 1982. Compatible stand and stock tables for thinned and unthinned loblolly pine stands. For. Sci. 28:161-171.

Monserud, R.A., and Sterba, H. 1999. Modeling individual tree mortality for Austrian forest species. For. Ecol. Mgt. 113:109-123.

Naing, Y.M. 2020. Growth and yield models for thinned teak stands in Taungoo District, Bago region of Myanmar. Int. J. Sci. Res. Publications. 10:546-557.

Nepal, S.K., and Somers, G.L. 1992. A generalized approach to stand table projection. For. Sci. 38:120-133.

Palahía, M., Pukkalab, T., Miinac, J., and Montero, G. 2003. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 60:110.

Poudel, K., and Cao Q. V. 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For. Sci. 59:243-252.

Ritchie, M.W., and Hann, D.W. 1997. Implications of disaggregation in forest growth and yield modeling. For. Sci. 43:223-233.

Sánchez-González, M., delRío, M., Cañellas, I., and Montero, G. 2006. Distance independent tree diameter growth model for cork oak stands. For. Ecol. Mgt. 225:262-270.

SAS Institute Inc. 2004. SAS/ETS 9.1 User's Guide. SAS Institute Inc., Cary, NC, 2416 p.

Smalley, G.W., and Bailey, R.L. 1974. Yield tables and stand structure for loblolly pine plantations in Tennessee, Alabama, and Georgia highlands. USDA For. Serv. Res. Paper SO-96, 96 p .

Somers, G.L., and Farrar R.M., 1991. Biomathematical growth equations for natural longleaf pine stand. For. Sci. 37:227-244.

Stankova, T.V. 2016. A dynamic whole-stand growth model, derived from allometric relationships. Silva Fennica vol. 50:1-21.

Subedi, N., and Sharma, M. 2011. Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario. For. Ecol. Mgt. 261:2140-2148.

Sun, S., Cao, Q.V., and Cao, T. 2019. Evaluation of distance-independent competition indices in predicting tree survival and diameter growth. Can. J. For. Res. 49:440-446.

Tewari, V.P., Álvarez-González, J.G., and García, O. 2014. Developing a dynamic growth model for teak plantations in India. For. Ecosyst. 1:9.

Wells, O.O., and Wakeley, P. C. 1966. Geographic variation in survival, growth, and fusiform rust infection of planted loblolly pine. For. Sci. Monograph 11.40 p.

Yue, C., Kohnle, U., and Hein, S., 2008. Combining tree-and stand-level models: A new approach to growth prediction. For. Sci. 54:553-566.

Zhang, X., Lei, Y., and Cao, Q. V., 2010. Compatibility of stand basal area predictions based on forecast combination. For. Sci. 56:552-557.

Zhang, L.; Moore, J.A., and Newberry, J.D. 1993. A whole-stand growth and yield model for interior Douglas-fir. West. J. Appl. For. 8:120-125.

Table 1. Distribution of 200 plots, by starting age and group.

Starting age	Ending age	Group 1	Group 2
		-- - Number of plots - - -	
10	15	33	33
15	20	33	33
20	25	34	34
Total			100

Table 2. Means (and standard deviations) of stand and tree attributes, by group and age at the beginning of the growth period.

Group	Age	Dominant height (m)	Number of trees/ha	Basal area (m²/ha)	Tree diameter (cm)				
1	10	9.3	(1.1)	2063	(646)	22.9	(5.7)	11.6	(2.7)
	15	13.2	(1.9)	1713	(714)	31.7	(9.2)	14.8	(3.9)
	20	16.3	(2.1)	1256	(370)	33.5	(8.2)	17.9	(4.4)
2	10	9.2	(1.5)	2065	(608)	22.4	(7.2)	11.4	(2.7)
	15	13.3	(1.7)	1631	(463)	30.9	(5.9)	15.1	(3.8)
	20	16.8	(1.7)	1337	(326)	34.5	(7.0)	17.7	(4.2)

Table 3. Parameter estimates (and standard errors), by stand model and group.

Parameter estimate	$\begin{gathered} \text { Model } a \text { (Eq. } 10-11) \\ \text { Cao (2021) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Model } b \text { (Eq. } 13 \text { - 14) } \\ \text { Clutter and Jones (1980) } \\ \hline \end{gathered}$		Model c (Eq. 15 - 16) New model	
	Group 1	Group 2	Group 1	Group 2	Group 1	Group 2
a_{0}	$\begin{aligned} & 21.9167 \\ & (2.2756) \end{aligned}$	$\begin{aligned} & 18.4259 \\ & (2.3563) \end{aligned}$			$\begin{gathered} 6.1444 \\ (0.4326) \end{gathered}$	$\begin{gathered} 6.3533 \\ (0.5284) \end{gathered}$
a_{1}	$\begin{gathered} -58.8599 \\ (6.5739) \end{gathered}$	$\begin{gathered} -53.0888 \\ (6.9893) \end{gathered}$	$\begin{aligned} & -0.9715 \\ & (0.3473) \end{aligned}$	$\begin{aligned} & -0.5457 \\ & (0.3698) \end{aligned}$	$\begin{aligned} & -9.7324 \\ & (0.7245) \end{aligned}$	$\begin{aligned} & -9.6260 \\ & (0.9511) \end{aligned}$
a_{2}	$\begin{gathered} -0.8944 \\ (0.0959) \end{gathered}$	$\begin{aligned} & -0.7785 \\ & (0.0951) \end{aligned}$	$\begin{gathered} 0.0650 \\ (0.0228) \end{gathered}$	$\begin{gathered} 0.0902 \\ (0.0365) \end{gathered}$	$\begin{aligned} & -0.1475 \\ & (0.0115) \end{aligned}$	$\begin{aligned} & -0.1380 \\ & (0.0130) \end{aligned}$
a_{3}	$\begin{gathered} -0.0254 \\ (0.0044) \end{gathered}$	$\begin{aligned} & -0.0262 \\ & (0.0044) \end{aligned}$	$\begin{gathered} 2.0236 \\ (0.4175) \end{gathered}$	$\begin{gathered} 1.2577 \\ (0.4394) \end{gathered}$	$\begin{gathered} -0.0032 \\ (0.0005) \end{gathered}$	$\begin{aligned} & -0.0037 \\ & (0.0006) \end{aligned}$
a_{4}	$\begin{gathered} 37.8062 \\ (12.0869) \end{gathered}$	$\begin{gathered} 51.5813 \\ (11.9887) \end{gathered}$	$\begin{gathered} 1.3479 \\ (0.2361) \end{gathered}$	$\begin{gathered} 0.8344 \\ (0.1386) \end{gathered}$	$\begin{gathered} -0.0283 \\ (0.0088) \end{gathered}$	$\begin{aligned} & -0.0472 \\ & (0.0099) \end{aligned}$
a_{5}	$\begin{aligned} & -1.7207 \\ & (0.2855) \end{aligned}$	$\begin{aligned} & -1.3051 \\ & (0.2815) \end{aligned}$	$\begin{aligned} & 3.8760 \\ & (0.0818) \end{aligned}$	$\begin{gathered} 4.2214 \\ (0.1267) \end{gathered}$	$\begin{gathered} 2.8552 \\ (0.1358) \end{gathered}$	$\begin{gathered} 2.8173 \\ (0.1454) \end{gathered}$
a_{6}	$\begin{gathered} -0.0028 \\ (0.0005) \end{gathered}$	$\begin{gathered} -0.0033 \\ (0.0004) \end{gathered}$			$\begin{aligned} & -0.0032 \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.0033 \\ & (0.0004) \end{aligned}$
a_{7}	$\begin{aligned} & 17.8976 \\ & (1.6905) \end{aligned}$	$\begin{aligned} & 16.2977 \\ & (1.8217) \end{aligned}$			$\begin{aligned} & -0.0970 \\ & (0.0074) \end{aligned}$	$\begin{aligned} & -0.0918 \\ & (0.0076) \end{aligned}$
a_{8}	$\begin{gathered} -0.0602 \\ (0.0114) \end{gathered}$	$\begin{aligned} & -0.0744 \\ & (0.0111) \end{aligned}$				

Table 4. Parameter estimates of the individual-tree model (Eq. 6-7), by group.

Parameter estimate	Group 1	Group 2
b_{0}	10.2765	12.1540
	(0.9423)	(0.7658)
b_{1}	-0.2256	-0.2773
	(0.0311)	(0.0261)
b_{2}	-21.9825	-25.5995
	(2.5434)	(2.0180)
b_{3}	-5.0864	-5.9253
	(0.3482)	(0.3098)
b_{4}	-2.6091	-1.3919
	(0.1325)	(0.1373)
b_{5}	-0.0029	-0.0038
	(0.0002)	(0.0002)
b_{6}	23.7870	19.0524
	(0.8111)	(0.7664)
b_{7}	-0.0455	-0.0954
	(0.0056)	(0.0056)
b_{8}	0.0011	0.0013
	(0.0001)	(0.0001)

Table 5. Evaluation statistics for stand-level prediction, by variable and model.

Variable ${ }^{1 /}$	Evaluation Statistic ${ }^{2}$	$\begin{gathered} \text { Cao } \\ (2021) \end{gathered}$	Clutter and Jones (1980)	New model
N	MD	$\underline{-13.115}$	-8.080	-10.239
	$M A D$	148.649	$\underline{195.740}$	145.034
	FI	0.8545	$\underline{0.7439}$	0.8581
B	MD	$\underline{-0.3354}$	-0.1994	-0.2502
	$M A D$	3.2008	3.7804	3.0246
	FI	0.7674	$\underline{0.6222}$	0.7854
Q	MD	0.0422	$\underline{-0.0625}$	0.0119
	$M A D$	0.5519	$\underline{0.6366}$	0.5435
	FI	0.9577	0.9467	0.9594
Sum of the ranks		15.53	$\underline{23.00}$	10.61
Overall rank		1.80	3.00	1.00

ㄴ $N=$ number of trees per ha; $B=$ basal area $\left(\mathrm{m}^{2} / \mathrm{ha}\right) ; Q=$ quadratic mean diameter (cm).
2/ $M D=$ mean difference; $M A D=$ mean absolute difference; $F I=$ fit index.
For each evaluation statistic, a bold, italic number denotes the best statistic, and an underlined number denotes the worst.

Table 6. Evaluation statistics ${ }^{1 / 2}$ for tree-level prediction, by method and variable.

${ }^{1 /}$ For each evaluation statistic, a bold, italic number denotes the best statistic, and an underlined number denotes the worst.

Figure 1. Curves for 5-year diameter growth (a) and survival probability (b), as derived from the new stand model, for trees in
plot $1\left(A_{1}=10 \mathrm{yrs} ; H_{1}=9.2 \mathrm{~m} ; N_{1}=2074\right.$ trees $\left./ \mathrm{ha} ; B_{1}=24.5 \mathrm{~m}^{2} / \mathrm{ha}\right)$, plot $2\left(A_{1}=15 \mathrm{yrs} ; H_{1}=12.3 \mathrm{~m} ; N_{1}=1647\right.$ trees $\left./ \mathrm{ha} ; B_{1}=33.9 \mathrm{~m}^{2} / \mathrm{ha}\right)$, and plot 3 ($A_{1}=20 \mathrm{yrs} ; H_{1}=16.9 \mathrm{~m} ; N_{1}=1342$ trees $\left./ \mathrm{ha} ; B_{1}=45.5 \mathrm{~m}^{2} / \mathrm{ha}\right)$.

$389 \times 231 \mathrm{~mm}(236 \times 236$ DPI)

$389 \times 231 \mathrm{~mm}(236 \times 236$ DPI)

