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ABSTRACT

This paper proposes a method for creating unique

identifiers, called fingerprint sequences, for visually

distinct locations by recovering statistically significant

features in panoramic color images.  Fingerprint

sequences are expressive enough for mobile robot

localization, as demonstrated using a minimum energy

sequence-matching algorithm that is described.

Empirical results in two different places demonstrate the

reliability of the system for global localization on a

Nomad Scout mobile robot.

1. INTRODUCTION

Vision-based localization has recently witnessed a

newfound popularity.  The CCD Camera is a popular

choice for mobile robot sensing because it is not

inherently dependent on environmental geometry like

ranging devices [13]. Therefore, it is hoped that a

transition to indoor and outdoor navigation will be more

straightforward with vision despite that each of them has

their proper challenges.

Simple ranging devices require integration over time and

high-level reasoning to accomplish localization.  In

contrast, vision has the potential to provide enough

information to uniquely identify the robot’s position.

Recent vision-based navigation methods have overcome

the challenges of vision to produce mobile robots that can

track their position using only a CCD camera. Some of the

successful work is currently limited to indoor navigation

because of its dependence on ceiling features [4, 15],

room geometry, or artificial landmark placement [16].

Other means for visual localization are applicable both

indoors and outdoors, however they are designed to

collect image statistics while foregoing recognition of

specific scene features, or landmarks [3, 6].

This research aims to create a visual localization system

based on recognition of sets of visual features.  Our goal is

to implement a system with a minimal number of implicit

assumptions regarding the environment, such that the

system may be directly applicable both outdoors and

indoors.

2. THE FINGERPRINT SEQUENCE

As the fingerprints of a person are unique, so each

location has its own unique visual characteristics (save in

pathological circumstances). The thesis of this localization

system is that a unique virtual fingerprint of the current

location can be created and that the sequence generation

methods can be made insensitive to small changes in robot

position. If locations are denoted by unique fingerprints in

this manner, then the actual location of a mobile robot

may be recovered by constructing a fingerprint using its

current view and comparing this test fingerprint to its

database of known fingerprints.

2.1 Fingerprint sequence encoding

We propose to create a fingerprint by assuming that a set

of feature extractors can identify significant features in the

image.  Furthermore, we use a 360 degrees panoramic

image because the orientation as well as the position of the

robot may not be known a priori.

We define a fingerprint as a circular list of features,

where the ordering of the set matches the relative ordering

of the features in the panoramic image. In order to encode

efficiently this circular list, we denote the fingerprint

sequence using a list of characters, where each character

represents the instance of a specific feature type.

Although any number of feature detectors may be used

in an implementation of our system, we have used only

two in our implementation thus far: a vertical edge

detector and a color patch detector. We use the letter ‘v’

to characterize a vertical edge and the letters A,B,C,...,P to

represent hue bins as detected by the color patch detector

(See Fig. 6,7 and 13).

2.2 Extraction of edges and color features

Edge detection

Edge features are of particular value in artificial

environments such as indoor office buildings.  For these

reasons, they have been popular throughout prior work in

vision-based localization [1]. Like other researchers, we

have chosen to concentrate on vertical edges because of

the instability and rarity of horizontal edges due to

projection effects.

Because we use a color CCD camera, the channel used

to compute the gradient must be chosen carefully.

Knowing that the blue channel of such a camera has a

remarkably higher noise level than the other channels, we



use only the sum of the red and green in order to increase

the signal/noise ratio.

Histogram based edge detection

From the gradient image several methods are used to

extract edges. One of them consists of the application of a

threshold function on the gradient values followed by the

application of a non-maxima suppression algorithm [10].

The most difficult step then remains, which is to group the

resulting edges fragments together in order to obtain true

vertical edges. This problem is further exacerbating when

luminosity changes along the segment.

To group the resulting edge fragments together, first, we

construct a histogram by adding the red-green gradient

intensity of every pixel in the same column. To avoid the

apparition of parasite peaks due to the noise, we apply a

window filter {1,2,3,2,1} on the raw histogram. Its

triangle shape permits to keep the peakiness of the spikes.

threshold mean

Figure 1: Filtered gradient histogram ( See Fig 3. )
(mean and threshold)

One can see on the Fig. 1 that the mean value is actually

the level of the noise and provides a bad threshold value.

One can compute a more noise insensitive threshold by

computing the value t = mean + (max – mean) / c, where c

is chosen depending on the number of edges desired.  This

method is unfortunately very sensitive to occlusion and

distance.  Indeed, a large peak will provide a big value

and the threshold will be high. In such a case, the majority

of edges will not be considered.

To solve this problem we use a more statistical approach

to choosing the edge threshold. The standard deviation of

the values of the histogram is computed and added to the

mean in order to fix the base threshold. All edges below

the threshold are ignored.

Figure 2: Histogram after group and filter algorithms

Figure 3: Extracted edges (13)

Color patches detection

Color patches can be used for localization as well

especially in human environments where one finds often

saturated colors. The combination of both edges and

patches greatly increases the information for the location.

A part of the information is coded in the nature of the

features (edge or different colors) and another part in the

sequence (order of features).

In order to get more intuitive and natural color

representation, we convert RGB images extracted from the

camera into the HSI color space (Hue, Saturation and

Intensity).

Figure 4: Original image

Because color information is weak for low level of

saturation, only high-saturated pixels are considered for

the extraction of patches.

Fuzzy voting scheme

The colors in the scene are not known in advance and

can cover the entire color space. In order to reduce the

quantity of different color patches and memory space

similar colors are grouped together considering their hue.

To limit discontinuities and instabilities for pixels near

the borders of the intervals, fuzzy sets have been

introduced as depicted in Fig. 5.
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Figure 5: Fuzzy voting scheme

The column histogram for each base color is generated as

follows. Each pixel in the image (those that remain after

saturation thresholding) will add a value in one or two

histograms depending on the hue. For example, a pixel

with hue 0 will add 100 in the corresponding column of

the red histogram. A pixel with hue 10 will add a bigger

value in the red histogram than in the yellow one (see

Fig.5).

The same method as described for edge detection is

applied but some parameters change. A different window

filter, {1,2,2,2,1} is used for color histograms because we

want to smooth thin peaks in this case.



The base threshold is also built by adding sigma and the

mean of the histogram.

As we can see in Fig. 6 more patches than expected have

been extracted from image in Fig. 4. In order to avoid

inversion between patches, which can change considerably

the resulting string, a color fusion step has been

introduced. Intermediate colors are used for the new patch

and its horizontal coordinate is the mean of the

coordinates of the parent’s patches
1
.

 GIKCAO       GJBO

Figure 6: String before and after color fusion

3. FINGERPRINT SEQUENCE MATCHING FOR

LOCALIZATION

To introduce the problem of string matching, let us

consider the example below. The first string has been

extracted from the current location of the robot and the

next two strings are strings from the database.

Place x: vvBEvvCvvvMvOBvvvvv

Place 1: vvBEvMvCvvvMvMOBvvvv

Place 2: LvLvvvBvvOLvBEvOvvv

Figure 7: Strings example

As one can see the new string does not match exactly

either of the others because the robot is not exactly located

on a map point and/or some change in the environment

occurred. Now what sequence match scoring method

should we use to determine that the match is Place1 in this

case and not Place2 with high confidence?

Great many string-matching algorithms can be found in

the literature. Exact string matching algorithms [8] are not

applicable in this case. They are designed to indicate if

text occurrences are found within a text and are optimized

to be very fast.

More elaborate string matching [7,9] algorithms allow a

level of mismatch, such as k-mismatch matching

algorithms, and string matching with k differences. The

first allows matches where up to k characters in the pattern

do not match the text, and the second requires that the

pattern have an edit-distance from the text of k or less.

Another approach consists in considering strings as

digital signals and computing the correlation. A measure

of similarity will be in this case the height of the

maximum peak of the correlation function. But this

method works well only if initial strings have a similar

length and fail in case of occlusion and addition. The same

                                                          
1
 The colors are fused if the difference between the pixel

coordinates is less than 10 pixels

problem appears when one computes the SSD (Sum of

Square Difference) between two strings.

One of the main problems of the above methods is that

they do not consider the nature of features and specific

mismatches. We wish to consider the likelihood of

specific types of mismatch errors. For instance confusing a

red patch with a blue path is more egregious than

confusing the red patch with a yellow patch. Furthermore

the standard algorithms are quite sensitive to insertion and

deletion errors which cause the string lengths to vary

significantly.

3.1 Minimum energy algorithm

The approach we have adopted for sequence matching is

inspired by the minimum energy algorithm used in stereo-

vision for finding pixels in two images that correspond to

the same point of a scene [11]. As in the minimum energy

case, the problem can be seen as an optimization problem,

where the goal is to find the path that spends the minimum

energy to go from the beginning to the end of the first

sequence considering the values of the second one. The

similarity between two sequences is given by the resulting

minimum energy of traversal. Value 0 is used to describe a

perfect match (e.g. self-similarity).

We describe our sequence matching algorithm using an

example consisting of two particular sequences:

“EvHBvKvGA” (length n = 9) and “EBCAvKKv” (length

m = 8).

Initialization

First the initial n x m matrix must be built. The characters

of the first string represent the rows and those of the

second string the columns. Because the algorithm is not

symmetric, the longest string will always represent the

rows. To initialize this matrix only two parameters are

needed. The first parameter is a number that represents the

maximum mismatch value and the second is used to fix

the minimum mismatch value between two different

colors. In this particular example Max_init = 20 and

Min_col = 5.

Init E B C A v K K v

E 0 11 8 14 20 20 20 20

v 20 20 20 20 0 20 20 0

H 11 20 17 17 20 11 11 20

B 11 0 5 5 20 11 11 20

v 20 20 20 20 0 20 20 0

K 20 11 14 8 20 0 0 20

v 20 20 20 20 0 20 20 0

G 8 17 14 20 20 14 14 20

A 14 5 8 0 20 8 8 20

Figure 8: Init matrix

If the corresponding features are of wholly different

types (e.g. a color and an edge) then the corresponding

matrix element is initialized to Max_init.  If both features

are vertical edges or represent exactly the same color the

value 0 is used to describe a perfect match. If the

comparison is between two colors, then the error is

calculated according to the hue distance between the two



colors, adjusted to inhabit the range from Min_col to

Max_init.

Although a type-mismatch can be generally assigned a

score of Max_Init, any newly introduced feature type must

not only include the appropriate feature detector but also a

mismatch table, identifying the score for various feature

value comparisons within that feature type.  This is an

important aspect of the present work.  We have noted that

differences in illumination cause color, for instance, to

change one bin at times, but rarely will a color change two

or more bins.  Therefore, some proportionality of the

scoring function based on a distance measure between

colors is critical to the success of our method.

Cost E B C A v K K v

E 0 11 8 14 20 20 20 20

v 44 20 31 28 14 40 40 20

H 79 64 37 48 48 25 45 60

B 114 79 66 42 68 59 36 65

v 158 123 99 86 42 82 79 36

K 202 158 137 107 86 42 62 80

v 246 202 178 151 107 86 62 62

G 278 243 216 195 151 121 100 82

A 316 272 248 216 195 153 129 120

Figure 9: Cost matrix (3D)

  

Neig E B C A v K K v

E - - - - - - - -

v 1 1 2 3 4 5 6 7

H 1 2 2 3 4 5 5 7

B 1 1 3 3 4 5 6 7

v 1 2 2 4 4 4 6 7

K 1 2 3 3 5 5 5 8

v 1 2 2 4 4 6 6 7

G 1 2 3 4 5 5 7 7

A 1 2 3 3 5 6 6 7

Figure 10: Cost matrix (3D) and Neig matrix

Only two parameters are needed to compute the Cost

matrix: the slope penalty (Slope_pen = 10) and the

occlusion penalty (Occ_pen = 24). The first line of the

Cost matrix is just a copy of the first line of the Init

matrix. Let us consider the cell Cost(2,3)
2 

to explain the

approach adopted to initialize the other elements.

•  Cost(1,1): The slope between cell(1,1) and cell(2,3) is

computed by subtracting the respective column

indexes and the following sum is evaluated.

     S1 = Cost(1,1) + Init(2,3) + slope(2) * Slope_pen= 40

 

•  Cost(1,2): In this case the slope between cell(1,2) and

cell(2,3) is optimal. Indeed, if the two strings were

identical the best path will be the diagonal of the

matrix and the result of the match must be 0. That

means that no penalty is added.

      S2 = Cost(1,2) + Init(2,3) = 31

 

                                                          
2 Cost(i,j) is the value at the ith line and jth column of the Cost

matrix. Same for Init(i,j) and Neig(i,j)

•  Cost(1,3): The slope is 0 that means that v is occluded

by E. This is a vertical occlusion and the following

equation is used.

     S3 = Cost(1,3) + Init(2,3) + Occ_pen = 52

 

•  Cost (2,2): This time the relative position of cell(2,2)

and cell(2,3) represent an horizontal occlusion. The

following equation is used.

    S4 = Cost(2,2) + Init(2,3) + Occ_pen = 64

Finally the minimum value S2 is assigned to Cost(2,3)

and the coordinates of the cell (1,2) are stored in

Neig(2,3) =  2 (See Fig 10). In case of horizontal

occlusion we put a negative sign for the neighbor

coordinates.

The best path

The minimum value of the last line of the Cost matrix.

This value corresponds inversely to the similarity between

the two input sequences. In this particular example the

score that results is 381. In order to normalize the result

this value is then divided by the worst value that can be

obtained with two strings of similar length (in this case,

result of the match between a string composed of m edges

and one with n colors).

4. IMPLEMENTATION

The camera used to acquire the images is an inexpensive

CCD color camera with a 640 x 480

resolution
3
. The interface to the

computer is via the USB.  Image

manipulation is performed with a

Microsoft Visual C++ 6.0 application

running under Windows’98. The camera

is fixed via a 110-CM mast to a Nomad

Scout mobile robot research platform
4
.

To build the panoramic view of the

scene the differential-drive Scout is

rotated about its center while a series of

12 images are grabbed from the CCD

camera every 30 degrees.
Figure 11: System

Building the panoramic image

Various methods exist to align corresponding pixels in

two adjacent pictures. One method consists of computing

the SSD between adjacent images and the best alignment

is given by the minimum of the function [14].

This method produces panoramas that are of high quality

for human consumption; however, such exact alignment is

unnecessary for our purposes of color patch and edge

extraction. Instead, we simply attach images end to end,

taking into account the resulting “seam” by suppressing

detection of edges at these seams. To avoid the additional

                                                          
3
 Logitech QuickCam Pro. Look at www.logitech.com

4 More information available at www.robots.com/nscout.htm



computational burden of unwarping images, only the

central 70% percent of the images is used during

construction of the image.

The point of view of the panoramic is very important

and the height of the camera must be chosen carefully. If

the camera is too low every item of furniture such as

chairs and tables can occupy the view in front of the robot.

Since these low objects are apt to move, the resulting

image will be highly dynamic.  In our implementation we

have placed the camera at almost the same height as the

eyes of an human so that large-scale features of interest

(e.g. door posts, windows, corners) are easily visible while

low-level clutter is avoided.

5 EXPERIMENTAL RESULTS

In order to test the system, two maps corresponding to

two different environments have been constructed (See

Fig. 12). The left map, called White Hall, corresponds to

the entrance hall on the first floor of the Smith Hall

building. The map on the right, called Ground Floor,

covers a path that ends in the conference room on the

ground floor in the same building. For the White Hall 15

locations evenly spaced by 90 cm have been chosen

arbitrarily in the map in order to represent the map points.

21 map points have been stored with the same method for

the Ground Floor. We use crosses to represent those

points in the next figures.

1m

   

Figure 12: Maps of White Hall and Ground Floor

Fig. 13 shows panoramas and strings associated to map

points Pc and Pw3 (See Fig. 14). It is interesting to note

that same objects in the scene generate same string

fragments even if locations are quite far one from each

other. For example, the same sequence “LvBE” has been

extracted for the trashcan (blue) and the door (red, green)

for both panoramas.

We intend to test global localization by choosing

random positions around the map points and compare the

corresponding strings with all the stored map points. For

the White Hall 18 locations have been chosen to test the

system: they are called test points and are represented by

circles in the maps. For the Ground Floor 22 points have

been tested.

In order to determine a percentage of good results the

two following criteria have been chosen.

1. A test point is considered as topologically correct if

the best match among the map points is a point

adjacent to the test point. Example: Pe1~ must give

Pe1 or Pe2.
 

2. A test point is considered as geometrically correct if

the best match among the map points is the closest

map point. Example: Pe1~ must provide Pe1 and

Pe1~~ must provide Pe2.

For the White Hall 17 test points have been classified as

topologically correct that represents 94% of good results.

In another hand 82% of locations have been classified as

geometrically correct (14 points). 20 test points are

topologically correct for the Ground Floor (91%) and 14

have been classified geometrically correct (70%).

In order to get more significant statistics the two

experiment sets have been fused. The new database

consists as 40 test points and 36 map points. 90% of the

test points have been classified as topologically corrects

and 75% as geometrically corrects. The test points, which

were wrong for the first test sets, remain wrong when

databases are fused. Unfortunately, the fusion of the two

sets has generated a new false point (Pw3~).

These results make us think about some considerations.

The wrong test points are mainly due to two different

effects.

First, major occlusions and/or additions can occur in the

string. These defaults are generally due to a pathological

combination of dynamic changes in the environment e.g.

illumination change, reflections, new objects or persons in

the scene.

Figure 13: Panoramas and string examples

   VBvvvOvvvLvBEvvvvvvBvL (Pc)

   KvLvvvJvvvvvvBvvvLvBEvOvN (Pw3)
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Figure 14: Maps of White Hall and Ground Floor

Second, some locations are locally so unique that they

are different of all test points even if they are

geographically close. Those pathological cases happen

mostly in close areas and for points close to object that

can hide a big portion of the environment. Indeed, the

displacement/(changes in the string) ratio can be very

small in these cases. This explains the relative bad results

for the second criteria compared to the first.

This problem makes us think about the necessity to

choose carefully the map points. The natural rule is to put

more map points when objects are close and fewer points

are necessary for open areas. This can be done

automatically while the robot is exploring the scene.

6. CONCLUSIONS

The structure of circular chains and the string matching

algorithm allows us to insert other kinds of features.

Using different features extracted from several kinds of

sensors provides several advantages. One can improve

the edge detection by fusing information from the camera

and a laser range finder for instance. Or, infrared images

and laser range finder can be used in dark scenes.

Furthermore probabilities related to features can be

easily introduced in the string matching algorithm.

For the moment the largest computational burden is

construction of the panoramic image.  Optical solutions

can alleviate this problem, and so one should consider

using a panoramic vision system, such as an Omnicam, to

capture a panorama instantly.
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