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Abstract. G-relative pushoutsGRPOs) have recently been proposed by the au-
thors as a new foundation for Leifer and Milner’s approach to deriving labelled
bisimulation congruences from reduction systems. This paper develops the theory
of GRPOs further, arguing that they provide a simple and powerful basis towards
a comprehensive solution. As an example, we consB&ROSs in a category of
‘bunches and wirings.” We then examine the approach based on Milner’s precat-
egories and Leifer’s functorial reactisystems, and show that it can be recast in

a much simpler way into the 2-categorical theonG&POs.

I ntroduction

Itis increasingly common for foundational calculi to be presenta@dagtion systems.

Starting from their common ancestor, thecalculus, most recent calculi consist of a
reduction system together with a contextual equivalence (built out of basic observations,
viz. barbs). The strength of such an approach resides in its intuitiveness. In particular,
we need not invent labels to describe the interactions between systems and their possible
environments, a procedure that has a degfaemtrariness (cf. edy and late semantics

of thettcalculus) and may prove quitemplex (cf. [5[ 4, 3,11]).

By contrast, reduction semantics suffer at times by their lack of compositionality,
and have complex semantic theories becauseadf contextual equivalences. Labelled
bisimulation congruences basedlahelled transition systems (LTS) may in such cases
provide fruitful proof techniques; in particular, bisimulations provide the power and
manageability of coinductionyhile the closure properties of congruences provide for
compositional reasoning.

To associate an LTS with a reduction system involves synthesising a compositional
system of labels, so that silent movestactions) reflect the original reductions, labels
describe potential external interactions, and all together they yield a LTS bisimulation
which is a congruence included in the original contextual reduction equivalence. Prov-
ing bisimulation is then enough to prove reduction equivalence.

Sewell [19] and Leifer and Milnef[13,711] set out to develop a theory to perform
such derivations using general criteria; a meta-theoded#ing bisimulation congru-
ences. The basic idea behind their construction is to use contexts as labels. To exemplify
the idea, in a CCS-like calculus one would for instance derive a transition

* Research supported bipisCo: Semantic Foundations of Distributed Computation’, EU IHP
‘Marie Curie’ contract HPMT-CT-2001-00290, afRICS, Basic Research in Computer Sci-
ence, funded by the Danish National Research Foundation.

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 091424, 2003.
(© Springer-Verlag Berlin Heidelberg 2003



410 Vladimiro Sassone and Pawet Solns&i’

-laQ

aP »P|Q

because terra.P in context— | a.Q reacts to become | Q; in other words, the context
is a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to use as labels.
The intuition is to take only thesmallest” contexts which allow a given reaction to
occur. As well as reducing the size of the LTS, this often makes the resulting bisimu-
lation equivalence finer. Sewell’s method is based on dissection lemmas which provide
a deep analysis of a term’s structure. A geatised, more scalable approach was later
developed inl[13], where the notion of “smallest” is formalised in categorical terms as
a relative-pushout (RPOs). Both theories, however, do not seem to scale up to calculi
with non trivial structural congruences. Already in the case of the monoidal rules that
govern parallel composition things become rather involved.

The fundamental difficulty broughbaut by a structural congrueneeis that work-
ing up to= gives up too much information about terms for the RPO approach to work
as expected. RPOs do not usually exist in such cases, because the fundamental indica-
tion of exactly which occurrences of a terrarsstructor belong to the redex becomes
blurred. A very simple, yet significant example of this is the catedqrg of bunch
contexts[[13], and the same problems aimsstructures such as action graphs [14] and
bigraphsl[15].

In [L7] we therefore proposed a framewankwhich term structure is not explicitly
guotiented, but the commutation of diagrams (i.e. equality of terms) is taken=sp to
Precisely, to give a commuting diagrarmp = sgq one exhibits a prooft of structural
congruence, which we represent as a 2-cell (constructed from the rules generating
and closed under all contexts).

k— |

qla J/r

Since such proofs are naturally isomorphisms, we were led to congigategories,
i.e., 2-categories where all 2-cells are iso, and initiated the stu@yrefative pushouts
(GRPOs), as a suitable generatiea of RPOs from categories te-categories.

The purpose of this paper is to continue the development of the the@RBDs.
We aim to show that, while replacing RPOs at little further complication[(¢f. §1@nd §2),
GRPOs significantly advance the field by providing a convenient solution to simple, yet
important problems (cf..83 andl84). The theoryGRPOs promises indeed to be a
natural foundation for a meta-theory of ‘deriving bisimulation congruences.’

This paper presents two main technical results in support of our claims. Firstly, we
prove that the case of the already mentioned cateBornyof bunch contexts, problem-
atic for RPOs, can be treated in a natural way uSRPOs. Secondly, we show that the
notions of precategory and functorial regetsystem can be dispensed with in favour
of a simplerGRPO-based approach.

The notion ofprecategory is proposed in [11, 12] to handle the examples of Leifer
in [11], Milner in [15] and, most recently, ofehsen and Milner in_[7]. It consists of a
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category appropriately decorated by so-callagbport sets’ which identifies syntactic
elements so as to keep track of them under arrow composition. Alas, such supported
structures are no longer categories —armmposition is partial — which makes the
theory laborious, and bring us away from the well-known world of categories and their
theory. The intensional information recedlin precategories, however, allows one to
generate a category “above” where RPOs exist, as opposed to the category of interest
“below”, say C, where they do not. The category “above” is relatedtoia a well-
behaved functor, used to map RPOs diagrams from the category “abolewbere
constructing them would be impossible. These structures take the ndnmetofial re-
active systems, and give rise to a theory to generate a labelled bisimulation congruences
developed in[11].

The paper presents a technique for mapping precategoriesategories so that
the LTS generated usir@RPOs is the same as the LTS generated using the above men-
tioned approach. The translation derives from the precategory’s support information a
notion of homomorphism, specific to the particular structure in hand, which constitutes
the 2-cells of the derive@-category. We claim that thisglds an approach mathemat-
ically more elegant and considerably simptlean precategories; besides generalising
RPOs directlyGRPOs seem to also remove the need for further notions.

Structure of the paper. In €1 we review definitions and results presented_in [1[]; §2
shows that, analogously to the 1-dimensional case, trace and failures equivalence are
congruences provided that enougRPOs exist. In &3, we show that the category of
bunch contexts is naturally a 2-category wheRPOs exist; B4 shows how precate-
gories are subsumed by our notionGRPOs. Most proofs in this extended abstract are
either omitted or sketched. For these, the interested reader should consult [18].

1 Reactive Systemsand GRPOs

Lawvere theoried [10] provide a canonical way to recast term algebras as categories.
For X a signature, the (free) Lawvere theory bnsayCs, has the natural numbers for
objects and a morphisin m — n, for t a n-tuple of m-holed terms. Composition is
substitution of terms into holes.

Generalising from term rewriting systems 6, Leifer and Milner formulated a
definition ofreactive system [13], and defined a technique to extract labelled bisimula-
tion congruences from them. In order to accooatate calculi with non trivial structural
congruences, as explained in the Introduction, we refine their approach as follows.

Definition 1.1. A G-category is a 2-category where all 2-cells are isomorphisms.
A G-category is a thus a category enriched asethe category of groupoids.

Definition 1.2. A G-reactive system C consists of &G-categoryC; a subcategor{)
of reactive contexts, required to be closed underc2lls and composition-reflecting;
a distinguished objedt € C; a set of pairR C Uccc C(l1,C) x C(1,C), called the
reaction rules.
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The reactive contexts are those contextsida which evaluation may occur. By
composition-reflecting we mean thad’ € D impliesd andd’ € D, while the closure
property means that givethe D andp: d = d’ in C impliesd’ € D. The reaction
relation—> is defined by taking

a—> dr ifthere exists(l,r) e R, de D anda: dl =ainC

As illustrated by the diagram below, this represents the fact that, up to structural con-
gruencea s the left-hand sidé of a reduction rule in a reaction contekt

@\

C4>C’

The notion ofGRPO formalises the idea of a context being the “smallest” that en-
ables a reaction in @-reactive system, and is a conservative 2-categorical extension of
Leifer and Milner RPO< [13] (cflL7] for a precise comparison).

For readers acquainted with 2-dimensional category theory_ (cf. [9] for a thorough
introduction),GRPOs are defined in Definitign 1.3. This is followed by an elementary
presentation in Propositi¢n 1.4 taken frdm|[17]. We wder vertical composition.

Definition 1.3 (GRPOS). Letp: ca=-db: W — Z be a 2-cell (see diagram below) in
aG-categoryC. A G-relative pushout (GRPO) forp is a bipushout (cfL[8]) of the pair
or arrows(a, 1) : ca— cand(b,p) : ca— d in the pseudo-slice categoy/Z.

/'\
'\/

1)

Proposition 1.4. Let C be aG-category. A candidat&RPO forp: ca = db as in
diagram[(ll) is a tupléR, e, f,g,B,y,0) such thadbe.gB.ya= p — cf. diagram¥).

Z
/ EN / DR RN
—e—>R<—f— X—>R%Y R+<—R
k K (ii) (iii)
W
()

A GRPO forp is a candidate which satisfies a universal property. Namely, for any other
candidate(R €, f',d,’,Y,d) there exists a quadrupld, ¢, P, 1) whereh: R— R,

¢: € = heandy: hf = f' —cf. diagramif) — andt: g'h=- g - diagram {ii) — which
makes the two candidates compatible in the obvious way, i.e.

Teeg ey =y  FegPetr f=3  ybehBeda=p.
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Such a quadruple, which we shall refer tonasiating morphism, must beessentially
unique. Namely, for any other mediating morphisth/,¢’, ', 7') there must exist a
uniquetwo cell&: h — h' which makes the two mediating morphisms compatible, i.e.

Eeed =0 Y& M=y Tegf-=t.
Observe that whereas RPOs are defined up to isomorpGiRRQOs are defined up

to equivalence (since they are bicolimits).
The definition below plays an important role in the following development.

Definition 1.5 (GIPO). Diagram [1) of Definitioli 113 is said to beGridem-pushout
(GIPO) if (Z,c,d,idz,p, 1¢, 14) is its GRPO.

We recall in EA the essential properties@RPOs ands1POs from [17].

Definition 1.6 (LTS). For C a G-reactive system whosenderlying categoryC is a
G-category, defin&TS(C) as follows:

— the state$;TS(C) are iso-classes of arrovia: | — X in C;

— there is a transitiora] 1, [@] if there exists a 2-celp, a rule(l,r) € R, and

d € D with & = dr and such that the diagram below iSEO.
Z
f d
7N
X P Y
AN | A

Henceforward we shall abuse notation and leave out the square brackets when writing

)

transitions; ie. we shall write simpty% a instead offa] SUIN [a].

Categories can be seen as a disceeigategories (the only 2-cells are identities).
Using this observation, eadconcepts introduced above reduces to the corresponding
1-categorical concept. For instanceGBPO in a category is simply a RPO.

2 Congruence Resultsfor GRPOs

The fundamental property that endows the LTS derived from a reduction system with a
bisimulation which is a congruence is the following notion.

Definition 2.1 (Redex GRPOS). A G-reactive systent is said tohave redex GRPOs
if every squar€d(2) in its underlying-categoryC with | the left-hand side of a reaction
rule{l,r) € R, andd € D has aGRPO.

In particular, the main theorem of [17] is as follows.

Theorem 2.2 (cf. [17]). Let C be areactive systemwhose underlying G-category C has
redex GRPOs. The largest bisimulation ~ on GTS(C) is a congruence.

The next three subsections complement this result by proving the expected corre-
sponding theorems for trace and failure semantics, and by lifting them to the case of
weak equivalences. Theorems and proofs in this section follow clasely [11], as they are
meant to show thasRPOs are as viable a tool as RPOs are.
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2.1 TracesPreorder

Trace semantics [16] is a simple notion of equivalence which equates processes if they

can engage in the same sequences of actions. Even though it lacks the fine discriminat-

ing power of branching time equivalences, viz. bisimulations, it is nevertheless interest-

ing because many safety properties can be expressed as conditions on sets of traces.
We say that a sequende- - - f,, of labels of GTS(C) is a trace of if

f f
a_1>..._”>an+l

for someay,...,an. The trace preordegy is then defined aa <; b if all traces ofa are
also traces ob.

Theorem 2.3 (Trace Congruence). <y isa congruence.

Proof. Assumea <t b. We prove thata < cb for all contextsc € C. Suppose that
ca=a L @ an—" an 1.

We first prove that there exist a sequencejferl,... n,

wherea; =a, ¢1=¢, ciy1=4d/, & = Ga, and each square isciPO[ Theith induc-

tion step proceeds aglfows. Sincea[% a1, there existy; : ficia; = djl;, for some
(li,ri) € R andd;, € D, with a1 = djr;. SinceC has redexcIPOs (cf. Definitio 2.11),
this can be split in twasIPOs:a; : gia = dil; andp;: fici = d/g; (cf. diagram above).
Takea;1 = dirj, and the induction hypothesis is maintained. In particular, we obtained
atrace

a=a Lpay--an-p anig

that, in force of the hypothes&< b must be matched by a corresponding tracb.of
This means that, far= 1, ..,n, there exisGIPOsq : gibj = gl{, for some(l{,r/) € R
ande € D, once we také 1 to begr{. We can then paste each of suHPOs together
with Bi: fici = d/g; obtained above and, using LemmaJA.3, conclude that there exist
GIPOsficibi = d/el/, as in the diagram below.
bj o]

. NS .

|_/l ol Ji B lfi which means cibi —— dier|.

e1'd1

1 Since the fact is not likely to cause confusion, we make no notational distinction between the
arrows ofC (e.g. inGRPOs diagrams) and the states and labelSTo8(C), where the latter
are iso-classes of the former.
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As cb = c1bs, in order to construct a traae = t_)l i» i» 6n+1 and complete
the proof, we only need to verify that for=1,...,n, we have that{er{ = ci;1bi1.
This follows at once, as1 = d/ andb; ;1 = er/. O

2.2 FailuresPreorder

Failure semantics_[6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow thesteng of when processes renounce the capability
of engaging in certain actions.
Formally, fora a state o GTS(C), afailureof ais a pair(fs - - - fn,X), wherefy--- fy
andX are respectively a sequence and a set of labels, such that:

— f1--- fpis atrace of, atip ... Iy ant1;
— ant1, the final state of the trace, $&able, i.e.an 1 A ;
— an, 1 refuses X, i.e.an 1 A forall x € X.

The failure preordet; is defined aga <; b if all failures ofa are also failures db. The
proof of the following result can be found in [18].

Theorem 2.4 (Failures Congruence). <; isa congruence.

2.3 Weak Equivalences
Theorem§ 214, 213, afd 2.4 can be extended to weak equivalences, as outlined below.

f
For f a label of GTS(C) define awveak transition a—= b to be a mixed sequence

of transitions and reductiorss—“———>* b. Observe that this definition essen-
tially identifies silent transitions in the LTS with reductions. As a consequence, care has

to be taken to avoid interference with transitiéié» synthesised frorRPOs and la-

belled by an equivalence. These transitions have essentially the same meaning as silent
transitions (i.e. no context involved in the reduction), and must therefore be omitted in
weak observations. This lead to consider the following definitions.

Definition 2.5 (Weak Traces and Failures). A sequencd - -- f, of hon-equivalence
labels of GTS(C) is a weak trace o if
f1 fn
a—>p» a; -1 —>> ay
for someay,...,a,. The weak trace preordertisen defined accordingly.

A weak failure of a is a pair(f1--- fn,X), wheref; --- fy andX are respectively a
sequence and a set nbn-equivalence labels, such thaf; --- f, is a weak trace o&
reaching a final state wti is stable and refuse& The weak trace preorder is defined
accordingly.

Definition 2.6 (Weak Bisimulation). A symmetric relatiorS on GTS(C) is a weak
bisimulation if for allaS b

f
a—»a fnotan equivalence, implids—»p b’ witha' S b
a—p>a  impliesb—>* b witha S b/
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Using the definitions above Theorems|?.2] 2.3, 2.4 can be lifted, respectively,
to weak traces, failures and bisimulation.

It is worth remarking that the congruence results, however, only hold for contexts
ce D, as itis well known that non reactive contexts (i.e. thogdereca—> cb does
not follow froma—i> b, as e.g. the CSS context= ¢y + —) do not preserve weak
equivalences. Alternative definitions of weaikimulations are investigated [n [11], and
they are applicableutatis mutandisto GRPOs.

3 Bunchesand Wires

The category of “bunches and wires” was introduced_in [13] as a skeletal algebra of
shared wirings, abstracting over the notiomafmes in, e.g., thert calculus. Although
elementary, its structure is complex enough to lack RPOs.

A bunch context of typeng — my consists of an ordered setof; trees of depth 1
containing exactlyny holes. Leaves are labelled from an alphdfet

Definition 3.1. The category obunch contexts Bung has

— objects the finite ordinals, denotedg, my, ...

— arrows are bunch contexts= (X, chatroot): mp — my, whereX is a finite carrier,
root: mp+ X — my is a surjective function linking leavex} and holes ify) to
their roots (n), and char X — K is a leaf labelling function.

Composingcy: mp — g andcy: mg — mp means filling thany holes ofcy with the
my trees ofcg. Formally,cico is (X, root charn where

X = Xo+ Xq, root= root, (roofy +idy, ), char= [chap, chag],

where+ and[-, ] are, resp., coproduct armdpairing. Identities ard,!,id) : mp — my.

A homomorphism of bunch contextp : ¢ = ¢’: my — my is a functionp: X — X’
which respects root and char, i.e. rgot= root and chdip = char. An isomorphismis a
bijective homomorphism. Isomorphic bunch contexts are equated, making composition
associative anBung a category.

A bunch context: mp — m can be depicted as a stringrof nonempty multisets
onK + my, with the proviso that elementsy must appear exactly once in the string. In
the examples, we represent elementswhs numbered holes;.

As we mentioned before, RPOs do not exisBiang. Indeed, considefi) below
together with the two candidatés) and (iii). It is easy to show that these have no
common “lower bound” candidate.

1 1
K,— K,— K — K — K — K,—
{/ \1} {%F}\l} {%ji_xl}
_ _ CUKYIKY -
e RREO RETIEN
0 0

<i> (i) (i)
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The point here is that by taking the arrowsRiing up to isomorphism we lose infor-
mation abouhow bunch contexts equal each other. Diagr@mfor instance, can be
commutative in two different ways: th¢ in the bottom left part may corresponds ei-
ther to the one in the bottom right or to thee in the top right, according to whether we
read{K,—1} or {—1,K} for the top rightmost arrow. In order to track this information
we endowBung with its natural 2-categorical structure.

Definition 3.2. The 2-category of bunch contex@sin has:

— objects the finite ordinals, denote®, my,...; we useOrd to denote the category
of finite ordinals, andp for ordinal addition.

— arrowsc = (x,charroot): mp — my consist of a finite ordinal, a surjective func-
tion root: my® x — my and a labelling function chax — K.

— 2-cellsp are isomorphisms between bunches’ carriers.

Composition of arrows and 2-cells is defined in the obvious way. Notice that siige
associative, composition Bun is associative. Therefoigun is aG-category.

Replacing the carrier set with a finite ordinalx allows us to avoid the unnecessary
burden of working in a bicategory, whicwould arise because sum on sets is only
associative up to isomorphism. Observe thi simplification is harmless since the set
theoretical identity of the elements of the carrier is irrelevant. We remark, however, that
GRPOs are naturally a bicategorical notion and would pose no particular challenge in
bicategories.

Theorem 3.3. Bun hasGRPOs.

Proof. Here we give a basic account of the construction GRPO, but omit the proof
of universality. In the following, we use only the fact thadin is an extensive(cfl [2])
category with pushouts.

Suppose that we have

cm3d
/\

m p mp
N~
Mo

In the following diagram all th rectangles are pullbacks@rd and all the outside
arrows are coproduct injections.

Xey e X 2 Xay
C1 0 \L o lal
Xe — Xa@DXe — X D Xg — X D Xag — Xa
CzT T Taz
Xe, o Xd & Xay

Using the morphisms from the diagram above as building blocks, we can construct
bijectionsy: Xc — X¢; ® Xcypr 01 Xap, @ Xe, — Xd ANAP: Xa @ X, — X @ Xa, SUCh that

X ® OB X, Xa DY =p. (3)
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Let root, and roo, be the morphisms makin@) below

myoP

mOEBXaEBXcl mOEBXIEBXaZ szBXaz mg
roots &Xc, roota, —C1— My <-a— Mp
. '\ B /’
My & X, — my Mo
(i) (ii)

into a pushout diagram. We can define ¢harhag, and chag, in the obvious way.
Now consider the diagram below:

o rooy ®Xa,
Mo B Xa © Xoy —0 Mo X B X, : M © Xy
\ N W lmz(])i
Mo Xa Dbl
rooty DX, ”b@xa@xcwnb@x'@x%oﬁﬁbxd e & X
root, Gﬂcl (#) lrooh
my & X, Wml@)(c root. -

Region (1) can be verified to be commutative usidg (3) while regigh commutes
sincep is a homomorphism. Using the pushout property, we get a unique function

h: my — ms. Thus we define rogf: my & X, — Mg as [h,rooti]. It is easy to verify
that this function is surjective. O

Example 3.4. Lety: 2 — 2 be the function taking & 2 and 2— 1. We give below on
the right theGRPOs for the squares on the left.

1 1
{V &} {V T&}
{ 1i 2}
K K
. , . RGPS IN
Y
{K} {K} {K} {K}
0 0
1 1
{V &} O PN
N
1 1 1 {—1} 1 {—1} 1
{K} {K} {K} {K}



Deriving Bisimulation Congruences: 2-Categories Vs Precategories 419

4 2-Categories Vs Precategories

Other categories which, besidBsing, lack RPOs include the closediallow action
contexts [11),[T2] andbigraph contexts [15,[7]. The solution adopted by Leifér]12] and
later by Milner [15] is to introduce a notion of a&ell-supported precategory, where

the algebraic structures at hand are decorated by finite “support sets.” The result is no
longer a category — since composition of arrows is defined only if their supports are
disjoint — but from any such precategory arem generate two categories which jointly
allow the derivation of a bisimulation congruence viarctorial reactive system. These
categories are the so-calla@ck category, where support information is built into the
objects, and theupport quotient category, where arrows are quotiented by the support
structure. The track category has enough RPOs and is mapped to the support quotient
category via a well-behavddnctor, so as to transport RPOs adequately.

In this section we present a translation from precategori€sdategories. The main
result shows that the LTS derived using precategories and functorial reactive systems is
identical to the LTS derived usingRPOs. We begin with a brief recapitulation of the
definitions from [12].

Definition 4.1. A precategory A consists of the same data as a category. The composi-
tion operatop is, however, a partial function which satisfies

1. for any arrowf : A— B, idgof andf oida are defined and gbf = f = f oida;
2. foranyf:A—B,g:B—C,h:C—D, (hog)o f is defined iffho (go f) is defined
and thenfhog)o f =ho(go f).

Definition 4.2. Let Sets be the category of finite sets. Well supported precategory
is a pair(A,|—|), whereA is a precategory ang— | : Arr A — Set; is the so-called
support function, satisfying:

1. go f is defined iffjg|N|f| = 0, and ifgo f is defined thengo f| = |g|U|f];
2. |ida|=0.

For anyf : A— B and any injective functiop in Set; the domain of which contains
|f| there exists an arrow- f : A — B called thesupport trandation of f by p. The
following axioms are to be satisfied.

1 p-ida=idp, 4.p-(gof)=p-gop-f;
2.idg -f = f; 5. (p1opo)- f =p1-(po- f);
3. po|f| = pa|f| impliespo- f =p1-f; 6. |p-f|=p|f].

We illustrate these definitions giving a precategorical definition of bunches and
wiring (viz. §3).

Example 4.3 (Bunches). The precategory of bunch conteX@sBun has objects and ar-
rows as irBung. However, differently fronBunog, they are not taken up to isomorphism
here. The support a= (X, char,root) is X. Compositiorcicp = (X, chatroot): mp —

mp of co: My — My andcy: My — My is defined ifXgN X; = 0 and, if so, we have

X = Xp U Xz. Functions char and root are defined in the obvious way. The identity
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arrows are the same as Bung. Given an injective functiop: X — Y, the support
translationp - cis (pX,charp~?, root(idm, +p~1)). Itis easy to verify that this satisfies
the axioms of precategories.

The definitions below recall the construction of the track and the support quotient
categories from a well-supported precategory.

Definition 4.4. Thetrack of A is a categoryﬁ with

— objects: pairgA,M) whereA € A andM € Set;;
— arrows:(A,M) L (B,N) wheref: A— Bisin A,M C N and|f| = N\M.

Composition of arrows is as . Observe that the definition ¢0f| ensures that com-
position is total. We leave it to the reader to check that this defines a category(cf. [12]).

Definition 4.5. Thesupport quotient of A is a categoryC with

— objects: as im;
— arrows: equivalence classes of arrowg\ofvheref andg are equated if there exist
a bijectivep such thap- f = g.

The support quotient is the category of interest, and it is the underlying category of
the reactive system under scrutiny.

Example 4.6 (Bunches). The support quotient o&-Bun is Bung.

There is an obvious functdi: C — C, the support-quotienting functor. Hencefor-
ward we suppose that the precategarias a distinguished objettIn the following
we use the typewriter font for objects and arrow&’of\le make the notational conven-
tion that anyA andf in C are such thaf (A) = AandF(f) = f.

Definition 4.7 (The LTS). The LTSFLTS®(C) has

— States: arrowa: 0 — nin C;
— Transitionsa—= dr if and only if there exist, 1,c,d in C with (F(1),r) € R,
F(d) € D, and such that
Z
N
X Y
AN . A

is an IPO.

It is proved in [12] that the support-quotienting functersatisfies the properties
required for the theory of functorial reactivessems|[1L, 12]. Thus, for instance, if the
categoryC has enough RPOs, then the bisimulatiorFtT S°(C) is a congruence.

All the theory presented so far can beegdntly assimilated into the theory of
GRPOs. In|[12], Leifer predicted instead mfecategories, one could consider a bicate-
gorical notion of RPO in a bicategory of supports. This is indeed the caseGRIHOSs
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being the bicategorical notion of RPO. However, working with ordinals for support sets
we can avoid the extra complications bicategories as in the caBeroflt is worth
noticing, however, that a bicategory of supports as above and{tetegory define
below would be biequivalent (cf. [20]).

In the following, we make use of a chosen isomorphignx — ord(x), where for
any finite setx, ord(x) denotes the finite ordinal of the same cardinality. There is an
equivalence of categori€s: Sety — Ord which sendx to ordx) and, on morphisms,
f:x—ytotyft,: ord(x) — ord(y).

Definition 4.8 (G-category of Supports). Given a well-supported precategaky the
G-category of support® has

— objects: as in\;

— arrows:f: A— Bwheref: A— Bis an arrow ofA and|f| is an ordinal;

— 2-cells:p: f = g, wherep is a “structure preserving” support bijection, that is
p-f=ginA.

Composition is defined as follows. Givén A— B andg: B — C,
gop f =i2-goais-f
wherelf| -1 [f| @ [¢] Jz |g| is the chosen coproduct diagramQmd.

The following theorem guarantees that the LTS generated is the same as the one
generated with the more involved theory of functorial reactive systems.

Theorem 4.9. FLTS?(A) = GTS(B).

Proof. It is enough to present translations betw&ROs inB and IPOs inC which
preserve the resulting label in the derived LTS. We present the translations, but omit the
straightforward proofs. Suppose tt{gtbelow

(Z,lal@]c])

/ \ y (p1i2<>-d |
(X,ialal) Y,ptigll]
'\ p S

1 (p~tip)-
(1,0)
(i)

is aGIPO in B. Then we claim thafii) is an IPO inC. Note that(ii) is commutative
sincep is a structure-preserving support bijection. Going the other way, suppogé that
below

(i)
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(Z,N) Z

is an IPO inC. Then(ii) is aGIPO inB wherep is

ty ot ! tj Ut
ta-a @ [tc-c| *— |aju|c|=[I|u]d| 1= [ti-1] @ |tg-d].

O

Example 4.10 (Bunches). The 2-category of supports of the precategdrBun is

Bun. Note that a “structure preserving” support bijection is a bunch homomorphism.
Indeed,p: (X,charroot) — (X’,chaf,root) if X' = pX, chaf = charp~! and root=
root(id ®p~1) which is the same as saying chachaf p and root= root (id &p).

5 Conclusion

We have extended our theory®RPOs initiated in previous work in order to strengthen
existing techniques for deriving operatidmangruences for reduction systems in the
presence of non trivial structural congruences. In particular, this paper has shown that
previous theories can be recast usiiigeactive systems amdRPOs at no substantial
additional complexity. Also, we proved that the theory is powerful enough to handle the
examples considered so far in the literature. Therefore, we believe that it constitutes a
natural starting point for future investigations towards a fully comprehensive theory.

It follows from Theoren{ 419 thaG-categories are at least as expressive as well-
supported precategories. A natural consatien is whether a reverse translation may
exist. We believe that this is not the case, as ger@iedtegories appear to carry more
information than precategories.
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A Basic Properties of GRPOs

The next two lemmas explain the relationships betw@BFPOs andsIPOs.

Lemma A.1 (GIPOsfrom GRPOs). If (Z,c,d,u,a,n,u) isa GRPO for (i) below, as
illustrated in (ii), then (iii) isa GIPO.

Z/
d d
/ \
X a’ Y
AN /b
W w W

(i) (i) (iii)
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LemmaA.2 (GRPOsfrom GIPOs). If square (iii) aboveisa GIPO, (i) hasa GRPO,
and (Z,c,d,u,a,n, ) isa candidate for it as shown in (ii), then (Z,c,d,u,a,n, ) isa
GRPO for (i).

The following lemmas froni [17] state the basic propertie6BPOs.

LemmaA.3. Suppose that diagrafii) below has a&sRPO.

—2 v —=w —2

i b | l

—>Y7>Z —>

(i) ()

1. If both squares ili) areGIPOs then the rectangle Gf is aGIPO
2. Ifthe left square and the rectangle(fareGIPOs then so is the right square.

N<—<

Lemma A.4. Suppose that diagraf) below is aGIPO.
Z\
TN ot TR
N4 XA NA

<i> (i) (i)
Then the regions obtained by pasting the 2-cel@ijrand(iii) areGIPOs.
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