
Deriving Consensus for Hierarchical  
Incomplete Ordered Partitions and Coverings 

 
 

Marcin Hernes 
(Faculty of Computer Science and Management 

Wroclaw University of Technology, Poland 
mhernes@interia.pl) 

 
 

Ngoc Thanh Nguyen 

(Institute of Information Science and Engineering 
Wroclaw University of Technology, Poland 

thanh@pwr.wroc.pl) 
 
 
 

Abstract: A method for determining consensus of hierarchical incomplete ordered 
partitions and coverings of sets is presented in this chapter. Incomplete ordered 
partitions and coverings are often used in expert information analysis. These structures 
should be useful when an expert has to classify elements of a set into given classes, 
but referring to several elements he does not know to which classes they should 
belong. The hierarchical ordered partition is a more general structure than incomplete 
ordered partition. In this chapter we present definitions of the notion of hierarchical 
incomplete ordered partitions and coverings of sets. The distance functions between 
hierarchical incomplete ordered partitions and coverings are defined. We present also 
algorithms of consensus determining for a finite set of hierarchical incomplete ordered 
partitions and coverings. 

Keywords: hierarchical incomplete ordered partition and covering, consensus methods 
Categories: E.1, H.2.1, I.2.4, I.2.11 

1 Introduction  

An ordered partition of a set X is a sequence of some non-empty subsets of X, which 
are disjoint with each other and whose sum is equal X. An ordered covering of a set X 
is a sequence of some subsets of X, whose sum is equal X. These two structures have 
been proved to be useful for experts to represent their opinions in a classification task 
[Danilowicz, 92]. Incomplete ordered partition is more general structure than ordered 
partition, where the sum of the subsets occurring in the sequence must not be equal set 
X. In work [Hernes, 04] we have presented in detail the notion of incomplete ordered 
partition of a set. It turned out that this tool might be very useful in case if an expert 
has uncertainty and incomplete knowledge in a classification task.  

In this paper we present some other generalized structures of incomplete ordered 
partitions and coverings of sets. They are hierarchical incomplete ordered partitions 
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and coverings of sets. These structures should allow an expert to realize a 
classification task in different levels. Owing to this his opinion can be more precise. 
Of course the structure enables reflecting the incompleteness and uncertainty of the 
expert.  

Consensus problem is most often formulated as follows: For given a set of 
elements representing solutions of experts of some problem one should determine an 
element which best represent these elements. The determined element is called a 
consensus of the set. Consensus determination task is dependent on the following 
elements: First, the structure of the given elements; second, the distance functions 
between these elements and third, the criterion for consensus determining. Many 
structures have been investigated in detail. For example, semillatices [Barthelemy, 
91], n-tree [Day, 87], linear relations [Arrow, 63], [Kemeny, 59], multi-value tuples 
[Nguyen, 02]. Different criteria for consensus choice tasks have been analyzed in 
work [Nguyen, 01].  

In this paper we deal with the consensus choice task for sets of hierarchical 
incomplete ordered partitions and coverings. For this aim we will define these 
structures and the distance function between them. Next we work out a method for 
determining a consensus for a set of hierarchical incomplete ordered partitions and a 
set of hierarchical incomplete ordered coverings. 

In Sec. 2 we mention some notions referring incomplete ordered partitions and 
coverings. In Section 3 we present the notions of hierarchical incomplete ordered 
partitions and coverings and the distance functions between them and the method for 
consensus determining. Some conclusions and directions for future works are included 
in Section 4. 

2 Incomplete Ordered Partitions and Coverings 

In this section we present the notions of incomplete ordered partitions and coverings 
of a set and the distance function between them. These notions regarding incomplete 
partitions have been presented and analyzed in work [Hernes, 04]. 

Definition 2.1.  
By a K-class incomplete ordered partition of finite set { }NxxX ,,1 K=  we call any 
sequence KPPP ,,1 K= where ∅=∩ ji PP  (for i ≠ j; i,j = 1, ..., K) and 

XPiKi ⊆= ,...,2,1U . 

Example 2.1. 
Let { }7654321 ,,,,,, xxxxxxxX = . The examples of incomplete ordered partitions 
of set X  are: 

{ } { }63521 ,,,, xxxxxP =     (2-class partition), 

{ } { } { }∅= ,,,, 6415 xxxxP   (3-class partition), 

{ } { } { }12437 ,,,, xxxxxP =  (3-class partition), 

{ } { } { } { } { }6547321 ,,,,,, xxxxxxxP = (5-class partition). 

318 Hernes M., Nguyen N.T.: Deriving Consensus ...



  

By NUK(X) we denote the set of all K-class incomplete ordered partitions of set X. 
A K-class incomplete ordered partition can be represented by a characteristic vector: 

Npppp ,...,, 21=  
where pi is the index of the class to which element xi belongs for i = 1,..., N . If 
element xi does not belong to any class then pi = 0. 

Example 2.2. 
Let { }7654321 ,,,,,, xxxxxxxX =  and { } { } { }12734 ,,,, xxxxxP = . Then vector 

2,0,0,1,2,2,3=p  is the characteristic vector of incomplete ordered partition P. 
Incomplete ordered partitions have the following properties: 

• The elements of set X can not repeat; 
• An incomplete ordered partition has not to include all of elements of set X: 
• The sequence of classes is important, the sequence of elements in classes is not 

important; 
• An incomplete ordered partition may consist of any number of classes. 

Definition 2.2. 
By a K-class incomplete ordered covering of finite set { }NxxX ,,1 K=  we call any 
sequence KCCC ,,1 K= where XCi ⊆   for i = 1,…,K. 

Definition 2.3. 
a) Let Kl PPPP ,,,,1 KK= ∈ NUK(X)  and xn ∉Pl. By operation 

{ } Knl
l
n PxPPPA ,,,,)( 1 KK ∪=  

we call an addition of element xn to class Pl. 
b) Let Kk PPPP ,,,,1 KK=  ∈ NUK(X) and xn ∈ Pk. By operation 

{ } Knk
k
n PxPPPE ,,\,,)( 1 KK=  

we call an elimination of element xn from class Pk. 

Notice that an addition operation )(PAl
n  transforms an incomplete partition to an 

incomplete partition. An elimination operation )(PE k
n  also transforms an incomplete 

partition into an incomplete partition. 

Example 2.3. 
Let   { }7654321 ,,,,,, xxxxxxxX = ,  

{ } { } { }∅= ,,,, 6415 xxxxP  and  

{ } { } { }26415 ,,,, xxxxxQ = .  
If we want to transform incomplete ordered partition P into incomplete ordered 
partition Q, we have to add element x2 to the third class of P, so Q = )(3

2 PA = 
{ } { } { } { }26415 ,,,, xxxxx ∪∅ . 
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Let   { }7654321 ,,,,,, xxxxxxxX = ,  
{ } { } { }26415 ,,,, xxxxxP =  and  

{ } { } { }∅= ,,,, 6415 xxxxQ .  
If we want to transform partition P into partition Q then we have to eliminate element 
x2 from the third class, so  

Q = )(3
2 PE = { } { } { } { }226415 \,,,, xxxxxx . 

Definition 2.4. 
Let Kl CCCC ,,,,1 KK=  ∈ VK(X) . En elimination of element xn from class Cl  we 

called operation )()(: XVXVl
nE kK → where 

{ } Knl
l
n CxCCCE ,,\,,)( 1 KK=  

 and an addition of element xm to class Cl we called operation l
mA , where 

{ } Kml
l
m CxCCCA ,,,,)( 1 KK ∪= . 

Elimination l
nE causes removal of element xn from class Cl  when lCnx ∈ . If 

ln Cx ∉ then CCEl
n =)( . On the other hand operation l

mA  causes addition of element 

xm to class Cl  if  lCxm ∉ and if  lm Cx ∈   then .)( CCAl
m =  

Definition 2.5. 
Distance ω(P,Q) between incomplete ordered partitions P and Q is equal the minimal 
number of additions and eliminations needed to transform the incomplete ordered 
partition P to the incomplete ordered partition Q.  

Example 2.4 
Let   { }7654321 ,,,,,, xxxxxxxX = ,  

{ } { } { }2415 ,,, xxxxP = , and  

{ } { } { }16423 ,,,, xxxxxQ = .  
If we want to transform the incomplete ordered partition P in the incomplete ordered 
partition Q, we have to perform the following operations: 

      { } { } { }2415 ,,, xxxxP =  ⎯→⎯
1
5E

 { } { } { }241 ,,, xxx∅  

⎯→⎯
1
3A { } { } { }2413 ,,, xxxx  ⎯⎯→⎯

2
1E

 { } { } { }243 ,, xxx  

⎯⎯→⎯
3
2E { } { } { }∅,, 43 xx  ⎯⎯→⎯

2
2A { } { } { }∅,,, 243 xxx  

⎯⎯→⎯
2
6A { } { } { }∅,,,, 6243 xxxx  ⎯→⎯

3
1A { } { } { }16243 ,,,, xxxxx  = Q 

Thus partition Q can be obtained by performing 7 operations and this is the minimal 
number of operations which is required for transforming partition P into partition Q. 
Then we have ),( QPω  = 7. 
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However, this method requires a lot of operations for calculating distances, below 
we present a more simple method using characteristic vectors. 

Theorem 2.1. 
Let P, Q ∈ NUK(X) and p, q be the characteristic vectors of incomplete ordered 
partitions P, Q, respectively. Then: 

[ ]∑
=

⊕=
N

i
ii qpQP

1

),(ω  

where N is the cardinality of set X and 

[ ]
[ ]
[ ] ).0()(2

)0()(1

0

≠⋅∧≠=⊕

=⋅∧≠=⊕

==⊕

iiiiii

iiiiii

iiii

qpqpiffqp

qpqpiffqp

qpiffqp

 

The proof of this theorem is given in [Hernes, 04]. 

Example 2.5  
Let   { }7654321 ,,,,,, xxxxxxxX = ,  

{ } { } { }2415 ,,, xxxxP = , and  

{ } { } { }16423 ,,,, xxxxxQ = .  
Characteristic vectors of them are: p = <2,3,0,2,1,0,0>  and  q = <3,2,1,2,0,2,0>. 
We calculate the distance between P and Q: 

211 =⊕ qp , 
222 =⊕ qp , 
133 =⊕ qp , 
044 =⊕ qp , 

155 =⊕ qp , 
166 =⊕ qp , 
077 =⊕ qp . 

Thus the distance ),( QPω  = 2+2+1+0+1+1+0  = 7. 
This method requires a smaller number of operations than the method from 

Definition 2.4.  

Definition 2.5. 
Distance μ(C,D) (C,D∈VK(X)) is equal the minimal number of additions and 
eliminations needed to transform  ordered covering C to ordered covering D.  

From this definition it follows the following theorem: 

Theorem 2.2. 

∑ ∑ −=
= =

K

i

N

j jiij dcDC
1 1 ,),(μ   

where cij and dij are elements of matrixes  representing coverings C and D, 
respectively. 
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3 Hierarchical Incomplete Ordered Partitions and Coverings 

Incomplete ordered partition should be used when expert knowledge is incomplete 
and referring to some object he does not know to which class it should belong. A more 
general form of incomplete ordered partition is hierarchical incomplete ordered 
partition. For example, set of all the animals can be classified to different types, next 
animals of a type can be classified to sub-types, and so on. Thus there arises a 
hierarchy. However, an expert may not know to which type an animal should belong, 
thus this whole classification is an incomplete hierarchical ordered partition of the set 
of animals. Besides, if the expert classifies an animal to different types then we have 
to deal with an incomplete hierarchical ordered covering of the set of all animals. 

3.1.  Definition of Hierarchical Incomplete Ordered Partition 

Definition 3.1. 
By a hierarchical  incomplete ordered partition of finite set { }NxxX ,,1 K= , whose 
dendrite is tree T we call the following function: 

XrWP 2}{: →∪  
which meets conditions: 

a) XrP =)( , 
b) )()( aPbP ⊂  if node b is a son of node a, 
c)  ∅=∩ )()( cPbP  if nodes b and c are sons of node a, 

d)  U La
XaP

∈
⊆)( , 

where:  
T – directed tree, r – root, W – set of nodes in T which  are not root,  L – set of leaves 
of tree T. 

By NUT(X) we denote the set of all hierarchical incomplete ordered partitions of 
set X whose dendrite is tree T. 

Example 3.1. 
Let X={ x1, x2, x3, x4,  x5, x6} and tree T is: 
 

r

a b

c d  

Figure 1: Dendrite T 
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An example of hierarchical incomplete ordered partition for which T is a dendrite is 
presented as follows: 
 
 

r

a b

c d

X

{ }x , x 1 2 { }x , x , x 3 4 6

{ }x 3 {  }x6  

Figure 2: Example of hierarchical incomplete ordered partitions for tree T 

Definition 3.2. 
Let P,P’∈ NUT(X), we say that  partition P’ arises from partition P in the result of 
moving an element x∈X from leaf a to leaf b, if x∈P(a) and x∈P’(b) and the position 
of the remaining elements in this partitions is the same.  

We can determine the weight of the moving operation: 
By Z we denote set of nodes of tree T which belong to the shortest way joining 

leaves a and b. By the weight of a node we understand value 1/l where l is the level of 
this node (the root has level equal 0). Then the weight of a moving operation of an 
element from node a to node b is equal the sum of weights of the nodes belonging to 
Z. 

Definition 3.3. 
By the distance γ(P,Q) between hierarchical incomplete ordered partitions 
P,Q∈NUT(X) we understand the minimal sum of the weights of moving operations 
needed to transform  partition P to partition Q. 

 Such defined distance function γ is a metric. 

3.2. Definition of Hierarchical Incomplete Ordered Coverings 

Definition 3.4. 
By a hierarchical ordered covering of finite set { }NxxX ,,1 K= , whose dendrite is 
tree T we call function: 

XrWC 2}{: →∪  
which satisfies conditions: 

a) XrC ⊆)( ,  
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b) )()( aPbC ⊆  if node b is a son of node a. 

By VT(X) we denote the set of all K-class hierarchical ordered coverings of set X 
whose dendrite is tree T. 

Example 3.2. 
Let X = { x1, x2, x3, x4,  x5, x6} and tree T be: 
 

r

a c

d e

b

 

Figure 3:  Directed tree T 

Two examples of hierarchical ordered coverings of set X and dendrite T are given in 
Figures 4a and 4b. Notice that in a hierarchical ordered covering for a node a which is 
not a leaf we have )()(

)(
aCbC

aSb
⊆

∈
U where S(a) is the set of sons of a. 

 

r

a b

d e

O { }x , x  1 3

{  }x2

{ }x , x , x , x ,x 1 2 3 4 5

c

{ }x , x , x 2 3 5

{ }x , x  2 3

r

a b

ed

O { }x , x  1 3

{  }x2

{ }x , x , x , x ,x 1 2 3 4 5

c

{ }x , x , x 2 3 5

{ }x , x  2 3

a) b)

 

Figure 4:  Examples of hierarchical ordered coverings for tree T 

Definition 3.5. 
Let  )(,, XVCCC T∈′′′ . We say that  covering C′  arises from partition C in the result 
of elimination of an element x∈X from node a, if }{\)()( xaCaC =′  and for every 
node c being not a descendant of node a there is )()( cCcC ′= , and for every node c 
being a descendant of node a there is }{\)()( xcCcC =′ . We say that  covering C ′′  
arises from partition C in the result of addition of an element x∈X to node b if 

}{)()( xbCbC ∪=′′  and for every node c being not an ancestor of node a there is 
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)()( cCcC ′′= and for every node c being an ancestor of node a there is 
}{)()( xcCcC ∪=′′ . 

Definition 3.6. 
By the distance ζ(C,D) between hierarchical ordered coverings C,D∈ VT(X) we call 
the minimal number of eliminations and additions needed to transform  covering C to 
covering D. 

 Such defined distance function ζ is also a metric. 

3.3. Criteria for Consensus Choice 

In this sub-section we present a brief overview of consensus choice problem. The wide 
description of this problem may be found in [Nguyen, 01]. We assume that the subject 
of interests is a finite universe U of objects. Let Π(U) denote the set of subsets of U. 
By k∏̂ (U) we denote the set of k-element subsets (with repetitions) of set U for k∈N, 

and let ∏̂ (U) =
0>k

U k∏̂ (U). Each element of set ∏̂ (U) is called a profile. The 

structure of this universe is a distance function  

d: U×U → ℜ+, 

which satisfies the following conditions: 

Nonnegative:   (∀x,y∈U)[δ(x,y) ≥ 0], 

Reflexive:         (∀x,y∈U)[δ(x,y) = 0 iff x=y], 

Symmetrical:    (∀x,y∈U)[δ(x,y) = δ(y,x)]. 

Let us notice that the above conditions are for half metrics. A space (U,d) defined 
in this way does not need to be a metric space. Therefore it is called a distance space. 

By a consensus choice function in space (U,d) we mean a function 
    c: ∏̂ (U) → Π(U). 

For A ∈ ∏̂ (U), the set c(A) is called the representation of the profile A, where an 
element of c(A) is called a consensus (or a representative) of the profile A.  

The most popular criteria for consensus choice are the following two conditions: 

C1(A) = {x ∈ U: ∑ ∈Ay yxd ),(  = 
Uz∈

min ∑ ∈Ay yzd ),( }, 

and 

C2(A) = {x ∈ U: ( )∑ ∈Ay yxd 2),(  = 
Uz∈

min ( )∑ ∈Ay yzd 2),( }. 

 These two functions have been proved to be very useful [Nguyen, 01]. However, 
for many structures of the objects of universe U the problem of determining values of 
function C2 is NP-hard. Therefore, most often function C1 is used. 
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3.4. Determining Consensus for Hierarchical Incomplete Ordered Partitions 

For determining a consensus of a set of hierarchical incomplete ordered partitions we 
will use function C1 defined above. 

Let A be a profile of hierarchical incomplete ordered partitions of a set X. We 
denote α(a,x) as the number of occurrences of element x in node a of tree T w in 
partitions belonging to A. We prove the following: 

Theorem 3.1. 
For the profile A an element x∈X appears in node a of tree T in a consensus c∈C1(A), 
that is x∈c(a) if the following inequality is true: 

2/),( Mxa ≥α  
where M jest cardinality of set X. 

Proof  
Let c∈C1(A). For each element x∈X  where  2/),( Mxa >α  if x∈c then its share in 
the sum of distanced from consensus c to the elements of profile A is equal M – α(a,x) 
< M/2. If x∉c then its share in the sum of distances from consensus c to the elements 
of profile A is equal α (a,x) > M/2. Thus for this case the sum of distances from 
consensus c to the elements of profile A should be minimal if x∈c. Similarly we can 
state that if α(a,x) < M/2 then there should be x∉c. In the case of α(a,x) = M/2 
independently of x∉c or x∈c its share is always equal M/2. So the sum of distances 
from consensus c to the elements of profile A  is minimal independently of x∉c or 
x∈c. 

Owing to Theorem 3.1 we have an effective algorithm for determining a consensus 
for a profile of hierarchical incomplete ordered partitions. 

3.5. Determining Consensus for Hierarchical Incomplete Ordered Coverings 

For determining a consensus of a set of hierarchical incomplete ordered coverings we 
will also use function C1 defined above. Let there be given a profile A of M 
hierarchical incomplete ordered partitions of set X: 
   A = {C(1), C(2),…, C(M)}. 
We prove the following theorem: 

Theorem 3.2. 
Let C∈C1(A), then for each element x∈X:  

- ,2/),()( MxaifaCx >α∈  
- ,2/),( )( )( MxaifacxoraCx =α∉∈  
- .2/),()( MxaifaCx <α∉  

Proof  

Let ),()(
1

)(∑
=

=
M

i

iCDDS ζ  for D ∈ VT(X). Then  

 ).,(min)(min),()(
1

)(

)()(
1

)( ∑∑
=

∈∈
=

===
M

i

i

XVDXVD

M

i

i CCDSCCCS
TT

ζζ  
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From the property of function ζ it follows that: 

),(/)],()(/)]()([)(
11

)( alaxgalaCaDcardCS
M

i W Xx
i

M

i W

i ∑∑∑∑∑
= ∈ ∈= ∈

=−=
αα

 

where 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −∈= )()()(,1

0),( aiCaDxwhen
otherwiseaxgi . 

Hence 

).(/)],([)(
1

alaxgDS
M

Xx W

M

i
i∑∑ ∑

∈ ∈ =

=
α

 

Notice that S(D) has minimal value when every component of sum ∑
=

M

i
i axg

1

),( takes 

minimal value. If )(aDx ∈ then there should be  

),(),(
1

xaMaxg
M

i
i γ−=∑

=

 . 

On the other hand if  )(aDx ∉ then  

),(),(
1

xaaxg
M

i
i γ=∑

=

. 

Let’s consider the following three cases: 

(1) 2/),( Mxa >γ . Then ∑
=

M

i
i axg

1

),( takes the minimal value if and only then if 

)(aDx ∈ . 

(2) 2/),( Mxa =γ . Then ∑
=

M

i
i axg

1

),( takes the minimal value independently of 

)(aDx ∈  or )(aDx ∉ . 

(3) 2/),( Mxa <γ . Then ∑
=

M

i
i axg

1

),( takes the minimal value if and only then if  

)(aDx ∉ . 
If node a is an ancestor of node b then we have ),(),( xbxa γγ ≥ and according on 

(1)-(3) we always can build a hierarchical covering C which is a consensus of 
coverings C(1), …, C(M). 

Theorem 3.2 allows in an effective algorithm to determine a consensus for a 
profile of hierarchical incomplete ordered coverings. 

4 Conclusions 

In this paper two structures for representing expert knowledge in classification tasks 
are presented. Both of them enable an expert to express the incompleteness and 
uncertainty of his knowledge. For these structures we have defined the distance 
functions and shown how to calculate their values. Next we have dealt with the 
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consensus choice for profiles consisting of hierarchical incomplete ordered partitions 
and coverings. We have proved that there is a possibility to construct effective 
algorithms for determining the consensus as the value of consensus function C1. The 
future work should concern working out algorithm for determining consensus for 
according to criterion of minimal sum of squared distances for these structures, i.e. 
function C2. 
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