
Deriving Constraints Among
Argument Sizes in Logi Programs�

Allen Van Gelder

University of California, Santa Cruz

Abstrat

In a logi program the feasible argument sizes of derivable fats involving
an n-ary prediate are viewed as a set of points in the positive orthant
of Rn. We investigate a method of deriving onstraints on the feasible
set in the form of a polyhedral onvex set in the positive orthant, whih
we all a polyone. Faes of this polyone represent inequalities proven
to hold among the argument sizes. These inequalities are often useful for
seleting an evaluation method that is guaranteed to terminate for a given
logi proedure. The methods may be appliable to other languages in whih
the sizes of data strutures an be determined syntatially.

For any atomi formula (atom, for short) in a rule, we show how to
express the vetor of its argument sizes as a system of linear equations and
inequalities involving sizes of the logial variables that our in it. This
system de�nes a polyone, whih represents the set of feasible argument size
vetors. Transformations ombine polyones for all atoms in one rule to give
the feasible polyone for the entire rule.

We introdue a generalized Tuker representation for systems of linear
equations. We prove that every polyone has a unique normal form in this
representation, and give an algorithm to produe it. This in turn gives a
deision proedure for the question of whether two set of linear equations
de�ne the same polyone.

When a prediate has several rules, the union of the individual rule's
polyones gives the set of feasible argument size vetors for the prediate.
Beause this set is not neessarily onvex, we instead operate with the
smallest enlosing polyone, whih is the losure of the onvex hull of the
union. Retaining onvexity is one of the key features of our tehnique.

Reursion is handled by �nding a polyone that is a �xpoint of a transfor-
mation that is derived from both the reursive and nonreursive rules. Some
methods for �nding a �xpoint are presented, but there are many unresolved
problems in this area.

�An extended abstrat of this paper appeared in Ninth ACM Symposium on Priniples

of Database Systems, Marh 1990.

1 Introdution and Basi Conepts

Top-down apture rules were introdued by Ullman [14℄ and studied by Sagiv
and Ullman [12℄, Ullman and Van Gelder [15℄, Afrati et al. [1℄, and elsewhere,
as a way to plan the evaluation of queries in a \knowledge base." Capture
rules require a proof of termination to justify use of top-down rule evaluation.
Top-down rule evaluation is similar to the evaluation method of Prolog,
exept that the system deides on the order for subgoals and rules. It is
often alled \bak-haining" in the arti�ial intelligene ommunity.

In a knowledge base environment, proving termination is not just an
aademi issue. There exist two approahes to rule evaluation: top-down
and bottom-up. Typially, one onverges naturally and the other does not
on a given set of interdependent rules. Even if the less appropriate method
an be made to onverge, it is likely to be very ineÆient. Rules that de�ne a
prediate by \reursion on struture" should usually be evaluated top-down,
while those that de�ne their prediate by \indutive losure" (e.g., tran-
sitive losure) usually require a bottom-up omponent in their evaluation.
Mixtures of these elementary types are bound to our in omplex systems.

A useful approah to proving termination of top-down evaluation meth-
ods is to �nd some onvex linear ombination of argument sizes that must
derease when a prediate is invoked reursively. To prove that a bottom-up
method onverges, �nd an upper bound on all argument sizes that annot
be exeeded when rules are applied in the \forward" diretion. However,
to prove that the desired funtion of the goal prediate's argument sizes
dereases (for top-down) or remains bounded (for bottom-up), it is frequently
neessary to know onstraints on the argument sizes of a subgoal prediate,
or more preisely onstraints on the relationship among the sizes of the
subgoal prediate's various arguments. This paper is onerned with deriving
suh onstraints.

Our model of a knowledge base, as in [14, 15, 7, 16℄, is a relational
database, together with a olletion of logial rules in the form of Horn
lauses

p(~x) q1(~z1); : : : ; qk(~zk)

The set of rules is referred to as a logi program. As will be seen, our
tehniques also apply to logi programs with strati�ed negation.

Here ~x � (x1; : : : ; xn) is a vetor of p's arguments; eah argument xi is
a term as normally de�ned in logi. Suh a rule is read \p(~x) is true if there
exist assignments to the logial variables appearing in ~z1; : : : ; ~zk but not in
~x suh that q1(~z1); : : : ; qk ~zk) are all true." We all this a rule for p, sine
prediate p appears on its left side, whih is alled the head of the rule. The
atomi formulas (atoms, for short) q1(~z1); : : : ; qk ~zk) on the right of the rule
are alled its subgoals. The olletion of all rules for p is alled the logi

proedure for p.
A \top-down" interpretation of the above rule is: To �nd a tuple that

satis�es p, �nd \joinable" tuples that satisfy q1; : : : ; qk. The \bottom-up"

interpretation is: Given tuples satisfying q1; : : : ; qk, infer a tuple satisfying
p. One or more of the qj may atually be p, making the rule immediately
reursive, and reursion may also our by p beoming a subgoal of itself
through a hain of several rules.

A frequently appliable way to ensure that a top-down approah termi-
nates in the presene of reursion is to show that the bound arguments grow
smaller in some sense as the reursion progresses. Top-down apture rules
are disussed extensively in Ullman [14℄, Sagiv and Ullman [12℄, Ullman and
Van Gelder [15℄.

This paper develops methods to �nd, through syntati examination of
a logi program, a set of linear inequalities for eah prediate p suh that if
p(x1; : : : ; xn) is derivable by the program, then the term sizes of (x1; : : : ; xn)
(viewed as a vetor) must satisfy all of these inequalities. Di�erent prediates
have di�erent sets of inequalities that their arguments must satisfy. We
extend the methods developed in [15℄ in two important ways. First, our
approah is amenable to modularization, as eah strongly onneted ompo-
nent of prediates (Setion 1.6) is analyzed separately. Seond, our methods
an handle onstraints among three and more variables (see disussion in
Example 5.1).

1.1 Related Work

We visualize appliation of the present work in the automated onstrution
of termination proofs based on analysis of argument sizes. The problem of
proof onstrution has been studied in its own right by Naish [8℄, Ullman
and Van Gelder [15℄, Walther [17℄, Afrati et al. [1℄, Pl�umer [10℄, and Brodsky
and Sagiv [2℄.

A entral problem in our tehnique is that of deiding polyone equiva-
lene. While this problem does not appear to have been studied in this pre-
ise form, the losely related problem of eliminating redundant onstraints
in linear programs has been studied extensively; Karwan et al. [5℄ survey the
�eld. Impliit equalities are inequality onstraints that an in fat only be
satis�ed by equality. Suh onstraints also represent a form of redundany.
Identi�ation of impliit inequalities has been studied by Telgen [13℄, Freund
et al. [4℄, and very reently by Lassez and MAloon [6℄. A less losely
related problem that also bridges logi and linear programming is that of
linear quanti�er elimination, whih is treated by Eaves and Rothblum [3℄.

1.2 Outline of the Paper

In the remainder of Setion 1 we show how to assoiate a set of linear
inequalities with eah rule in a program, and desribe how the program's
dependeny graph determines whih ones must be treated as a group. Eah
rule de�nes a polyone (De�nition 1.1).

Setion 2 desribes several useful operations on polyones, in partiular

the losure of the onvex hull of union CHU. This key operation allows us
to ombine feasible regions of several rules, getting a polyone that enloses
their union. The motivation for using onvex hulls in the this work is that
onvex sets an be desribed onjuntively, that is, as a set of onditions
that must all hold. Eah rule for a given prediate in a logi program an be
satis�ed only by arguments whose sizes lie in a ertain onvex set (in fat, a
polyone). However, the possible sizes of arguments for whih one of several

rules is satis�ed form a union of onvex sets, whih is not neessarily onvex.
The information that a point is in suh a union needs to be represented
and reasoned with disjuntively. The extra omplexity is unmanageable
in pratie. However, the information that a point is in the losure of the
onvex hull of the union an still be represented onjuntively, and intuitively
seems to be the most spei� onjuntive statement that implies that the
point is in the union. It is our belief that in pratie the onstraints given
by CHUs are sharp enough to be useful in evaluating onvergene of top-
down apture rules. A rih theory has been developed for onvex sets, and
has been olleted by Rokafellar [11℄. Rigor supporting our rather informal
exposition of polyones may be found there.

Setion 3 de�nes two transformations on polyones, alled 	 and T ,
that are assoiated with sets of interdependent reursive rules. Setion 4
desribes how a polyone that bounds the feasible region of argument sizes
an be de�ned as a �xpoint of the transformation T .

Remaining setions explore the problems of �nding a suh a �xpoint.
Setion 5 desribes a method to verify a onjetured �xpoint that may
be fast, but is not ertain to work. Setion 6 introdues a normal form

for polyones that makes the question of polyone equivalene deidable.
Setion 7 o�ers an heuristi for guessing a �xpoint. Setion 8 disusses
future diretions.

1.3 Logial Terms

The arguments of prediates are terms, as normally de�ned in logi: A
term is logial variable, a onstant, or an uninterpreted funtion symbol
with terms as its arguments. Suh terms are usually best interpreted as
data strutures in the ontext of logi programming. A ground term is one
without variables.

In examples, we shall use the in�x operator \ � " (read as \ons") as
a binary funtion symbol to onstrut lists, a lass of terms that our
frequently in pratie; we shall use \ " (read as \nil") as the onstant that
represents the empty list. Thus a � R represents the list whose head (�rst
element, ar) is a and whose tail (remaining elements, dr) is R. Sine both
a and R may have struture, \ � " is e�etively a onstrutor for nodes of a
binary tree, but in logi programming it is normally used to build lists, as
other funtion symbols are available for di�erent strutures. Unlike several
popular versions of Prolog syntax, we do not enlose lists in square brakets.

1.4 Term and Argument Sizes

Several measures of term size are possible. We shall work with one that
we all strutural term size, whih for ground terms (those ontaining no
variables) is de�ned informally to be the number of edges in the tree that
represents the term. More preisely, regarding onstants as funtions of zero
arity, the strutural term size of a ground term is the sum of the arities of
its funtion symbols.

For terms ontaining logial variables, we assoiate a real variable with
eah logial variable, and de�ne the strutural term size to be the obvious
linear polynomial in these real variables: the onstant for this polynomial is
the sum of the arities of the funtion symbols in the term, and the oeÆient
of eah real variable is the number of ourrenes in the term of its assoiated
logial variable. For example, the size of f(u; v; a), where f is a funtion
symbol, a is a onstant, and u and v are logial variables, is the polynomial,
3 + u + v. The u and v in the polynomial are nonnegative real variables
representing the sizes of the logial variables u and v in the term. Although
this overworks the variable names, whih role they play is lear from ontext.

Similarly, when disussing the atomi formula p(~x), xi denotes the logial
term that is the i-th argument of p, but when xi appears in a mathematial
ontext it is a real variable that represents the size of the i-th argument of p
in the above formula. For eah argument term xi, let Qi be the polynomial
that is its strutural term size. Then we have the obvious linear equation

xi = Qi

involving the real variable xi and real variables orresponding to logial
variables in the term. We all these argument size equations. For example,
if the left side of a rule is p(f(v1; g(v2); v2); v1), sine f and g have arities 3
and 1, respetively, and logial variable v2 ours twie in the �rst argument
of p, we obtain the two argument size equations:

x1 = 4 + v1 + 2v2

x2 = 0 + v1

Note that these equations will always have nonnegative oeÆients and
onstants when written in this form. Sine two logial variables an appear
in one term only if there is at least a binary funtion symbol to onnet them,
we an see that argument size equations satisfy these further onstraints:

1. If the additive onstant is 0, there is at most one positive oeÆient of
a variable, whih must be 1. (I.e., the equation is simply xi = vj .)

2. If there is more than one positive oeÆient of a variable, then the
additive onstant is at least as large as the sum of the oeÆients of
the variables.

1.5 Inequalities and Slak Variables

As in linear programming, we shall be onerned almost exlusively with
variables that are restrited to be nonnegative. Inequalities an be repre-
sented as equations by adding a \slak variable" to the appropriate side,
using the onvention of nonnegativity. Conversely, an equation an be
onverted to an inequality by \projeting out" a nonnegative variable. In
general, the set of points satisfying an equation or set of equations will be
restrited to have all nonnegative omponents, i.e., the set will lie in the
positive orthant of the appropriate vetor spae.

1.6 Prediate Struture of Logi Programs

For simpliity, let us assume that eah head of a rule in our logi program an
unify with every ourrene of the same prediate in subgoals of rules. (This
involves no real loss of generality, as a program an be e�etively transformed
to have this property.) Now we onstrut a digraph with prediates as nodes
and ars p! q for every node pair suh that q is a subgoal of some rule for
p. Intuitively, q supports the derivation, or solution, of p. We identify the
strongly onneted omponents (SCCs) of this digraph, and the partial order
indued upon them. (We assume that prediates orresponding to database
relations never appear on the left side of a rule, and hene are lowest in this
partial order.) We shall analyze the SCCs aording to their partial order,
from lowest to highest. Thus, at the time we are deriving onstraints on the
argument sizes of a ertain SCC, we should already have onstraints derived
for all prediates that are outside this SCC, but appear as subgoals in the
rules being analyzed. Spei�ally, if p is in the SCC being analyzed, and q
appears as a subgoal of a rule for p, then either q is in the same SCC, or is in
one already analyzed. If the latter, then onstraints on the arguments of q
have already been derived, and are available for use in the urrent analysis.

Reursion in rules an our in more and less omplex forms. A reursive

subgoal is one whose prediate is in the same SCC as the head of the rule.
If eah rule in an SCC has at most one reursive subgoal, then the reursion
in this SCC is said to be linear. If reursion is linear and in addition there
is just one prediate in the SCC, we say the reursion is simple.

For the main presentation, we shall assume that the SCC ontains only
simple reursion, so a typial reursive rule is of the form:

p(x1; : : : ; xn) p(y1; : : : ; yn); r(z1; : : : ; zm)

where q (if present) is in a lower SCC than p. Linear reursion does involve
a loss of generality,1 but provides a learer environment for the exposition of
the main ideas, and overs many ommon ases. In Appendix A we outline
the hanges needed to aomodate general reursion.

1For example, divide-and-onquer proedures typially have two reursive subgoals in

one rule.

1.7 Notation and De�nitions

We shall use a number of onventions in disussing linear systems of equa-
tions. Lower-ase letters are vetors; upper-ase are matries. The vetor
of argument sizes of the head of a rule is denoted by x; for the reursive
ourrene of the same prediate on the right, we use y; for non-reursive
prediates we use z; for logial variables we use v. Greek letters denote other
vetor variables.

The variables appearing on the left side of an equation are onsidered to
be the dependent variables; those on the right are the independent variables.
All independent variables are impliitly restrited to be nonnegative. The
relation � applied to vetors and matries is de�ned to hold if and only if it
holds for eah omponent, and thus de�nes a partial order.

Linear systems of equations will be represented in a speial matrix nota-
tion that we now illustrate. A set of equations in the form x = a+Av, where
a is a vetor onstant, and A is a matrix, is alled a Tuker representation

[11℄. These equations are shown as:

h ���
(x) (v)

I a A
i

or if x and v are understood: h ���I a A
i

The usefulness of this notation is apparent when we look at an example
in whih larger matries (or vetors) are omposed from smaller ones. To
represent both x = a+Av and z = b+Bv as a set of x-points generated by
z's and v's, we write:

"
�����

(x) (v) (z)

I a A 0
0 b B �I

#
(1:1)

or, sine x is understood and the name of v is not important:

"
�����

(z)

I a A 0
0 b B �I

#
(1:2)

In general, the vertial double line marks the loation of the equal signs.
Columns to the left of it represent the dependent variables (usually x).
The one olumn between the double line and single line is the onstants
olumn. Finally, olumns to the right of the single line represent independent
variables; we shall use the term right-hand olumns to refer to them. In this
paper we shall rarely need to talk about olumns to the left of the double
line, so we shall denote the onstants olumn as olumn 0 and the right-
hand olumns as olumns 1, 2, et. When speaking of right-hand olumns,

we shall mean \olumn" in a generalized sense: this \olumn" will often
ontain a submatrix. (However, olumn 0, the onstants olumn will always
be a single olumn.) Thus numbering should be interpreted relative to the
diagram in question. Similarly we shall refer to generalized \rows," starting
with 1. In Eq. 1.2, for example, we say that A is in row 1, olumn 1, and
that b is in row 2, olumn 0.

Frequently, we shall use these matries to represent sets of points in the
following sense (where In is the n � n identity, and A1 and A2 have m
olumns): "

�����In a1 A1

0 a2 A2

#
(1:3)

represents the set of points x 2 Rn suh that there exists � (2 Rm) � 0 that
satis�es 0 = a2 + A2� (the lower rows) and for whih x = a1 + A1� (the
upper rows). We say that eah � satisfying the lower rows generates the x
that results from substituting that � into the upper rows. Geometrially, we
are projeting a set in Rn+m with oordinates (x; �) into Rn, retaining the
x oordinates.

De�nition 1.1: A polyhedral onvex set in Rn is the (possibly unbounded)
set of points onstituting the intersetion of a given �nite set of losed half-
planes [11℄.

A polyone in Rn is a polyhedral onvex set that lies entirely within the
positive orthant. Equivalently, it is the set of points that satisfy a given set
of linear \�" inequalities, among them xi � 0 for 1 � i � n.

A matrix in the form of Eq. 1.3, and the set of equations it represents,
are alled a generalized Tuker representation of a polyhedral onvex set in
Rn.

It is easy to show, by introduing slak variables and using Gaussian
elimination, that any polyone an be expressed in the form of Eq. 1.3. (If
Ax � a inludes the onstraints x � 0, then A has full rank.) Similarly,
the solution set of Eq. 1.3, projeted on the dependent variables, must be
a polyone. The understanding that independent variables are restrited to
nonnegative values is entral to this representation of polyones, and will not
be mentioned further. We observe that a generalized Tuker representation
redues to a Tuker representation when A2 has no rows in Eq. 1.3.

The empty set ; is tehnially a polyone. We generally ignore this ase
in our presentation.

Example 1.1: When invoking the following logi proedure, the �rst ar-
gument should be a list to be reversed, the seond argument should be .
The proedure instantiates the third argument to the reversed list. (The
seond argument funtions as a plae-holder for the partially reversed list;
read \D" as \Done.") The Prolog onvention of using apital letters for

logial variables has been employed.

rev(; R; R):

rev(E � L; D; R) rev(L; E � D; R):

The matries for these two rules are shown below.

2
64

�������

(x) (R)

1 0 0 0 0
0 1 0 0 1
0 0 1 0 1

3
75

2
66666664

�������������

(x) (y) (E) (L) (D) (R)

1 0 0 0 0 0 2 1 1 0 0
0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 2 1 0 1 0
0 0 0 0 0 1 0 0 0 0 1

3
77777775

(1:4)

The left matrix applies to the �rst, nonreursive, rule and should be fairly
self-explanatory. The right matrix applies to the seond rule. The oeÆ-
ients for sizes of E, L, D, R are in olumns 1 through 4, respetively. (Reall
the olumn numbering onvention.) The 2's that appear in the onstants
olumn arise from \ � " being a binary funtion symbol. Finally, y (a 3-
vetor) represents argument sizes in the reursive ourrene of rev on the
right side of the rule.

We an interpret the left matrix in Eq. 1.4 as the onstraints x1 = 0 and
x2 = x3 � 0. The right matrix an be redued to the form

x = y +

2
4 1
�1
0

3
5 �+

2
4 2
�2
0

3
5

whih an be thought of as a transformation of point y into a ray. The
point represents the (vetor of) argument sizes of the subgoal, and the ray
represents the possible argument sizes that result on the left, when the seond
rule above is used.

When we regard a matrix as representing a polyone, the independent
variables are essentially anonymous. In partiular, a olumn that ontains
oeÆients of an independent variable (i.e., a right olumn) an be resaled
by a positive quantity without hanging what polyone is represented. Fur-
thermore, a lower row (i.e., involving only independent variables) an be
resaled by any nonzero quantity and/or added to any other row (upper or
lower) leaving the polyone invariant. (Suh an operation with an upper row
would also be valid, but is avoided, as it is preferable for our purposes to
keep the identity matrix on the left.)

2 Operations on Polyones

We now examine several operations on polyones that prove useful in om-
bining several polyones, eah representing onstraints on argument sizes of
a single rule, into a polyone that represents onstraints on a prediate that
hold throughout the logi program.

2.1 Closure of Convex Hull of Union

The �rst operation onstruts the losure of the onvex hull of the union of
two polyones. Reall that a onvex ombination of a �nite set of points
x1; : : : ; xk is a point (�1x1+ � � �+�kxk), where �i � 0 and �1+ � � �+�k = 1.
A nontrivial onvex ombination is one in whih at least two � omponents
are nonzero.

De�nition 2.1: The losure of the onvex hull of the union (CHU) of two
sets of points S1; S2 � Rn is de�ned as the losure of the set of points that
are onvex ombinations of two points in the union of the sets; it is denoted
by S1 [S2. The symbol [is intended to suggest the ombination of \union"
and \�lling in."

That is, if S1 and S2 are onvex (the only ase we are onerned with)
and x1 2 S1, x2 2 S2, �1+�2 = 1, and �1 and �2 are both nonnegative, then
�1x1 + �2x2 is in the onvex hull of S1 [S2. But moreover, the boundary
points of the set so formed are also inluded in the losure of the onvex hull.
Beause we allow unbounded polyones, it is neessary to take the losure to
guarantee that the CHU of two (or any �nite number of) polyones is itself
a polyone.

Example 2.1: Consider
h
0
1

i
[
h
�
0

i
, i.e., the CHU of a point o� the x1-axis

and a ray along the x1-axis. The onvex hull of the union is fx1 � 0 ^ 0 �
x2 < 1g [f(0; 1)g, whih exludes the boundary points fx1 > 0 ^ x2 = 1g,
and is not a polyone. Taking the losure inludes these boundary points,
and yields the CHU, whih is desribed by fx1 � 0 ^ 0 � x2 � 1g, and
learly is a polyone.

The form of Eq. 1.3 is very onvenient for forming the CHU of two
polyones, as shown by the following basi theorem:

Theorem 2.1: Let two polyones S1 and S2 be spei�ed by

"
�����
(�)

I b1 B1

0 b2 B2

#
and

"
�����
(�)

I 1 C1

0 2 C2

#
(2:1)

respetively. Then S1 [S2, the losure of the onvex hull of their union, is
the polyone S3 given by:

2
6664

���������

(�1) (�1) (�2) (�2)

I 0 b1 B1 1 C1

0 0 b2 B2 0 0
0 0 0 0 2 C2

0 �1 1 0 1 0

3
7775 (2:2)

where �1 and �2 are salar variables. (The variable names over the olumns
are given to help in the proof, but are otherwise immaterial.)

Proof: Let x3 be any onvex ombination of points x1 2 S1 and x2 2 S2;
that is, x3 = �x1+(1��)x2, where 0 � � � 1. There exist � and � satisfying

x1 = b1 +B1�

0 = b2 +B2�

x2 = 1 + C1�

0 = 2 + C2�

Thus x3 orresponds to a point in S3 for whih �1 = �, �2 = (1��),
�1 = ��1, and �2 = �2�. This shows that S3 ontains all the interior
points in the onvex hull of S1 [S2, and sine S3 is a losed set, it ontains
the boundary points as well. To see that the losure of the onvex hull of
S1[S2 ontains S3, let x3 2 S3 be generated by �1, �2 = (1��1), �1, and �2

that satisfy rows 2 and 3 of Eq. 2.2. If 0 < �1 < 1, de�ne � = �1, let x1 2 S1

be generated by � = �1=�1, and let x2 2 S2 be generated by � = �2=�2.
(Clearly � and � satisfy row 2 of their respetive matries in Eq. 2.1.) But
x3 = �x1 + (1��)x2, so x3 is in the onvex hull. If �1 = 0, onsider a

sequene of points x
(1)
3 ; x

(2)
3 ; : : : ; x

(k)
3 ; : : : generated by the same �1 and �2,

but a dereasing sequene �
(k)
1 = 1=k. By the preeding argument, eah x

(k)
3

is in the onvex hull and the sequene onverges to x3, so x3 is in its losure.

Similarly, if �1 = 1, onsider an inreasing sequene of �
(k)
1 = 1� 1

k
.

Example 2.2: Let S1 and S2 orrespond to Example 2.1:

"
�����1 0 0

0 1 1

#
and

"
�����
(�)

1 0 0 1
0 1 0 0

#

Then S1 [S2 is given by:

2
64

�������

(�1) (�2) (�2)

1 0 0 0 0 1
0 1 0 1 0 0
0 0 �1 1 1 0

3
75

The third line spei�es �1 + �2 = 1. Together with the requirement that
all variables be nonnegative, this implies 0 � �1 � 1. But the seond line
spei�es that x2 = �1, so we see that these equations speify the same
polyone as the CHU found in Example 2.1.

2.2 Removing Redundant Rows and Columns

We should point out that the representation of the CHU given by Eq. 2.2
may be highly redundant. This is the prie we pay for being able to form
it quikly. Operations to be introdued later also tend to introdue redun-
dany. Here we onsider a number of situations in whih lower rows and/or

right-hand olumns of the matrix speifying a polyone an be determined
to be redundant. A row and/or olumn is onsidered to be redundant if
removing it from the matrix leaves a matrix that spei�es the same polyone.
Two matries are said to be equivalent (�) in this ontext if they speify
the same polyone.

Removal of redundany in linear inequalities has been studied extensively
in the ontext of linear programming [13, 5, 4℄, and more reently by Lassez
and MAloon in the ontext of \onstraint logi programming" [6℄ (q.v. for
further bibliography). However, we onsider only operations that preserve
the generalized Tuker form of the equations. Our operations bear no obvious
orrespondene to the redundany lasses desribed by Lassez and MAloon,
partly beause of the di�erenes in representation (they use a \solved form"
onsisting of equalities and inequalities). However, the possible relationship
merits further study.

Intuitively, a lower row (i.e., one that does not involve the dependent
variables) is redundant if it does not restrit the possible values of other
independent variables. This situation is most easily identi�ed when the
matrix has the form shown below on the left, where C is a row vetor, is
a salar, and both are nonnegative.

2
64

�������

(�)

I b 0 B
0 �1 C
0 d 0 D

3
75 �

"
�����I b B

0 d D

#
if � 0; C � 0: (2:3)

Clearly, any solution to the matrix on the right an be augmented by a
nonnegative value of � to give an equivalent solution to the matrix on the
left (i.e., the value of � an be deided last); also any solution to the left
matrix is a solution to the right one. Thus the two matries de�ne the same
set of points and the left one an be redued to the right one.

This simpli�ation is important beause it seems to our frequently in
pratie and is very eÆient to reognize. All that is needed is to identify
a lower row in whih one variable's olumn has opposite sign from all other
nonzero entires in that row. Then pivoting (desribed below) sets up Eq. 2.3.

Another situation that allows deletion of one row and two olumns ours
when the matrix has the form shown below on the left, where C is any row
vetor and d1 and d2 are nonnegative salars.

2
64

�������

(�) (�)

I b 0 0 B
0 d1 �d2 C
0 e 0 0 E

3
75 �

"
�����I b B

0 e E

#
if d1 � 0; d2 � 0: (2:4)

Clearly, any solution to the matrix on the right an be augmented by non-
negative values of � and � to give an equivalent solution to the matrix on
the left; also any solution to the left matrix is a solution to the right one.

Thus the two matries de�ne the same set of points and the left one an be
redued to the right one.

Pivoting operations are usually needed to set up suh situations. The
operation of \pivoting on (i; j)" onsists of adding the appropriate multiple
of row i to eah other row to ause its entry in olumn j to beome 0. An
e�etive method of hoosing pivot elements to expose redundanies is a topi
for further investigation.

Another form of redundany similar to the previous one, but something
of a speial ase is shown below. Here some positive ombination of inde-
pendent variables equals zero, so they all must be zero. Hene their olumns
an be deleted.2
64

�������

I a b B

0 0 C
0 d e E

3
75 �

2
64

�������

I a B

0 0 C
0 d E

3
75 if > 0, C � 0 (2:5)

The diagram shows only one olumn being deleted, but the proess ontinues
until C has no positive elements left. Then row 2 is all zeros and is deleted.
The san for this situation an be inorporated into the san for the situation
of Eq. 2.3, and of ourse, if a negative ombination is found, the row an be
multiplied by �1 to set up Eq. 2.5.

If some right-hand olumn is a positive linear ombination of other
right olumns, it may be deleted. For example, in the matrix below left,
suppose that the (single) olumn for � is expressible as a nonnegative linear
ombination �T of the olumns for �. (Supersript \T" denotes \transpose,"
and onverts a olumn vetor to a row vetor.) If � = �1, � = �1 generates
some point x1, then that same point an be generated by � = 0 and
� = �1 + ��1.

"
�����
(�) (�)

I a b B
0 d e E

#
�

"
�����I a B

0 d E

#
if
h
b
e

i
= �T

h
B
E

i
for some � � 0 (2:6)

It follows that the olumn for � an be deleted without removing any points
from the set de�ned by the matrix. Unlike previous ases, there is no row
deletion assoiated with this simpli�ation.

An important speial ase of Eq. 2.6 is when one olumn is a positive
multiple of another. (Negative multiples are treated below.) This ours
often in pratie and is fairly eÆient to reognize.

It turns out that if a right-hand olumn is a negative linear ombination
of other right-hand olumns and has a non-zero entry in a lower row, then it
an be deleted eventually, but some preliminary row operations are neessary.
The row operations pivot on this lower nonzero element, making it the only
nonzero element of the olumn to be deleted. Columns remain the same
linear ombinations of eah other after row operations. This situation after
pivoting is shown on the left below, where the olumn ontaining the salar

d is assumed to be some negative linear ombination (��T) of the other
right-hand olumns.2

664

��������
I b 0 B

0 d C

0 e 0 E

3
775 �

2
664

��������
I b 0 0 B

0 d �d C

0 e 0 0 E

3
775 �

2
4

������

I b B

0 e E

3
5

if

2
4 0
�d
0

3
5 = �T

2
4BC
E

3
5 for some � � 0

(2:7)

The result is obtained by �rst applying Eq. 2.6 from right to left, then
applying Eq. 2.4.

The tehnique of ombining pivoting operations with the deletion (or
sometimes the introdution) of redundant rows is a useful tool for proving
properties of polyones. This tehnique is used in the next orollary to derive
a formula for the CHU of three polyones. The extension to a k-ary CHU is
obvious.

Corollary 2.2: Let three polyones S1, S2 and S3 be spei�ed by"
�����I b1 B1

0 b2 B2

#
and

"
�����I 1 C1

0 2 C2

#
and

"
�����I d1 D1

0 d2 D2

#
(2:8)

respetively. Then the losure of the onvex hull of their union, is the set S4
given by: 2

666664

�����������

I 0 b1 B1 1 C1 d1 D1

0 0 b2 B2 0 0 0 0
0 0 0 0 2 C2 0 0
0 0 0 0 0 0 d2 D2

0 �1 1 0 1 0 1 0

3
777775 (2:9)

Consequently, binary CHU is assoiative and ommutative, and the notation
S1 [S2 [S3 is unambiguous.

Proof: By Theorem 2.1, the matrix for (S1 [S2) [S3 is:2
666666664

��������������

I 0 0 b1 B1 1 C1 d1 D1

0 0 0 b2 B2 0 0 0 0
0 0 0 0 0 2 C2 0 0
0 0 �1 1 0 1 0 0 0
0 0 0 0 0 0 0 d2 D2

0 �1 1 0 0 0 0 1 0

3
777777775

Add row 4 to row 6, giving:2
666666664

��������������

I 0 0 b1 B1 1 C1 d1 D1

0 0 0 b2 B2 0 0 0 0
0 0 0 0 0 2 C2 0 0
0 0 �1 1 0 1 0 0 0
0 0 0 0 0 0 0 d2 D2

0 �1 0 1 0 1 0 1 0

3
777777775

Now, as argued in onnetion with Eq. 2.3, row 4 (a genuine single row) is
redundant beause it an always be satis�ed after all other rows are satis�ed,
and hene does not restrit the set of points in the de�ned polyone. Delete
row 4 and olumn 1 (again, reall the numbering sheme), giving Eq. 2.9.

3 Transformations that Correspond to Logi

Proedures

Now we desribe how a polyone in Rn�Rn represents a transformation on
polyones in Rn. Let x 2 Rn, y 2 Rn, and let a set of equations or equivalent
matrix be given:

x = 1 + C1�

y = 2 + C2�

0 = 3 + C3�

2
64

�������

I 0 1 C1

0 I 2 C2

0 0 3 C3

3
75 (3:1)

whih spei�es a polyone in Rn�Rn. Let A be any polyone in Rn, spei�ed
by:

y = a1 +A1�

0 = a3 +A3�

"
�����I a1 A1

0 a3 A3

#
(3:2)

De�nition 3.2: The natural transformation 	 assoiated with Eq. 3.1 is
the mapping that takes any polyone A, given by Eq. 3.2, into the polyone
	(A) (also in Rn) spei�ed by:

x = 1 + C1�

0 = 2 � a1 + C2��A1�

0 = 3 + C3�

0 = a3 +A3�

2
6664

���������

I 1 C1 0

0 (2�a1) C2 �A1

0 3 C3 0
0 a3 0 A3

3
7775 (3:3)

In terms of matries,

2
664

��������
I 0 1 C1

0 I 2 C2

0 0 3 C3

3
775 ating on

2
4

������

I a1 A1

0 a3 A3

3
5

produes

2
666664

�����������

I 1 C1 0

0 (2�a1) C2 �A1

0 3 C3 0

0 a3 0 A3

3
777775

De�nition 3.3: Imported onstraints onsist of onstraints on argument
sizes of subgoals from other (lower) SCCs that were derived when those
SCCs were analyzed (Set. 1.6).

Now suppose the logi proedure for p onsists of several nonreursive
rules and several simple reursive rules. (Reall that simple reursion means
p reurs only on itself.) Eah nonreursive rule has a set of equations,
omprising its argument size equations (Set. 1.4) and imported onstraints.
The set of all these equations for one rule an be expressed in the form of
Eq. 3.2, whih in turn de�nes a polyone. Let B be the CHU of all suh
polyones. Clearly, B ontains the set of feasible argument sizes of p arising
immediately from the nonreursive rules. The equations speifying B are of
the same general form, whih we represent by:

x = b1 +B1�

0 = b3 +B3�

"
�����I b1 B1

0 b3 B3

#
(3:4)

Similarly there are argument size equations and imported onstraints for
eah simple reursive rule, whih may be written in the form of Eq. 3.1, and
interpreted to represent a polyone in R2n. Again, the CHU of the polyones
for all the reursive rules is of the same form. Therefore, let us say that the
CHU is in fat given by Eq. 3.1.

Example 3.1: The following proedure is intended to merge its �rst two
arguments, whih should be sorted lists, and instantiate the third argument
to the result. In order to assure balaned treatment of the two \input" lists,
they are interhanged upon reursion. The Prolog style of using Xs to name
a list of X, et., has been adopted.

merge(; Ys; Ys):

merge(Xs ; ; Xs):

merge(X � Xs; Y � Ys ; X � Zs) X � Y; merge(Y � Ys; Xs; Zs):

merge(X � Xs; Y � Ys ; Y � Zs) Y � X; merge(Ys; X � Xs; Zs):

The matries for the two nonreursive rules are shown below.2
64

�������

0 0

I3 0 1
0 1

3
75

2
64

�������

0 1

I3 0 0
0 1

3
75 (3:5)

Consequently the polyone B for merge is their CHU:

B �

2
6664

���������

0 0 0 0 1

I3 0 0 1 0 0
0 0 1 0 1

0 �1 1 0 1 0

3
7775 �

2
64

�������

0 0 1

I3 0 1 0
0 1 1

3
75 (3:6)

The argument size equations for the two reursive rules lead to the
matries shown below. The assumed built-in prediate \�" happens to

provide no imported onstraints, so there are no rows for C3 of the individual
rules. The right-hand olumns have labels over them to assist in seeing how
the matries are derived.

2
66666666664

����������������

(x) (y) (X) (Xs) (Y) (Ys) (Zs)

2 1 1 0 0 0

I3 0 2 0 0 1 1 0

2 1 0 0 0 1

2 0 0 1 1 0

0 I3 0 0 1 0 0 0

0 0 0 0 0 1

3
77777777775

2
66666666664

����������������

(x) (y) (X) (Xs) (Y) (Ys) (Zs)

2 1 1 0 0 0

I3 0 2 0 0 1 1 0

2 0 0 1 0 1

0 0 0 0 1 0

0 I3 2 1 1 0 0 0

0 0 0 0 0 1

3
77777777775

(3:7)

The CHU of these two matries de�nes the matrix underlying 	 for
merge (per De�nition 3.2), at least in its initial form:

2
64

�������

I 0 1 C1

0 I 2 C2

0 0 3 C3

3
75 �

2
66666666664

����������������

0 2 1 1 0 0 0 2 1 1 0 0 0

I3 0 0 2 0 0 1 1 0 2 0 0 1 1 0
0 2 1 0 0 0 1 2 0 0 1 0 1
0 2 0 0 1 1 0 0 0 0 0 1 0

0 I3 0 0 0 1 0 0 0 2 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 �1 1 0 0 0 0 0 1 0 0 0 0 0

3
77777777775

(3:8)

This matrix has a number of redundant olumns: numbers 5, 8, 9, 11, and
12. After eliminating them, we an express 	 as:

	

2
6664

���������

b1 a1

I3 b2 a2
b3 a3

0 C

3
7775 =

2
6666666666664

������������������

0 2 1 1 0 0 2 0 0

I3 0 2 0 0 1 0 2 1 0
0 2 1 0 0 1 2 1 0

�b1 2 0 0 1 0 0 0 �a1
0 �b2 0 0 1 0 0 2 0 �a2

�b3 0 0 0 0 1 0 0 �a3
0 �1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 C

3
7777777777775

(3:9)

In the above equation, ai are row vetors with as many olumns as matrix
C, and is a olumn vetor with as many rows as C.

The generalization of 	 to SCCs with several prediates and rules with
nonlinear reursion is umbersome, but involves no new ideas; the method
is outlined in Appendix A.

De�nition 3.4: The reursive transformation T of a logi proedure for p,
where B and 	 are as de�ned in Eqs. 3.1{3.4 is the mapping that takes any
polyone A � Rn into the polyone T (A) � Rn, where:

T (A) = 	(A) [B (3:10)

From their de�nitions it is lear that both 	 and T are monotoni
transformations. In order to study the struture of 	 and T , we �rst observe
that the polyones of Rn with operation [form a ommutative monoid.

Lemma 3.3: The transformation 	 de�ned by Eqs. 3.1{3.4 is a homomor-
phism with respet to [; that is, for any polyones P;Q � Rn:

	(P [Q) = 	(P) [(Q) (3:11)

Proof: Let P and Q be given by:

P �

"
�����I p1 P1

0 p3 P3

#
Q �

"
�����I q1 Q1

0 q3 Q3

#
(3:12)

Use Eq. 2.2 to form P [Q. Use Eq. 3.3 with P [Q in the role of A:

	(P [Q) �

2
666666664

��������������

I 1 C1 0 0 0 0

0 2 C2 �p1 �P1 �q1 �Q1

0 3 C3 0 0 0 0
0 0 0 p3 P3 0 0
0 0 0 0 0 q3 Q3

0 �1 0 1 0 1 0

3
777777775

(3:13)

Similarly:

	(P) [(Q) �

2
666664

�����������

I 0 1 C1 0 1 C1 0

0 0 (2�p1) C2 �P1 (2�q1) C2 �Q1

0 0 3 C3 0 3 C3 0
0 0 p3 0 P3 q3 0 Q3

0 �1 1 0 0 1 0 0

3
777775 (3:14)

In Eq. 3.13, multiply the last row by 1 and add it to row 1. Then multiply
the last row by 2 and add it to row 2. Finally, multiply the last row by 3

and add it to row 3, giving:

	(P [Q) �

2
666666664

��������������

I 0 C1 1 0 1 0

0 0 C2 (2�p1) �P1 (2�q1) �Q1

0 0 C3 3 0 3 0
0 0 0 p3 P3 0 0
0 0 0 0 0 q3 Q3

0 �1 0 1 0 1 0

3
777777775

(3:15)

In Eq. 3.14 olumn 5 is a dupliate of olumn 2, so may be deleted. This
also gives Eq. 3.15, exept that olumns 1 and 2 are interhanged.

Corollary 3.4: For any polyone P , and k > 0,

T k(P) = B [(B) [2(B) [: : : [k�1(B) [k(P) (3:16)

Also, the sequene B; T (B); T 2(B); : : : ; T k(B); : : : is monotoni.

Proof: Eq. 3.16 follows by Lemma 3.3 and a trivial indution on k. Mon-
toniity of T k(B) follows from Eq. 3.16 with P = B.

4 The Searh for a Fixpoint

Let B be the polyone spei�ed by Eq. 3.4, whih ontains the set of feasible
argument sizes arising from the nonreursive rules. Let F be a polyone in
the positive orthant of Rn that is a �xpoint of T ; that is, F satis�es the
equation F = T (F). It is straightforward to show F ontains the set of
feasible argument sizes arising from all of the rules for p, and thus ompletes
our analysis of p's SCC. That is, if p(x) is derived without any reursions on
p, then x 2 B � F ; if all p(y) derived with k�1 reursions are in F , then all
p(x) derived in k reursions are in 	(F) � F ; use indution on the number
of appliations of a reursive rule for p.

How to �nd suh an F in general is not known at present. A solution
in many simple examples is simply F = T (B). If that does not work, one
ould try more iterates, but as the next example shows, this may also fail.
A more ompliated heuristi is desribed later in Setion 7.

Example 4.1: This example shows that iterating T may not reah a �xpoint
in a �nite number of steps, even though one exists. The logi proedure below
might test for preedene in some partial order, thinking of s as suessor.

p(X;X):

p(X; s(Y)) p(X;Y):

We �nd that:

B �

"
�����1 0 0 1

0 1 0 1

#
	(B) �

"
�����1 0 0 1

0 1 1 1

#
T (B) �

2
64

�������

1 0 0 0 1 0

0 1 0 1 1 0
0 0 �1 1 0 1

3
75

and for iterated appliations of T :

T k(B) �

2
64

�������

1 0 0 0 1 0

0 1 0 k 1 0
0 0 �1 1 0 1

3
75

It is lear that this sequene does not reah a �xpoint in a �nite number
of steps. However, we note that resaling a olumn by a positive quantity
does not hange the polyone de�ned by the matrix, provided the olumn
ontains oeÆients for a slak (independent) variable, i.e., it is a positively
numbered olumn. Taking advantage of this, we divide olumn 1 of T k(B)
by k, giving:

T k(B) �

2
664

��������
1 0 0 0 1 0

0 1 0 1 1 0

0 0 �1 1
k
0 1

3
775 as k!1
����!

2
664

��������
1 0 0 0 1 0

0 1 0 1 1 0

0 0 �1 0 0 1

3
775

�

2
4

������

1 0 0 0 1

0 1 0 1 1

3
5 � F

It is now easy to verify that T (F) = F , so F is indeed the desired �xpoint.
The inequalities repesented are x2 � x1 � 0.

This example is disussed further in Example 7.1.

5 Veri�ation of a Fixpoint

Suppose it is onjetured that a ertain set of equations F spei�es a �xpoint
of T , namely:

F �

"
�����I f1 F1

0 f3 F3

#
(5:1)

Substituting into the right side of Eq. 3.3, then forming the CHU with Eq. 3.4
gives

T (F) = 	(F) [B �

2
666666664

��������������

I 0 1 C1 0 b1 B1

0 0 (2�f1) C2 �F1 0 0
0 0 3 C3 0 0 0
0 0 f3 0 F3 0 0
0 0 0 0 0 b3 B3

0 �1 1 0 0 1 0

3
777777775

(5:2)

To verify the onjeture, we must show that Eq. 5.2 is equivalent to (rep-
resents the same polyone as) Eq. 5.1. One method is to use the earlier
observations about redundanies, or other arguments, to transform Eq. 5.2
bak to Eq. 5.1. Although this an be done ad ho on examples, an eÆient
general algorithm for �nding redundanies is not known. A general method
of deiding equivalene, based on onversion to normal forms, is desribed
in the next setion.

Example 5.1: Using the matries for the rev proedure of Example 1.1, we
get

B �

2
64

�������

0 0

I3 0 1
0 1

3
75

and

	(B) �

2
666666664

��������������

2 1 1 0 0 0

I3 0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

0 2 1 0 1 0 �1
0 0 0 0 1 �1

3
777777775
�

2
64

�������

2 1 0

I3 0 0 1
2 1 1

3
75 (5:3)

The seond form of 	(B) was obtained by the following series of simpli�a-
tions (equation numbers in parentheses provide the justi�ations): Subtrat
row 6 from row 5 and delete row 6 and ol. 5 (by 2.3). Add row 5 to row 3
and delete row 5 and ol. 4 (by 2.3). Delete ol. 2 and row 4 (by 2.5).

Using the redued form of 	(B), we ompute T (B) = 	(B) [B as:

T (B) �

2
6664

���������

0 2 1 0 0 0

I3 0 0 0 1 0 1
0 2 1 1 0 1

0 �1 1 0 0 1 0

3
7775 �

2
64

�������

0 1 0

I3 0 0 1
0 1 1

3
75 (5:4)

The seond form of T (B) was obtained by the following series of simpli�a-
tions: Delete ol. 5, as it equals ol. 3 (by 2.6). Delete ol. 1, as it equals
ol. 4 + 2�ol. 2 (by 2.6). Delete row 4 and original ol. 4 (by 2.3).

We de�ne F = T (B) as the hypothetial �xpoint, and try to verify it:

	(F) �

2
666666664

��������������

2 1 1 0 0 0 0

I3 0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 �1 0

0 2 1 0 1 0 0 �1
0 0 0 0 1 �1 �1

3
777777775
�

2
64

�������

2 1 0

I3 0 0 1
2 1 1

3
75 (5:5)

To get the simpler form we subtrat row 6 from row 3, add row 5 to row 3,
and add row 4 to row 3. Then we delete in turn rows 6, 5, and 4. This makes
makes olumns 4{6 zero, so they are deleted. Finally, ol. 2 is a dupliate
of ol. 1, so is deleted. Now we note that 	(F) = 	(B), so it follows that
T (F) = T (B) by de�nition of T . We have veri�ed that F is indeed a �xpoint
of T .

By inspetion, we see that Eq. 5.4 is equivalent to the set of onstraints:
x1 � 0, x2 � 0, and x3 = x1 + x2. This is preisely what we expet for
rev(x1; x2; x3), and represents a tight bound.

We observe that the methods developed in [15℄ do not handle onstraints
among three variables. Thus those methods ould onlude only x3 � x1 and
x3 � x2. While these weaker onstraints are suÆient to prove termination
for top-down evaluation of rev itself, they may not be suÆient for whatever
proedures use rev .

6 Normal Forms and Polyone Equivalene

In this setion we use the mahinery of onvex analysis and linear program-
ming to develop a normal form representation of polyones and an algorithm
to onvert any matrix representation of a polyone to its normal form. This
algorithm provides a deision proedure for the question of whether two
matries represent the same polyone.

We begin with some standard de�nitions [11℄. For these de�nitions, let
A be a onvex set in Rn. A ray is a losed half-line, i.e., a set of points
fa+ d� j � � 0g, where a and d are vetors in Rn and � is a salar.

De�nition 6.1: Vetor d 2 Rn is a diretion of reession of A if 9a 2 A
suh that the ray fa+ d� j � � 0g is ontained in A.

If A is nonempty, then \9a 2 A" an be replaed by \8a 2 A" in the
above de�nition.

De�nition 6.2: An extreme point of A is a point that annot be expressed
as a nontrivial onvex ombination of (other) points in A. An extreme

diretion of A is a diretion of reession that annot be expressed as a
nontrivial onvex ombination of (other) diretions of reession of A.

It an be shown [11, Theorem 19.6℄ that a onvex set P is polyhedral
(De�nition 1.1) if and only if it has a �nite set of extreme points fig and a
�nite number of extreme diretions fdjg. This set of points and diretions
is said to �nitely generate P ; that is, point a 2 P if and only if a has a
representation as

a =
P
�ii +

P
�jdj � � 0;

P
�i = 1; � � 0

Now let us restrit P to be a polyone, that is, restrit it to lie in the
positive orthant of Rn. Let C be the matrix whose olumns are i, the
extreme points of P . Let D be the matrix whose olumns are dj , the extreme
diretions of P . Clearly, eah i � 0 and eah dj � 0. Let 1 denote a row
vetor of 1's. A generalized Tuker representation for polyone P is given
by

"
�����
(�) (�)

I 0 C D
0 �1 1 0

#

De�nition 6.3: Let matries C and D be as desribed above for polyone
P . Further, let the elements of eah olumn dj be relatively prime integers,
let the olumns of D be arranged lexiographially, and let the olumns of C
be arranged lexiographially. Then the generalized Tuker representation:"

�����I 0 C D

0 �1 1 0

#
(6:1)

is alled the normal form representation of P .
It is lear that the normal form of a given polyone is unique. Thus,

to verify whether two representations are atually the same polyone, as is
neessary to verify �xpoints, it is suÆient to redue eah to its normal form.
This boils down to the following problem: given some matrix that represents
a polyone, �nd its set of extreme points and diretions.

The simplex algorithm of linear programming an be modi�ed to �nd the
extreme points and diretions of a polyone. Bakground on this algorithm
an be found in Papadimitriou and Steiglitz [9, Ch. 2℄, and elsewhere; we
review the essentials briey. Assume we have transformed a generalized
Tuker representation into a standard form linear programming problem,
exept for the objetive funtion (whih may be treated as 0). That is, we
have a linear system

A� = b � � 0 (6:2)

that desribes the polyone, where A is an m �N matrix of full rank, and
m < N . (This � inludes x and the slak (independent) variables of the
generalized Tuker representation; its arity is N .) Reall that a basis for
the problem is a set of m linearly independent olumns of A, designated
AB(i) for 1 � i � m. B denotes the nonsingular matrix omposed of the
basis olumns of A. Here B is an m-element subset of f1; : : : ; Ng in a �xed
sequene.

A basi feasible solution (bfs) is a nonnegative vetor X0 suh that

X0k = 0 for k =2 B.

X0B(i) = i-th omponent of B�1b.

It is well known that basi feasible solutions orrespond to verties (extreme
points) of the polyone, and that they an be enumerated by pivoting from
one basis to another.

Now suppose Aj is any olumn not in a urrent basis B that orresponds
to bfs X0. Then it is a linear ombination of the olumns of B, so satis�es

Aj = BXj (6:3)

for a ertain vetor Xj. We reall that the simplex algorithm maintains a
\tableau", the matrix X, with a zero-th olumn X0 that is the urrent bfs;
the olumns XB(i) omprise an m�m identity matrix; olumn Xj for eah
j =2 B satis�es Eq. 6.3.

For � a nonnegative salar, we have the identity

B (X0 � �Xj) + � Aj = b (6:4)

We an \move" away from vertex X0 in diretion Xj by inreasing � from 0.
We remain in the feasible region as long as (X0 � �Xj) � 0. To \pivot" in
the simplex algorithm, we need to determine the maximum value of � that
stays in the feasible region. We have three ases:

1. For some row k, we have Xkj > 0 and Xk0 = 0. Then �max = 0.

2. For some k, Xkj > 0, and for all k suh that Xkj > 0, we also have
Xk0 > 0. Then �max > 0, but �nite. In this ase \moving to �max"
orresponds to traversing an edge of P to another vertex.

3. For no k is Xkj > 0. Then � an inrease inde�nitely and (X0 � �Xj)
remains feasible. Evidently, �Xj is a diretion of reession of P .

Most linear programming texts make an early assumption that the feasible
region is bounded, so that ase (3) annot our; onsequently, we annot
use their results diretly. The modi�ations for unbounded feasible regions
are fairly straightforward, and we present them below.

Algorithm (6.1): To �nd the extreme points and diretions of P , the
feasible region of Eq. 6.2.

method: (Outline)

Visit all the verties of P by pivoting and never hoosing a olumn
that �ts ase (3) above. Use standard methods, suh as depth �rst
searh, to ensure that eah vertex is visited one.

At eah vertex (bfs), determine whih nonbasis olumns fall into ase
(3). The assoiated diretions, �Xj , are the extreme diretions of P .

To justify this algorithm's orretness, we need to prove two fats:

1. Every instane of ase (3) gives an extreme diretion.

2. Every extreme diretion arises as an instane of ase (3). That is, if d
is an extreme diretion, then there is some vertex suh that + �d
desribes a one-dimensional fae of P .

The following lemmas address these problems.

Lemma 6.1: Every instane of ase (3) gives an extreme diretion.

Proof: It is suÆient to show that f(X0 � �Xj) j � � 0g is a (one-
dimensional) fae of P . We use the fat that a subset of P is a fae if
and only if there is some linear funtion h(�) that takes its maximum within
P preisely on that set [11, Set. 18℄. A suitable h(�) is obtained by setting
the oeÆients of the basis elements and the j-th element to 0, and setting
the remaining oeÆients to �1. Then the maximum, whih is 0, is attained
preisely on the desired ray.

Lemma 6.2: If d is an extreme diretion of polyone P , then there is
some vertex (extreme point) suh that f + �d j � � 0g desribes a one-
dimensional fae of P .

Proof: Let H be the hyperplane through the origin that is orthogonal to
d, and onsider the projetion P 0 of polyone P on H. P 0 is polyhedral,
and any extreme point of P 0 must have an extreme point of P in its inverse
image. If P 0 has an extreme point, hoose any extreme point in its inverse
image. If P 0 has no extreme points, then learly d is not an extreme diretion
of P . (We an �nd a pair (d0; �d0) of diretions of reession of P 0 whose
inverse images an be opmbined to yield d in P .)

Theorem 6.3: It is deidable whether two generalized Tuker representa-
tions with rational oeÆients de�ne the same polyone.

Proof: Algorithm 6.1 �nds the extreme points and extreme diretions of
P in the spae of all variables, �. It is only neessary to projet them onto
the x omponents of �, express diretions with relatively prime integers, and
arrange olumns in lexiographi order to obtain the normal form of Eq. 6.1.
Two representations de�ne the same polyone if and only if their normal
forms are the same.

Example 6.1: Consider the equations developed in Example 3.1 for the
merge proedure. We sketh the evaluation of the normal form of 	(B),
where 	 was given by Eq. 3.9 and B by Eq. 3.6. By substitution,

	

2
64

�������

0 0 1

I3 0 1 0
0 1 1

3
75 =

2
66666666664

����������������

0 2 1 1 0 0 2 0 0 0

I3 0 2 0 0 1 0 2 1 0 0
0 2 1 0 0 1 2 1 0 0
0 2 0 0 1 0 0 0 0 �1

0 0 0 0 1 0 0 2 0 �1 0
0 0 0 0 0 1 0 0 �1 �1

0 �1 1 0 0 0 0 1 0 0 0

3
77777777775

(6:5)

To put this in the form of Eq. 6.2, we move the onstants olumn to the
left side, move the oeÆients of x to the right side, and multiply the three
upper rows by �1. In addition, the olumns are labeled with variable names:

2
66666666664

����������������

(x1) (x2) (x3) (�1) (�2) (�3) (�4) (�5) (�6) (�7) (�8) (�9)

0 1 0 0 �2 �1 �1 0 0 �2 0 0 0
0 0 1 0 �2 0 0 �1 0 �2 �1 0 0
0 0 0 1 �2 �1 0 0 �1 �2 �1 0 0
0 0 0 0 2 0 0 1 0 0 0 0 �1
0 0 0 0 0 0 1 0 0 2 0 �1 0
0 0 0 0 0 0 0 0 1 0 0 �1 �1
1 0 0 0 1 0 0 0 0 1 0 0 0

3
77777777775

(6:6)

The interested reader is invited to hek our omputation of Algorithm 6.1,

whih yields two extreme points:

(x; �) = (2; 2; 4; 1; 0; 0; 0; 2; 0; 0; 2; 0)

(x; �) = (2; 2; 4; 0; 0; 0; 0; 2; 1; 0; 0; 2)
(6:7)

and several extreme diretions:

(x; �) = (0; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0)

(x; �) = (0; 1; 1; 0; 0; 0; 0; 1; 0; 0; 1; 0)

(x; �) = (0; 1; 1; 0; 0; 0; 1; 1; 0; 0; 0; 0)

(x; �) = (1; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0)

(x; �) = (1; 0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 1)

(x; �) = (1; 0; 1; 0; 0; 1; 0; 1; 0; 0; 0; 0)

(6:8)

Projeting on x, we �nd the normal form to be:2
6664

���������

0 2 0 1

I3 0 2 1 0
0 4 1 1

0 �1 1 0 0

3
7775 (6:9)

Geometrially, this states x1 � 2, x2 � 2, and x3 = x1+x2, whih is preisely
what we expet after one appliation of a reursive merge rule to a base ase.

Interestingly, Eq. 6.9 an also be obtained eÆiently by redundany
elimination proedures. Briey, in Eq. 6.5 pivoting allows rows 4, 5, and 6
to be eliminated by setting up Eq. 2.3, then dupliate olumns are oalesed,
resulting in Eq. 6.9. Finally, we observe that T (B) = 	(B) [B redues to
B, so B has been shown to be a �xpoint.

7 An Heuristi that Often Works

The following polyone has been found to provide a �xpoint in several
examples. Let Eqs. 3.1{3.4 desribe the logi proedure. Let F be given
by:

F �

2
66666666664

����������������

I b1 1�b1 B1 �B1 C1 0 0

0 b3 0 B3 0 0 0 0
0 0 b3 0 B3 0 0 0
0 0 2�b1 0 0 C2 �B1 0
0 0 3 0 0 C3 0 0
0 0 b3 0 0 0 B3 0
0 b1 1�b1 B1 �B1 C1 0 �I

3
77777777775

(7:1)

This matrix was arrived at by trying to \enlarge T (B) in the 	 diretion."
Reall that a point x 2 T (B) an be represented as �(v � u) + u, where
u 2 B, v 2 	(B), and 0 � � � 1. If we drop the requirement � � 1 we are
in a sense projeting rays from B through 	(B). If B and 	(B) are disjoint,

the portion of the set for whih � � 1 is alled the penumbra of 	(B) with
respet to B [11℄. Projeting B through 	(B) does not neessarily produe
a onvex set. However, Eq. 7.1 spei�es a polyone that does enlose the set
so produed.

Example 7.1: Consider the same rules given in Example 5.2, in whih no
�nite T k(B) was a �xpoint.

p(X;X):

p(X; s(Y)) p(X;Y):

The heuristi of Eq. 7.1 gives the following matrix for F , initially.

F �

2
666666664

��������������

1 0 0 0 1 �1 1 0 0 0 0

0 1 0 1 1 �1 0 1 0 0 0
0 0 0 0 0 0 1 0 �1 0 0
0 0 0 0 0 0 0 1 �1 0 0
0 0 0 0 1 �1 1 0 0 �1 0
0 0 0 1 1 �1 0 �1 0 0 �1

3
777777775

(7:2)

This matrix an be redued as follows. Pivot on row 6, olumn 3. Columns
2 and 3, and row 6, are eliminated using Eq. 2.4. Rows 5, 4, and 3 are then
redundant, and eliminated after pivoting. The result is the same matrix that
was found to be a �xpoint in Example 4.1, namely:

F �

"
�����1 0 0 0 1

0 1 0 1 1

#
(7:3)

8 Diretions for Further Work

There are two prinipal diretions in whih this work needs to be extended.
First, we would like to have a more eÆient proedure for determining
equivalene of polyones, and a good analysis of the running time. Seond,
and most important, we need more ways to generate andidates for the
�xpoint.

Frequently, the \reursive ativity" of an SCC ours in only a small
number of dimensions. A method that overs two or three \signi�ant"
dimensions would be useful.

One possibly exploitable property of [b1jB1℄ [1jC1℄, and [2jC2℄, when
they pertain to a single rule, is this: in any row with a positive onstant
olumn, the sum of the oeÆients in the row annot exeed the onstant
in that row; furthermore, when the onstant for the row is zero, there is at
most one positive oeÆient, and that equals 1. Spei�ally, for [b1jB1℄:

X
j

B
(ij)
1 �

(
1; if b

(i)
1 = 0;

b
(i)
1 ; if b

(i)
1 > 0.

This is a onsequene of the de�nition of term size, together with the fat
that logial variables within the same term must be onneted by funtion
symbols of arity at least 2.

Looking at Eqs. 3.1{3.3 and Appendix A, we see that there is preditable
sparseness in the generalized Tuker representations. It might be possible to
take advantage of this.

Sine T is monotoni, it has a least �xpoint, but this �xpoint (and others)
may not be a polyone. It would be interesting to formulate onditions under
whih the least �xpoint of T is a polyone.

To onlude, while this paper o�ers a beginning, there is still muh work
to be done in the automati analysis of argument term size onstraints.

Aknowledgements

We wish to thank Jean-Louis Lassez for stimulating and helpful disussions.
This work was partially supported by NSF grants CCR-89-58590 and IRI-
89-02287.

Appendix A Programs with General Reursion

Here we outline how to onstrut the 	 and T transformations in SCCs that
have nonlinear reursion and/or several prediates in one SCC. Suppose there
are s di�erent prediates in the SCC, p1; : : : ; ps. The main idea is that we
de�ne 	1; : : : ;	s as mappings for those prediates. Eah mapping operates
on a vetor of polyones, A1; : : : ; As. Then 	 for the whole SCC is the diret
produt:

	(A1; : : : ; AS) = (1(A1; : : : ; As); : : : ;	1(A1; : : : ; As))

Similarly, we formulate base ase polyones B1; : : : ; Bs and use their diret
produt, together with 	, to de�ne T for the whole SCC. To keep the
notation reasonable, we illustrate the details for an SCC with two prediates
p and q.

Consider a reursive rule for p with k p-subgoals, m q-subgoals, and
possibly a nonreursive subgoal. The argument size equations are

x = +C�

y1 = d1 +D1�

: : :

yk = dk +Dk�

z1 = e1 +E1�

: : :

zm = em +Em�

0 = f + F�

(A:1)

Here x represents argument sizes of p in the head of the rule; yi represents
argument sizes of the i-th p-subgoal; zj represents argument sizes of the j-th
q-subgoal; � ontains variables orresponding to the logial variables in the
rule. Now suppose the polyones to be operated upon by 	 are presented as

y = a+A�

0 = g +G�

z = b+B�

0 = h+H�
(A:2)

We substitute a separate opy (with � renamed) of the left equations for
eah of yi and substitute a separate opy of the right equations for eah zj
(f. Eqs. 3.1{3.3), giving:

2
66666666666666666666666666664

����������������������������������

(�) (�1) : : : (�k) (�1) : : : (�m)

I C 0 : : : 0 0 : : : 0
0 (d1�a) D1 �A 0

...
...

. . . 0
0 (dk�a) Dk 0 �A
0 (e1�b) E1 �B 0

...
... 0

. . .

0 (em�b) Em 0 �B
0 f F 0 : : : 0 0 : : : 0
0 g 0 G 0

...
...

. . . 0
0 g 0 0 G
0 h 0 H 0

...
... 0

. . .

0 h 0 0 H

3
77777777777777777777777777775

(A:3)

This de�nes the feasible polyone for one rule! The CHU of all reursive
rules for p de�nes 	p evaluated at the pair of polyones in Eq. A.2. 	q

is de�ned similarly, based on the reursive rules for q, and 	 is the diret
produt of 	p and 	q.

Now let the base ase polyones for p and q be Bp and Bq, respetively.
We de�ne

Tp(P;Q) = 	p(P;Q) [Bp

Tq(P;Q) = 	q(P;Q) [Bq

T (P;Q) = (Tp(P;Q); Tq(P;Q))

(A:4)

where (P;Q) is the vetor of polyones to be transformed, represented by
Eq. A.2.

Referenes

[1℄ F. Afrati, C. Papadimitriou, G. Papageorgiou, A. R. Roussou, Y. Sagiv,
and J. D. Ullman. On the onvergene of query evaluation. Journal of
Computer and System Sienes, 38(2):341{359, 1989.

[2℄ A. Brodsky and Y. Sagiv. On termination of datalog programs. In First

International Conferene on Dedutive and Objet-Oriented Databases,
pages 95{112, Kyoto, Japan, 1989.

[3℄ B. C. Eaves and U. G. Rothblum. Elimination of Quanti�ers of

Linear Variables and Corresponding Transfer Priniples. Tehnial
Report Operations Researh, Stanford University, 1987.

[4℄ R. M. Freund, R. Roundy, and M. J. Todd. Identifying the Set of

Always-Ative Constraints in a System of Linear Inequalities by a

Single Linear Program. Tehnial Report 1674-85, Sloan Shool of
Management, MIT, 1985.

[5℄ M. H. Karwan, V. Lofti, J. Telgen, and S. Zionts. Redundany in Mathe-

matial Programming: A State-of-the-Art Survey. Springer-Verlag, New
York, 1983.

[6℄ J.-L. Lassez and K. MAloon. Simpli�ation and elimination of redun-
dant linear arithmeti onstraints. In North Amerian Conf. on Logi

Programming, pages 37{51, 1989.

[7℄ K. Morris, J. D. Ullman, and A. Van Gelder. Design overview of the
Nail! system. In Third Int'l Conf. on Logi Programming, pages 554{
568, 1986.

[8℄ L. Naish. Automati generation of ontrol for logi programs. Tehnial
Report 83/6, Dept. of Computer Siene, University of Melbourne,
Melbourne, Australia, 1983.

[9℄ C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization.
Prentie-Hall, Englewood Cli�s, NJ, 1982.

[10℄ L. Pl�umer. Termination Proofs for Logi Programs. PhD thesis,
Dortman University, 1988.

[11℄ R. T. Rokafellar. Convex Analysis. Prineton University Press,
Prineton, NJ, 1970.

[12℄ Y. Sagiv and J. D. Ullman. Complexity of a top-down apture rule.
Tehnial Report STAN{CS{84{1009, Stanford University, 1984.

[13℄ J. Telgen. Minimal representation of onvex polyhedral sets. Journal

of Optimization Theory and Appliation, 38(1):1{24, 1982.

[14℄ J. D. Ullman. Implementation of logial query languages for databases.
ACM Transations on Database Systems, 10(3):289{321, 1985.

[15℄ J. D. Ullman and A. Van Gelder. EÆient tests for top-down termina-
tion of logial rules. Journal of the ACM, 35(2):345{373, 1988.

[16℄ A. Van Gelder. A message passing framework for logial query evalua-
tion. In 1986 ACM-SIGMOD Conf. on Management of Data, pages 155{
165, 1986.

[17℄ C. Walther. Automated Termination Proofs. PhD thesis, University of
Karlsruhe, 1988.

