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DERIVING DG CATEGORIES

BY BERNHARD KELLER (1)

ABSTRACT. — We investigate the (unbounded) derived category of a differential Z-graded category (=DG
category). As a first application, we deduce a "triangulated analogue" (4.3) of a theorem of Freyd's [5],
Ex. 5.3 H, and Gabriel's [6], Ch. V, characterizing module categories among abelian categories. After adapt-
ing some homological algebra we go on to prove a "Morita theorem" (8.2) generalizing results of [19]
and [20]. Finally, we develop a formalism for Koszul duality [1] in the context of DG augmented categories.

Summary

We give an account of the contents of this paper for the special case of DG
algebras. Let k be a commutative ring and A a DG (k-)algebra, i.e. a Z-graded
fe-algebra

A=®A^
peZ

endowed with a differential d of degree 1 such that

d(ab)=(da)b-^(-l)
p
a(db)

for all ae^, be A. A DG (right) A-module is a Z-graded A-module M=@M
P

p e Z

endowed with a differential d of degree 1 such that

d(ma) = (dm) a + (- 1)^ m (da)

for all m e M^, a e A. A morphism of DG A-modules is a homogeneous morphism of
degree 0 of the underlying graded A-modules commuting with the differentials. The
DG A-modules form an abelian category ^ A. A morphism /: M -> N of ^ A is null-

homotopic if/= dr-\-rd for some homogeneous morphism r: M -> N of degree — 1 of the
underlying graded A-modules. The homotopy category ^ A has the same objects as
^ A. Its morphisms are residue classes of morphisms of ^A modulo null-homotopic
morphisms. It is a triangulated [23] category (2.2). A quasi-isomorphism is a morphism
of ^A inducing isomorphisms in homology. The derived category Q)A is the

(
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64 B. KELLER

localization [23] of J^A with respect to the quasi-isomorphisms (4.1). It has infinite

direct sums. Let JfpA be the smallest strictly (= closed under isomorphisms) full
triangulated subcategory of JfA containing A and closed under infinite direct
sums. Each DG A-module M is quasi-isomorphic to a module pMeJ^fpA. (3.1). The

canonical projection JfA-^A restricts to an equivalence JfpA-^A (4.1). This is
classical [11, VI, 10.2] for right bounded modules over negative DG algebras (i.e. ]vP==0
for all p ^ 0 and A

P
=Q for all p>0).

The algebra A considered as a right DG A-module is small in ^A, i.e. the functor
(2 A) (A, ?) commutes with infinite direct sums. Moreover A is a generator of ^A, ;'. e.

QiA coincides with its smallest strictly full triangulated subcategory containing A and
closed under infinite direct sums. Now suppose that € is a Frobenius category [9] with
infinite direct sums and that the associated stable category ^ admits a small generator X.
Then there is a DG algebra A and an ^-equivalence G'.^ -> QiA with GX^>A(4.3).

This is an analogue of Freyd's and Gabriel's characterization of module categories
among abelian categories [5], Ex. 5.3 H, [6], Ch. V. It suggests that in the study of
triangulated categories, categories of DG modules might take the role that module
categories play in the theory of abelian categories.

Let B and C be DG algebras. A quasi-equivalence C -> B is a B-C-bimodule (/. e. a
right-B-left-C-bimodule) E containing an element e e Z° E such that the maps

B -> E, b \—> eb and C -> E, c ^-> ce

induce isomorphisms in homology. For example, if we are given a quasi-isomorphism
(p: C -> B, we can take E = ^ Bg and e = 1. Suppose that A is a DG algebra which is flat
as a A:-module. There is an A-C-bimodule X such that

L(?®cX): ^C-^A, Mi-^MX^c^

is an equivalence iff C is quasi-equivalent to B=J^om(
r
T, T) for some module T e J ^ p A

which is a small generator of 2 A (8.2). Here ^om (T, T) is the DG algebra whose
n-th component consists of the homogeneous graded morphisms /: T -> T of degree n

and whose differential maps / to d° / — ( — I ) " f°d. It follows from ideas of
Ravenel's [18] that a DG A-module is small in 2 A iff it is contained in the smallest

strictly full triangulated subcategory of Q)A containing A and closed under forming direct

summands. We reproduce. A. Neeman's proof of this result [17], 2.2, in 5.3.

By applying suitable truncation functors to our DG algebras (9.1) we also generalize
a result of [20] on realizing S-equivalences as derived functors (cf. also [13]).

Now suppose that k is a field. A DG augmented algebra is a DG algebra A endowed
with a DG module A whose homology is isomorphic to k viewed as a DG A:-module
concentrated in degree 0. There is a DG algebra A* and an A-A^-bimodule X such that

L(X®A?):DA* ->^A maps A* to A and gives rise to an equivalence between the

triangulated subcategories generated by A* and A (10.2). We put A* = RHom^ (X, DA),
where DA=Honifc(A, k). Then (A*, A*) is a DG augmented algebra called the Koszul

dual (cf. [1]) of (A, A). It is unique up to a quasi-equivalence compatible with the
augmentation. For example, if A=U(®) for some Lie algebra ®, then A* may be
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DERIVING DG CATEGORIES 65

taken to be Hom^A®, k) with the shuffle product and the usual derivation (6.5). Let
Av =DDA. There is a canonical A^^A^bimodule Y which in many cases gives rise
to a quasi-equivalence Av ^A^OO.S). We consider three special cases where Av is
quasi-equivalent to A** and ^A is related to ^A* by a fully faithful embedding (10.5).

I am grateful to A. Neeman for pointing out theorem 5.3 to me and calling my
attention to his elegant proof in [17]. I thank the referee for his careful reading of the

manuscript.

1. Graded categories and DG categories

1.1. GRADED CATEGORIES

Let k be a commutative ring. The tensor product over k will be denoted by (g).
A graded category is a ^-linear category ^ whose morphism spaces are Z-graded k-

modules
^(A,B)=@^(A,B^

peZ

such that the composition maps

^ (A, B)(x)j^ (B, C) -> ^ (A, C)

are homogeneous of degree 0, VA, B, Ceja^. A simple example is the category Grafe

of graded k-modules V= @ V77 with
p e Z

(Gra^)(V, Wy^/eHom^V, W^/C^cW^, V^}.

A graded category ^ is concentrated in degree 0 if J^(A, By=0 for all p^Q, A,
Beja^. It is then completely determined by the fc-linear category ^ having the same
objects as ^ and the morphism spaces J^°(A, B)=e^(A, B)°.

If ^ and ^ are graded categories, a graded functor F: ̂  -» ̂  is a ^-linear functor

whose associated maps

F (A, B): ^ (A, B) -> ̂  (FA, FB)

are homogeneous of degree 0, VA, Be^.

Let s/ be a small graded category. The opposite graded category ^/
op has the same

objets as ̂ , its morphism spaces are ̂ op (A, B) == ja^ (B, A), and the composition is given

by

^op (A, B^®^011 (B, C)4 -> ̂ op (A, C)^, g®f ̂  (- l)^/^.

A graded (right) ^-module is a graded functor M: ̂ op-)-Gra A:. For each Aes/ we

denote by A" the/r^ ^/-module J2/(?, A). By definition

A'CO^-l)^0/, V/e^(C,B)^ V^e^(B,A)^.
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66 B. KELLER

We define (
^^ to be the category whose objects are graded ^-modules and whose

morphism spaces (^jaQ (M, N) consist of the morphisms of functors /: M -> N such that
/A: MA -> NA is homogeneous of degree 0 for each A e e^.

If ^ is concentrated in degree 0, ^s^ identifies with the category of sequences (M^ g z
of^°-modules (=fc-linear contravariant functors from ^° to the category ofA:-modules).

We endow ̂ ^ with the shift Mh^M[l]: By definition,

(M [1] AY = (MA)^1 and (M [1] a) (m) = (- 1)̂  (M ̂ ) (ni)

for ^^(B.A)^ and ^^(MA)^ For a morphism / :M^N we put
(f[\]A)

p
==(fA)

p+l
. The shift functor is clearly an automorphism. Its n-th iterate is

denoted by M \—> M [77], n e Z.

The graded category Gra j^ has the same objects as ̂ ^ and the morphism spaces

(GrajaO(M, N) ̂  @ (^)(M, N[rf).
P 6 Z

The composition of morphisms produced by /: M -> N [q] and g:L->M[p] is given by
/ [p] ° g. We extend the shift functor to an automorphism of Gra ̂  in the obvious way.

1 . 2. DIFFERENTIAL GRADED CATEGORIES

A differential graded category (= DG category) is a graded category ^ whose morphism
spaces are endowed with differentials d (i. e. homogeneous maps d of degree 1 with
d

2
 = 0) such that

d(fg)=(df)g^(-\Yf(dg\ V/e^(B,Cy, V^e^(A, B).

A simple example is the category DifA: of differential k-modules whose morphism spaces

(Diffe) (V, W) ̂  (Grafe) (V, W)

are endowed with the differential mapping (/p) e (Gra k) (V, W)" to

^fP-(-\Yf?^.d).

If ^ and ^ are DG categories, a DG functor F: ̂  -> ̂  is a graded functor such that
F (^/) = d(F f) for all morphisms/of ja^. A quasi-isomorphism F: ja^ -^ ̂  is a DG functor
inducing a bijection obj ̂  -> obj ̂  and quasi-isomorphisms j^ (A, B) ̂  s/ (FA, FB) for
all A, Be^.

Let c^ be a small DG category. Its opposite ^op is the opposite graded category of
^ endowed with the same differential as ^'.

A DG (right) ^-module is a DG functor M: ̂ op
 -> Difk. Denote by M | the under-

lying graded ^-module of M. The objects of the DG category Difja^ are the DG
^-modules, its morphism spaces are the graded ^-modules

(Dif^) (M, N) = (Gra ̂ ) (M |, N |),
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DERIVING DG CATEGORIES 67

endowed with the differential given by

df=d-f-(-\rf-d,

for each homogeneous/of degree p. One easily verifies that this is well defined.

If ^ is concentrated in degree 0, DG ja^-modules are in bijection with differential
complexes of ^-modules.

For each Aej^, the underlying graded module of the free module A" is the free
graded module associated with A. The differential of AA (B) equals that of ja^(B, A).
For each DG j^-module M and each A e e^, the map

(DifO (A A , M) ̂  M (A), / ̂  (/ A) (1,0.

is an isomorphism of DG ^-modules ("Yoneda-isomorphism").

We lift the shift functor from graded modules to DG modules by defining the
differential of M [1] to be - d{\}, where d\ M -> M [1] is the differential of M.

2. Homotopy categories

2.1. fe-LINEAR STRUCTURES

Let ^ be a DG category. The category ^^(resp. J'fj^) has the same objects as
Dif^. Its morphism spaces are

(^0 (M, N) = Z° (DifO (M, N) resp. (^0 (M, N) = H° (DifjaQ (M, N).

Thus the morphisms of (
^^ are homogeneous of degree 0 and commute with the

differential. The morphisms of J^W are residue classes f of morphisms / of ^s^ modulo
null-homotopic morphisms, which by definition are of the form dr + rd for some morphism
r : M - ^ N [ — l ] of ^^. We have a canonical projection functor <

^^ ->^^. Two DG
modules are homotopy equivalent if they become isomorphic in e^W. If ^ is concen-
trated in degree 0, ^^ (resp. Jfj^) identifies with the category (resp. the homotopy
category) of differential complexes of ^-modules.

2 . 2. EXACT AND TRIANGULATED STRUCTURES

We endow ^^ with an exact structure [16] by defining a conflation (= admissible
short exact sequence [7], § 9, [12], App. A) to be a sequence

L-^M-^N

such that the underlying sequence of graded ja^-modules is split short exact.

We endow Jfja^ with the suspension functor S:^W-»-^fj^, Mi->SM=M[l]. We
define a triangle of Jfj^ to be an S-sequence [14] isomorphic to some

L -^ M -^ N -^ SL,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



^ B. KELLER

where (;', p ) is a conflation and e=rds, where r and ^ are chosen homogeneous morphisms
of degree 0 such that ps= 1̂  ri= 1^ and ^=0.

LEMMA. - (a) ̂ ^ is a Frobenius category [9].

(b) Jfj^ is a triangulated category [23].

Proof. - (a) Let F:^-^^ be the forgetful functor. For each Ne^, let
FpNresp. F^N be the DG jaf -modules defined by

(FpN)(A)=NA©(NA)[l],

^ r° 1! ^ xTw ^ r^ ° 1M== h (^^(^O^LO OJ v P M ; [_^N^ (-I)PN^J

(F,N)(A)=(NA)[-1]©NA,

i=\' ^ (W^^^ ^LO OJ ^ ^
 ) |_(-I)P^N^ N^J'^r0 'I ^NX.)^^-1)^- 0

LO OJ ^ ^
 ) L^l)^^ N^.

where Ae^ and ae^°P(A, B^. For each Me^j^, define morphisms of DG s^-

modules OM=[1^:M ^FpFM and ^M=[-dl]:P^PM->M. We have bijections

(^0 (FM, N) ̂  (<^^) (M, Fp N), / ̂  (Fp/) (0 M)

(^0 (N, FM) ̂  (^^) (F, N, M), / h-. (̂ F M) (F,/).

Thus FpN is injective and F^N is projective in ̂  for each Ne^. Since QM and
^F M fit into conflations

^ M v? M

M->FpFM-.M[l], M[-1]^F,FM -^M,

we can conclude that ^^ has enough projectives and enough injectives. Moreover,
M is itself projective (resp. injective) iff it is a direct summand of Fp FM (resp. of

F^ FM). Since Fp FM -> (F^ FM) [I], we infer that M is projective iff it is injective. For
later use, we introduce the notations PM=FpFM and IM=F^FM.

(A) Jfja^ identifies with the stable category associated with ^ja^. Thus the assertion
follows from [9, 9.4].

3. Resolution

3.1. P-RESOLUTIONS

Let ^ be a DG category. Its homology category H* ̂  is the graded category with the
same objects as ^ and with the morphism spaces

(H*0(A,B)=(^Hn^(A,B).
neZ

4eSERIE - TOME 27 - 1994 - N° 1



DERIVING DG CATEGORIES 69

We have a canonical functor H*: ̂ s^ -> GraH* ̂  defined by

(H* M) (A) = @ H" M (A).
n e Z

It induces a functor

^^-^H*J^

which will also be denoted by H*.

A DG module N is acyclic if H*N=0. A DG module Q is relatively projective

(c/. [15, X, § 10]) if, in ^j^, it is a direct summand of a direct sum of modules of the
form AA Dz], Aej?/, neZ. A DG module has property (P) if it is homotopy equivalent
to a DG module P admitting a filtration

0=F_iC:FoC=FiC: . . . F^cF^i . . . c:P,^eN

in ^s^ such that
(Fl) P is the union of the F^, peN,

(F2) the inclusion morphism Fp_i <=Fp splits in ^ja^, V/?eN,

(F3) the subquotient Fp/Fp_i is isomorphic in ^^ to a relatively projective module,
V/?eN.

Note that (Fl) and (F2) imply that the following sequence (^) is split exact in ^^

and hence produces a triangle in ^^

CF^CF^P;
p e N q e N

here 0 has the components

F.^F.CF^-^ © F,, i=incl.
g e N

If ja^ is concentrated in degree 0, a DG module P with (Fl), (F2) and (F3) yields a
complex of projective ^-modules. Conversely a right bounded complex of projective
^°-modules gives rise to a DG module P with (Fl), (F2) and (F3): Indeed, if P^=0 for
q>0, we can take ¥p= @ P4.

q> -p

THEOREM. — (a) We have (Jfjaf) (P, N)=0/<?r each acyclic N and each P with pro-

perty (P).

(b) For each M e J>fj^ there is a triangle of ̂ ^

pM. —>M—> a^A —> ST?M,

where aM is acyclic and pM has property (P).

(c) Let

. . .^Qn^Qn-l-^. . -^Ql->Qo^H*M^O

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



70 B. KELLER

be a projectile resolution of H* M in ^ H* ̂  such that Q^ ̂  H* Q^ for a relatively

projective Q^e^ja^, \/n. Then pM is homotopy equivalent to a module P admitting a

filtration Fp with (Fl), (F2) and such that F/Fp_i ̂  Q^,[p] ^ <^, V p.

We shall refer to pM as a P-resolution of M. If ja^ is concentrated in degree 0,
assertion c) implies that if M is a (possibly unbounded) complex of j^°-modules and
Q^ a given projective resolution of its p-th homology, then M is quasi-isomorphic to a
complex p M whose n-th component is @ W.

p-q=n

We define Jf^ to be the full subcategory of Jfja^ formed by the modules with
property (P). Applying suitable Hom-functors to the triangle of (b) and using (a) we
see that we have

(^W) (P, p M) ̂  (Jf^) (P, M) and (^W) (M, N) ̂  (^W) (^ M, N)

for all Pe^fp^ and all acyclic N. In particular, if (^fO(M, N)=0 for each
acyclic N, we have 0=(^fA)(M, a?M) ^> (JfA)(^M, ^M), so that aM=0 and, by b),

pM^M. Hence a DG module M lies in J ^ p S / iff (JfO(M, N)=0 for each
acyclic N. Therefore e^,^ is a triangulated subcategory of ^W. The inclusion
Jfpj^crjfj^ admits the right S-adjoint [14] Mh-^M.

It follows from (a) that each triangle

P-.M-.N-.P[1],

where N is acyclic and P has property (P), is canonically isomorphic to the triangle
of (b). If (M^gi is a family of modules, we can apply this to the triangle

@pM,-.@M^@aM^@pM,[l]

to conclude that p and a commute with infinite direct sums.

Proof. - (a) The assertion holds for each P of the form A" [n], Ae^.AzeZ, since

(Jf^KA" M, ̂ H^Dif^KA^ N[-^)=H-"N(A)=0

for each acyclic N. Hence it holds for relatively projective P. It also holds if Pp=P

for p ^> 0 since such a P lies in the triangulated subcategory generated by the relatively
projectives. In the general case, we apply Jfja^ (?, N) to the triangle produced by the
sequence (^) and obtain an exact sequence

ft (^^)(F,, N) ^- (^0(P, N) ̂  [I C^O(F,[1], N).
4 6 Z peZ

Its outer terms vanish by the foregoing case.

(6), (c) Following [15], XII, 11, we endow ̂ ^ with another exact structure: Its class
of conflations S consists of the sequences

L-^M->N
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DERIVING DG CATEGORIES 71

such that

0 -> L(A)" -> M (A)" -^ N(A)" -^ 0

and

0 -̂  H"L(A) -> H"M(A) -> H"N(A) -^ 0

are short exact sequences of fc-modules, for all Aej^, n eZ. This is equivalent to
requiring that

0 -> L(A)" -> M (A)" -. N(A)" -. 0

and

0 -> Z"L(A) -^ Z"M (A) -^ Z"N(A) -^ 0

be short exact for all Aej^, neZ. The isomorphisms

(^0 (A A [ - 4 M) = Z° (Difj^) (A A , M M) = Z" M (A)

(^0 (PA A [ - n], M) = M (A)"

(2.2) show that if Q is relatively projective, then Q and PQ are ^-projective. It is also
clear that for each module M we may find an ^-projective Q'=Q©PQ" and a morphism
p : Q7

 -> M inducing surjections

Q^A^-^IVKA)" and Z" Q' (A) -> Z" M (A), VAej^, V^zeZ.

If K -> Q' is a kernel of p in ^ja^, it is clear that K -> Q' -> M is indeed a
conflation. Thus, ^^ has enough ^-projectives and we can inductively construct an
<f-resolution ofM, i.e. an ^-acyclic complex [12], 4.1,

. . • -Qn-Qn-l - • . . -Q / l -Qo-M-.0

with ^-projective Q^=Q^©PQ^, where Q^ and Q^, are relatively projective. Under the
hypotheses of c), we can refine this construction as follows: the map

(̂ 0 (Q, M) -. (^ H* jaQ (H* Q, H* M)

is clearly surjective if Q is of the form A A
 [n] for some A e ja^, n e Z. Hence it is surjective

for relatively projective Q. We can therefore lift the given morphism Qo -> H* M to
a morphism p: Qo -^ M of ^ja^. Now we choose an ^-projective PQo', with relatively
projective Qo', and a morphism q: PQ'o -> M inducing epimorphisms

PQo' (A)" -> M (A)", V A e < V ̂  e Z.

Then

Q^QoePQo'^M

is the required deflation (= admissible epimorphism) with ^-projective Qo. Observe
that, since PQo7 is null-homotopic, Qo is homotopy equivalent to Qo. Since
H* :^^-> ̂ H*j^ carries ^-conflations to short exact sequences, we can successively
lift the given resolution of H* M to an ^-acyclic sequence

.• .-Qn-^-1-. . .-Q^Qo-M-O

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



72 B. KELLER

such that Q, = Q»CPQ»' for all n e N. If

K = ( . . . -^"-^K1^1^ .. .) , neZ

is a differential complex over Vsi', its total module Tot K has the underlying graded
module

©K"[-«]
neZ

and the differential

Put
pM=^l

and

^=<4"[-n]+^

^M=Tot( . . .^Q^O,_^ . . .^Q^Qo-^0^0-^ . . . )

F,=Tot( . . .^0-^0-^Q^Q;_^. . .^Q^Qo-^0^0^. . . ) , /^O.

Then ;?M with the filtration by the ¥ p clearly satisfies (Fl) and (F2), and Fp/Fp_i=Qp[/?],
V/?. By the lemma we will prove in 3.4, this implies that pM has property (P). The
morphism s.'Qo-^M induces a morphism (p:/?M-^M. It remains to be shown that
H* (p is invertible or, equivalently, that

N=Tot( . . . ^Q,^. . . ^ Q ^ Q o ^ M ^ O ^ . . . )

is acyclic. This follows from the lemma we will prove in 3.3 applied to each N(A),
Aejaf.

3 . 2. I-RESOLUTIONS

We record without proof the following "dual" of 3.1. Fix an injective generator E
of the category of ^-modules. For each Aeja^ define the ^-module Av by

Bh-^Diffe)(^(A,B),E),

where E is viewed as a DG ^-module concentrated in degree 0. A DG j^-module is
relatively injective if, in ^ja^, it is a direct summand of a direct product of modules Av

 [n],

Aej^, neZ. A DG module has property (I) if it is homotopy equivalent to a DG
module I admitting a filtration

I=Fo^Fi^ . . . =^Fp=3Fp+i=3. . ., 7?eN,

such that
(Fl') the canonical morphism I -> limI/Fp is invertible

(F2') the inclusion morphism Fp+1 c Fp splits in ̂ ^ for all p e N,

(F37) the subquotient Fp/Fp+i is isomorphic in ^s^ to a relatively injective module,
V^eN.
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DERIVING DG CATEGORIES 73

By (FF) and (F27) the following sequence (V) is split exact in ̂ ^ and hence produces

a triangle in J^js/

i^ n i/F.^- n i/F,;
p e N ^ e N

here 0' has the components

Ft I/F^I/F^©I/F^I/F,,
p e N

where n is the canonical projection I/F^+i -^ I/F^.

THEOREM. - (a) We have (^fjaf)(N, I)=0 for each acyclic N a^ each I m^ 7?ro-

j^r<y (I).

(b) For each M e ̂ fj^ ̂ ^ ^ (3 triangle of ̂ ^

a'M-^M-^iM-^Sa'M,

where d M is acyclic and iM has property (I).

(c) Let

O^H*M-^Jo^J i ^ . . . ^Jn^Jn

te ̂  injective resolution o/H*M ^ ^H*^ ^cA ^r J^^H*^/^ ^ relatively injective

J ^ e ^ ^ / , V^. TA^ ;M is homotopy equivalent to a module I admitting a decreasing

filtration ¥ p with (FF) and (FT) and such that F^/Fp+i ̂  J p [-p] in ̂  for aliped.

3.3. ACYCLIC TOTAL COMPLEXES

Let
N= @ N^

P,qeZ

be a bigraded abelian group with commuting differentials d^ and d^ of bidegree (1,0)

and (0, 1), respectively. Let TotN and totN be the differential graded groups with

components

(TotN)^ @ N^resp.(totN)"= ]"[ N^ "ez'
p+q=n p+q=n

and the differential given by

dt=d,t^(-\)
p
d^ teW^

For reZ denote by N^O-esp. B*1", Z*', H*0 the differential graded groups with com-

ponents
TsrO-esp. Im^-1, Ker^, Ker^/Im^'1-1), neZ,

and the differential induced by dy

LEMMA. - T/'N*1' and H^ ar^ acyclic for all reZ, then TotN a^rf totN are acyclic.
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Proof. - If N*' is acyclic for all reZ, the same holds for the B*'. Thus if N*' and
W are acyclic for all reZ, then so are the Z*1'. To prove that TotN is acyclic we
consider the differential bigraded subgroups N^cN, m^ 1, with N^=0 for r^[-m, w],
N^N*' for re[-w,w-l], and N^=2*^ Clearly each TotN, admits a finite
filtration with acyclic subquotients and hence is acyclic. Since we have

Tot N ̂  Tot lim N, ̂  lim Tot N,,

the assertion follows. Similarly, to prove that totN is acyclic, we consider the quotients
Q, of N, w^l , with Q^=0 for r^[-w,m], Q^=N^ for r e [ -w+l ,m] and

Q^,-m^y,-m+i ^ above, each totQ^ is acyclic and we have

tot N ̂  tot lim Q, ̂  lim tot Q,.

Moreover for each m ̂  1, the components of the canonical morphism

An: totQ^i^totQ,

are surjective. Therefore, p^ also induces surjections onto the groups

B^totQ^Z^totQ,, neZ.

By the Mittag-Leffer-criterion [8], Om, 13.1, totN is acyclic

3 .4. ADJUSTING LIMITS

Let P' be a DG ^-module and

F o C = F ^ c = . . . c = F ; c = . . . c P /

a filtration satisfying (Fl) and (F2). Suppose that for each p^_ 1 a DG module Qp and
a homotopy equivalence Fp/Fp_^ ^> Qp are given.

LEMMA. — The DG module P' is homotopy equivalent to a DG module P admitting a

filtration ¥ p satisfying (Fl) and (F2) and such that F^/Fp_i is isomorphic to Qp in
 <^^,

V^

Proof. — We will inductively construct a sequence

EO^I^ • • • ^ p ^ ' • '

and a sequence of homotopy equivalences J p : ¥ p -> Fp such that the squares

FP-I^I

fA i/p+i
Fp-F^i
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are commutative (in J'fjaf), the sequence ¥ p satisfies (F2) and Fp/Fp_^ -> Qp in ^j^, ̂  p.

Of course, we put Fo=Qo and let /o:Fo->Fo be the given homotopy equival-
ence. Suppose that the construction has been completed for all p < n. We have

Ext^(F,/F^_i, F,_O^Ext^(Q,, F,_Q,

where Ext<^ denotes classes of extensions in the exact category ^W (2.2). We choose
a conflation

Fn-l-Fn-Q.

whose class corresponds to that of the given extension of F^/F^_i by F^_^. Then we
have a commutative diagram

Fn-l-F^Fn/Fn-l-Fn-im

/n-1^ i i/.-l[l]

Fn-i-F^ Q, -F^Jl]

We choose J^ so as to fit into the diagram. Now let P be the union of the Fp. Using
the sequence (^) of 3.1 we get triangles

@F^®F^P'-S@F,
p6 Z q e Z peZ

®F^©F^P-S@F^.
peZ g e Z peZ

The fp yield a commutative square

CF^CF,
peZ _ 4 eZ

ai iF

@F^©F,
pe Z ^ eZ

where a and & are homotopy equivalences. Using axiom TR3 [23], Ch. I, § 1, and the
five lemma we see that P is homotopy equivalent to P\

4. Derived categories and stable categories

4 . 1 . DERIVED CATEGORIES

Let ^ be a small DG category. Let S be the class of quasi-isomorphisms of ^s^

(i.e. morphisms 7such that H*^is invertible). By definition [II], Ch. VI, 10, the derived

category of ^ is the localization ^^^(JfjOP'"1] [23]. It follows from theorem 3.1
that the canonical functor Jfj2/ -> Qs^ induces an equivalence Jfp ̂  -> Q)s^. If ^ is
concentrated in degree 0, 2^ identifies with the unbounded derived category of the
category of j^°-modules. As in the case of the derived category of an exact category,
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one constructs [7], 12.3 a functor which completes the images in Q)^ ofpointwise short
exact sequences of ̂ ^ into triangles.

Since (infinite) direct sums of acyclic modules are acyclic, Q)s^ has direct sums, and
the canonical functors ^s^ -> Jfc^ -> Q)^ commute with direct sums.

4 . 2. SMALL OBJECTS AND GENERATORS

Let ^ be a small DG category and ^T a ^-linear triangulated category with infinite
direct sums. An object X e ^T is small if y (X, ?) commutes with (infinite) direct
sums. By the five lemma, if two vertices of a triangle of ^ are small, then so is the
third one. Each A" is small in 2^'. Indeed, let (M^),gi be a family of modules and
Ae^. Then

(^)(A\ @M,) ̂  H° ®M,(A) ̂  ©H^A) ̂  @(^)(A\ M,).
l 6 l

Let ^p^/ be the smallest strictly (= closed under isomorphisms) full triangulated subcate-
gory of J ^ p S / containing the A", Ae^.

A set °£ ̂ y is a set of generators if ^T coincides with its smallest strictly full
triangulated subcategory containing °£ and closed under direct sums. It follows from
the sequence (^) of 3.1 that the A", Ae^, form a set of generators for ^W.

Let F, F ' : ^ ^ - > ^ ~ be two fc-linear S-functors commuting with direct sums and
[JL : F -> P ' a morphism of S-functors [14].

LEMMA. — (a) The restriction of¥ to J^j^ is fully faithful iff¥ induces bijections

(Qf^)(A\ B" [n])->^~(FA\ FBA
 [n\)

for all A, Beja^, neZ.

(b) F is fully faithful ifY\^\^ is fully faithful and FAA is small for each Aej^.

(c) F is an equivalence iff F | J'f^ ̂  is fully faithful and the FA A, A e ja^, form a set of

small generators for y'.

(d) The morphism a: F -> F' is invertible iff[iA^ is invertible for each Aej^.

Proof. — (a) results from "devissage" (cf. e.g. [9], 10.10).

(b) Let Aej^. By the five lemma, the modules M such that the map

(^^)(A\ M)->^'(PA
A
, FM)

is bijective form a strictly full triangulated subcategory of Q)^. It contains all the
generators B^ Bej^, and is closed under infinite direct sums (since both. A" and FA^
are small and F commutes with infinite direct sums). This subcategory therefore
coincides with Q)^. The same argument shows that for fixed M e Q^, the map

(^0(L,M)^^T(FL,FM)

is bijective for each L e 2^.
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(c) is now clear.

(fif) The DG modules M with invertible ^ M form a strictly full triangulated subcategory
of Q)^ which moreover is closed under infinite direct sums. This subcategory equals
Q)s^ iff it contains the A A , A e j^, as these form a set of generators for Q)s^.

4.3. STABLE CATEGORIES

Let € be a fe-linear Frobenius category [9] with (infinite) direct sums. Since ^ has
enough injectives, it is clear that direct sums of conflations (= admissible short exact
sequences) of ^ are conflations. Moreover, direct sums of injectives (= projectives in
<f) are injective. In particular, the associated stable category ^ is a triangulated category
with infinite direct sums. Suppose that ^ admits a set of small generators ̂ c^.

THEOREM (cf. [5], Ex. 5.3 H). - There is a DG category ^ and an ^-equivalence

G: ̂  -> Q)s^ giving rise to an equivalence between 3C c= ^ and the full subcategory of Q)^

formed by the free modules A A , A e ̂ .

Proof. - Let <? be the category of acyclic [14], 1.5, differential complexes

P = ( . . . -^P^P"-1-^ . . . ) , neZ

with projective components P"^. Endow <? with the pointwise split short exact
sequences. Then <? is a Frobenius category and it is easy to see that the functor

Pi->Z°P induces an S-equivalence

G % , /p
i • vt

- ~^
 0

-'

For each Xe^, choose Xe^ with Z°X ̂  X. Let ^ be the DG category whose objects

are the X and whose morphism space are

^(X,Y)^^w(X,Y),

where for P, Q e <?, the DG ^-module ^om (P, Q) has the components

n^^Q"^)' nez
^

p e Z

and the differential given by ^(/p)=(^o/p-(- l)"/^1
 °d). Note that

<| (P, S" Q) ̂  H" ̂ om (P, Q).

It is clear that the composition of the exact functor

<? -> ̂ ^, P h^ (X \-> ^om (X, P))

with the canonical projection ^W -> Q)^ vanishes on projectives of <? (= null-homotopic

complexes in <?) and hence induces an S-functor

. G^: f -^ 0)^.
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For XeSt the module G^X is isomorphic to X", the free module associated with
Xeja^. If Pf, ;'el, is a family in <? and Xe^, the ^-th homology of the morphism

^om (X, P,) -> ^fom (X, @pi)

identifies with

^(X.S^^X.^P,),

which is bijective since X is small in <?. Hence G^ commutes with direct sums. We
have already seen that G^ induces bijections

<| (X, S" Y) ̂  H" ̂ om (X, T) ̂  ITW (X, Y) ̂  (^jaQ (G^ X, S" G^ Y),

X,Yel1, neZ.

By the argument of 4.2 (ft), we conclude that G^ is fully faithful. The essential image
of G2 contains the generators A\ Ae^, of 2^. So G2 is essentially surjective. We
let G be the composition of G^ with an S-quasi-inverse of G^.

5. Small objects

Let ^ be a small DG category. Each free module A", AGJ^, is small in ^ja^, and
so are the objects of the smallest strictly full triangulated subcategory of 2^ containing
the A^ Ae^, and closed under forming direct summands. RaveneFs ideas [18] imply
that this subcategory coincides with the full subcategory of small objects of Qs/. In
5.3, we give A. Neeman's proof [17], 2.2, of RaveneFs result.

5.1. HOMOTOPY LIMITS AND SMALL OBJECTS

Let ^~ be a triangulated category with (infinite) sums. Let

fo fi fp
X o ^ X , ^ . . . X ^ 4 x ^ ^ . . . , T^N

be a sequence of morphisms of y ' . Let there be given a homotopy limit of the sequence,
L e. an object X with morphisms v|/p: Xp -> X fitting into a triangle

©x^@X^X-S@x,,

where 0 is defined as in 3.1 and ^F has the components \|/^. Note that a homotopy
limit is unique up to non-unique isomorphism.

Let Me^~ be small. Then ^"(M, ?) commutes with direct sums and thus transforms
the above triangle into the long exact sequence

. . . ̂  ®^(M, X^@^-(M, X^^M, X) ̂  . . .
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It is easy to see that (S 0)^ is injective. We therefore have an isomorphism

lim ̂  (M, Xp) ̂  Cok 0^ ̂  ̂  (M, X).

5 . 2. BROWN'S REPRESENTABILITY THEOREM

Keep the hypotheses of 5.1 and assume that ^ admits a set of small generators

SC. For completeness we include a proof of the following

THEOREM [3]. - A cohomological functor F: ̂  -^ (^ b)^ is representable if fit commutes

with direct sums.

Remark. - More precisely, the proof will show that each such F is represented by

the homotopy limit of a sequence

Xo^Xi^ . . . ^Xp^Xp^,^ . . . , ^eN,

where Xo as well as the cone (= third corner of a triangle) over each/^ is an (infinite)
sum of objects S"X, Xe^, neZ. In particular, each Me^~ is the homotopy limit of

such a sequence, as we see by taking F=^"(?, M).

proof. - We have to prove that the condition is sufficient. Let ^+ be the class of
direct sums of objects S"X, ^eZ, Xe^. For each Me^T put M" =^(M, ?). Since

^ is a set, there is an Xo e ̂ + and a morphism KQ : Xo -> F inducing a surjection

Xo^X^FS^

for all Xe^,neZ. We will inductively construct a sequence

X o ^ X i ^ . . . -^X^X^i^ . . . , ^eN,

and morphism ^+i:X;+i -> F such that np+ifp=^p' Suppose that for some p^Q

we have constructed Xp and Kp. Choose Z^e^ admitting a morphism pp:Zp->Xp

which induces a surjection
Z^X^KerTi^X)

for all X e J', ^ e Z. Define Xp +1 by the triangle

z^x^x^-sz,.

Since we have an exact sequence

FZ^FX^FX,^
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and by definition K p p p = 0 , we can choose Tip+i : X p + ^ - > F such that i^p+ifp =7ip.
Define X^ by the triangle

@x^©x^x^s©x,,
p e N 4 e N p e N

where 0 has the components

[1-^ can -
X,———^X,@X^,———>@X,.

g e N

Since F: ^T -> (^ b)°^ commutes with direct sums, it takes sums of ^~ to products
of s^ b. Thus we have an exact sequence

nFx^ npx^Fx,,
p e N 4 e N

which shows that there is a morphism n^ :X^ -> F such that K^^q =Kq for all ^eN.
By an easy diagram chase we see that n^ induces an isomorphism

^'(S»X,XJ^FS"X

for all XG^, neZ. Since SC generates y , we can conclude that n^ is an isomorphism.

5.3. SMALL OBJECTS

Keep the hypotheses of 5.2. If ^ and V are classes of objects of ^~, we denote by
^ ^V the class of objects X occuring in a triangle

u -> x -> v -^ su

with Ue^, VeY^. The octahedral axiom implies that the operation ^ is associative.
The objects of ^ ^ °K ^ . . . ̂  °£ (n factors) are called extensions of length n of objects of

^.

The following theorem and its proof can be found in [17], 2.2

THEOREM ([18], [17]). — Each small object of^~ is a direct summand of an extension of

objects S"X, Xe^, neZ.

Remarks. — (a) We will of course apply the theorem to the case where ^~ is the
derived category of a DG algebra ^ and where °K consists of the free modules A^
Ae^.

(b) One can adapt the proof of [19], 6.3 to show that, if ^ is a negative DG category,
i.e. ja^(A, B)"=0 for all ^>0, A, Beja^, then each small object of Q)s^ is an extension
of ^ja^-direct summands of finite sums of free modules A^ Aeja^.

Proof [17]. — Let M be a small object of ^ ' . Choose a sequence

/o fp
Xo^X^...^->X^-^.. . , pe^
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as in remark 5.2. By 5.1 we have an isomorphism

lim y (M, Xp) ^> y (M, M).

In particular, the identity of M factors through some Xp, which means that M is a direct
summand of Xp. Now Xp is an extension of sums of objects S"X, Xe-^f, neZ. So we
can apply the following lemma to Z' = 0 and Z = X to obtain the commutative square

M'-. M
I I
0 -̂ ,

where the cone on the first line is an extension M" of objects S"X, Xe^f, neZ. Since
M -> Xp is a (split) monomorphism, the morphism M7

 -> M vanishes and thus M is a
direct summand of M".

LEMMA [17], 2.3. — Let M e ̂ ~ be small and let c: Z' —> Z be a morphism whose mapping

cone is an extension of (infinite) sums of objects S"X, Xe^, neZ. Then each diagram

M
I

Z'^Z

may be completed to a commutative square

M'-.M

I I

T ^Z

such that the cone over b is an extension of objects S"X, Xe^, neZ.

Proof. — By assumption the cone Z" over c is an extension of sums of objects S"X,
Xe^, neZ. We proceed by induction on the length / of Z". If we have /=!, then
Z" is itself a sum of objects S"X, XG^", ne^. By the smallness of M, the composition
M -> Z -> Z" factors through a finite subsum M" cZ". We find the required square by
completing

M-^M"

I I

z'^z -. z"->sz'

to a morphism of triangles
b

M ->M-^M" ->SM'

I I I I .

z' -> z -. z" -> sz'

If we have /> 1, then Z" occurs in a triangle

^-iQ —^ ^-i —^ \ —^ ~ 0
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where both, Z'Q and Z'/, are of length < /. By forming an octahedron over

Z -. Z" -, T[

we see that c is the composition of two morphisms CQ and c^ whose cones are Z'Q

and Z'/. By the induction hypothesis we have a commutative diagram

&o &i
M' ->Mi -^M
i i L

^•O c!

T -. Zi -̂  Z

where the cones of &o and &i are extensions of objects of °£. By the octahedral axiom
the same holds for b=b^bo.

6. Standard functors

6 . 1 . HOM AND TENSOR

Let s/ and ^ be small DG categories. The tensor product s/(x)^ is the DG category
whose objects are the pairs (A, B) of objects A e j^, B e ̂ , and whose morphism spaces
are

(J^®^)((A, B), (A', B^^A, A7)®^, B').

The composition of j/(x)^ is given by the formula

(/w) (/®^)= (- ir r f®g' g
for/e^(A, A^ and ^^^(B', B")^.

Let X be an ^/-^-bimodule, i.e. a module over ja^®^015. It gives rise to a pair of
adjoint DG functors

Dif^

TxtiHx

Dif^

which are defined as follows

(Hx M) (B) = (Dif 0 (X (?, B), M)

(TxN)(A)=Cok( (+) NC®^(B,C)®X(A,B)^ ® NB®X(A, B)),
B,Ce^ Be^

where v (n®f®x) = (N n) (f)®x- n^)X (A, /) (x). Observe that for each B e ̂  we have
TxBA ^>X(?, B) since

(Dif ̂  (Tx B A , M) = (Dif ^) (B A , H^ M) = (H^ M) (B) = (Dif j^) (X (?, B), M)

for each M e Dif s^. For brevity, we put X® = X (?, B).
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The functors Hx and Tx induce a pair of adjoint functors between e^W and J'f^
which will also be denoted by Hx and Tx. We denote by LTx the left derived functor

of Tx, L e. the composition

TX
Q)^ -^ ̂ ^ -> ^s^ -> Q)^, NM.TX;?N.

Observe that LTx commutes with direct sums since p and Tx do.

LEMMA. — (a) LTx is an equivalence iff the morphisms ^(B, C) -> (Dif jaf) (X®, X°)
induce isomorphisms in homology, V B, C e ̂ , and the X®, B e ̂ , /orw a set of small

generators for Q)s^.

(b) A morphism X -> X' of s^-^-bimodules is a quasi-isomorphism iff the induced morph-

ism L Tx —> L Tx' is invertible.

(c) Suppose that X has property (P) over ja^®^015. If ^ is k-flat, then Tx preserves

acyclicity. If^ is k-projective^ then Tx preserves property (P). Ifk is afield then TxN
has property (P) for each DG ^-module N.

Proof. — (a) follows from 4.2(c), and (Z?) from 4.2 (W). It suffices to prove (c)
for the case where X==(A', By for some (A\ B7)^®^015. Then we have
TxN=N(B r)®fcJ^(A /, ?). So the first two assertions are clear. To prove the last one,
we fix an acyclic DG ja^-module M and observe that

(Dif ^) (Tx N, M) ̂  (Dif k) (N (B'), M (AQ).

Since A: is a field, M(A') is even null-homotopic. Hence we have (J'fjaQ(TxN, M)=0,
and the assertion follows from 3.1.

Example. - Let F: ̂  -> ̂  be a DG functor and put X (A, B) = jaf (A, FB) for A e j^,
B e ̂ . Then clearly X® = (FB)A. Hence L Tx is an equivalence iff H* F: H* ^ -> H* ̂
is an equivalence.

6 . 2. RIGHT PROJECTIVE BIMODULES

We keep the assumptions of 6.1 and assume in addition that X® has property (P) for
eachBe^. Since

(Hx M) (B) = (Dif jaQ (X®, M),

it follows from theorem 3.1 that HxM is acyclic for each acyclic M. The induced
functor 2^ -> Q)^ will be denoted by R Hx. We have

(JfjaQ (Tx P, M) = (^f^) (P, Hx M) = 0

whenever P has property (P) and M is acyclic. By 3.1 we conclude that Tx preserves
property (P). Using this we see that

(^jaQ (L Tx N, M) = (^0 (Tx7? N, M) = (^f^) (p N, Hx M) = (Q)SS) (N, R Hx M),

i. e. that R Hx is a right adjoint of L Tx.
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Now define a ^-j^-module X1 by

X^B, A^^Dif^Q^, A").

For each Me Dif ^, we have a canonical morphism T^M -> HxM.

LEMMA. - (a) The morphism LTx^-^RHxM is invertible for all Me^c^. It is

invertible for all M if f the X® are small in 2^, VBe^.

(b) ;/LTx: 2^ -> Q)^ is an equivalence, its quasi-inverse is isomorphic to LTx1.

Proof. — (a) The morphism is clearly invertible for free M. By "devissage" it is

invertible for MeJ^j^. Since Hx commutes with infinite direct sums iff the X® are

small, the second assertion follows from 4.2 (d).

(b) If LTx is an equivalence then so is RHx. In particular, RHx commutes with

direct sums. The assertion now follows from (a) and 4.2 (d).

Example. — Keep the notations of example 6.1. If LTx is an equivalence, a quasi-

inverse is given by L Tx1'.

6.3. FLAT TARGETS

We keep the assumptions of 6.1 and assume in addition that ^ is k-flat, i. e. s^ (A, B)

is a flat ^-module, VA, Be^. Let pX be a P-resolution of X over j^®^015. Note
that for Be^ the ^-module (^X)" need not have property (P) [unless ^(B', B) is

project! ve over k for each B' e SS\. In particular, the canonical morphism p (X°) -> (p X)g

of e^W need not be a quasi-isomorphism.

LEMMA. - (a) We have LTxN^T^xN for each Ne^.

(b) Let ^ be another DG category and Y a ^-^-bimodule. We have

L Tx L TY -> L Tz, where Z = T^,x Y.

Proof. — {a) By 6.1 b) we have L T^x ̂  L Tx. So we only have to show that
LT^xN ^> T^xN for each Ne^^. It is enough to check that TpxN is acyclic for each

acyclic N. Now T^x N inherits from p X a complete filtration which splits in ^^ and

has subquotients TpN, where Q is relative projective. So it is enough to show that

Tp N is acyclic for each F = (A7, B')A, (A', B') e ̂ op®^. But

(TF N) (A) ̂  ̂  (A, A')®N (B').

(b) follows from (a) and the fact that T^xTy -
> T^ as functors Dif ^ -> Dif ^ ' .
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6 . 4. TENSOR FUNCTORS AND DG FUNCTORS

Let ^ and ^ be small DG categories. Let F: Dif ^ -> Dif ^ be an arbitrary DG
functor. Its left derived functor is the composition

F
2^ -> J^p^-> Jfj^ -^ 2^, N^Fj^N.

Let X be the bimodule X (A, B) = (FB A) (A) = (Dif 0 (A A , FB A). For each ^-module
N, the canonical morphism

NB ̂  (Dif )̂ (B A , N) -̂  (Dif jaQ (FB A , FN) = (Dif jaQ (X (?, B), FN) = (Hx FN) (B)

comes from a natural morphism N-^HxFN. By adjunction, we obtain T^N-^FN.
The induced morphism

LTxN-^LFN

is clearly invertible for N = B A
 [n], Be^, neZ. This implies the first assertion of the

following lemma. The second one follows from lemma 4.2.

LEMMA. — The canonical morphism

LTxN-^LFN

is invertible for each NeJ'f^. It is invertible for all Ne^^ ^LF commutes with

direct sums.

6 . 5 . EXAMPLE: LIE ALGEBRA COHOMOLOGY

Let R be a ^-algebra with 1 and L a (k, R)-Lie algebra [21], § 2, i. e. L is a Lie algebra
over R, and R is endowed with a left L-module structure such that

[X,rY]=(Xr)Y+r[X,Y]

for all X, Y e L, r e R. In addition, we assume that L is projective as an R-module. For
example this holds for the (R, C°° (M))-Lie algebra formed by the 0°°-vector fields on a
C°°-manifold M [21, § 4]. Let the Lie algebra Z be the semi-direct product of L by R
and let A be the "universal algebra of differential operators generated by R and L":
A is an associative fc-algebra endowed with a A:-linear morphism i: Z -> A which is
universal for the properties

i ([U, V]) = [i (U), i (V)] and i (r U) = i (r) i (U)

for all U, VeZ, reR. The canonical Z-action on R uniquely extends to an A-module
structure. Let s denote the map A -> R, a \-> a. 1.
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Let E be the graded exterior R-algebra over L and let X be the differential complex
with components Xn

=A^E~
n and the differential [21], § 4

n

d(a®X, A . . . AXJ= ^ (-ly-^X^X^A . . . X , . . . AX^

+ ^ (-ly^^X,, X,]AX,A . . .X,.. . .X,. . . AX^.
j<k

The complex X together with the augmentatin e: X° -> R is a projective resolution of
the left A-module R [21], § 4. The corresponding quasi-isomorphism X -> R will also
be denoted by s.

Let B be the DG R-module (Dif A015) (X, R). We will freely make use of the
identifications

B^DifA^KX, R)=HomA(A®RE, R)=HoniR(E, R).

Endowed with the "shuffle product" B becomes a DG algebra [10], § 9: Recall that for
feW, geB\ and n=p-\-q, one puts

(/g)(X, A ... AX,)=^a,,/(X^ . . ., X^)g(X^ . . ., X,̂ ),

where a^ is the parity of the permutation

Ih-^'i, . . .,^^^,/?+1^7i, . . .,7?+^7<p

and the sum ranges over all tuples ;', j with ;\ < . . . < ̂ , j\<. . . <j\ and

{ ! , . . . , ^ + ^ } = { f , , . . . , ^ } U { 7 i , . . . , 7 , } .

Let /e B^. We define a DG left B-module structure on X by putting
/. (a®Xi A . . . A X^)=0 for p>n and, with the same notations as for the shuffle product,

/(^®XiA . . . AX^)=^^,^®/(X^, . . ., X^X^A . . . AX^

for p<n and p-}-q=n. It is clear that the actions of A and B on X commute among
each other and agree on R so that X becomes an A^-B-bimodule. Note that XjA01"
has property (P) (3.1).

LEMMA. - (a) The functors L Tx: ̂  B -> Q) A015
 and R Hx induce quasi-inverse ^-equiva-

lences between ̂ B and the full triangulated subcategory of^A^ generated by R.

(b) If L is finitely generated over R, then LTx^B-^A015
 is fully faithful and

RHx^LTxL

Proof. - (a) By 4.2 (a) we have to check that the morphism of complexes

^: B -> (DifA°P) (X, X)

mapping/to left multiplication by/is a quasi-isomorphism. By definition the composi-
tion of X with

e^ : (Dif A^) (X, X) -. (Dif A015) (X, R)
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is the identity. Since s: X -> R is a quasi-isomorphism and X has property (P), £^ is a
quasi-isomorphism. Hence so is X.

(b) If L is finitely generated, X\A
OP is a bounded complex of finitely generated

projective A-modules. In particular, X is small in ^A015. The assertion now follows

from 4.2 (b) and 6.2 (^).

6 . 6. EXAMPLE: BAR RESOLUTION

Let ^ be a small DG category. Let Y be the bar resolution [4], IX, § 6 of j^, i. e.

the complex of ^-j^-bimodules with Y(A, B)"=0 for n>0 and

Y-"(A, C)= @ j^(Bo, C)®^(Bi, Bo)®. . .®^(B,, B^_,)®^(A, B^), ^0
BO, . . . , B«

endowed with the differential d of degree 1 with

rf(A)®^i®. . .00^,00^+1)= S (-l)^o®- - • ®^^+i®. . .®^+i
i=0

Let Y be the total module of T (c/. the proof of 3.1). Define I to be the s^-s^-

bimodule I (A, B)==^(A, B). By [4], IX, § 6, we have a quasi-isomorphism s :Y^I

induced by the composition map

The maps

given by

© ̂  (Bo, C)®^ (A, Bo) ̂  ̂  (A, C).
BO

Y-"-. @ Y-^Y-^
p+q=n

(3o®. • .®^n+l^(^0®- • .®^®1®1®^+1®. • .®^n+l)

yield a morphism
A: Y-^Y°Y,

where by definition ?°Y=TY. We have commutative diagrams

A A A Y o A

Y-,Y°Y Y->Y°Y Y-^Y°Y——^Y°(Y°Y)
I I | Y o e || | e o Y || [can
I I ^ I I ^ I I ^

can can A A o Y

Y-> Y°I Y^ I°Y Y-^Y°Y——^(Y°Y)°Y.

Now let ^ be a set of DG ^-modules. The above diagrams ensure that we can make
^ into a DG category by requiring that

^ (L, M) ̂  (Dif j3Q (Y ° L, M),

that the identity If corresponds to the composition

e o L can

Y°L——>1°L——>L,
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and that the composition of two morphisms of ^ coming from g:Y°L->M and
/: Y ° M -> N is given by the composition

A o L can Y o g ? f

Y°L——^(Y°Y)oL——^Yo(Y°L)——^Y°M-^N.

We then have a canonical ja^-^-bimodule X (A, L): = (Y ° L) (A), where the action of
g : Y ° L -> M is given by the composition

A o L can Y o fit

Y°L——^(Y°Y)°L——^Y°(Y°Y)——^Y°M.

Now suppose that k is afield. Then each Y" is relatively projective over e^®^015. Since
Y admits the filtration V

p
= @ Y", it has property (P) over ja^OO^015. Using 6.1 (b)

n^ —p

and (c) we infer that the composition T|

e o M can

Y°M——>1-M——>M

is a P-resolution for each DG ja^-module M. Therefore the morphism

T|^: (Dif jaQ (Y ° L, Y ° M) -> (Dif ĵ ) (Y ° L, M), L, M e ̂ ,

is a quasi-isomorphism. And so is the canonical morphism

^ (L, M) -> (Dif jaQ (X1-, X^ = (Diff j^) (Y ° L, Y ° M)

since it has r|^ as a left inverse. Using 4.2 we infer the

LEMMA. - (a) The restriction o/LT^ to ^\^ is fully faithful.

(b) If each Le^ is small in 2^, then LTx is fully faithful.

(c) LTx is an equivalence if f the objects of ̂  form a set of small generators for Q)^.

7. Quasi-functors and lifts

7.1. QUASI-FUNCTORS

Let s^ and ^ be small DG categories. Denote by ^ the full subcategory of Q)s^

whose objects are the A^ Aeja^, and by Zj^ the full subcategory whose objects are the
A" [n], neZ, Ae^. Note that we have

(Z^)(AA
 [n], B^ [w])=HW-"^(A, B)

for all A, Bej^, n, meZ.

Let X be an jaf-^-bimodule. By definition, X is a quasi-functor 31 -> sf if it satisfies
the conditions of the following lemma. Note that in this case LTx gives rise to a
functor Z ̂  -> Z ̂  and hence to a functor H* ̂  -> H* s/.
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LEMMA. — The following are equivalent

(i) LTx gives rise to a functor ^ -> ̂ .

(ii) For each Be^ the functor (^af)(?, X®) is representable by an object of ̂ .

(iii) For each Be^ there is an Ae^ and an element x^eZ°X(A, B) ^MC/I that for each

A e^ the morphism
^ (A7, A) -^ X (A', B), /^ X (/, B) (xg)

induces isomorphisms in homology.

Proof. — Exercise.

Suppose for example that ^ and ^ are concentrated in degree 0. Then ^° is
equivalent to ̂ . Thus by (i), a quasi-functor X yields a functor P°:^

0
 -> j^°; hence a

functor F: ̂  - .̂ It is easy to see that in Q) (j^®^015), X is isomorphic to the bimodule

(A, B)h-^(A, FB).

7 . 2. QUASI-EQUIVALENCES

Keep the hypotheses of 7.1. By definition, X is a quasi-equivalence if the conditions
of the following lemma hold. In this case ^ is quasi-equivalent to ^.

LEMMA. — The following are equivalent

(i) LTx is an equivalence giving rise to an equivalence ^ -> s^.

(ii) L Tx gives rise to equivalences Z ̂  -» Z ̂  and ^ -> ̂ .

(iii) There is a subset DCJ^X^ projecting onto ^ as well as onto ^, and for each

(A, B)eD there is an element x^eZ°X(A, B) such that the morphisms

^ (A, A) ̂  X (A\ B), /^ X (/, B) (XAB)

^ (B, B7) ̂  X (A, B7), g ̂  X (A, ^) (XAB)

induce isomorphisms in homology for each A e^ / , B' e ̂ .

Proof. — Exercise.

Example. - Each DG functor F: ̂  -^ ̂  inducing an equivalence H* F :H* ̂  -> H* j^
yields a quasi-equivalence X(A, B)=J^(A, FB). If ^ and ^ are concentrated in

degree 0, each quasi-equivalence comes from an equivalence F: ̂  -> ̂ .

Remark. - If k is a field, "quasi-equivalence" is an equivalence relation (6.1 c and

6.2b imply reflexivity; 6.3 b implies transitivity).

7.3. LIFTS

Let ^ be a small DG category. Let W^-3)^ be a full small subcategory and
Z^c^j^ the full subcategory whose objects are the U|/z], Ue^, ^eZ. A lift of ^ is

a DG category ^ together with an j^-^-bimodule X such that LTx gives rise to
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equivalences Z ̂  ̂  Z ̂  and ^^>%.

Z^ ^ Z^

f I
LTx

^———^J^.

Examples. - With the notations of 6.5, (B, X) is a lift of ^{R}. - If k is a
field, any ^c^j^ may be lifted using the bar resolution of 6.6.

The definition of a lift implies in particular that LTx induces an equivalence from
Jf^ onto the triangulated subcategory of ^W generated by ^ (4.2 a). If X" has
property (P) for each Be^, a quasi-inverse is induced by RHx. Indeed, if Me^f^,
we have

(^^)(S"BA ,RHxLTxM)^(^^)(LTxS"BA ,LTxM)^(^^)(SnBA ,M)

since LTx is fully faithful on ̂ ^. This means that RHxLTxM <- M is invertible.

We see from 6.1 that L Tx is itself an equivalence iff the objects of ^ form a system
of small generators for Q)s^'.

If % is given, we can always construct a standard lift by taking ^ to be the full
subcategory of Dif ^ formed by chosen objects p\J, Ue^, and X to be the bimodule

(A,/?U)^(j9U)(A), /?Ue^, Ae^.

Now let (^, X) be any lift of ̂  such that X® has property (P) for each B e^. Let ^
be a DG category and F: Dif ^ -> Dif ^ a DG functor such that L F: W -> Q)s^ induces
a functor ^ -> ̂ .

^ ^ ̂

i" T
LTx

2^———>Q^ ^- ̂

T T
^ -^ %

LEMMA. - P^Y(B, Q^HxFC^B).

(^) LTy induces a functor ^ ->> ̂ ; /z^c^ Y ^ ^ quasi-functor. It is a quasi-equivalence

;VLF induces an equivalence Z(^7 -> Z ̂ .

(Z?) There is a canonical morphism

LTxLTyM-^LFM,

which is invertible for Me^f^. // is invertible for arbitrary MeW iff^LF commutes

with direct sums.

(c) If (^, Z) ^ ^ lift of ̂  and F=T^, r/?^ Y is a quasi-equivalence ^ -> 3S and we

have LTxLTy^LTz. If moreover Zc has property (P) for each Ce^, then

R HY R Hx ̂  R HZ*
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Remark. - In 10.3 we will need the following fact. Suppose that F, Tx and Ty all
preserve acyclicity so that their derived functors are isomorphic to the functors induced
by them. Then the morphism of (b) is produced by the composition

T^a OF

^T^Y———^xl^X17———>¥

which is even defined as a morphism of DG functors. Here a: Ty -> Hx F denotes the
canonical morphism constructed in 6.4, and <D the adjunction morphism.

Proof. - (a) Consider the functor G=Hx°F:Dif^-^Dif^. We have
LG=RHxLF. So LG induces a functor (

€ - ^ ^ . By definition we have
Y(B, Q^GC^CB). Hence we have a morphism Ty-^G such that LTyM-^LGM
is invertible for each Me ̂ ^(6.4). So LTy induces a functor (

€ _ ^ ^ . We have

morphisms
LTxLTy->LTxLG=LTxRHxLF-^LF

which are invertible on e^f^. Thus LTx induces an equivalence Z^->Z^ iff LF
induces an equivalence Z ̂  -> Z (!

U. The second assertion now follows from 7.2.

(b) follows from the proof of (a) and 4.2 (d).

The first two assertions of (c) are immediate form (a) and (b). The last assertion is
clear since if L Ty is an equivalence and L Tx L Ty -> L T^, then R Hy R Hx is right

adjoint to LT^.

7.4. ON THE UNICITY OF LIFTS

Keep the hypotheses of 7.3 and assume in addition that ^ is ^-flat. Since X® has
property (P), VBe^, we have a well defined pair of adjoint functors

Hx: ^(J^®^)^^^®^), Zh-^HxZ

Tx: ^(^^^^(J^®^015), Y^Tx^Z

LEMMA. - For each Ye^^®^) w^ have

L Tx L TY —
> L T^,

w/^r^ Z=TxY. Moreover Tx induces an equivalence between the full subcategories

{ Y: L TY gives rise to a functor ^ -. ̂  } c= Q) (^®^°P)

and {Z: L T^ gives rise to a functor ^ -> ̂  ] c= Q) (^®^°P).

Proof. - We have T^pY ^ T^Y by 6.1 (b) and Tpx7?Y ^> TpxY by the ^-flatness
of ^ (6.3^). So we have TxY^TpxY. By 6.3 (b) this implies the first assertion.
Since LTx gives rise to a functor ^-^, we infer that Tx induces indeed a functor
between the given subcategories. Suppose that LTy gives rise to a functor ^->^.

We have to show that the canonical morphism pV -^H^^pY of Jf(^(x)^°P) is a

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



92 B. KELLER

quasi-isomorphism. But we have already seen that HxTx7?Y^>HxTpxY, and on the
other hand, for each B e ̂ , we have

(P Y)B ̂  YB ̂  Hx Tx,p (Ye) ̂  Hx T^ YB,

where we use 6.3 (a) for the third isomorphism and the fact that Yg e ̂  for the second
one. Now suppose that LT^ gives rise to a functor (

€ ^ ^ . We have to show that
the canonical morphism T^p (Hx Z) -» Z of ̂  (^(x)^015) is invertible. As above we have
T^p (Hx Z) ̂  T^x Hx Z and

^c^^xP HX ̂ c <- Tpx HX ̂ o

where we use Z^ e ̂  for the first isomorphism and 6.3 (a) for the second one.

8. Application: Derived equivalences

8.1. ARBITRARY TARGETS

Let ^ and ^ be small DG categories.

THEOREM. — Assertion (i) implies (ii), and (ii) implies (iii).

(i) 77^ is a DG /M^c^r H: Dif ^ ̂  Dif ^ such that L H: W -> Q)s^ is an equiva-

lence.

(ii) ^ is quasi-equivalent to a full DG subcategory ^ of Dif ^ whose objects have

property (P) and form a set of small generators for Q)s^.

(iii) There are a DG category ^ and DG functors

Dif ^ -^ Dif ̂  -. Dif j^

^MC/Z that L G <2^ L F are equivalences.

Proof. — (i) implies (ii): By 6.4 we have LH ^>LT^ for some e^-^-bimodule Z. So
(^, Z) is a lift of ^ = { L H C A :Ce^}. Take ^ to be a standard lift of ^. The
assertion then follows from 7.3 (c) and 4.2 (c).

(ii) implies (iii): By 7.2 we have an equivalence LTx:^^-^^ and by 7.3 an
equivalence L F: 2^ —> Q)s^.

8.2. FLAT TARGETS

Let ^ and ^ be small DG categories and assume that ^ is fc-flat.

THEOREM. — The following are equivalent

(i) There is an ^/-^-bimodule X such that LTx: Q^ ->
(
^^ is an equivalence.
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(ii) ^ is quasi-equivalent of a full DG subcategory ^ of Dif ^ whose objects have

property (P) and form a set of small generators for Q)^.

Proof, - (i) implies (ii) by 8.1 Conversely, (ii) implies (i) by 8.1 (iii), 6.4 and 6.3 (b).

Remark. — Recall from section 5 that a DG module is small in Q)s^ iff it is contained
in the smallest strictly full triangulated subcategory of Q)s^ containing the free modules
and closed under forming direct summands.

9. Application: Stalk categories

9.1. MODULES OVER H° ̂

Let ^ be a small DG category. Let H°J^ (resp. T^°^) be the DG category with
the same objects as s^ and with the morphism spaces

(H° 0 (A, B) = H° ̂  (A, B), A, B e ĵ ,

viewed as DG fe-modules concentrated in degree 0 [resp.

(T^°O(A, B)=T^°^(A, B), A, Bej^,

where T ̂  ° K denotes the subcomplex C of K with C" = 0 for n > 0, C° = 7° K, and C" = K"
for n<0\. We have the obvious functors

H°^^T^0^^^.

As in example 6.1, they yield functors

LTx LTy

Q) H° ̂  <—— ̂ ° ^——>Q)^,

where X(A, B)=(H°<»(A, n B) and Y(A, B)=J^(A, iB). The functor LTx is an
equivalence iff ^ satisfies the "Toda-condition" (c/. [22])

H"^(A,B)=0, V/7<0, VA,Bej^.

In this case (example 6.2), we have a canonical functor from ^H°j^ to ^W given
simply by the composition

LTxT LTy

^H° J^ ———^ ̂ T ———> 2^.

If ja^ is fe-flat, this simplifies to

LTz

^H°^——^@j^,

where Z is the e^ - H° ̂ -bimodule T^y X1 (6.3 A).
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9.2. EQUIVALENCES

Let ̂  be a small ^-linear category. We identity ^ with a DG category concentrated in
degree 0. Let ^ be an arbitrary small DG category.

THEOREM (cf. [19], [12]). - The following are equivalent

(i) There are DG categories ^\, ̂ \ and DG functors

^ F2 FI

Dif ̂  -^ Dif j3^ -^ ̂ f -^i -^ I^if ̂

^McA ^/z^ LF^, LF^ a^fi?LF3 ar^ equivalences.

(ii) There is an ^-equivalence Q)^ —> Q)^.

(iii) ^ ^ equivalent to a full subcategory ^U of 2^ whose objects form a set of small

generators and satisfy (^<) (U, V[n])=0for all n^=0, U, Ve^.

Remark. — We refer to [19, 6.4] for more precise information in the case where ^
and ^ are rings.

Proof. - By 4.2 (c) (ii) implies (iii). To prove that (iii) implies (i), let s/^ be a
full subcategory of Dife^ consisting of chosen p\J, \Je^. Let F^=Tx where
X(A, A^)=AI (A). By 6.1, LFi is an equivalence. By the assumption on ^ we have
I-TWi (A, B)=0 for n^O and arbitrary A, Bej^i, and H°ja^ is equivalent to ^. Now
the assertion is clear from 9.1.

Using 6.3 b) and 6.4 we find the

COROLLARY (cf. [20]. - If^ is k-flat, the following are equivalent

(i) There is an ^/-^-bimodule X such that LTx: 2^ -> 2^ is an equivalence.

(ii) There is an ^-equivalence 2^ —> 2^.

(iii) ^ is equivalent to a full subcaterogy ^U of ^^ whose objects form a set of small

generators and satisfy (^0 (U, \[n])==Qfor all ̂ 0, U, Ve^.

Remark. — We refer to [20] for more precise information in the case where ^ and ^
are rings. A straightforward construction of the bimodule in this case is given in [13].

10. Application: Koszul duality for DGA categories

10.1. PRELIMINARIES

Suppose that k is a field. Define the functor D: Dif k -> Dif k by

DM=(DifA;)(M,fc),

where k is viewed as a DG ^-module concentrated in degree 0. Let ^ be a DG
^-category. For each A e ̂  we define the ^-module A v by

AV(B)=D^(A,B), Bej^.
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For each DG module M and each Aej^ we have a canonical isomorphism of DG
^-modules

(Dif 0 (M, A v) ̂  DM (A)

(p^(wh->(((pA)(w))(lA)).

In particular, we have a canonical morphism

j^(A, B)-.DD^(A, B^DA" (B)^(DifO(A\ B"),

which is a quasi-isomorphism if dim H"J^(A, B)<oo for each neZ. So in this case
the full subcategory ^v of Dif ^ formed by the A\ Ae^, is quasi-equivalent to ^ ' .

Fix AGJ^. To compute (^e^)(?, Av), we first remark that i fN is acyclic, we have

(.TjaO (N, A v) = H° DN (A) = 0.

Therefore

(^0(M, A^^O^O^M, A^^^J^XM, A^^^DMCA),

and in particular H"^ (A\ B^^f^A^ B^^ [w]). So if we define the ^-^v-
bimoduleX^ by (A, B^i-^B^A), then (ja^.XJ is a lift (7.3) o f { A V :Aej^}c=^^.

10.2. THE KOSZUL DUAL

Suppose from now on that s^ is an augmented DG category (=DGA category ) i. e.

(a) Distinct objects of ^ are non-isomorphic.

(b) For each A e ̂  a DG module A is given such that H°A (A) ̂  k and H" A (B) = 0
whenever n 7^ 0 or B 7^ A.

Now let (j^*, X) be a lift (7.3) of {A:Aej^}c:^j^. After deleting some objects
from ja^* we may (and will) assume that we have a bijection Ai—^A* between the objects
of ^ and those of ^ / * such that LTxA*A ^A for each Aej^. By 6.3)(^) we also
may (and will) assume that X has property (P) as a bimodule. Since k is a field, this
implies in particular that X(?, A*) has property (P) for each A*ej^* (6 Ac). Hence
the functors Hx and Tx both preserve acyclicity and induce a pair of adjoint functors
between Q)^^ and ̂ ^, which will also be denoted by Tx and Hx.

We make j^* into an augmented DG category by putting

A*=HxAV .

This is a good definition since indeed

H" A* (B*) ̂  (^j^*) (B* A , A* [n]) ̂  (^W*) (B* A , Hx A v
 [n])

^ W) (Tx B* A , A v
 [n]) ̂  W) (B, A v

 [n])

^HnDB(A).
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We define s / * with the A*, A*GJ^*, to be the Koszul dual of the DGA category ^
(cf. [1]). We sum up our notations in the diagram

A 2^ A"

T TxHHx I

A*A 2^ A*.

If ^ is another DGA category, a quasi-functor Y: ̂  -> ̂  is compatible with the

augmentations if Hy A ̂  B whenever Ty B A ^> A A .

By 7.3 (c) the Koszul dual is determined by the above construction up to a quasi-
equivalence compatible with the augmentation, i. e. if X' and ^' result from different
choices made in the construction, there is an ja^-j^-bimodule Y having property (P)
such that TY : ̂ ^* -> 2^' satisfies Tx- Ty ̂  Tx, Ty A* A

 ^ A * '
A and

HYA^HYH^A^HXA^A*

for each Ae^.

The Koszul dual defined in [2] is quasi-equivalent to the full subcategory of Dif ja^*
formed by the j^*" [n(A)], where n'. ̂  -> Z is a given "weight function" for ja^. Note
that the morphism spaces of this category simply identify with the shifted spaces

^ (A*, B*) [n (B) - n (A)], A, B e ̂ .

Examples. - (a) Let © be a k-Lie algebra and U(©) its universal enveloping
algebra. In the notations of 6.5 (with R=k), the Koszul dual of A=U((5) is quasi-
equivalent to B.

(b) Let V be a finite-dimensional k- vector space, DV its dual over k, A DV the exterior
algebra on DV, and SV the graded symmetric algebra on V. View A = A DV as a DG
algebra concentrated in degree 0, and B=SV as a DG algebra with the components
B"=S"V and vanishing differential. Define (commuting) right and left A-actions on
AVby

n

^*.(^A . . . A V^)= ^ (-ly-'S^Z^A . . .V,. . . A^

i = l

n

(Z^A . . . A^).-y*= ^ (-ly^^^A . . .V,. . . A^.

i= l

Endow the graded A-B-bimodule X=SV®AV with the differential

n

a: X^X^1, x^(-l)^ (^®zf)x,
1=1

where the z^, 1 ̂ i^n, form a basis ofV and (z;*) is the dual basis. Then (B, X) is a lift
of the trivial A-module k. Hence the Koszul dual of A is quasi-equivalent to B.

(c) Let V be a finite-dimensional ^-vector space, IcZ an interval and ̂  the DG
category concentrated in degree 0 whose objects are the /el and whose morphism spaces
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are the
lO^-s^v

concentrated in degree 0. For each ;el let T be the DG j^-module concentrated in

degree 0 with \{j)=k for i=j and TO^O for
 ^J-

 Let ^i be the DG category whose
objects are the symbols ;'*, iel and whose morphism spaces are the stalk complexes

^(^/^(A^DV)^-^

Let Xi be the ja^i-^i-bimodule given by

XI^/T^A-'V^S^^V

n

endowed with the differential given by left multiplication by ^ ^*00^, where the .̂,
1 = 1

l^i^n, form a basis of V and (vf) is the dual basis. Then (^i, X,) is a lift of
{T:;el}c=^j^i. So the Koszul dual of j^i is quasi-equivalent to ^i. Clearly, the

modules / v , ;el, are the unions of their finite-dimensional submodules and the functor
;A i_^v ^ ̂  equivalence. It therefore follows from the lemma on the "symmetric" case

(10.5) that the Koszul dual of ^i is quasi-equivalent to ja^i.

10.3. THE DOUBLE DUAL

The composition of Hx with the functor Tx^: ̂ ^v
 -> 2^ of 10.1 induces a functor

^v _^^A*:Aej^}c= ̂ ^*. Thus (7.3 a\ we have a quasi-functor Y: ̂  v -^ ja^**, which

is a quasi-equivalence iff the restriction of Hx:^^ -> 0'^* to the subcategory formed

by the Av [n], Ae^, ^zeZ, is fully faithful.

^

^^v -^ ^j^
Ty^ TX^HX

^J^** -̂  ^J^*

TX*

We endow ^
 v with the augmentation defined by

AV (BV )=D(DifO(A, B^^DDACB).

LEMMA. - The quasi-functor Y:^ -» ja^** is compatible with the augmentations.

Proof. - Let (^**, X^) be the chosen lift for the A*, Aej^. Recall that we
assume that X^ has property (P) as a bimodule. Fix Aej^. We have to show
that A'^HyA**. By definition HYA^^YHX^A"^. We will show that
HYHX.A^^A" by explicitly exhibiting a quasi-isomorphism. For short we write
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v (?, ?) for (Dif^X?, ? ) , . . . We have the following series of morphisms of DG
fe-modules, functorial in B v e ̂  v

( H Y H ^ A * v ) ( B V ) ^ v ( B V A , H Y H x . A * v ) ^ * ( T ^ T Y B V A , A * v )

^D^^T^TYB-^D^^HxTx.B-).

The last arrow is induced by the morphism

TX*TY -^HxTx^

of DG functors Difja^ -^Difja^* exhibited in remark 7.3. It is a quasi-isomorphism
since B^ ej^j^ (7.3 b). We continue the series of morphisms:

D^^HxTx.B-^DCTxA*-^^-)

^DCTxA*^ B^

since by construction Tx^ Bv A ^X^ (?, B v ) ^> Bv in Dif^. Now since TxA*A is
quasi-equivalent to A, we have a quasi-isomorphism

D(TxA* A ,B V ) ^D(A,B V ) .

By definition the last term is isomorphic to Av (BV).

10.4. PROPERTIES OF j3^*

Let M be a DG ja^-module and ^eN. By definition we have 5'dim M^n (resp. 7?dim
M^n, resp. zdim M^n) if there is a sequence

0 = M _ i - > M o ^ M i - ^ M 2 ^ . . . - > M ^ = M

of morphisms of Q)^ such that in each triangle

M^^M^Q,^M^[1], 0^^,

the module Q, is isomorphic to a finite direct sum of modules of the form A[n]

(resp. AA
 [n], resp. Av

 [n]\ Aeja^, neZ. The (possibly infinite) numbers xlim M, ^dim
M and z'dim M are referred to as the semi-simple, the projectile, and the infective dimension

of M, respectively.

Let v: Dif ^ -> Dif ^ be the functor defined by

(v M) (A) = D (Dif 0 (M, A A).

For example, we have vA A =A V by the definition of Av for each Aej^. We have a
natural transformation

D (Dif 0 (M, N) -> (Dif 0 (N, v M)
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which is defined as follows: Given a linear form (p on (Dif jaQ (M, N) and an
/e(Dif ^(A", N^IS^A), the associated linear form on (Difj^) (m. A") maps g to

(p(/^). Clearly this is an isomorphism for M=B^ [n], Bej^, neZ, and therefore a

quasi-isomorphism for Me^f^.

LEMMA. - (d) 7/^dim M<oo and pdim M<oo ̂  HxLvM ̂  (Lv)HxM ^ ̂ ^*.

(Z?) For ^c/? A e ̂  \ve have

(1) pdim A* ̂  ̂ dim A v, (2) ^dim A* A ^ ;dim A

(3) /dim A* ̂  ̂ dim A A , (4) ^dim A* v
 ^pdim A

Proof, a) Since ^dim M<oo, we have TxMeX^^* and M^T^N for N^HxM.
We assume that N (and hence TxN) has property (P). We have to show that

HxvTxN^vN. We write *(?,?) and (?, ?) instead of (Difj^*)(?,?) and
(Dif s/) (?, ?). We have the following series of quasi-isomorphisms functorial in A* e j^*

(HxvTxNKA^-^A*^ HxvTx^-^OxA*-, vTxN).

Since TxNe^f^ and Ne^f^*, we also have the following quasi-isomorphisms:

(TxA*A ,vTxN)^D(TxN,TxA*A)^D*(N,A*A)=(vN)(A*).

(ft) Assertions (1) and (2) are trivial since HxB^B*", Bej^, and HxA^A,

Aej^. For (3) we use that

A*^HxA V ^HxvA 7 ^ ^(Lv)HxAA

if ^dim A A < o o , and B^^LvtHxB for each Be^. For 4) we use that
A^ ^ > L v H x A ^ H x L v A if^dim A<oo and B*=HxLvB A for each Bes/.

10.5 . THREE SPECIAL CASES

We consider three cases where ^v is quasi-equivalent to ja^**, and there is a fully

faithful embedding relating Q)^ and ^j^*.

LEMMA (The "finite" case). - Suppose that 7?dimA<oo and .ydimA^oo for all

Aes/.

(a) ^dim A* v < oo and fdim A* < oo for all A* e ja^*.

(b) Tx and Hx are quasi-inverse equivalences between Q)^ and 2^\

(c) We have quasi-equivalences ^ ^ s^^ -^j^**.

Examples. - (a) The category ^i of 10.2 (c) for finite I.

(b) Let A be a finite-dimensional fe-algebra of finite global dimension all of whose
simple modules are one-dimensional. We take j^ to be the ^-linear category formed by
chosen representatives of the indecomposable projective A-modules and for each A e s^

we take A to be the head of A.
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Proof. - (a) holds by 10.4 b).

(b) Since pdim A<oo, we have Ae^^ for each Aej^. Moreover, since sdim

B A < o o , the triangulated subcategory generated by the A contains each B^ Be^.

Hence the A, A e j^, form a system of small generators for 2^ and the assertion follows
from 6.1 (a) and 6.2.

(c) Since Hx is fully faithful, ^v is quasi-equivalent to ^** (10.3). Since
.ydim A'^ < oo for all Ae^, we have

oo > dim H" A A (B) = dim H" ̂  (A, B)

for all A, Be^ so that ^ -> ̂ v is a quasi-equivalence (example 7.2).

LEMMA (The "exterior" case). - Suppose that .ydim AA < oo and .ydim A" <oo for ^//
Ae^.

(̂ ) /?dim A* < oo and zdim A* < oo for each A* e ja^*.

(&) Tx and Hx ;WMC(? quasi-inverse equivalences between ^j^* ^J ^^ smallest full

triangulated subcategory of 2s^ containing the A, Aej^.

(c) Tx1: ̂ c^ ̂  2^ is fully faithful.

(d) We have quasi-equivalences ^ ̂  ̂ v ^> ja^**.

Remark. - Part (A) yields theorem 16 of [2].

Examples. — (a) Example 10.2 (b).

(b) The category ^i of example 10.2(c).

(c) If A is a finite-dimensional algebra of arbitrary global dimension with one-dimen-
sional simples, we can proceed as in example (&) of the "finite case".

Proof. - (a) holds by 10.4 (b). By the definition of "lift" (7.3) we have (b).

(c) Let y be the full triangulated subcategory of 2^ generated by the A, A e ̂ . The
restriction of Hx to ^ is fully faithful (7.3). Since Jf^ is contained in ^~, Hx is
fully faithful on ̂ f^, and HxA" lies in ̂ \^ for each AGJ^. In particular, HxAA

is small for each Ae^. Since T^ agrees with Hx on Jf^(6.2a), the assertion
follows from 4.2 (b).

(d) Since the A\ Aej^, lie in ^~, ^v is quasi-equivalent to ^**. Since the A",
A e ja^, lie in ^~, we have

oo>dim W\^ (B)=dim W^ (B, A)

for all A,Bej^, so that ^ -> ̂ v is a quasi-equivalence (example 7.1).

LEMMA (The "symmetric" case). - Suppose that pdim A<oo and z'dim A<oo for all

Ae^.

(a) sdim A* A < oo and sdim A* v < oo for all A* e ja^*.
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(b) Tx cmd Hx induce quasi-inverse equivalences between J^j^* and the smallest full

triangulated subcategory of Q)^ containing the A, Aeja^.

(c) Tx: ̂ ^* -> 2^ is fully faithful.

(d) We have a quasi-equivalence ^v —> ja^** if each B v , BGJS^, /f^ ;>z ̂  smallest

triangulated subcategory of Q)^ closed under direct sums and containing the A, Aej^.

Examples. — In example 10.2 (a), we have /?dim A< oo and ;dim A< oo if ® is finite-
dimensional. This also holds in 10.2 (c). For 10.2 (c) the assumption of (d) is satisfied
as well.

Proof. - (a) holds by 10.4 (b). By the definition of "lift" (7.3) we have (b).

(c) and (d)\ By 4.2(7?), Tx is fully faithful. So Tx induces an equivalence onto its
image, which is precisely the smallest strictly full triangulated subcategory containing
the A, Aej^, and closed under direct sums. A quasi-inverse is induced by Hx. Thus
the restriction of Hx to the subcategory of Q)^ formed by the B\ Be^, is fully
faithful. Now (d) follows by 10.3.
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