
Deriving Efficient Parallel Programs

for Complex Recurrences

W.N. CHIN* S.H. TAN and Y.M. TEO

Hitachi Advanced ResearchLaboratory& National University of Singapore

National University of Singapore

Abstract

We propose a method to synthesize parallel divide-

and-conquer programs from non-trivial sequential recur-

rences. ‘Ikaditionally, such derivation methods are based
on schematic rules which attempt to match each given se-
quential program to a prescribed set of program schemes
that have parallel counterparts. Instead of relying on spe-
cialized program schemes, we propose a new approach to
parallelization based on techniques built using elementary

transformation rules.

Our approach requires an induction to recover parallel-
ism from sequential programs. To achieve this, we apply

a second-order generalisation step to selected instances of

sequent ial equations, before an inductive derivation proce-
dure. The new approach is systematic enough to be semi-
automated, and shall be shown to be widely applicable using
a range of examples.

1 Introduction

Most programs are more easily written via sequential spec-

ificat ions. Functional programs are no exception. As an

example, the ubiquitous list data structure used in func-

tional programming is naturally defined as a sequential data

structure. With it, many user-detined functions are directly
expressed in their sequential form. A simple example is given

below, where ‘:’ is the infix version of ‘Cons’ for the List
data type.

data List a = Nil Ia : (List a) ;
sum(NiJ,c) = o;
sum (X:XS,C) = c+(x+sum(xs,c));

The two pattern-matching equations of sum are for

a base case and a recursive case. In the latter case,

the result is computed sequentially via repeated inv~

cations of the recursive call. To make this example

more interesting, we have added an extra (constant) pa

rmneter to the summation function in order to generate
sum([uj, ... an], c) = ~f=, a, +(c x n).

“Part of this work was done while the first author was visiting
Institute of Information Science, Academia Sinica, Taiwan.

Permiwion to make digitaI/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, rsquires prior specific permission and/or
a fee. PASCO’97, Wailea, Maui, Hawaii; @1997 ACM 0-89791-
951-3/97/0007. .US$3.50

To obtain a parallel version of sum, we

express it using a Append-hat (rather than

structure, as shown below:

sum(Nil,c) = o;
sum((x]jc) = (c+x);
sum(xr+ +XS,C) = sum(xr,c) + sum(xs,c);

would have to

Conslist) data

Note that ++ is normally for list-concatenation. How-

ever, when used as a LHS pattern of an equation, we shall
assume that it is executed backwards to split art input list

into two sub-lists. For balanced parallelism, we may require

that the splitted sub-lists be of about equal sizes, say in/2j

and [n/21, where n is the size of the list.

One noticeable problem remains: lists cannot be spiit ej-

jiciently. However, with the parallel equation, it is quite

easy to apply a data type transformation to change the sum

function to use the array type (or binary trse type) with

constant-time split operation. In fact, R.ao and Wahnsky
[RW93] even treated the above form of pattern-matching as
syntactic sugar for the array-type, where xr++xs would de-
note the splitting of an n-item array into two sub-arrays,

xr and XS, of sizes 2 ‘I’ and n – 2m respect ively where

2m <n<2m+1. Parallel data types, such as arrays or

binary tree, cart be introduced to completely replace the se-

quential List-type if efficient construction (or retrieval) of
the input data type via the Cons operation is not needed.

Otherwise, we can allow the parallel data type to c~exist
with the List-data type, in order to support our paraflel
algorithms.

Another point to note is that we are primarily concerned
with obtaining abstract divid~and-conquer algorithms from
sequential specifications in this paper. We do not deal with

the issue of mapping these programs to particular paral-
lel architectures, nor provide suitable cost models to justify

the synthesized programs. A number of other works, such as

[AS96, PP93], have dealt with the more intricate implemen-

tation issue using divide-and-conquer programs as starting

points. These works are therefore complimentary to our pro-
posal. We intend to explore some of these techniques for a

more complete treat ment of this work, in the near future.
our present contribution is an enhanced method capable

of parallelizing complex sequential recurrences, expressed
via recursive functions. It is based on equational rules of
Burstall and Darlington [BD77], augmented with a second-

order genemlisation step and an inductive derivation pro-

cedure. Given a sequential function (with suitable prop
erties), the proposed method can systematically derive the
function’s parallel equations. The purpose of this paper is to

101

describe the parallelization method and to show that it is ap-

plicable across a reasonably wide range of programs. In par-

ticular, we can handle sequential recursive functions which
are often regarded aa difficult to parallelize, including those
with accumulative parameters, nested recurrences, condi-
tional constructs, and non-linear recurrences with multiple
recursive calls. Where applicable, new auxiliary function
definitions are automatically synthesized by our method.

Section 2 presents a simple language, and some classifica-
tion schemes for functions and parameters. In Section 3, we

introduce our parallelization method and highlight the key

techniques of (i) getting a desired pm-parallel form, (ii) ap-

plying second-order generalisation, and (iii) using inductive

derivation for unknown functions. Sections 4 outlines the

scope of the proposed method. Section 5 to 8 highlight the
method through parallelizing programs with accumulative
pammeters, nested recumences, non-linear recurrences, and
conditional recurrences, respectively. Lastly, some related
works are discussed in Section 9, followed by a conclusion in
Section 10.

2 Language and Terminologies

We consider a strict first-order functional language:

Defn 1: A Simple Language

Components of our simple language include:

P ::= [Mi]p=o (Program)
M ~~m[Fi]~=O (Mutual Rec. Set)
F ::= {f(piI,. . . . Pin) = ‘i }rn=O (Set of Equations)
t :;= v I C(tf !...>~n) lf(~l)...!%)

Ilet {pi = t~}~=oin t
I if tl then tz else ts(Expression)

P ““–u Ic(pf,p”)..— (Pattern)

•1

Expressions of this language include wmiables (v), data

constructors (C), functions (f), if and let constructs.
Each function f is defined using a set of pattern-matching
equations. A number of such functions are collected into

each mutual-recursive set (denoted by M), whkh in turn is
part of the main program (denoted by P).

We also introduce a special context notation with
multiple holes of the form 2(:1,...,%)where 20 is

the expression context, and [ti]a~1..- are the sub-terms
abstracted from the m-holes, [() i]i ~ 1,. ~. Specifically,

?(ti)iGf..~ = (?()) [ti/oi]iEl,.. which st~ds for the direct

substitution of sub-terms, tj, ..., t., into their respective

holes, O1,..., ()., for context 20. There is a subtle differ-
ence between wnte.zt holes and variables. When substitut-
ing variables, we must perform variable renaming in order

to avoid name clasheq but thw consideration is omitted for
holes.

Sequential functions are often expressed as either linear
or non-linear recurrences, and may be either self, mutual or

auziliary recursive. If they contain conditional constructs,

prior to their recursive calls, we also refer to them as con-
ditional recurrences. These classifications of functions are

defined next.

Defn 2: Self, Auziliay @ Mutual Recurrence

A function, ~ is said to be a self-recurrence if its re-

cursive set of functions, from its call graph, is simply
{fl itself. It is said to be mutual-recurrence if its m-

recursiveset of functions contain other functions too.
Lastly, it is said to be an auzdiary recurrence if we
can include auxiliary functions, as part of its recursive
set. •1

For example, consider some sequential functions in Fig-
ure 1, and its corresponding call graph in Figure 2. Func-
tions label and comp are self-recurrences, since their

mutual-recursive sets consist of just the functions them-

selves. Function depart can also be considered as a self-

recnrrence, since arrive is not a mutual recursive call. How-
ever, arrive shares a common recursion argument with
depart. As a result, we can nominate thii function as an

auzdiary recursive call of depart. Hence, depart can be
classified aa an auxiliary recurrence instead.

Also, function mubdd has a conditional construct prior
to its recursive calls. We refer to this category of functions

as conditional recurrences. Formally:

Defn 3: Conditional Recurrence

An equation is said to be conditional recursive if there

exists one or more conditional construct(s) pm”orto its

recursive call(s). In other words, recursive call(s) ex-
ist as sub-term(s) of the outer conditional construct.
A function definition is said to be a wnditional re-

currence if at least one of its equation is wnditional

recursive. •l

Recurrences are alao frequently classified based on the
number of recursive calls in the RHS of their function defi-

nition, as follows.

Defn 4: Linenr H Non-Linear Recurrence

An equation is said to be linear recursive if it has

exactly one recursive call in its RHS. It is said to

be non-linear recursive if it contains more than one
recursive cdl in its RHS.

A function detlnition is said to be a linear recurrence

if it has only one linear recursive equation, while the

other equations are non-recursive. It is said to be a
non-linear recurrence, otherwise. •l

For example, functions label, comp and arrive are linear
recurrences, while depart and muldd are non-linear since
their equations contain multiple recursive calls. Linear re-

currences are typically easier to parallelize, but our proposed
synthesis method adapts well to non-linear recurrences too.

The term recurrence normally refers to recursive equation
for numerically indexable objects, such as arrays. For ex-

ample, if we capture the outputs and inputs of the simple

simulation program (consisting of arrive and depart in Fig-
ure 1) using some arrays, we could rewrite the two recursive
functions in the conventional recurrence form, as follows:

arrive(O] = O;
arrive[n +1] = a[n+1] + arrive[nj;
depart/0] = O;
depart[n+lj = s[n+lj + max(arrivefn+l], depart[nj);

where arrive and depart denote two output arrays for com-

puting arrival and departure times of events, whiie a and
s denote two input arrays for inter-arrival gaps and service

times. Since recursive functions can always be used to rep-
resent such recurrenc~, we shall use the term mcumences
and recursive functions interchangeably in this paper.

102

label(Nil,no) = Nil;

Iabel(x:xs,no) = (x,no):label(xs,no+ l);
comp(lVil) – O;
comp((x~):xs) ~ x+ (y*comp(xs));

arrive(Nil) = o;
arrive((s,a):x9) = a + arrive;

depart (Nil) = o;
depart ({s,a):xs) = s + max(arrive((s,a) :xs), depart);
m ubdd(Nii) = O ;

rnuhidd(x:xs) = if x< 10 then x*mul_add(xs) else x+muladd(xs) ;

Figure 1: Sequential Functions which could be Parallelized

2“P”@@@
srrive

Figure 2: A Call Graph

Another importaut consideration for recursive functions
are the parameters. In particular, we ckwsify the parame-
ters into two major groups - recursion and non-recursion
parameters.

Defn 5: Recursion and Non-Recursion Arguments

Consider a selj-recursive equation:

f(Pl, ., Pn,Un+l,..., Vm)
— ~(j(wr~,wrm. tr”+~, tr~))rt=k4t=k4 ;—

with recursion pammeters, {P,)2,, ad non-

recursion parameters, {v, }~=~+1, that are disjoint

(i.e. Vr ~ M. (Vi E I..n. vr, ~ {trn+l ,..., tr~})).

We introduce the following parameter classifications:

1. Recursion arguments from UrG~ {vr, } ~=, must

satisfy: Vr E M. Vi G I.. n. t)ri c pi where c d~
notes the proper sub-term relationship.

2, Non-recursion arguments { trj }~=m+, from everY

recursive call, are either:

. constant, whereby trjs .j;or

● accumulative, whereby v, c trj A

NumOccurs(vj, {tri}~=n+l) = f; or

● roving, whereby Is Var(trj) A

trl~{pl,pn~+l.l, v~. l,vj+l,j+l, %}

A trj~ (JrEM{W,}f=l.

c1

Note that NumOccurs returns the number of variable oc-

currences in a sub-term, while ISVar tests if a given input
is a variable.

For example, consider:

j(a : (b : CS~,fl+ 1,V1,V2,V3,V4)
. e(f(cs, n, VI, w + 1, vi, vg))

The first two mwameters are recursion rmrarneters. the next
two paramete~s have constant and acc~mulative properties,
while the last two swapping parameters have the roving

property.
These types of non-recursion parameters are fairly com-

mon. We identify them separately, in order to allow them to

be handled appropriately by our parallelization method. For
example, accumulative parameters are usually handled more
carefully than constant parameters, as we shall see later.

3 The Method

Our parallelization method is based on elementary transfor-
mation rul=, which are in turn organised into four larger

transformation steps, called stages, with specific objectives,
as shown below.

Procedure 1: Four Stages of Pamllelization

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Determine a desired pre-paralle[form
for the initial recursive equation.

Obtain a second recursive equation

with the same pre-parallel form.

Use second-order generalisation to ob-
tain a template eqwtion from the two
pre-parallel equations. This template

may have one or more unknown func-
tions.

Derive the unknown functions.

The above parallelization method works essentially via

generaliiation from examples, as outlined in Figure 3 with
sum as an example. The first two stages attempt to ob-

tain two sequential equations with a form, called pre-parallel
form. Though our equations are still sequential, we refer to

103

I

sum(x:xs,c)=c+(x+sum(xs,c))

stoge I: HrstPm-parallelR7ucrtlon

Stage 2: Second f%e-ParaUel Equatforr

sum([x]++xs,c)=(c+x)+sum(xs,c) ‘—> sum([x,y]++xs,c)=((c+x)+(c+y))+sum(xs,c)

~r..r.,,..

sum(xr++xs,c)=H(xr,c)+sum(xs,c)

t
Stage 4: /nducffve Derfvaf/onof Unknowns

H([],c)=O

H(x:xr,c)=(c+x)+H(xr,c)

Figure 3: Four Stages to Parallelize sum

them as having pr-parallel form since they have structures
which are close to the desired parallel equation. A couple
of heuristics (conditions) me employed, se described later in
Section 3.1. The next stage is effectively au induction step
which attempts to recover the more general parallel equation
from the two sequential (but pm-parallel) equations. This

stage uaea second-order generalisation to obtain an equa-
tion template with one or more unknown functions. The
unknown functions are then synthesized through an induc-
tive derivation procedure in Stage 4. For our earlier exam-

ple, the unknown function H was found to be equivalent to
sum, yielding the expected parallel equation:

sum(xr++xs,c) = sum(xr,c) + sum (xs,c);

Occasionally, the unknown functions may be new auxiliary
functions or generalized versions of the initial functions. Un-
der those circumstances, we have to re-apply the parallelizw
tion method in order to obtain further parallel equationa.

We elaborate on the main techniques of our parallelization
method next.

3.1 Desired Pre-Parallel Form

The first two stages attempt to obtain two sequential equa-
tions with similar pre-pamilel form. Two simple heuristics

are used to achieve this.

Defn 6: Heuristic Conditions for Desired Pre-
Pamllel Form

(HI)

(H2)

c1

All function calls (e.g. sum, ++, +) in the LHS

and RHS, leading to the recursion variables, e.g.

xs of sum, should be either associative or dis-
tributive.

The recursion (and accumulative) variables, e.g.
xs of sum, are significant. Its depth” from the

root of the LHS and RI-IS should be as shallow

as possible.

“Depth idde!lned to be the distance from the root of an ex-

pression tree. For example, the depths of variable occurrences

C,X,XS,C in (c+ (x+sum(~,c))) are 1,2,3,3 respectively.

Our method targets divide-k-conquer equation with ++

as the split operator (for List-type). As this split operator

is associative, the first condition is needed to help obtain a
matching pr-parallel form. Also, the second condition helps
improve the chance of successful parallelization by reducing
the number of function operatora leading to the recursion

variables. As these are required to be associative (or dis-
tributive), the fewer the better. ThM second condition also

minimises the number of unknown functions which might
arise.

These conditions are heuristic in nature,’ since they do

not guarantee the presence of similar pm-parallel equations

(for a later generalisation stage), nor necessarily give only a
single acceptable outcome.

Guided by heuristic conditions (Hi) and (H2), we can
transform the equation of sum, se follows:

LHS = sum(x:xs,c)

; (HI) replace cons by awociative ++
= sum([x]++xs,c)

RHS = c+(x + sum(xs,c))

; (H2) reduce depth of xs from 3 to 2
= (c+x) + sum(xs,c)

Hence, a suitable prt+parallel equation is:

sum([x]++xs,cJ = (c+x) + sum(xs,cJ
—

Similarly, a second preparallel equation can be obtained
by first unfolding the recursive call and then guided by the
two heuristics, to obtain:

sum(([x]++[y])+ +xs),~ = ((c+x)+(c+y)) +sum (xs,~;

The above two equations are identical, except for sub-
terms underlined. The underlined sub-expressions are
known as abstmctable subterms, while the common skeletal

structure is known as a pre-pamllel wntezt.

Defi 7: Pre-Pamllel Context &’ Abstmctable Sub-

terms

Each ma.zimai sub-term, not including any recursion

(or accumulative) variables, shall be known as a ab-

stmctable sub-term. A sub-term is aaid to be mazimal
with respect to a given property, if it is not contained

inside another term with the same property.

Given an expression (or equation) e, we can decom-

pose it via ~(hi)i~ ~... where e~() is a pre-pamZlei

contezt, and [hi]i~~.,n are the abstmctable subtewns.

❑

104

For example, the first equation of sum is decomposed into

a pm-parallel context and four abstractable subterms, via:

sum(oj+ +zs,()~()$+sum(zg, ())([ZI,C!(C+ ~))4
Note the abstracted sub-terms, [z~,c,(c + z), c, can be

substituted back into context holes, () ~, () ~, ()s, () ~, in or-

der to obtain our pre-parallel equation. For convenience,
we will also refer to the abstractable sub-terms (and their

corresponding holes) as just pre-pardel holes, in order to
distinguish them from the pw-parullel wntezt which they
are being separated from.

3.2 Second-Order Generalisation

Once we have two sequential equations with a common pre-

parallel context, we can invoke a second-order generalisation
rule to obtain a parallel template equation. This technique

is similar to genemlisation jkom ezamples mechanism com-
monly advocated for machine learning [DM86], which has

been found to be useful also for theorem-proving [Hag95]. In
our case, the sequential equations are used as examples in or-
der to obtain more general (parallel) counterparts. A match-
ing process applies appropriate generalisations to those holes

that mismatch. The generalisation used is second-order,

since functional unknowns may be introduced into the tem-

plate.

Consider the two pm-parallel equations of sum. Initially,
the LHS is matched. A pair of mismatched expressions is
detected at ‘[x]’ for the first equation and ‘/x]+ +/yj’ for the
second equation. This mismatch can be rermlved by replac-
ing the two sub-terms by a new variable, xr, generalizing

the LHS to sum(xr++xs,c). Such a generalisation is said
to be fist-order because only object variables (e.g. xr) are

introduced. The new recursion parameter, xr++xs, now

contains two variables, xr and XS, called leading and truil-

ing recursion variables, respectively. Leachg variables are

those introduced by first-order generaliiation, while trailing

variables are inherited from the original equations.
We now process the RI-IS, focusing again on the holes of

the pm-parallel equations. If the two sub-terms are identical
to their original LHS terms, we replace them by their corre-
sponding LHS variable. This occurs at the constant variable
c of the recursive call, sum(xs,c). However, if the sub-terms

mismatch, we use the following second-order generalisation

rule.

Defn 8: Second-Order Genemlisation Rule

If two terms, tl and te, at a pm-parallel hole in the

RHS mismatch; we replace it by H(U) where H is a
UG w

●

●

●

●

c1

-n- function-type variable, and o cokists of:

All leading recursion variables;

All roving variables;

Sekzted trailing recursion variables, if they are

present in tl or t~;

Selected constant/accumulative variables, if they
are present in tjor tg.

We include all leading recursion and roving parameters,
~ they may indirectly contribute to the pm-parallel holes,
even when their variables are not present in the mismatched
sub-terms.

A mismatch occurs for the expressions: ‘C+X’ (of the &t
equation) and ‘(c+x)+(c+Y)’ (of the second equation). Thk

1

mismatch is resolved by supplying a generalised expression

H(xr,c) where His a function-type unknown and xr is the

leading recursion variable, while c is a constant variable
present. The trailiig recursion variable, XS, is not selected

because it is neither present in ‘c+x’ nor ‘(c+x)+(c+Y)’.
The final parallel template equation, with unknown H, is

thus:

sum(xr++xs,c) = H(xr,c) + sum(xs,c)

3.3 Inductive Derivation Procedure

Next, a derivation procedure is given to obtain inductive

definitions for the unknown functions. Apart from obtain-

ing such defirdtiona, the corresponding derivation also serves

as a correctness (induction) proof for the parallel equation.
The inductive derivation procedure consists of the foUowing
steps:

Procedure 2: Inductive Derivation Procedure

for Unknown Ilmctions

Step 1

Step 2

Step 3

Step 4

Step 5

Instantiate the leading recursion vari-

able(s) to the base and recursive cases.

Simplify the LHS.

Apply an induction step (for the recur-

sive case).

‘hnaform the LHS so that its pre-

parallel form (or context) is similar to

the RHS.

Unify both LHS and RHS.

Of the five steps, Step 4 appears most intricate. However,
it is guided by the need for LHS and R,HS ta be unifiable.

For a concrete example, consider the parallel template equ~

tion of sum that was obtained in the previous stage. The

unknown function is H. Step 1 instantiatea H’s recursion

argument, xr, to its two cases: Nil and (x:xr). These two
instantiations are then followed by simplification (Step 2),
induction (Step 3), and unification-enabIing steps (Step 4

and 5), as shown in Figure 4. Note how the laws (b + o+b)
and (a+(b+c) a (a+ b)+c) are used in Step 4, in order to

allow the unification of LHS and RI-M to succeed via a com-

mon pre-parallel context, later in Step 5.
Fkom this derivation, we obtain the following definition

for unknown function H.
H(Nil,c) = o;
H(x:xr,c) = (c+x) + H(xr,c);

We check the detiltion of each newly derived unknown
to see if it is equivalent to some previously known function
dtiltion. If this is so, we replace each unknown function by
a call to the already known function definition. Otherwise,
our program will still not be truly parallel, and we would
have to apply the parallelization method again to the newly
derived function definition.

For example, the definition of H is found to be syntac-

tically identical to an earlier definition of sum. We can

therefore replace H with sum, and thus obtain the follow-
ing parallel equation.

sum(xr++xs,c) = sum(xr,c) + sum(xs,c)

There is also a need to obtain a base cm equation for

the singleton input. This is omitted here as it can be ob-
tained easily via partial evaluation (and simplification) tech-

niques ~EJ88].

105

I

Step 1 Instantiate xr=Nik

sum(NiI++xs, c) = H(Nil,c) + sum(xs,c)

LHS = sum(Nil++xs,c) - Step 2 Unfold ++
= sum(xs,c) ~Step 4 Law of+
= O + sum(xs,c)

RHs = H(Nil,c)+ sum(xs,c)

Step 5 Unify both LHS and RHS, yielding:
H(Nil,c) = o

Step 1 Instantiate xr=(x:xr):

sum((x:xr)++xs, c) = H(x:xr,c)+ sum(xs,c)

LHS = sum((x:xr)++xs,c) “Step 2 Unfold ++
= sum(x:(xr++xs),c) ~Step 2 Unfold sum

= (c+x)+sum(xr++xa,c) . Step 3 Apply induction
= (c+x)+(H(xr,c)+sum(xe,c)) ~Step 4 Assoc. of +
= ((c+x)+H(xr,c),) +sum(xe,c)

RHS = H(x:xr,c)+ sum(xe,c)

Step 5 Unify both LHS and RHS, yielding:
H(x:xr,c) = (c+x)+H@r,c)

Figure 4: Derivation of Unknown Functions for Parallel Template

4 Scope of Method
(F2) Without Nil case equation.

Our proposed parallelization method is for deriving a certain
(F3) Without an identity in the Nil case.
(F4) Accumulative Parameters.

class of divide-and-conquer algorithms with simple splitting (F5) llovim Parameters.
operations. It relies on special program properties (such as
associativity) to help manipulate the recursive equations to
a common pm-parallel form. These laws must be provided
for primitive operators. As for user-defied functions, it is
often possible to synthesize distributive laws (e.g. over ++)

using our method. Both types of laws should be accumu-
lated in a library for future use. The need for such laws and
their suitable application is the main remon why we have
currently classified our method as being semi-automatic. Fu-
ture improvement to our method would be assessed by how

such laws may be systematically generated, and appropri-

ately utilised.
The class of target programs include both List homomor-

phism [Bir87], as well aa near-homomorphism [Co195]. While

near-homomorph- normally requires additional tiort for
parallelization, List homomorphism is a special class of

functions that directly has the following divide-and-conquer
form:

F1 ([) = U

F1 ([X]) = F(x)

FI (xr++xs) = G(F1 (xr),Fl (xs))

where ~ is associative, with Z/ as its identity. Bird’s Ho-
momorphism Themem showed that such a function is also

equivalent to a simple composition of two higher-order func-
tions, as shown below.

Fl(xs)=reduce(~ /.4,map(F,xs))

With the aid of such schematic equivalence, program-
mers are expected to construct their programs using hlgher-
order functions (like map, reduce) in order to facilitate par-
allelization. However, the homomorphism sub-class is some-
what liiiting since many programs lie outside it. Our new

method, being baaed on elementary transformation rules,
does not compel programmers to use a restricted set of
higher-order functions. In addition, a single parallelization
method (with selective enhancements) is applicable to a rea-
sonably wide range functions, beyond homomorphism, in-
cluding programs with the following characteristics:

(F6j Multi~le Recursion Parameters.
(F7) Nested Recursion Parameters.

(F8) Primitive Recurrences.
(F9) Tail Recurrences.

(F1O) Nested Recurrences.
(Fll) Auxiliary and Mutual Recurrences.
(F12) Conditional and Tupled Recurrences.

In this paper, only programs from more complex recur-

rences, such as F4 (accumulative parameters), F1O (nested

recurrence), FI 1 (auxiliary non-linear recurrence), and Ff 2

(conditional recurrence) are highlighted. An expanded ver-

sion of this paper will describe the other sub-classes of par-
allelizable functions too.

5 Accumulative Parameters

Consider recursive functions with accumulative parameters.
An example is the following function to enumerate the ele-

ments of a list.

label :: (List a, Int) ~ ~~:t (a, M);

label(Nil,no)

Iabel(x:xs,no) = (x,~o):label(xs,no+ l);

Unlike the homomorphism program scheme (Fl), this
function has an extra accumulative parameter. Stages 1 and
2 can obtain the following two similar pr~parallel equations.

label([x]++xs,no) = [(x,no)]++label(’xs,no+lJ;

label flx]++[y])++xe,no) = ~-)]+ +[(x,no+l)])++

Iabel(xe,no+(l+ l)j;

Notice that the outer operators leading to variables xs

and no are either associative (i.e. ++, +) or are potentially

distributive (i.e. label). After second-order generalisation
by Stage 3, we obtain:

label[mr++xs,no) = H(mr,no)++label(xs,no+ G(mr));

On further derivation by Stage 4, we conbn that
H~label, while G is a new auxiliary function:

106

G(lVil) = 0;

G(x:xs) = l+ G(xs);

The function G can be similarly

ductive method to obtain:

G(xr+ +XS) = GAG;

parallelized by our in-

The two parallel equations me thus:

label(xr++xs,no) = label(xr,no)++label(xs, no+ G(xr));

G(xr++xe) = GAG;

Though the above program exhibits good parallelism, it

is currently not efficient. This is because function label has

two recursive calls, labei(xr,no) and G(xr), which traverse
the same sublist xr twice. Such calls, with a shared recur-
sion argument, cause multiple traversals and/or redundant
calls. A classic approach for optimizing such programs is to
use the tupling method of [Chi93]. For the label example,
the tupling method can automatically introduce a new tuple
function:

tup(zs,no) = (label(zs,no),G(zs));

After transformation, the final eficient parallel definition

for label is:

label(xs,no) = let (u,.) =tup(xs,no) in u ;
tup(NiJ,no) = (Nil, O);

t up([x],no) = [[[x,no)l,l)i
tup(xr+ +xs,no) = let { (a,b) = tup(xr,no) ;

z = no+b ;
(U,v) =tup(xs,z) }

in (a++u, b+v) ;

The parallel characteristics of the above tup function may
not be apparent. In particular, the z parameter of the sec-

ond recursive call of tup(xs,z) actually depends on an output
from the first recursive call tup(xr,no). Nevertheless, func-

tion tup has a similar structure as the highly versatile scan

function, popularised by Blelloch [Ble89]. Like scan, it can
be implemented efficiently in a multi-processor system which
supports bi-directional tree-like communications - using par-
allel computation time proportional to O(log n) where n is
the length of the list. Two phases are employed for its par-

allel computation. An upsweep phase in the computation
can be used to compute the second values of the tuple (i.e.
G(m)), before a downsweep phase is used to compute the

first values of the tuple (i.e. fabel(ze,no)).

6 Nested Recurrences

Consider the following linear but nested recurrence :

comp(lViI) = o;
comp((x,y) :xs) = x+ (y*comp{xs));

We refer to this as a nested recurrence as its recursive call
is nested (more deeply) at depth 2 with + and *as its outer

auxiliary operators. A pm-parallel equation obtainable in
Stage 1 is:

comp([(x, y)]+ +x5) = x+ (~*comp(xs));

Using the associative properties of + and *, and the dis-
tributive law of * over +, a second pm-parallel equation can
be obtained in Stage 2, guided by heuristics HI and H2, as

follows.

comp([(x,y)]+ +xs))
= x+ (y*comp(xs)) “ unfold comp

comp([(x,y)]++([(a, b)]+ +xs)) ‘
= x+(y*(a+(b*comp(xs)))) ; assoc. law of ++

comp(([(x,y)]+ +[(a,b)]) + +XS)

= x+(y*(a+(b*comp(xs)))) ; distr. law of * over +
= x+(y*a+y*(b*comp(xs))) ; assoc. law of +
= (x+y*a)+(y*(b*comp(xa))) ; assoc. law of *
= (x+y”a)+((y”b) “comp(xs))— —

The two equations obtained have the same pm-parallel

context, namely: comp(() ~++xs)=() ~ +(() ~ *comp(xs)).

Stage 3 (second-order generalisation) can now obtain a tem-
plate equation with unknowns H and G:

comp(ms+ +XS) = H(ms) + G(ms) kcomp(xs)

An inductive derivation by Stage 4 can synthesize defini-
tions for the two unknown functions. The definition for His

syntactically identical to comp, but G has a new auxiliary
definition:

G(Nil) = 1;
G((m,n):ms) = n *G(ms);

As G is a List-homomorphism, it is easily parallelized by

our method. Hence, the two parallel equations are:

comp(ms+ +XS) = comp(ms) + G(ms) *comp(xs);

G(ms++xs)) = GAG;

Though the above program exhibits good parallelism, it
is not efficient due to the presence of redundant G calls. As
before, we can rectify this situation by applying the tupling
method [Chi93]. Specifically, this method will introduce a

new tuple function:

comptup(xs) = (comp(xs), G(xs));

before it is transformed to:

compt up(fVii) = (0,1);
comptup([(m,n)]) = (m,n);

compt up(ms+ +XS) = let { (a, b)=comptup(ms) ;

(c,d)=comptup(xs) }
in (a+c*b, b*d);

The final tupled function compt up is now a List-

homomorphism, even though the initial sequential version

of comp isn ‘t. Cole refers to functions, like comp, as near-
homomorphism [C0195], and sugg~ted to search manually

for more general tupled functions with the requisite prop-

erty. Our inductive parallelization method can synthesize
the needed auxiliary functions automatically. In conjunc-
tion with the tupling method, it can systematically yield

efficient and parallel programs as the desired target.

7 Non-Linear Recurrences

We now look at how our inductive method can directly han-
dle non-linear recurrences. We use the example of a simple

simulation program with a single queue/server. Assume the
event list is represented by a list of pairs of positive numbers
(with suitable random distribution):

[(sn, ~), (sn-l, a~-,),(sj. al)]
where w,. ., an are the inter-arrival time gaps between the
n events, and sl ,..,s. are the corresponding service times.

Note that the events are ordered right-to-left, with the iirst

event represented by the rightmost element of the list. With
this representation, we can define functions to compute the
final arrival and departure times for a list of events, x fol-
lows:

107

I

arrive(Nil) 0;
arrive((s,a):xa) ~ a + arrive(m);
depart(Nil) o;
depart((s,a):xa) ~ s + max(arrive((s,a) xa), depart);

The above specification is easy enough to write (and read)

but it is presently sequentially-oriented. The parallelization

of function arrive is trivial since it is a List homomorphism.

We obtain:

arrive(xr++xs) = arrive(xr) + arrive;

The parallelization of depart is more tricky and not
immediately obvious. In particular, note that depart is
actually a non-linear recurrence with two recursive calls,
arrive((s,a):xs) and depart, with arrive as an auxiliary

function of depart. Our method attempts to obtain a pre-

parrdlel form which keeps the common recursion variable XS,

of the two recursive calls, at the shallow@ depth. Guided

by the ealier two heuristics, we obtain our first pm-parallel

equation:

depart([(sja)]+ +xs) = max((s+a) +arrive(xa), g+depart(xa))

with the holes of the pm-parallel form shown underlined. In
Stage 2, we obtain a second recursive equation with a similar
pm-parallel form, namely:

depart (/(s, a),(s2,a2)]++xs) =

max(max(s+a+a2,s+s2+a2] +arrive(xe), (s+s2)+depsrt(xa))

These two pm-parallel equations are used in Stage 3 to
obtain a parallel template equation, shown below, with two

unknown functions, G and H.

depart(xr++xs) = max(G(xr)+arrive(xa], H(xr)+depart(xs))

During the inductive derivation in Stage 4, we coniirm

that G~depart, while His a new function with the following

definition.

II(Nil) = O;
H((s,a):xs) = s + H(xa);

Like arrive, H also belongs to the homomorphism class.

Thus, we now have three parallel equations:

If(xr++xa) = HUH
arrive(xr+ +xs) = arrive(xr) + arrive(xs)
depart(xr++xe) = max(depart(xr)+ arrive(xs)

,H(xr)+depart(xs))

It is really not obvious from the sequential version of
depart, that such a parallel equation follows. A fairly intri-

cate technique appears to be used in this particular divide-
and-conquer algorithm. Specifically, H(xr)+depart(xs) and
depart(xr)+arrive(xs) denotes two possible scenarios which

might occur for events in xr, namely (i) server is continu-
ously busy, or (ii) server has at least one free gap. In the
latter case, the finishing time of depart(xr++xs) does not
depend on depart(xs) at all. Thk somewhat deep insight

has been mechanically synthesized!

The depart equation is currently inefficient as there are
multiple recursive calls (in the RHS) which operates on
the same data structures, e.g. (H(xr), depart) and

[arrive, depart). Thw again calls for the tupling
met hod which can automatically introduce the following tu-

ple function definition:

tup(zs) = (arrive[m),H(w),depart(zs))

After transformation, we obtain the following efficient and
parallel tupled program:

tup(Nil) = (0,0,0)

tup([(s,a)]) = (a,s,s+a)

tup(xr++xe) = let { (b,c,d) = tup(xr);

(U,v,w) = tup(xa) }
in (b+u, C+V, max(d+u,c+w))

Though our example was taken from [GLM90], our syn-
thesis was never guided by their final parallel program whkh
was tasted as a 2x2 matrix multiplication solution (with +
and max as operators). A nice consequence is that our
parallel program (without being constrained by the matrix
notation) uses a smaller 1x3 tuple that requires fewer oper-

ations.

8 Conditional Recurrences

Recurrences with outer conditional constructs are also paral-
lelizable by our method, with suitable extensions as outlined
in [CDG96]. One diflicult scenario occurs when these recur-
rences contain more than one branch with recursive calls. A
somewhat tricky example is shown below with two recursive

branches.

multid(Nil) = O ;
muiadd(x:xs) = if x<IO then x*muJAd(xa)

else x+mubdd(xa) ;

To handle such recurrence with multiple recursive
branches, we propose a simple extemion (for Stage 1) to

combhe the multiple branches into a single recursive branch,
namely:

Procedure 3: Combining Recursive Bmnches

Step 1 Find a common preparallel form for
the difTerent recursive branches.

Step 2 Combine and unifjI the multiple recur-
sive branches.

Step 1 is to find a common pre-parallel form for all the
recursive branches. This is scheved by obtaining a desired
pm-parallel form for each of the branches, before attempt-
ing to unify them via suitable transformations. In the case
of mubdd, a common pm-parallel form can be obtained
if the first branch is converted to @+~*mubdd(xa)), while

the second branch is converted to (~+~”mulaid(xs)). This

step can be achieved via a search-based (exploratory) trans-
formation using means-end analysis with the objective of

unifjing two expressions.

With a common preparallel context, Step 2 would now

unify all recursive branchea into a single branch, by push-
ing the out er conditional into each hole of the common

pre-parallel context. With ~ () as a common pre-parallel
context for multiple branches, the following rule performs
the desired transformation, where cond denotes a guarded
multi-branch conditional.

when applied to muJAd, we have:

muLadd(x:xs) = if x< 10 then O+x*muhdd(xs)

else x+1 *mulAd(xs);

= (ifx<10 then O else x)+

(if x<IO then x else l)*mulAd(xs);

With a single recursive branch, it is straightforward to

apply our inductive parallelization method to obtain:

muLadd(/x]) = ifx<10 then Oekx ;

mul_add(xr+ +XS) = mubdd(xr) +G(xr) *muLsdd(xs) ;

G([x]) — ifx<10 then x else 1 ;—

G(xr++xs) = G(xr) *G(xs) ;

As before, the redundant calls of G can also be eliminated

by the tupling method of [Chi93], with an alternative for-
mulation of tupling in calculational style given by [HITT97].

9 Related Work

As described earlier, a popular approach for synthesizing

parallel functional programs is to use the Bird-Meertens for-
malism [Ski90]. The emphasis there is to construct programs
using a small set of common higher-order functions (such as
map, reduce) from which it is often possible to directly de-

rive the divid~and-conquer homomorphism without using
induction. However, the homomorphism sub-class (i.e. Fl)

is rather limiting since many programs lie outside it. As il-
lustrated in this paper, a more fundamental approach is poe-

sible, based on the elementary rules with induction capabil-

ity provided by second-order generalisation and an inductive

derivation procedure. There is absolutely no need to restrict

user programs to a closed set of higher-order functions. Our
method is capable of generating suitable parallel equations
directly. Where necessary, we use other techniques, such as
tupling, to obtain more efficient parallel programs.

In traditional imperative languages (e.g. Fortran), there

are also. many on-going efforts at developing sophisticated

techniques for parallelizing iterative loops. Lately, we be-

came aware of a more systematic method for parallelizing

complex scans and reductions [FG94, GF95]. This method is

baaed on a parallel reduction of function composition where
function-type values are propagated - relying on such com-
position being inherently associative. However, the com-
plexity of the functions propagated could get progressively
worse unless they match a certain template form. The steps
needed for finding such template form is similar to our
method’s Stage 1 and 2 for finding a common pre-parallel
form. Our technique was discovered independently with the
initial methodology presented in [Chi90]. While practical,

Fischer and Ghuloum’s method is somewhat less general,
as it is based around iterative loops rather than the more

general recursive functions, and it does not give the actual
parallel equations (which are also useful as laws for trans-
formation methods such as fusion [Chi92]). Also, without
the heuristics for obtaining desired pre-parallel form, their
parallelization may result in extra (unnecessary) auxiliary
values to compute.

10 Conclusion

The list of program sub-classes illustrated in this paper is
fairly extensive but not exhaustive. In particular, we have
not considered possible combinations of the different sub-

classes. As the parallelizat ion method is based on elemen-
tary rules, it can handle hybrid combinations easily.

Though general, our method has limitations. It is, so far,
for only recursive functions whose outer auxiliary functions

(in the R.HS) POSSeSSappropriate semantic properties (e.g.

associative or distributive laws) in order to allow similar
pm-parallel equations to be obtained. Occasionally, some

auxiliary operators might not have the required properties,
while generalised versions of them do. In such a situation,

our method fails. For example, we are unable to synthe-

size a parallel merge-sort program if the insert function of

type (Int,@]) ~ [Int] is used, instead of the more generaI
merge function of type ([Int],[Intj) ~ [Int]. The problem

is that insert is non-associative whkh prevented us from
obtaining two equations with the same pm-parallel form.
It might be fruitful to investigate new techniques to syn-

thesize, where possible, generalised functions with the asso
ciative property. Also, the synthesized divide-and-conquer

structure is presently restricted to a simple divide operation

(e.g. ++). Programs, like q.ickeort, which decompose their

input lists more cleverly, are not handled by our method. A

promising extension of our work was recently reported by

Voicu [Voi96]. By manually filng a known divide opera-
tor and directly providing a target parallel form (with an
unknown conquer operator), Voicu showed how bitonic sort
and quickeort can be synthesized from the selection sort al-
gorithm. Further foray in this direction, with reduced man-
ual intervention, may yield another promising outcome for
parallel algorithm synthesis.

As a task, parallel programming is probably an order

of magnitude more difficult than sequential programming,

Apart from the need to design algorithms with adequate

parallelism, programmers often have to grapple with a

host of other issues, such as different target architectures,
dynamic versus static data/process allocations, possible
non-determinism, effective grain sizes, communication over-
heads, and complications of parallel debugging. Many par-
allel hardware platforms (including distributed systems) are
becoming more affordable lately. However, software still re-

mains a major obstacle to more Widespread parallel com-
puting. In the functional programming arena, work in the

area of parallelizing compilers [FC090], algorithmic skele-

tons for better mapping to architecture[Co188, MH88], and

program visualization [HLP95], are contributing towards the
goals of more declarative parallel programming. The work
reported here is an attempt to contribute in the sae di-
rection. Apart from efforts to improve the proposed par-
ailelization methodology, we are currently working on an
implementation which will allow the level of automation for
the methodology to be systematically determined.
Acknowledgement: This work is supported by EEC

KIT143 ConFuPro (Concurrent IWnctional Programming
: Theory and Practice) grant, and NUS research grant

RP920614. The authors would like to thank Richard Bird,

Tyng-Ruey Chuaug, John Darlington, John Hughes, Luke

Ong and Rinue Plasmeijer for facilitating short & fruitful
visits to their institutions.

References

[AS96] K. Achatz and W. Schulte. Massive paral-

lelization of divideand-conquer algorithms over

powerlists. Science of Computer Progmmming,
26:59-78, 1996.

[BD77] R.M. Burstall and J. Darlington. A transforma-
tion system for developing recursive programs.

Journal of ACM, 24(1):44+7, January 1977.

109

I

pEJ88]

[BU87]

[Ble89]

[CDG96]

[Chi90]

[Chi92]

[Chi93]

[C0188]

[C0195]

[DM86]

[FC090]

[FG94]

[GF95]

[GLM90]

D. BjOrner, A.P. Erahov, and N.D. Jones. Work-
shop on Partial Evaluation and Mimi Compu-
tations. G1 Avarnes, Denmark, North-Holland,
1988.

Richard S. Bird. An introduction to the theory
of lits. In Logic of Programming and Caicuii of

Discrete Design (Springer Verlag, cd M Bray),

pages 3-42, 1987.

Guy E. Blelloch. Scans as primitive parallel oper-
ations. IEEE Thans. on Computers, 38(11):1526-
1538, November 1989.

W.N. Chin, J Darlington, and Y. Guo. Paral-
Ielizing conditional recurrences. In 2nd EuroPar

Conference, Lyon, France, (LNCS 1123) Berlin
Heidelberg New York: Springer, August 1996.

Wei-Ngan Chin. Automatic Methods for Program
Thmsforrnation. PhD thesis, Imperial College,

University of London, March 1990.

Wei-Ngan Chin. Safe fusion of functional expres-
sions. In 7th ACM LISP and Rmctional Pro-
gramming Conference, pages 11–20, San Fran-

cisco, California, June 1992. ACM Press.

Wei-Ngan Chin. Towarda an automated tupling
strategy. In Sni ACM Symposium on Partial

Evaluation and Semantics-Based Program Ma-
nipulation, pages 119-132, Copenhagen, Den-

mark, ACM Press, June 1993. ACM Press.

Murray 1. Cole. Algorithmic Skeletons: A Struc-

tured Approach to the Management of Parallel

Computation. PhD thesis, University of Edin-
burgh, 1988.

Murray I. Cole. Parallel programming with

list homomorphism. Parallel Processing Letters,

5(2):191-203, 1995.

G. DeJong and R. Mooney. Explanation-based

learning: An alternative view. Machine Learning,

1:145-176, 1986.

J.T. Fee, D.C. Cann, and R.R. Oldehoeft. A re-
port on the sisal language project. Journal of

Pamllel and Distributed Computing, 10:349-366,
1990.

A.L. Fischer and A.M. Ghuloum. Paralleliz-
ing complex scans and reductions. In ACM

SIGPLAN Conference on Pragmmming Language
Design and Implementation, pages 135-136, Or-

lando, Florida, ACM Press, 1994.

A.M. Ghuloum and A.L. Fischer. Flattening and
parallelizing irregular applications, recurrent loop

nests. In %d ACM Principles and Pmctice of
Pamllel Progmmming, pages 58-67, Santa Bar-
bara, Cahfornia, ACM Press, 1995.

A.G. Greenberg, B.D. Lubachevsky, and I. Mi-
trani. Unfoundedly parallel simulation via re-

currence relations. In ACM SIGMETRICS, pages
1–12, September 1990.

[Hag95]

p-HTT97]

[HLP95]

[MH88]

[PP93]

[RW93]

[Ski90]

~oi96]

Masami Hagiya. A typed A-calculus for proving-
by-example and bottom-up generalization proce
dure. Theoretical Computer Science, 137:3-23,
1995.

Z.J. Hu, H. Iwaeaki, M. Takeichi, and A. Takano.

Tupling calculation eliminate multiple traver-
sals. In 2nd ACM SIGPLA N International Con-

ference on Mmctional Programming, Amsterdam,

Netherlands, June 1997. ACM Press (to appear).

K Hammond, H.W. Loidl, and A. Partridge.
Visualizing granularity in parallel programs: A

graphical winnowing system for Haakell. In High
Performance Functional Programming Confer-
ence, USA, April 1995.

Z.G Mou and P. Hudak. An algebraic model for

divide and conquer and its parallelism. The Jour-

nal of Supercomputing, 2, 1988.

J.F. Prins and D.W. Palmer. Transforming high-
level data parallel programs into vector opera-
tions. In ~th Principles and Pmctice of Parallel
Programming, pages 119-128, San Diego, Califor-
nia (ACM Press), May 1993.

Pushpa Rao and Cliord Walinsky. An equw
tional language for data parallelism. In Jth

Principles and Pmctice of Pamllel Progmmming,

pages 112-118, San Diego, California (ACM
Press), May 1993.

D. Skillicorn. Architecture-independent parallel

computation. IEEE Computer, 23(12):38–50, De-
cember 1990.

Razvan Voicu. Synthesizing parallel divideand-
conquer algorithms using the lit interleave oper-
ator. In 2nd ASIAN Computer Science Confer-

ence, Singapore, (LNCS 1179, pg 359-360) Berlin

Heidelberg New York: Springer, December 1996.

110

