12th IEEE International Conference on Emerging Technologies and Factory Automation September 25-28 2007, Patras, Greece

000

www.etfa2007.org

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

0

.....

©2007 IEEE IEEE Catalog Number: 07TH8932C ISBN: 1-4244-0826-1 Library of Congress: 2006937986

TECHNICAL PROGRAM

Session: T1.1	Room: I4	Wednesday, Sep. 26,	11:30 - 13:00
Communication in Automation	Systems: Pos		
Chairing: Juergen Jasperneite,	Alexander Fay		
Life-cycle Oriented Data Access for a Andreas Gössling, Martin Wollschlae		ımework	1
OWL Based Information Agent Serv Antti Pakonen, Teppo Pirttioja, Ilkka	•		9
<i>Limits of Increasing the Performance</i> Juergen Jasperneite, Markus Schuma		ernet Protocols	17
Prediction of End-to-End Deadline M Patricia Della Méa Plentz, Carlos Mo	•	•	25
Performance Evaluation and Predict System in Harsh Industrial Environ Uwe Meier, Stefan Witte, Kai Helmig,	nents		
Formalised specification of a test too Mathias Mühlhause, Christian Diedri	• • •		38
Session: T6.1	Room: I 10	Wednesday, Sep. 26,	11:30 - 13:00
Embedded Model Control and			
Chairing: E. Canuto, J. Ospina			
Embedded Model Control: principles Enrico Canuto, Luis David Prieto	and applications.	Part I	45
Embedded Model Control: principles Enrico Canuto, Luis David Prieto	and applications.	Part II	53
Embedded Model Control: sub-micro Enrico Canuto, Fabio Musso, Luca M		ty of the Nanobalance thrust-stan	ad 61
<i>Emerging technologies in the ESA S</i> <i>Luca Massotti, Enrico Canuto</i>	cience and Earth (Observation Programme	69
<i>Multilayer control of an optical refer</i> Enrico Canuto, José Ospina, Angelo I Marco Bisi, Paolo Cordiale			o, 77
Session: T3.1	Room: I 11	Wednesday, Sep. 26,	11:30 - 13:00
Scheduling and Resource Ma			
Chairing: Bjorn Anderson, Lui	gi Sassoli		
Sensitization of Symbolic Runs in Ro Enrico Vicario, Luigi Sassoli, Laura (Jsing the ORIS Tool	85
Virtual Execution Environment for I Claudiu Farcas, Wolfgang Pree	Real-Time TDL Co	mponents	93
Deriving Exact Stochastic Response time Systems		Tasks in Hybrid Priority-driven S	
Giordano Kaczynski, Lucia Lo Bello,	Thomas Nolte		101
Uniprocessor Scheduling Under Tim Fábio Rodrigues de la Rocha, Rômulo			111
Resource Management for Dynamica Muhammad Hasan, Sotirios Ziavras	ally-Challenged Re	configurable Systems	119
Reliable Scheduling of a Distributed Cause Failures Thanikesavan Sivanthi	Real-time Embeda	led Application Considering Com	<i>mon</i> 127
i nanikesuvan sivanini			1 4 /

	Room: I 12 to Enable Integrated	<i>Wednesday, Sep. 26,</i> 11:30 - d Manufacturing and Service Sys	
(IMSS) Chairing: Cab Kiab Mak	Cristian Vacar		
Chairing: Goh Kiah Mok			
A Rapid Configurable Embedd Kiah Mok Goh, Benny Tjahjono			135
<i>The Wireless Sensor Networks</i> L.Q. Zhuang, K.M. Goh, J.B. Zh		Issues and Challenges	141
Service Systems		odeling Integrated Manufacturing and	1.40
Han Yu, Zhiqi Shen, Chunyan N		0	149
Model-based Monitoring and I Sheng Huang, Kiah Mok Goh, Y		ology for Ball-nose End Milling n Hong, Kah Chuan Shaw	155
Fault Detection Methods for F Lucian Mihet, Octavian Prosted			161
	ntology for Interoperabili	ty in Integration of Design Information	
Systems Qizhen Yang, Chunyan Miao			169
Session: T2.1	Room: I4	Wednesday, Sep. 26, 14:30 -	16:00
Wireless Industrial Com			20000
Chairing: Christos Koula			
Development and Performance Communication based on IEE Andreas Vedral, Thomas Kruse,	E 802.15.4	a Diversity Module for Industrial	177
Reasoning about communicati Claudio Zunino, Gianluca Cenc	ion latencies in real WLA		187
through Remote Virtual Interfe	ace	r <mark>eless Household-Electric Network</mark> mabe, Luiz Ricardo Lima, Bruno	195
Fast Hand Off for Mobile Wire Orazio Mirabella, Lucia Lo Bel		hele Brischetto	202
<i>The Use of Clustered Wireless</i> <i>Urban Bilstrup, Katrin Bilstrup</i>			211
Industry		Network Solutions for the Oil & Gas in Vatland, Trond Michael Andersen, Dag	219
Session: T8	Room: I 10	Wednesday, Sep. 26, 14:30 -	16:00
Computational Intelligen	ce in Automation		
Chairing: E. Man, J. Tar			
<i>Texture Recognition for Frog</i> Flavio Cannavo', Boray Tek, Izz		ri	227
Modeling Supply Chain's Reco Bin Ma, Laura Xu, Roland Lim	onfigurability using Fuzzy	, Logic	234
On the Application of Recurren an Industrial Process	nt Neural Network Techn	iques for Detecting Instability Trends in	
Eva Portillo, Itziar Cabanes, M	larga Marcos, Asier Zubizo	arreta	242

Intelligent Control in Automation Based on Wireless Traffic Analysis Kurt W. Derr, Milos Manic

On-line Identification of Hybrid Systems Using an Adaptive Growing and Pruning RBF Neural
NetworkTohid Alizadeh, Karim Salahshoor, Mohammad Reza Jafari, Abdollah Alizadeh, Mehdi Gholami257Fault diagnosis and fuzzy logic decision for stochastic timed automata
Ghada Beydoun, Zemouri Ryad265

Session: T5.1	Room: I 11	Wednesday, Sep. 20	6, 14:30 - 16:00
Architectures, Methods o	and Technologies for	• Enterprise Integrati	ion
Chairing: Rei Itsuki, Jose L	astra		
Impact of the Delay of Subcontra Approach Mohammed Dahane, Christian Cl	· ·	grated Maintenance: Analy	<i>tical</i> 273
Development of Communications Production Equipment Satoshi Iwatsu, Yuji Watanabe, K.		Ifacturing Execution System	<i>and</i> 280
On Ontology Mapping in Factory Corina Popescu, Jose L. Martinez			288
Integration of SOA-ready Networ Layered Web Service Infrastruct Stamatis Karnouskos, Oliver Baeo	ure		293
An Information Management Sy Kazuhiro Kawashima, Norihisa K		n Supply Chain by Secure R.	FID Tag 301
An Approach for Integrating Rea Service-oriented Architecture Pa Daniel Cachapa, Armando Colom	radigm		<i>ng the</i> 309

Session: SS2.2	Room: I 12	Wednesday, Sep. 26,	14:30 - 16:00
Planning and Integration T	echnologies for Ma	nufacturing and Service	Systems
Chairing: Angle Goh, He We	ei		
Web 2.0 Concepts and Technologi Chong Minsk Goh, Siew Poh Lee, V		egration	315
Composing OWL-S Web Services B.D. Tran, P.S. Tan, A. Goh			322
An Investigative Approach on Imp Enterprise Integration using Web Wei He, Puay Siew Tan, Chong Mi	2.0 Technologies	_	ities for 330
Common Capacity Modelling for <i>I</i> F.Y. Wang, T.J. Chua, T.X. Cai, L.S.		e Studies	336

Session: T1.2Room: I4Wednesday, Sep. 26, 16:30 - 18:00IT in the Design Process of Automation SystemsChairing: Alexander Fay, Juergen JasperneiteIntroducing the Modeling and Verification process in SysML
Marcos Vinicius Linhares, Rômulo Silva de Oliveira, Jean-Marie Farines, François Vernadat344Automated PLC Software Generation Based on Standardized Digital Process Elements
Martin Bergert, Jens Kiefer, Christian Diedrich, Thomas Bär352

360

368

A rule format for industrial plant information reasoning Till Schmidberger, Alexander Fay

Software Quality Measures to determine the Diagnosability of PLC Applications Mohammed Bani Younis, Georg Frey

Control Systems Sandro Andrade, Raimundo M	<i>lacêdo</i>		376
Interactively Configurable Fi Sebastian Theiss, Joern Ploen		<mark>ents</mark> yy, Jens Naake, Klaus Kabitzsch	384
4 Linear Programming Base Ewa Figielska	d Heuristic for Solving a T	vo-Stage Flowshop Scheduling Problem	392
Session: T6.2	Room: I 10	Wednesday, Sep. 26, 16:30	- 18:(
<mark>Industry/Bank Automa</mark> Chairing: R. Vilanova, F			
	Methods for Modelling and	d Simulation of Industrial Systems	398
On the automatic generation Luiz Paulo Barbosa, Kyller G		f rom ISA 5.2 diagrams ma, Angelo Perkusich, Leandro Silva	406
Bank Note Classification Usi Sigeru Omatu, Michifumi Yosi			413
F <mark>eedforward Control for unc</mark> Ramon Vilanova	ertain systems. Internal Mo	odel Control approach	418
Session: T4 Intelligent Sensors and Chairing: Pedro M. Ruiz		<i>Wednesday, Sep. 26,</i> 16:30 vinga	- 18:(
U tilising Noise Effects on Inj Nikos Petrellis, Nikos Konofae		r Position Estimation on a Grid Plane	426
<mark>4 Tight Lower Bound for Art</mark> Andrea Bottino, Aldo Laurent		lgorithms	434
Implementation and Evaluati Ethernet Angelos Anastasopoulos, Dim		lizing TinyOS-based systems and noulis. Stavros Koubias	441
0 1	n Management Automation	using Wireless Sensor Networks	448
METATRO: A Real Time RF George Asimakopoulos, Spiro		o <mark>ring system for perishable comestibles</mark> illou	456
Performance Evaluation of I Reconciliation Technique Ba Karim Salahshoor, Mohamma	sed on the Unscented Kalm	an Filter	460
50 Ways to Build your Applic Networks Toannis Chatzigiannakis, Geor		v <mark>are and Systems for Wireless Sensor</mark> etseas	466
Session: SS1.1	Room: I 12		
Chairing: Kleanthis Thr	on Block Model in Coi		- 10:(
Benchmarking of IEC 61499	runtime environments	Strasser, Jeroen Brunnenkreef	474
Educational Approaches for a Seppo A Sierla, James H Chri			482
noonnonating Industrial Exp	ariance to IFC 61/00 Rase	d Development Methodologies and	

Incorporating Industrial Experience to IEC 61499 Based Development Methodologies and Toolsets Mika P. Strömman, Kleanthis C. Thramboulidis, Seppo A. Sierla, Nikolaos Papakonstantinou, Kari

490 O. Koskinen

Implementing IEC 61499 Communication with the CIP Protocol Frans Weehuizen, Aidan Brown, Christoph Sünder, Oliver Hummer	498
Deployment of IEC 61499 Compliant Distributed Control Applications Tanvir Hussain, Georg Frey	502
Integrating CNet and IEC 61499 function blocks Nils Hagge	506

Session: SS3	Room: I4	Thursday, Sep. 27,	11:00 - 12:30
Methods and Instrumer	ntation for Performanc	e Measurement in Rec	ul-time
Networks			
Chairing: Alessandra Fla	mmini, José A. Fonseca		
Precision of Ethernet Measur Iwan Schafer, Max Felser	ements based on Software To	ols	510
Delay Measurement System fo Paulo Bartolomeu, Valter Silvo		ams	516
A new distributed instrument characterization		•	
Paolo Ferrari, Alessandra Fla	mmini, Daniele Marioli, Andr	ea Taroni	524
Measuring the impact of verti Bruno Denis, Silvain Ruel, Jea			532
Measuring Real Time Perform Micaela Caserza Magro, Paolo		l Control Systems	540

Session: T6.3	Room: I 10	<i>Thursday, Sep. 27,</i> 11:00 - 12:30
Control Theory and A	pplications	
Chairing: A. Tzes, L. N	lassotti	
Stability margins character Orlando Arrieta, Ramón Vil		egulation tuning for PID controllers 548
<i>I/O Decoupling And Distur</i> <i>Measurement Output Feed</i> <i>Fotis N. Koumboulis, Georg</i>	back	Linear Time Delay Systems Via 555
	Technique for the Suppressio nes with Hoisting Mechanism y Tzes	n of Payload Swing in Three- 565
membrane humidity	o <mark>n Exchange Membrane Fuel</mark> (vyekhf, Abdellah El Moudni, Ma	Cell: The effect of temperature andaxime Wack569
<i>Automation of diagnosis of</i> <i>Fuzzy Expert System</i> <i>Jovelino Falqueto, Matheus</i>		e Itaipu Hydroelectric Plant with a 577

Session: T5.2	Room: I 11	Thursday, Sep. 27,	11:00 - 12:30
Emerging Issues and S	olutions		
Chairing: Masanori Akiy	oshi, Jose Lastra		
Towards Biologically Inspired Dania A. El Kebbe, Nils Kretz.		nufacturing Systems	585
An Alert Management System Jason C.S. Chung, Dickson K.	•	nt	591
Electric power service selection Shigeyuki Tani, Masaharu Aka		9ntract	599
Enforcing Transition Deadlin Haisheng Wang, Liviu Grigore		bi	604

Controlling Residential Co-Generation System Based on Hierarchical Decentralized Model Takuya Matsumoto, Hisashi Tamaki, Hajime Murao	612
Construction of Traceability Sysmem by using Simple and Handy type RFID reader Rei Itsuki	619

Session: SS5	Room: I 12	<u>Thursday, Sep. 27, 11</u>	:00 - 12:30
Embedded Systems Security	Y		
Chairing: D.N. Serpanos, W.H	I. Wolf		
Implementation of HSSec: a High-S Athanasios Kakarountas, Haralambo		•	625
Using Value Locality to Reduce Met George Keramidas, Pavlos Petoumet Serpanos			ios 632
An Integrated Security Model for C Nimal Nissanke	omponent–Based System	8	638
Security - Lifetime Tradeoffs for Wi Zdravko Karakehayov	reless Sensor Networks		646
Security and DRM in Indoor/Outdo Centric Frameworks Tasos Fragopoulos, Antonios Athanc Gialelis, Stavros Koubias	U U		651
Session: T7 Distributed Intelligent Cont	Room: I 13	Thursday, Sep. 27, 11	:00 - 12:30
Cisil ibuleu Intelligent Cont	TOT TOT TRAIDIE MU		

Chairing: George Chryssolouris, Nidhal Rezg	
Hierarchical Distributed Controllers - Design and Verification Dirk Missal, Martin Hirsch, Hans-Michael Hanisch	657
Dynamic Workflow Priorization Based on Block Finite Position Machines Jesus Trujillo, Zbigniew Pasek, Enrique Baeyens	665
Analytical Method for Generating Feasible Control Sequences in Controller Development Jesus Trujillo, Zbigniew Pasek, Enrique Baeyens	673
Structural Reasoning in Proving System Correctness Andrei Lobov, Jose Luis Martinez Lastra	681
Application Of The Supervisory Control Theory To Automated Systems Of Multi-Product Manufacturing Daniel Balieiro, Eduardo Portela, Agnelo Vieira, Marco Busetti	689
Management and manipulation of products using RFID-IMS in chain of production and distribution Antonio Abarca, Julio Encinas, Andres Garcia	697

Session: WIP 1	Room: I4	Thursday, Sep. 27, 1	6:00 - 17:00		
Industrial Networks an	Industrial Networks and Factory Automation				
Chairing: Thilo Sauter					
Topology Discovery in PROF Iwan Schafer, Max Felser	INET		704		
Retrieval of Diagnostic Inform Tim Keane, Hassan Kaghazchi	•	etworks	708		
Uniform Engineering of Distr Martin Hoffmann, Mathias Mu		**	712		
Context-aware infrastructure Loubna Ali, Mayyad Jaber, So			716		

Development of Web-Based Software for a Multi-Fieldbus Diagnosis Tool Scott Warner, Hassan Kaghazchi	720
Assessment of the Ontological Approach in Factory Automation from the Perspectives of Connectionism Aleksandra Dvorynachikova, Jose Lastra	724
OPC server implementation with MMS over Ethernet Hubert Kirrmann, Sébastien Chatelanat, Michael Obrist	728
Modeling Logical and Temporal Conditions to Formally Validate Factory Automation Web Services Corina Popescu, Jose L. Martinez Lastra	732
Message-Oriented Middleware for Automated Piezomotor Manufacturing Patrick Otto, Bernd Lindner, Martin Wollschlaeger	736
A Simulation Study of Ethernet Powerlink Networks Stefano Vitturi, Lucia Seno	740
Using a Packet Manipulaton Tool for Security Analysis of Industrial Network Protocols Tiago H. Kobayashi, Aguinaldo B. Batista Jr., Agostinho M. Brito Jr., Paulo S. Motta Pires	744

Session: WIP 2 Embedded Systems and	Room: I 10	Thursday, Sep. 27,	16:00 - 17:00
Chairing: Thilo Sauter			
A Power Manager for Deeply Geovani R. Wiedenhoft, Arlion	•	röhlich	748
Coprime factorization based s Salva Alcántara, Carles Pedre			752
A Constraint Logic Programm Distributed Embedded System Kåre Harbo Poulsen, Paul Pop	S	thesis of Fault-Tolerant Sche	edules for 756
Embedded linux scheduler m o Zdenek Slanina, Vilem Srovna			760
Enhanced Engineering of Do Descriptions within the eCED Christoph Sünder, Oliver Hum	AC Approach	n by use of Hardware Capabi	<i>lity</i> 764
Security in Agent-based Autor Basit Ahmed Khan, Jörgen Ma			768
Automating Security Tests Fo Joao Paulo S. Medeiros, Alliso			<i>es</i> 772
New Developments in EPOS Rafael Luiz Cancian, Marcelo			776
Genetic Algorithms Multiobje Dan Stan, Vistrian Maties, Rad		OF Micro Parallel Robot	780
A Hidden Markov Models Too Fotios Sotiropoulos, Panayioti			sformer 784
A Graphical Editor for the In Ricardo Nunes, Luis Gomes, Jo		Petri Net Class	788
Feasibility Conditions with Ke Priority Ceiling Protocol on a Franck Bimbard, Laurent Geo	n Event Driven OSEK Syste		ling with 792

Session: SS9	Room: I 11	Thursday, Sep. 27,	16:00 - 17:30
Business Intelligence an	d its Applications in	Industrial Ecosystems	
Chairing: Elizabeth Chan	g, Tharam Dillon		
An FCA-based mapping gener Paolo Ceravolo, Zhan Cui, Alex			796
Addressing The Challenges Of Miheala Ulieru, Mohsin Sohail	Enetwork Cyberengineerin	ng	804
Trust based Decision Making Amandeep Sidhu, Farookh Hus			810
Application of SPARQL in Sen Hai Dong, Farookh Hussain, El			816
Quantifying the Level of Failu Omar Hussain, Elizabeth Chang			820
An Overview of the interpretati Omar Hussain	ons of trust and reputation	!	826
Ontology Engineering and (Di Peter Spyns, Robert Meersman	gital) Business Ecosystems.	: a case for a Pragmatic Web	831

Session: SS6.1	Room: I 12	Thursday, Sep. 27,	16:00 - 17:30
Interoperability Issues			
Chairing: Vincent Chapt	ırlat, Athanasios Kaloş	geras	
	fication approach for chard	icterizing and checking organi	zational
interoperability Vallespir Bruno, Chapurlat Vin	acent		839
Enterprise Semantic Modellin Nacer Boudjlida, Hervé Paneti			847
An Ontology-based Interopera Daniel Diep, Christos Alexako	•	ibuted Manufacturing Control	855
Interoperable Language Fam Thomas Wagner, Albert Treytl,		on in Industrial Applications	863
Multilevel Order Decompositi Daniela Wuensch, Aleksey Bra		n	872

Session: WIP 3	Room: I 13	Thursday, Sep. 27, 16	:00 - 17:00
Sensors and Actuators			
Chairing: Thilo Sauter			
Accuracy analysis of a 3D mea industrial robot with a turntabl Mohamed Rahayem, J.A.P Kjeld	le	a laser profile scanner mounted o	n an 880
Group Management System of Yuichi Kobayashi, Toshiyuki Ku			884
Service Oriented Architecture J Camilo Christo, Carlos Cardein		ion	888
Active Beacon System with the Byoung-hoon Kim, Jong-suk Ch		re for Indoor Localization	892
Line based robot localization u Danilo Navarro, Ginés Benet, M	•		896
Surveillance of Mobile Objects Tony Larsson	using Coordinated Wirele	ss Sensor Nodes	900

RAVEN: A Maritime Surveillance Project Using Small UAV Siu O'Young, Paul Hubbard	904
Intelligent Multisensorsystem for In-line Process- and Quality Monitoring of Welding Seams using Methods of Pattern Recognition Michael Kuhl, Reimund Neugebauer, Paul-Michael Mickel	908
Sensor Enabled Rule Based Alarm System for the Agricultural Industry Christos Gogos, Panayiotis Alefragis, Efthymios Housos	912
Matching Images of Imprinted Tablets Ziga Spiclin, Marko Bukovec, Franjo Pernus, Bostjan Likar	916
Wireless Vibrating Monitoring (WiVib) An industrial case study Jonas Neander, Stefan Svensson, Tomas Lennvall, Mats Björkman, Mikael Nolin	920

Session: T3.2	Room: I 10	<i>Thursday, Sep. 27,</i> 17:00 - 18:	:00
Real-Time and Control			
Chairing: José A. Fonseca			
Optimal Flow Routing in Multi-h Linear Programming Jiri Trdlicka, Zdenek Hanzalek, M		Real-Time Constraints through 92	24
Simple PID Control Algorithm ad Volodymyr Vasyutynskyy, Klaus K	· · · · · · · · · · · · · · · · · · ·	pling 93	32
Second order sliding mode real-ti Luca Capisani, Tullio Facchinetti,		<i>robotic manipulator</i> 94	41
<i>On the practical issues of implem</i> <i>controllers</i> <i>Jose Fonseca, Paulo Bartolomeu,</i>		protocol in small processing power Varreiro 94	19

Session: T9.1	Room: I4	<i>Friday, Sep. 28,</i> 10:00 - 11:30	
Intelligent Robots I			
Chairing: Josep M. Mira	its, Yolanda Bolea		
A New Time-Independent Im Gabriel J. García, Jorge Pom	a <mark>ge Path Tracker to Guide Ro</mark> ares, Fernando Torres	obots Using Visual Servoing 957	
Real-Time Architecture for N Pedro Sousa, Rui Araújo, Url	Aobile Assistant Robots bano Nunes, Luís Alves, Ana Lo	opes 965	
Hierarchical Distributed Arc Jose Azevedo, Bernardo Cunl	hitectures for Autonomous M aa, Luis Almeida	<i>Sobile Robots: a Case Study</i> 973	
Camera Localization and Ma Parametrization Rodrigo Munguia, Antoni Gra		P Initialization and Inverse Depth 981	
An Outdoor Guidepath Navig Markers Ana Lopes, Fernando Moita,		d on Robust Detection of Magnetic 989	
Decision Making among Alte	e <mark>rnative Routes for UAVs in D</mark> lo, Gonzalo Pajares, Jesus M.		

Session: T5.3	Room: I 11	Friday, Sep. 28, 10:00 - 11:30			
Automated Manufactu	Automated Manufacturing Systems				
Chairing: Toshiya Kaih	ara, Jose Lastra				
Development of a holistic Gu Machining Operations Ulrich Berger, Ralf Kretzschr		ocess Chain for benchmarking 1005			
Design and Realization of a Francesco Calabrese, Giovan		mbedded Controller 1010			

A Study on Automated Scheduling Methodology for Machining Job Shop Yoshihiro Yao, Toshiya Kaihara, Kentaro Sashio, Susumu Fujii	1018
A Heuristic Approach For Scheduling Multi-Chip Packages For Semiconductor Backend Assembly Tay Jin Chua, Tian Xiang Cai, Xiao Feng Yin	1024
A Formal Approach for the Specification, Verification and Control of Flexible Manufacturing Systems Sajeh Zairi, Belhassen Zouari, Laurent Piétrac	1031
Design and Implementation of Petrinet Based Distributed Control Architecture for Robotic Manufacturing Systems G. Yasuda	1039

Session: SS8	Room: I 12	Friday, Sep. 28, 1	0:00 - 11:30
Design and Analysis of	Distributed Automatio	n Systems	
Chairing: Georg Frey, A	lexander Fay		
Formal verification of redund Steve Limal, Bruno Denis, Jea			1045
DesLaNAS – a language for Jürgen Greifeneder, Georg Fr	-	ution Systems	1053
Simulation Approach for Eva Liu Liu, Georg Frey	luating Response Times in No	etworked Automation Systems	5 1061
UML-based safety analysis oj Sebastian Schreiber, Till Schn Schnieder			d 1069
Incremental design of distrib Arndt Lüder, Jörn Peschke	uted control systems using GA	IA-UML	1076
Distributed control programm Michael Heinze, Joern Peschk		vstem	1084

Session: T3.3	Room: I 13	Friday, Sep. 28, 10:00 - 11:30
Distributed Real-time Sy	vstems	
Chairing: Thomas Nolte, C	Drazio Mirabella	
Simulation for end-to-end delay Jean-Luc Scharbarg, Christian F		Ethernet 1092
Exploiting a Prioritized MAC P Björn Andersson, Nuno Pereira,		ute Interpolations 1100
<i>Master Replication and Bus Err</i> Valter Silva, Joaquim Ferreira, .		with Multiple Buses 1107
Embedded Web Services for Ind Francisco Maciá-Pérez, Diego N		

Session: T10	Room: 14	Friday, Sep. 28, 12:00	- 13:30
Emerging Issues			
Chairing: Gianluca Cena, Da	cfey Dzung		
The Effect of Quartz Drift on Conv. Eric Armengaud, Andreas Steininger	0	Clock Synchronization	1123
Supply Chain Performance Evaluate Zhengping Li, Arun Kumar, Xiaoxia	•	d Operational Levels	1131
Common Approach to Functional S Control Systems Thomas Novak, Albert Treytl, Peter		ity in Building Automation and	1141

A Development Process for Mechatronic Products: Integrating Software Engineering and Product Engineering Ana Patrícia Magalhães, Aline Andrade, Leila Silva, Herman Lepikson	1149
<i>A Novel Class of Multi-Agent Algorithms for Highly Dynamic Transport Planning Inspired by</i> <i>Honey Bee Behavior</i> Horst F. Wedde, Sebastian Lehnhoff, Bernhard van Bonn	1157
Introducing and Evaluating a Relaying Concept for the IEEE 802.16 Wireless Metropolitan Networks Christos Antonopoulos, Kostas Stamatis	1165

Session: SS4	Room: I 10	Friday, Sep. 28, 12:00 -	- 13:00
Innovative E-Learnin Chairing: Luis Gomes	-		
Synchronous Multipoint E Unicast Networks: Design	- -Learning Realized on an Intel and Performance Issues	l <mark>igent Software-Router Platform over</mark> cesco Licandro, Alessandra Russo,	1172
	o <mark>ratory for Distance Training</mark> in , Herminio Martinez, Joan Dom		1180
Remote Laboratory for Co Yolanda Bolea, Antoni Gra			1188
Session: SS7	Room: I 10	Friday, Sep. 28, 13:00 ·	- 13:30
Grouping and Coopera	ating of Services		
Chairing: Carsten Bus	chmann, Reinhardt Karna	pke	
In-network Processing and Maik Krüger, Reinhardt Ka	Collective Operations using th rnapke, Jörg Nolte	e Cocos-Framework	1194

Lean and Robust Phenomenon Boundary Approximation Carsten Buschmann, Daniela Krueger, Stefan Fischer

Session: T5.4 Multi-agent Systems f Chairing: Masanori Akiy		<i>Friday, Sep. 28,</i> 12:00 - trol	13:30
utilizing a relevant Meta-Onto	ology	g ontology to a multi-agent system geras, John Gialelis, Stavros Koubias	1210
Agent-based Control of Rapid Jani Jokinen, Jose L. Martinez		Handling System	1217
Agent Based Prototype for Int Manufacturing Automation Rui M. Lima, Rui M. Sousa	eroperation of Production I	Planning and Control and	1225
Agent-Based Control Model f Omar López, Jose Lastra	or Reconfigurable Manufac	turing Systems	1233
A holonic approach for manu Blanc Pascal, Demongodin Isa		design: an industrial application et Jean-Claude	1239

Session: T2.2	Room: I 12	Friday, Sep. 28, 12:00 - 13:30
Scheduling, Safety and	Response Times of	Industrial Communication Networks
Chairing: Julian Proenza,	, Thomas Nolte	

Network Recovery Time Measurements of RSTP in an Ethernet Ring Topology Gunnar Prytz 1202

Evaluation of timing characteristics of a prototype system based on PROFINET IO RT_Class 3 Paolo Ferrari, Alessandra Flammini, Daniele Marioli, Andrea Taroni, Francesco Venturini	1254
Hyperperiod Bus Scheduling and Optimizations for TDL Components Emilia Farcas, Wolfgang Pree	1262
Testing Approach for Online Hardware Self Tests in Embedded Safety Related Systems Thomas Tamandl, Peter Preininger, Thomas Novak, Peter Palensky	1270
BuST: Budget Sharing Token Protocol for Hard Real-Time Communication Gianluca Franchino, Giorgio C. Buttazzo, Tullio Facchinetti	1278

Session: SS6.2	Room: I 13	Friday, Sep. 28, 12:00) - 13:30
Interoperability Applica			
Chairing: Athanasios Ka	logeras, Ioannis Gialeli	S	
Semantically-Enabled Inter-E Christos Alexakos, Panagiotis			1286
Interoperability Issues in Virt Taivo Kangilaski	ual Organization – How to F	roceed?	1293
Towards an ontology-based sy statements	estem for intelligent prediction	n of firms with fraudulent financia	ıl
Dimitris Kanellopoulos, Sotiri.	s Kotsiantis, Vasilis Tampaka	S	1300
AHP Based Supply Chain Per Laura Xiao Xia Xu	formance Measurement Sys	tem	1308

Session: T9.2	Room: I4	Friday, Sep. 28, 13:30 - 15:00
Intelligent Robots II		
Chairing: Antoni Grau, G	abriel J. Garcia	
Accurate Range Image Registr Yonghuai Liu, Honghai Liu, Lo	0	ling Outliers 1316
A Two Stage Robot Control for Maria P. Tzamtzi, Fotis N. Kou		<i>kas</i> 1324
Dynamic equations of motion J Josep M. Mirats Tur, Sergi Her		
Onto computing the Uncertain Josep M. Mirats Tur	ty for the Odometry Pose Est	<i>timate of a mobile robot</i> 1340
Solving the Inverse Kinematics Algebra-Based Methods Michael Wenz, Heinz Wörn	F Problem Symbolically by M	leans of Knowledge-Based and Linear 1346
·		
<i>Multivariable Iterative Feedba</i> Fotis N. Koumboulis, Maria P.	· · ·	· · · ·
Fuzzy Cooperative Control of Francesco M. Raimondi, Mauri		r Vehicles 1364

Session: WIP 4	Room: I 10	Friday, Sep. 28, 13:30 - 14:30
Wireless and Dependable	Networks	
Chairing: Thilo Sauter		

Implementation of Power Aware Features in AODV for Ad Hoc Sensor Networks. A Simulation	
Study	
Konstantina Pappa, Antonis Athanasopoulos, Evangelos Topalis, Stavros Koubias	1372
Integrating Building Automation Systems and Wireless Sensor Networks	
Erik Pramsten, Daniel Roberthson, Fredrik ÖSterlind, Joakim Eriksson, Niclas Finne, Thiemo	1376
Voigt	

<i>Multicast Communication in Wireless Home and Building Automation: ZigBee and DCMP</i> <i>Christian Reinisch, Wolfgang Kastner, Georg Neugschwandtner</i>	1380
Using Time-Triggered Communications over IEEE 802.15.4 Nuno Ferreira, José A. Fonseca	1384
On a IEEE 802.15.4/ZigBee to IEEE 802.11 Gateway for the ART-WiSe Architecture João Leal, André Cunha, Mário Alves, Anis Koubâa	1388
Performance measurements of 802.11 WLANs with burst background traffic Claudio Zunino	1392
IEC 62439 PRP: Bumpless Recovery for Highly Available, Hard Real-Time Industrial Networks Hubert Kirrmann, Mats Hansson, Peter Müri	1396
A Two-Competitive Approximate Schedulability Analysis of CAN Björn Andersson, Nuno Pereira, Eduardo Tovar	1400
<i>Modelling MajorCAN with UPPAAL</i> Matias Bonet, Gabriel Donaire, Julian Proenza	1404
A Decentralized Intrusion Detection System for Increasing Security of Wireless Sensor Networks Ioannis Chatzigiannakis, Andreas Strikos	1408
Energy Efficient Authentication in Wireless Sensor Networks - An industrial case Rickard Soderlund, Stefan Svensson, Tomas Lennvall	1412

Session: WIP 5	Room: I 11	Friday, Sep. 28,	13:30 - 14:30
Control Chairing: Thilo Sauter			
	r a Humanlike Shape Memor nthony Tzes, Efthymios Kolyvas	• •	1417
Optimization rules for mill c algorithm Luis Rubio, Manuel De la Se	utter and cutting parameters s	selection incorporating a co	ntrol
Ontology-driven Control Ap	olication Design Methodology Ferrarini, Arndt Lueder, John		
A Metaheuristic Approach f Fotis N. Koumboulis, Maria I	o <mark>r Controller Design of Multi</mark> v P. Tzamtzi	variable Processes	1429
0.0	<mark>r Active Hydraulic Suspension</mark> J. Koumboulis, Achilleas S. Nte		1433
Robust Lane Keeping for a T Michael G. Skarpetis, Fotis N	Fractor-Trailer J. Koumboulis, Achilleas S. Nte	ellis, Thomas E. Tsimos	1437
Fuzzy Control of Sparing in Guillermo Navarro, Milos M			1441
	ext-Sensitive Architecture for Daniel Käslin, Alexander Klapp	· ·	ontrol 1445
.	Variable Structure Control Lo korta, Izaskun Garrido, Aitor C		1449
	rol with real-time Java and E Roger Henriksson, Anders Blon		1453
Session: T2.3	Room: I 12	Friday, Sep. 28.	13:30 - 14:30

Session: T2.3Room: T12Friday, Sep. 28, 13:30 - 14:30Clock Synchronization and Multimedia Real-time CommunicationsChairing: Thomas Nolte, Christos Koulamas

A PLL-Based Approach to Clock Synchronization for Trajectory Rebuilding in Event-Triggered Communication Systems Carlo Rossi, Manuel Spera

A Simulation Framework for Fau Networks	ult-Tolerant Clock Synchron	nization in Industrial Automation	
Fritz Praus, Wolfgang Granzer, G	eorg Gaderer, Thilo Sauter		1465
Dynamic QoS Management for Multimedia Real-Time Transmission in Industrial Environments Javier Silvestre, Luis Almeida, Ricardo Marau, Paulo Pedreiras			1473
Integration of a flexible time triggered network in the FRESCOR resource contracting framework Ricardo Marau, Paulo Pedreiras, Luís Almeida, Michael Harbour, Daniel Sangorrín, Julio Medina 1481			
Kicuruo Maruu, 1 uuto 1 eureirus,	Luis Aimeiaa, michael Harb	our, Daniei Sangorrin, Julio Mealna	1401
Session: SS1.2	Room: I 13	Friday, Sep. 28, 13:30 - 15	5:00
IEC61499 Implementation	IS		

Chairing: Kleanthis Thramboulidis, Georg Frey

RTAI-based Execution Environments for Function Block Based Control Applications George Doukas, Alessandro Brusaferri, Marco Colla, Kleanthis Thramboulidis

1489

Common Approach to Functional Safety and System Security in Building Automation and Control Systems

Thomas Novak¹, Albert Treytl^{1,2}, Peter Palensky¹

¹⁾ Vienna University of Technology, Institute of Computer Technology Gusshausstrasse 27-29 1040 Vienna, Austria {novakt, treytl, palensky}@ict.tuwien.ac.at

Abstract

Building automation and control systems (BACS) are an important part of modern automated buildings. More and more they are also responsible for functions affecting people's safety, security and health. Thus the respective technology is supposed to work reliably, securely, safely and efficiently. The two important features of such a BACS are functional safety and system security (short safety and security) of both the network nodes and the communication protocols. Up to now little effort has been made to specify a life cycle for a safe and secure BACS that defines requirements for the different stages of the product life of a BACS. Special focus is related to the commonalities between the development of safety and security systems to benefit from these commonalities in development.

1. Introduction and Problem Statement

Building automation and control systems (BACS) are often integrated into modern buildings. More and more modern BACS go beyond trivial control or measurement tasks. Their importance for the processes of a building (climate, logistics, etc.) is constantly growing. They also become responsible for functions that affect people's safety and security. Due to social developments and personal safety desires it is absolutely necessary that modern BACS feature functional safety (short safety) and network and system security (short security) of the network nodes and the communication protocols.

Today's BACS typically lack real security features [1]. In fact, most of them are not considered secure at all although effort is made to integrate such features. A solution for a BACS is presented in [19]. Speaking of functional safety, first promising extensions of standard BACS are currently making their way to the market. Functional safety of these systems, however, is compromised by their intrinsic security flaws. There is no real safety without security: proper measures to grant

²⁾ Austrian Academy of Sciences Research Unit for Integrated Sensor Systems Viktor-Kaplan-Strasse 2 2700 Wiener Neustadt, Austria Albert.Treytl@oeaw.ac.at

confidentiality, integrity, availability (CIA) of data as well as efficient access control. In fact, security must be seen as actually supporting safety, instead of hindering it and vice versa.

Harmonizing safety and security is not a new topic in literature. Eams [2] investigated safety and security requirements specification methods in the context of an air control system and problems relating to their independent development. Stavridou [3] and Simpson [4] discussed the relevance of the security concept of non-interference to safety related properties. Stoneburner [15] presented a unified security/safety risk framework.

The discipline called dependability pursues the idea of an unified approach. According to Laprie [5] dependability is an integrative concept. A dependable system is characterized by the following attributes: availability, reliability, safety, confidentiality, integrity and maintainability. Dewsbury [6] presented a dependability model for domestic systems.

Although a lot of research has been done on this topic, up to now there have not been any guidelines, technical specifications or standards for an open-standard BACS that give requirements for specifying a safe and secure BACS. It is not documented publicly how to benefit from the commonalities of safety and security during development of a BACS and how to deal with contradictions between both areas.

As a consequence an approach to specify a safe and secure system is being presented in the following that specifies different stages in the pre-design phase of a safe and secure BACS. It is the first phase of a safe and secure life cycle model. It harmonizes the safety and security disciplines by giving requirements for the various stages. The approach does not focus on particular applications, but concentrates on the properties of BACS to maintain their today's flexible utilization in a safe and secure way.

The remainder of the document is structured as follows: section 2 presents an approach to develop a safety related system according to the international standard IEC 61508. Section 3 deals with security issues mentioned in Common Criteria. Section 4 points out the approach to develop a safe and secure system. Section 5 discusses the approach while section 6 outlines the usage of the presented approach by means of a practical application.

2. Safety – IEC 61508

In the last years the need for establishing a technology for safety related data communication with BACS has been increased due to recent political and technical developments. A new international standard IEC 61508 [6] was developed and published that gives requirements for programmable electronic safety related systems.

The standard IEC 61508 defines safety as "the absence of unacceptable risk of physical injury or damage to the health of people [...]" [6]. It standardizes a life cycle model for creating a safety related systems. It specifies requirements for every stage of the life of a system to avoid systematic failures and to handle stochastic failures. It guides the developer through the pre-design phase, the design and installation phase, and the operation phase of the system.

Safety related systems are developed to reduce the inherit risk of the equipment under control (EUC) below the maximum tolerable risk by applying a variety of measures. The EUC, for example, corresponds with the building automation and control system.

The amount and kind of measures are always specified on account of hazards and its associated risks. As a result developing a safety related systems always requires a hazard and risk analysis of the EUC. It consists of a specification of hazards causing a dangerous situation, a description of the reason of the hazards and an identification of risks associated with the different hazards.

Safety requirements that describe how to handle hazards in a safe way are derived from the hazard and risk analysis. Safety requirements define the behavior of the safety functions performed by the safety related system.

Beside safety requirements there are also safety integrity requirements, i.e. performance requirements for the safety functions, necessary to be defined in order to achieve functional safety with a safety related system.

Table 1. Safety integrity level (IEC 61508)

Safety integrity level (SIL)	High demand or continuous mode (Error probability per hour)
4	≥ 10 ⁻⁹ to < 10 ⁻⁸
3	≥ 10 ⁻⁸ to < 10 ⁻⁷
2	≥ 10 ⁻⁷ to < 10 ⁻⁶
1	≥ 10 ⁻⁶ to < 10 ⁻⁵

Table 2. Safety integrity of deployedhardware (IEC 61508)

Safe failure fraction	Hardware fault tolerance ¹		
	0	1	2
< 60%	not possible	SIL 1	SIL 2
60% - < 90%	SIL 1	SIL 2	SIL 3
90% - < 99%	SIL 2	SIL 3	SIL 4
≥ 99%	SIL 3	SIL 4	SIL 4

1) A hardware fault tolerance of N denotes that N+1 faults cause a loss of the safety status of the system.

Safety integrity requirements specify the possibility of a safety function being performed according to expectation. Safety integrity requirements are derived from the risk assessment where the risk of every hazard is determined. Risk can be decided either by means of qualitative or quantitative measures. Due to general uncertainties in determining the probability and the damage of hazards it is state of the art to use qualitative measuring such as a risk matrix [7] or a risk graph [6].

The performance of the safety functions is categorized by four safety integrity levels (SIL) defined in IEC 61508. Safety integrity level 1 (SIL 1) is the lowest and safety integrity 4 (SIL 4) is the highest level. Each level corresponds with a specific error probability per hour (see Table 1). The value of the error probability specifies the probability of a dangerous error per hour.

On account of the safety integrity level the likelihood for successfully performing the safety functions is defined. The lower the likelihood of dangerous failure the higher the performance of the safety functions must be and the more thorough are the safety integrity requirements.

After specifying the safety functions and the safety integrity level, designing a safety related systems additionally requires a consideration of the deployed hardware where the safety functions are executed. A defined safety integrity level of safety functions can only be reached by increasing the hardware fault tolerance (see Table 2 for an explanation) or the safe failure fraction. The safe failure fraction (SFF) specifies the quantity of failures that do not result in a dangerous situation. The standard IEC 61508 presents a couple of ways to reach a safety integrity level.

Safe failure fraction can be augmented by detecting failures with a high probability. These detected failures are handled by the safety related system properly. Another way is to deploy highly reliable hardware where per se failures occur with a very low probability.

An alternative way to reach a defined safety integrity level is to increase the hardware fault tolerance. That is, additional measures are taken (such as the use of redundant hardware) to avoid a dangerous situation although a hazard has occurred.

3. Security – Common Criteria

In 1993 the CC (Common criteria) project was started to harmonize US, Canadian and European security criteria and create a single set of IT security criteria. After some draft versions were published and extensive reviews were made, CC version 2.0 was finally standardized as ISO/IEC 15408 [9] in 1999. The standard (for historical purpose called CC) is a basis for evaluation of security properties of IT products and systems. CC specifies a set of requirements for the security functions of IT products and systems. Additionally, it gives requirements for assurance measures applied to the security functions during security evaluation. As a consequence CC permits to compare results of independent security evaluations.

Within this paper security is defined the following: "Security is concerned with the protection of assets from threats, where threats are categorized as the potential for abuse of protected assets" [9]. Assets are described as information or resources to be protected by security countermeasures. Security especially pays attention to those threats related to malicious or other intentional activities.

CC includes two basic concepts: a security concept and an evaluation concept. The idea of the first one is that owners of assets analyze the possible threats to the assets. They determine which threats apply to their environment. These threats result in risk to the assets. To reduce the risk to assets, countermeasures are required that themselves may posses vulnerabilities and lead to a risk to the assets.

The evaluation concept is based on the idea that evaluation gives evidence of assurance and assurance techniques produce assurance. Owner of assets require assurance because it gives confidence that countermeasures minimize risk to their assets.

The standard presents a framework in which an effective evaluation is possible by defining a way to derive requirements and a specification of the TOE (Target of evaluation; IT product or system that is subject of evaluation). It, however, does not mandate any life cycle model. To receive a TOE specification, four major stages must be run through.

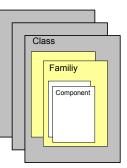
1. Establish security environment: Investigate the

Table 3. Functional Security Classes [9]

Security audit	Privacy
Communications	Trusted path
Cryptographic support	Resource utilization
User data protection	TOE access
Identification and authentication	Protection of the trusted security functions
Security management	

Table 4. Security Assurance Classes [9]

Configuration management	Tests
Delivery and operation	Vulnerability assessment
Development	Evaluation criteria
Guidance documents	Assurance maintenance
Life cycle support	


physical environment, assets requiring protection, purpose of the TOE.

- 2. Establish security objectives: Identify assumptions, threats and security policies.
- 3. Establish security requirements: Derive requirements from the security objectives by means of the CC requirements catalogue.
- 4. Establish TOE summary specification: Functional and assurance requirements lead to the TOE summary specification.

Security function and security assurance requirements are specified in the CC catalogue.

- Security requirements describe the security behavior of a TOE.
- Assurance requirements define the scope, depth and rigor of evaluation of a TOE.

Both, security and assurance requirements, are categorized in classes. Security requirements of a class share a common focus. The name of an assurance class indicates the covered topics. Each class consists of different families of security requirements which share same security objectives. Families are finally divided into components that are the smallest set of requirements (Figure 1).

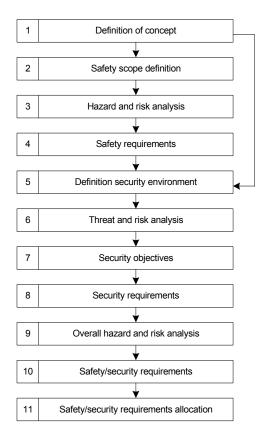
Figure 1. Class, family, component hierarchy

Security requirements from the different functional security classes (Table 3) are chosen depending on the security objectives. Security assurance requirements are selected from various assurance classes (Table 4) regarding the evaluation assurance level (EAL).

The philosophy of CC is to grant assurance based on an evaluation, i.e. active investigation of the IT product or system that is to be trusted. For that reason seven evaluation assurance levels (EAL) are specified that provide a uniformly increasing scale. A higher EAL reduces the likelihood of vulnerabilities and increase the amount of confidence, but the effort is getting greater because a larger portion of the system is included in the evaluation process. In addition, more details of the design are covered and the evaluation process is carried out in a more structured and formal manner the higher the EAL is required.

4. Integrated Pre-design of Safe and Secure BACS

Section 2 and section 3 outlined the basics specified independently in safety and security standards of getting requirements for a system to develop. Whereas the safety standard specifies a life cycle model, the security standard only describes a way of deriving requirements and specifications. Both safety and security standards define levels to categorize the system. Safety integrity level (SIL) specify the level of performance of safety functions. Evaluation assurance level (EAL) give information about the level of security evaluation.


The integrated pre-design of safe and secure BACS is the first phase of a safe and secure life cycle model. The idea proposed by the authors and in standardization of BACS (CEN/TC 247) is to use the safety life cycle from IEC 61508 and integrated the way of deriving security requirements from CC. Moreover activities are added to consider safety and security dependences.

A life cycle model is a general model of the life of a system, including all the activities needed to develop, maintain and dispose a system. The advantage of such a life cycle model is the structured and formal way of development and maintenance.

This paper focuses on the pre-design phase of the safety and security life cycle (see Figure 2). The predesign phase summarizes activities of the first phase of the life cycle. Step 1 to 4 is following IEC 61508 [7], steps 5 to 8 are following the Common Criteria [9]. Note that the arrows in Figure 2 do not intend to symbolize a sequential development process such as the waterfall model [10] or V-model [11] does. They imply that activities of step *n* requires input from the preceding step *n*-1. The pre-design phase can/must be repeated in an iterative process to finally receive a complete set of safety/security requirements for the BACS.

The pre-design phase begins with "definition of the concept" and "safety scope definition". During that steps the physical environment of the BACS, field of application and relevant laws are examined as well as typical hazards in BACS are identified. Next the scope of the BACS and the scope of the hazard and risk analysis is specified.

"Hazard and risk analysis" aims at identifying typical hazards in BACS. Additionally, it describes the reasons for the hazards and determines the risk associated with the hazards. In the following the safety requirement specification, used to define the safety related system, is

Figure 2. Pre-design of a safe and secure BACS

derived from the hazard and risk analysis.

The next step comprises the list of assets requiring protection, already including the safety related system functionality, the purpose of the target of evaluation (TOE) and the field of application. Next security objectives are derived from a list of threats and the associated risk to the BACS itself and the safety related system. Moreover security policies are investigated. The desired evaluation assurance level (EAL) is defined. Security objectives and the CC requirements catalogue are used to specify the security requirements, functional and assurance ones according to the EAL.

Step 9 "overall hazard and risk analysis" investigates safety and security requirements. It is checked whether security requirements lead to new hazards and risks to human health. I.e., are there new safety requirements necessary due to security needs and how they influence security.

In the end the common, overall safety/security requirements are specified. At this point the commonalities and contradictions between safety and security requirements are evaluated. In case of contradicting requirements safety is favored over security or vice versa depending on the field of application. Finally, requirements are allocated to the safety/security functions as well as the level of performance regarding safety (SIL) is chosen.

5. Discussion

The developed approach to integrated safety and security in building automation and control systems (BACS) is a life cycle model trying to harmonize the safety and security discipline. Based on well approved standards for safety and security the common concepts and methods (see section 2 and 3) are integrated.

Both, safety and security disciplines, deal with the problem of risk reduction. However, their objectives differ. Safety measures try to protect people, security measures aim at protecting resources or information. Risk reduction is achieved by safety and security functions respectively. They are derived from the respective requirements. IEC 61508 on the safety side and Common Criteria (CC) on the security side specify a big number of requirements to receive safety or security requirements by using the same concept(s) of requirements derivation.

Moreover, the standards define levels (safety integrity and evaluation assurance) to allow for a comparison of different system designs. Safety integrity levels are defined by different numbers of error probability per hour (Table 1). Evaluation assurance levels specify a set of requirements from the different assurance classes (Table 4). Although the measurands are different, both levels, however, have in common that the higher the level the more and stricter requirements must be met. A higher level results in a higher risk reduction. I.e., safety and security have the strikingly similar goals.

For that reason approaches to unify safety and security have already been published. In [15] an unified security/safety risk framework is presented. It combines the existing security and safety risk model. It specifies that the output of the existing security model, the "potential for harmful security event", should be considered as a safety hazard. The common approach presented in this paper, however, starts with activities relating to safety and then analysis security.

This procedure was chosen because:

- 1. First of all because IEC 61508 specifies a very formal and strict way of receiving requirements. The IEC 61508 procedure is very well adopted and often a legal requirement
- 2. Depending on the safety integrity level a hardware fault tolerance different from zero is required (see Table 2). This requirement results in a specific physical system architecture (e.g., "two channel architecture") that must be considered while establishing the security environment.
- 3. Moreover assets to be protected included safety requirements might be comprising the security environment. In most BACS safety is a key application functionality that cannot be readjusted.
- 4. [20] suggests to integrate security measures as monitoring functions that indicate failures in the

safety system. This will limit security functions to a passive subordinate role. In proposed approach security is an active part of the system.

After step 8 of the pre-design phase (Figure 2) safety requirements were specified that are part of the security environment. Additionally, a set of security requirements is available already considering safety requirements. What is still missing at this point is a cross-checking of both sets of requirements. Are there new hazards and are new risks imposed on the BACS due to security? Are the safety and security requirements complementary? Do security requirements contradict safety requirements and vice versa? Finally, what functions are necessary to meet safety and security requirements?

The "overall hazard and risk analysis" uses the hazards and threats already identified in step 3 and step 6 of the pre-design phase respectively. At this point attention is paid to the dependencies of safety and security. First security requirements are checked if they cause not yet identified hazards. If so, another cycle need to be started. New safety requirements are specified and step 5 to 8 in Figure 2 are repeated. In case the "overall hazard and risk analysis" reveals the same hazard due to security requirements at the end of an additional cycle, a clear contradiction between safety and security was identified. Next risk of the hazards and threats are evaluated with regard to the safe and secure BACS. At this stage of the pre-design phase a possibility is given to set the focus of the BACS either on safety or security. Risk allocation depends on the field of application: either safety or security has priority but in many cases safety is dominant.

Regarding safety and security requirements and hazards coming from the overall hazard and risk analysis, so called safety/security requirements are specified. Most of them are equal to the safety and the security requirements they are based on. In case some requirements are contradicting each other, the presented approach foresees that the one that impose a higher level of risk will be selected. This kind of methodology presents a clear and concise way of solving the problem of contradiction between safety and security requirements. To show a way how to deal with contradictions, the following example is given.

In the safety world it is common practice to send "alive messages", so-called heartbeats, between a producer (actuator) and a consumer (sensor). They are sent periodically according to the chosen SIL (Table 1) to check whether the consumer is still running. In addition, the heartbeats must be generated within a defined time frame on a node. Since a consumer should just accept heartbeats from particular defined producers, authentication using a message authentication code (MAC) is applied. Let's assume that generating a heartbeat must be performed within 30 ms due to the chosen SIL; moreover generating a 16-byte MAC

Cross talk	Aging
Broken cable	EMC Failure
Wiring failure	Human failure
Stochastic failure	Temperature
Stuck at failure	Transmission of non- authorized messages

Table 5. Typical reasons for networkhazards in BACS [13]

requires 50 ms of time.

If heartbeats are sent in a fire alarm system in office buildings between a fire detector and fire damper, the following problem has to be solved: generating an authenticated heartbeat within 30 ms is impossible because processing a 16-byte MAC takes 50 ms. As in this scenario the risk of sending heartbeats less frequently is much higher (Risk of not detecting a defect sensor imposes a high risk to people in the building.), the safety requirement is preferred.

In case of an access control system to a vault the situation is different. Heartbeats are sent between an actuator to open door and the input screen. If we assume that the door of the vault can be opened manually from the inside - low risk level to people being inside the vault -, authentication (generating a MAC) has priority to avoid unauthorized access to the actuator.

The final step of the pre-design phase in Figure 2 specifies functions derived from the requirements. Methods from the safety or security world that form the functions are applied depending on the prioritization of safety or security.

The following section presents the usage of the integrated pre-design model. Special attention is paid to dependencies between safety and security. As an example for this, the usage of source addresses is taken.

6. Practical Application

Applications for safety use source addresses to prevent message insertion. Security access control can be based on entity identification by source addresses.

According to the developed pre-design model (Figure 2) steps 3 and 4 as well as steps 6 and 8 are the core parts of the joint analysis. Although based on general requirements, the definition of safety scope and security objectives needs to address specific issues of both areas. The different focal position in the pre-design model mainly stem from historical reasons. The security approach is to first check what harm can be done and then define the security measures. In safety a certain requirement is usually given in advance. In practical usage, both cases will have a (preliminary) definition of scope and objectives before the hazard/threat and risk analysis and a reconsideration or definition after this

Table7. Typical reasons for networkthreads in BACS [18]

Trojan horse	Data forgery
Eavesdropping on the net	Address Spoofing
Flooding machines with bogus data	Human failure
Isolating machines by DNS attacks	Impersonation of illegitimate users
Viruses	Transmission of non- authorized messages

analysis.

Table 5 and Table 7 show typical reasons for hazards and threats for field level communication systems that effects the integrity of source addresses in a message. Data for this analysis have been take from the projects SafetyLON [16] and REMPLI [17].

At this stage little commonalities can be identified. Although similar tools (e.g. methods to identify risk with a risk matrix) and approaches for analysis are taken each area is investigated on its own.

Table 6 and Table 8 show the effects of hazards and threats. At this stage of the process the commonalities can already be identified. E.g., corruption of a message can stem from a stochastic failure, but also from an intentional manipulation by an attacker.

If safety and security measures are used jointly and not installed in parallel, a potential for synergies can be acquired. The measures and synergies gained can be classified in three groups:

- 1. There are measures that *directly match* such as time stamps or sequence numbers for delayed or repeated messages. Usually there will be no problem to commonly use them. High potential for synergies exists since measures are easily combinable.
- 2. There are measures that require *different efforts*, e.g. in terms of computational power or consumed bandwidth, such as CRC (Cyclic Redundancy Check) or MAC (Message Authentication Code).

Table 6. Effect of network hazards and resulting safety requirements [8]

Hazard	Safety requirements
Corruption of data	CRC, duplication of message
Loss of a message	Use of a watchdog
Insertion of a message	Use of safe source addresses
Repetition of a message	Use of a time stamp
Wrong sequence of messages	Use of a time stamp
Delay of a message	Use of a time stamp
Non safety related message	Use of a specific header, safe source addresses

Hazard	Security requirements
Modification of data	MAC, Signature
Loss of a message	protocol timeout
Insertion of a message	sequence number (protected against modification)
Replay of a message	sequence number/time stamp
Wrong sequence of messages	sequence number
Eavesdropping	Message encryption
Spoofing of source address	Inclusion of source address in MAC or signature

 Table 8. Effect of network threats and resulting security requirements

Both of these measures protect the integrity of the message, but the execution time (e.g., 10-100µs for CRC and 8-15ms for MAC) and bandwidth (e.g., length 2 byte for CRC and 16 byte for MAC) differs. Gains need to be judged on application.

3. There are measures that are unique for safety and security (such as a watchdog timer) and needs to be implemented separately. No synergies possible.

E.g., in a safety related system a source-addressing model is used to guarantee message exchange between safe nodes only and to avoid message insertion. Therefore each safe node is assigned an additional unique address, a so called *safe address*. The receiving nodes check this safe address against their access list and only allows reception of packets in the list. The safety is given by a CRC checking and the transfer of a safe address within the safe message that can only be generated by safe nodes.

In a secure system similar techniques are used. An access control is also based on the node address [17], but instead of the CRC a cryptographic message authentication code (MAC) is used that cannot be recalculated without the knowledge of the appropriate key.

A matching of the requirements and measures can lead to synergies in the design of an integrated safe and secure system. In our example the CRC is replaced by the MAC which allows to remove the safe address. Access control is now managed by normal addresses and the requirement to identify nodes belonging to the safe group is realized by a particular key only available to nodes in this (safe) group. Timestamps and replay counters are unchanged since they have equal tasks in both areas. In this case also the overall hazard and risk analysis will indicate no new risks, since all requirements are covered by the new solution.

In general, security measures will replace safety measures since measures designed for safety do not withstand intentional attacks. E.g., a CRC protects the integrity of a message, but can be recalculated online. Hence stochastic failures are discovered, but an attacker is not impeded to manipulate the targeted information (asset) as well as the CRC.

Another important issue to consider is the resource consumption of the applied measures. Introducing safety and security measures will increase the overhead in computational resources as well as network bandwidth consumption to achieve. Selection and trade-off of different measures inside the fields of safety and security is set out of scope for this paper. E.g., if a CRC or a message duplication is used will not be analyses since this is included in the analysis of the individual security requirements and often demanded by normative regulations.

In particular the adding of security measures to a safe system should be analysed since this is a common case: Table 9 shows the overhead of typical security measures used in embedded systems. If there are no synergies this overhead is directly added and can even double, e.g., if messages are duplicated. In case of synergies such as the replacement of the CRC (typically 2, 4, or 8 byte) the network overhead is 6, 4 and 0 byte for the 8 byte MAC. Other typical MAC functions have a length of 16, 20 or 32 bytes. Concerning the computational power security measures will usually show no synergies since other types of checksums are much faster (factor 100) and/or can be implemented with a negligible effort in hard- or software.

7. Conclusion

The possibilities to gain synergies by taking an integrated approach towards safety and security in BACS is given in many areas. This fact is well known, e.g., "Safety and security [...] are closely related, and their similarities can be used to the advantage of both in terms of borrowing effective techniques from each to deal with the other." [12]. Yet little effort to combine these fields is given since applications are usually either safety or security.

Table 9. Performance of key derivation andsecurity functions [17]

Description	Time [ms]
Derive key by 3-DES function	89
Cipher message using 3-DES in outer CBC mode stored in EEPROM/RAM	63/58
Decipher message using 3-DES in outer CBC mode stored in EEPROM/RAM	54/55
Authenticate message with 8-byte MAC using 3-DES in outer CBC mode in EEPROM/RAM	57/53
Verify 8-byte MAC using 3-DES in outer CBC mode stored in EEPROM/RAM	45/47

In building automation this situation changes since mainly for cost reasons a combination of formerly separated networks for safety, e.g., fire alarm system, security, e.g., access control, and operation, e.g. heating, ventilation and air condition, is desired. Combination on the one hand demands for a reliable system and also increase the need for security since systems formerly physically separated are now accessible for a bigger group of users.

This article proposed a common approach for the predesign phase of such integrated safety and security systems. Techniques such as the risk analysis common in both areas are synchronized to figure out overall hazards that endanger safety or security of a BACS. Since various hazards even put in danger both safety and security of the system, a dual usage of counter measures seem feasible. The life cycle model presented specifies requirements for the different stages in development of a BACS. At the moment the work done focuses on the predesign phase and the network communication. Inclusion of hardware integrity and the following stages of the life cycle are important topics for further research.

In the area of building automation a certain convergence of systems to safe and secure systems can be noticed, but finally it must be stated that the common approach will only show benefits when both security and safety functions are required by the application. Convergence seem more likely for applications with high security requirements since in this case the overhead given by security is not a hindrance rather a requirement. Moreover contradictions between both areas cannot be completely avoided. The final decision if security or safety is to be preferred within such conflicts is application and environment dependent.

References

- C. Schwaiger, A.Treytl, "Smart Card Based Security for Fieldbus Systems", *Proceedings of IEEE International Workshop on Factory Communication Systems*, Vol. 1, pp. 398-406, 2003.
- [2] D. P. Eames, J. Moffett, "The Integration of Safety and Security Requirements", *SAFECOMP'99, LNCS 1698*, Springer-Verlag, Berlin, Heidelberg, pp. 468-480, 1999.
- [3] V. Stavridou, B. Dutertre, "From Security to Safety and Back", Proceedings of Computer Security, Dependability and Assurance: From needs to Solutions, pp. 182-195, 1998.
- [4] A. Simpson, J. Woodcock, J. Davies, "Safety through Security", Proceedings of the 9th International Workshop on Software Specification and Design, pp. 18-24, 1998.

- [5] A. Avizienis, J-C. Laprie, B. Randel, "Fundamental Concepts of Dependability", 2001.
- [6] G. Dewsbury, I. Sommerville, K. Clarke, M. Rouncefield, "A Dependability Model for Domestic Systems", *SAFECOMP 2003, LNCS 2788*, Springer Verlag, Berlin, Heidelberg, pp. 103-115, 2003.
- [7] "IEC 61508 Functional safety of electric/electronic/programmable electronic safetyrelated systems", 1999.
- [8] "EN 50126 Railway applications. The specification and demonstration of reliability, maintainability and safety (RAMS)", 1999.
- [9] "IEC 15408 Information technology Security technique – Evaluation criteria for IT security", 1999.
- [10] W. Royce, "Managing the Development in Large Software Systems", *Proceedings of IEEE WESCOM*, 1970.
- [11] G. Müller-Ettrich, Objektorientierte Prozessmodelle: UML einsehen mit OOTC, V-Modell, Objectory, Addision-Wesley, 1999.
- [12] N.G. Leveson, Safeware: System Safety and Computers, Addison-Wesley, 1995.
- [13] "EN 50159-1: Railway Applications Safety-Related Communication in Closed Transmission Systems", 2001
- [14] D. Reinert, M. Schaefer (Publisher), *Sichere Bussysteme in der Automation*, Hüthig Verlag, Heidelberg, ch. 4, 2001.
- [15] G. Stoneburner, "Toward a Unified Security-Safety Model", *IEEE Computer*, Vol. 39, pp. 96-97, 2006.
- [16] T. Novak, T. Tamandl, "Architecture of a Safe Node for a Fieldbus System", Proceedings of the 5th IEEE International Conference on Industrial Informatics, Vol. 1, pp. 101-106, 2007.
- [17] A. Treytl, T. Novak, "Practical Issues on Key Distribution in Power Line Networks", *Proceedings of* the 10th IEEE International Conference on Emerging Technologies and Factory Automation Proceedings, Vol. 2, pp. 83-90, 2005.
- [18] W. Stallings, *Cryptography and Network Security*, Prentice Hall, 2003.
- [19] W. Granzer, W. Kastner, G. Neugschwandtner, F. Praus. "Security in Networked Building Automation Systems", *Proceedings of IEEE International Workshop on Factory Communication Systems*, pp. 283-292, 2006.
- [20] K. Sørby, "Relationship between security and safety in a security-safety critical system: Safety consequences of security threats", *M.S. thesis*, Norwegian University if Science and Technology (NTNU), Department of Computer and Information Science, Norway, Trondheim, ch. 9, 2003.