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Abstract	
Given	the	rapidly	growing	utility	of	critical	health	information	revealed	in	the	human	genome,	secure	

genomic	computation	is	essential	to	moving	forward,	especially	as	genome	sequencing	becomes	

commonplace.	We	devise	and	implement	proof-of-principle	computational	operations	for	precisely	

identifying	causal	variants	in	Mendelian	patients	using	secure	multiparty	computation	methods	based	

on	Yao’s	protocol.	We	show	multiple	real	scenarios	(small	patient	cohorts,	trio	analysis,	two	hospital	

collaboration)	where	the	causal	variant	is	discovered	jointly,	while	keeping	up	to	99.7%	of	all	

participants’	most	sensitive	genomic	information	private.	All	similar	operations	performed	today	to	

diagnose	such	cases	are	done	openly,	keeping	0%	of	participants’	genomic	information	private.	Our	

work	will	help	usher	in	an	era	where	genomes	can	be	both	utilized	and	truly	protected.				

Introduction	
Rare	diseases	affect	1	in	33	babies.	Exome	and	genome	sequencing	have	revolutionized	the	diagnosis	of	

thousands	of	rare	Mendelian	diseases	to	thousands	of	different	human	genes
1–3
.	Thousands	of	

additional	rare	Mendelian	diseases	and	human	genes	await	discovery.	Frequency-based	filters	have	

proven	extremely	effective	in	providing	diagnosis	in	such	cases
4
.	In	essence,	variants	found	in	a	control	

population	(common	variants)	are	likely	to	be	benign
5
	while	functional	rare	variants	not	found	in	the	

control	population	but	seen	in	multiple	affected	individuals	are	likely	to	be	disease	causing
6–8
.	These	

filters	seek	the	gene	or	variant	present	in	all	(most)	affected	individuals	but	in	no	(very	few)	unaffected	

individuals.	

For	example,	one	can	take	a	small	cohort	of	unrelated	individuals	suspected	of	suffering	from	

the	same	genetic	disorder,	and	compare	their	genomes	to	that	of	tens	of	thousands	of	unaffected	

individuals	(e.g.,	from	the	exome	aggregation	consortium,	ExAC
5
).	As	we	show	below,	in	multiple	

scenarios,	the	gene	with	rare	functional	mutations	in	most	patients	in	our	small	cohorts	is	indeed	causal	

of	their	condition.	

	 Frequency-based	computation	highlights	the	fundamental	“serve	or	protect”	dilemma	of	

genomic	data:	“Serve:”	to	find	the	root	cause	of	a	patient’s	disease,	one	wishes	to	compare	a	patient	

genome	to	as	many	other	genomes	as	possible,	both	affected	and	unaffected,	related	and	unrelated.	

Thus,	to	advance	modern	medicine,	all	sequenced	genomes	should	be	shared.	“Protect:”	one’s	genome	

continues	to	reveal	more	and	more	about	oneself,	including	susceptibility	to	a	variety	of	diseases
9
.	
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Sharing	it	with	others	can	lead	to	discrimination	and	bias.	To	protect	its	owner	and	next	of	kin,	no	

sequenced	genome	should	be	shared.	

	 To	date,	this	dilemma	has	been	solved	by	allowing	institutions	unrestricted	access	to	all	the	

genomes	in	their	possession.	Limited	sharing	between	institutions	is	done	by	providing	obfuscated	

summary	statistics
10
.	Current	commonly	adopted	methods	for	sharing	have	shortcomings	that	make	

them	suboptimal.	Providing	full	access	at	individual	institutions	allows	for	too	much	information	to	be	

shared	in	certain	situations
11
.	Disease-specific	beacons	are	prone	to	attack	and	can	end	up	identifying	

individuals	participating	in	the	study
12
.	Beacons	also	only	provide	allele-presence	query	capabilities	and	

do	not	have	the	flexibility	needed	for	analyzing	multifactorial	variant	interactions	within	an	individual
13
.	

It	is	also	risky	to	share	genomic	data	in	the	clear	with	third-party	services	specializing	in	genomic	and	

disease	analysis.	We	are	unaware	of	any	cryptographically-secure	method	for	sharing	genomic	data	to	

perform	computational	operations	that	allow	identifying	causal	variants	in	patients.	

	 To	better	resolve	this	dilemma,	we	first	note	that	while	all	of	the	genomic	variants	from	all	

individuals	are	needed	to	perform	the	computation,	only	a	handful	of	causal	variants	are	ultimately	of	

interest	in	the	context	of	Mendelian	patients	(in	the	example	above,	just	the	rare	variants	in	the	single	

gene	mutated	in	most	patients).	

We	introduce	here	a	modern,	proof-of-concept	cryptographic	implementation	which	both	

serves	and	protects.	The	secure	computation	can	be	run	on	entire	genomes	(Serve),	while	no	party	

involved	in	the	computation	learns	anything	about	the	inputs	of	the	other	participants	except	for	the	

output	which	is	computed	together	(Protect).		We	use	real	patient	data	to	show	that	our	secure	

implementation	reveals	minimal	information	while	diagnosing	patient	genomes	through	3	different	

strategies	using	practical	amounts	of	compute	time	and	memory.	Cryptographic	methods	have	been	

used	in	different	genomic	contexts	such	as	microbiome	analysis
14
,	GWAS	analysis

15
	and	genomic	

alignment
16
,	but	this	is	the	first	implementation	that	we	are	aware	of	that	is	geared	towards	diagnosing	

Mendelian	patients,	a	timely	and	potent	need.	

Methods	

Representing	genomic	data	as	vectors	

Assume	each	individual	involved	in	a	study	has	private	access	to	their	exome	(or	genome).	If	we	are	

looking	to	identify	a	causal	variant,	we	define	a	variant	vector	(long	list	of	length	28,413,589)	of	all	

possible	rare	missense	/	nonsense	variants	in	the	human	genome	from	the	first	gene	on	chromosome	1	

to	the	last	gene	on	chromosome	Y.	We	provide	a	copy	of	this	vector	to	each	individual	(affected	and	

unaffected),	and	ask	them	to	privately	denote	True/False	next	to	each	variant	(to	indicate	whether	they	

have	the	specific	mutation	or	not,	respectively).	If	we	are	looking	to	identify	a	causal	gene,	we	provide	

each	individual	a	gene	vector	of	20,663	genes	in	the	human	genome	from	A1BG	to	ZZZ3.	We	ask	them	

to	write	“1”	next	to	a	gene	if	they	have	one	or	more	rare	functional	variants	in	this	gene,	and	otherwise,	

they	write	“0”.	See	Supplementary	Figure	1A,B.		

Defining	computations	of	interest	(MAX,	INTERSECTION,	SETDIFF)	

We	define	three	operations	used	for	patient	diagnosis	(Supplementary	Figure	1C).		Imagine	two	affected	

individuals	are	represented	by	two	rare	functional	variant	vectors	(True/False	lists).	Intersecting	these	

two	vectors	will	reveal	all	the	rare	functional	variants	they	share.	Formally,	we	perform	a	Boolean	

INTERSECTION	(or	AND)	operation	(x	AND	y	=	True	only	if	x	=	y	=	True,	and	otherwise,	it	is	False)	

between	all	possible	patient	variants.	Next,	if	we	also	have	access	to	an	unaffected	family	member,	we	
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can	further	exclude	any	variant	they	share.	We	do	this	with	a	Boolean	set	difference	(SETDIFF)	operation	

(x	SETDIFF	y	=	True	only	if	x	=	True	and	y	=	False,	otherwise	it	is	False).	Finally,	imagine	we	have	access	to	

a	small	cohort	of	unrelated	patients	sharing	a	set	of	phenotypes.	We	would	like	to	find	the	gene	affected	

by	one	or	more	rare	functional	variants	in	the	greatest	number	of	patients	within	the	cohort.	For	this,	

we	use	the	patient	gene	vectors	(0/1	lists).	We	sum	0/1s	across	patients	for	each	gene,	and	then	we	use	

the	maximum	(MAX)	operation	to	find	the	entry	(gene)	with	the	greatest	number	(of	affected	cases;	

Supplementary	Figure	1C).	

Remarkably,	modern	cryptography	allows	any	number	of	individuals	to	jointly	learn	the	final	

result	of	these	MAX,	SETDIFF,	INTERSECTION	operations	without	any	of	them	learning	anything	else	

about	each	other’s	genomes	(or	vectors).		

Encryption	and	decryption	

An	important	cryptographic	primitive	we	rely	on	is	a	secret-key	encryption	scheme.	In	a	secret-key	

encryption	scheme,	a	secret	key	is	used	to	encrypt	and	decrypt	messages	with	the	guarantee	that	the	

encryptions	of	any	two	messages	are	indistinguishable,	and	yet,	they	can	be	successfully	decrypted	(to	

obtain	the	original	message)	given	the	key	(Supplementary	Figure	2).	

Secure	multiparty	computation	

Multiple	mathematical	frameworks	and	computational	implementations	exist	for	secure	multiparty	

computation	on	encrypted	data.	These	provide	different	tradeoffs	in	complexity	and	efficiency
17
.	In	this	

work,	we	use	Yao’s	protocol	to	securely	evaluate	functions	between	two	parties
18
.	Abstractly,	we	write	

the	function	as	!(#$, #&)	where	#$	denotes	the	input	of	the	first	party	and	#&	denotes	the	input	of	the	

second	party.	Any	function	! #$, #& 	can	be	represented	by	a	combination	of	Boolean	operations	(for	

example,	see	Supplementary	Figure	3).	Yao’s	protocol	provides	a	way	of	evaluating	the	Boolean	circuit	

(operator-by-operator)	without	revealing	the	inputs	#$,	#&.	We	illustrate	this	in	detail	in	Figure	1.	

While	Yao’s	protocol	provides	a	simple	and	efficient	solution	for	secure	two-party	computation,	

in	many	of	the	scenarios	we	describe,	the	computation	occurs	among	multiple	parties	(e.g.,	many	

individuals,	each	with	their	personal	genome).	It	is	very	straightforward	to	reduce	the	general	problem	

of	secure	multiparty	computation	to	that	of	secure	two-party	computation	by	working	in	the	“two-

cloud”	model.	In	the	two-cloud	model,	we	assume	that	there	are	two	non-colluding	servers	(e.g.,	these	

could	be	managed	by	two	independent	government	agencies)	that	aggregate	the	inputs	from	each	party	

in	a	privacy-preserving	manner	and	then	perform	the	computation.	Each	server	on	its	own	has	no	

knowledge	of	the	data	as	shown	in	Figure	1.7	(see	Online	Methods	and	Discussion).	

Protection	quotient	

We	define	the	Protection	Quotient	as	the	fraction	of	private	information	that	is	not	exposed	(to	neither	

the	other	participants	nor	the	entity	running	the	computation)	during	the	computation.	Using	our	

encryption	scheme,	the	Protection	Quotient	equals	the	total	number	of	patient	variants	withheld	from	

the	output	divided	by	the	total	number	of	patient	variants	input	into	the	computation.	Standard	

unencrypted	patient	diagnosis	operations	have	a	protection	quotient	of	0%,	because	all	values	must	be	

exposed	to	perform	the	computation.	All	our	applications	below	have	a	protection	quotient	of	97.1-

99.7%,	maximizing	privacy	while	retaining	full	utility.	
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Results	

Example	Mendelian	applications	of	secure	computation	

To	prove	the	pragmatic	utility	of	our	approach,	we	demonstrate	three	different	secure	operations	over	

real	Mendelian	patients	where	we	successfully	identify	the	causal	variants	in	each	scenario	(Table	1):	

MAX	identifies	the	causal	gene	in	small	patient	cohorts	with	protection	quotient	above	99%	

We	use	4	small	cohorts	of	unrelated	individuals,	suffering	from	very	different	rare	diseases:	Freeman	

Sheldon	Syndrome	(FSS),	Hadju-Cheney	Syndrome	(HCS),	Kabuki	Syndrome	(KaS)	and	Miller	Syndrome	

(MiS).	Each	individual	holds	a	private	list	of	211-374	rare	functional	variants	in	210-356	genes	(total	767-

2,754	variants	per	computation).	We	use	the	secure	MAX	function	to	reveal	only	the	top	gene	mutated	

across	patients	in	each	cohort.	In	all	4	cohorts,	we	find	that	the	gene	mutated	in	most	individuals	is	the	

one	that	has	been	proven	to	be	the	causal	gene:	MYH3	in	FSS
6
,	NOTCH2	in	HCS

19
,	KMT2D	in	KaS

8
	and	

DHODH	in	MiS
7
	(Table	1a).	

Secure	computation	only	reveals	the	variants	in	the	most	mutated	gene	in	each	cohort	while	

protecting	the	remaining	764	variants	in	FSS,	1845	variants	in	HCS,	2746	variants	in	KaS	and	1055	

variants	in	MiS.	This	computation	has	a	protection	quotient	of	99.3-99.7%	for	all	4	cohort	disease	

datasets.	The	computation	is	performed	over	all	20,663	genes	and	completes	in	just	5	-	10	seconds,	with	

one	server	on	the	East	Coast	and	the	other	on	the	West	Coast	(Table	1a).	The	total	protocol	execution	

time,	bandwidth	and	compute	time	all	grow	logarithmically	with	the	number	of	cohort	individuals	

involved	in	the	secure	computation	(Supplementary	Figure	4A).		

SETDIFF	identifies	the	causal	variant	in	a	trio	with	protection	quotient	99.6%	

Unaffected	mother	and	father,	and	affected	male	child	with	female	external	genitalia,	each	holds	a	list	

of	164-185	(total	524)	rare	functional	variants	found	in	their	exomes.	The	secure	SETDIFF	operation	

reveals	to	the	family	and	test	providers	only	2	rare	variants	found	in	the	child	but	in	neither	parent	

(Table	1b).	Literature	review	provides	a	diagnosis	based	on	one	of	these	two	variants:	the	ACTB	gene
20
.		

Secure	computation	keeps	522	variants	private	while	sharing	only	2	variants	with	the	test	

provider	and	all	individuals	involved	in	the	computation.	This	computation	has	a	protection	quotient	of	

99.6%.	Because	three	parties	are	now	involved,	the	total	computation	time	using	a	single	server	thread	

on	either	coast	is	57	minutes	(Table	1b).	However,	the	variant	list	can	easily	be	split	between	a	small	

computer	array	on	either	coast,	such	that	a	typical	30-node	cluster	brings	computation	time	down	to	

under	2	minutes.	The	protocol	execution	time,	bandwidth	and	compute	time	all	grow	logarithmically	

with	the	number	of	family	members	involved	in	the	secure	computation	(Supplementary	Figure	4B).	

INTERSECTION	identifies	patients	of	interest	across	2	hospitals	with	protection	quotient	97.1%	

Two	or	more	genome	centers	may	want	to	compare	their	patient	lists	to	see	if	together	they	can	find	

multiple	patients	with	the	same	rare	functional	mutation,	and	similar	phenotypes,	while	revealing	

nothing	else	to	each	other.	For	example	we	took	928	Washington	Mendelian	Center	(WMC)	patients	and	

282	Baylor	Hopkins	Center	(BHC)	patients.	For	each	hospital	we	prepared	a	list	of	over	5,000	rare	

functional	variants	seen	in	one	or	more	of	their	patients.	Using	the	secure	AND	function,	the	two	

hospitals	find	a	short	list	of	just	159	variants	present	in	both	hospitals,	pointing	at	patients	who	would	

benefit	from	phenotype	comparison.	This	short	list	includes	“positive	controls”	such	as	known	disease	

variant	NOTCH1:p.E694K,	associated	with	partial/incomplete	penetrance	of	aortic	valve	disease
21
.	

Indeed	the	WMC	and	BHC	patients	are	phenotypically	characterized	with	left	ventricular	outflow	defect	

and	thoracic	aortic	aneurysm,	respectively.	The	list	also	offers	exciting	novel	gene-disease	associations	
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such	as	rare	functional	variant	HCN3:p.R648H	(with	frequency	5.47·10
-5
	and	0	in	ExAC	and	1000	

genomes	data,	respectively).	HCN3	is	a	voltage-gated	cation	channel	gene,	whose	mouse	knockout	

causes	abnormal	ventricular	action	potential	waveform
22
.	Promisingly,	in	patients	from	WMC	and	BHC,	

this	mutation	is	correlated	with	dilated	cardiomyopathy	and	coarctation	of	the	aorta,	respectively.		

Secure	computation	only	reveals	2x159	potential	causative	variants	while	protecting	the	

remaining	10,749	variants	with	a	protection	quotient	of	97.1%.	This	computation	is	performed	over	all	

rare	functional	variants	in	the	exome	with	a	total	protocol	execution	time	of	9.4	minutes	using	a	single	

server	thread	on	either	coast	(Table	1c).	Because	every	variant	is	evaluated	independently,	a	30-node	

compute	cluster	on	either	end	will	reduce	total	computation	time	to	below	20	seconds.	As	we	learn	to	

appreciate	Mendelian	mutations	outside	of	the	exome,	the	total	time,	bandwidth	and	compute	time	

scale	linearly	with	the	size	of	the	variant	list	shared	for	secure	computation	(Supplementary	Figure	4C).		

Discussion	
Rare	diseases	are	cumulatively	common	(some	estimate	that	10%	of	the	US	population	are	affected	with	

rare	disorders).	About	7,000	rare	Mendelian	conditions	have	been	described	to	date.	Of	these,	

approximately	4,000	have	been	definitively	diagnosed	as	single	gene	diseases,	mapping	to	over	4,000	

genes	in	the	genome.	The	procedures	we	describe	are	applicable	for	all	of	these.	There	are	only	a	

handful	of	medical	conditions	diagnosed	with	certainty	to	the	interactions	of	just	2	genes.	Far	less	is	

known	for	diseases	caused	by	more	than	2	genes.	Personal	Genomics	poses	a	fundamental	“serve	or	

protect”	dilemma:	should	one	serve	their	genome	in	the	service	of	better	diagnosis	and	ultimately	

disease	eradication,	or	should	one	protect	oneself	and	next	of	kin	against	potential	discrimination	by	

refusing	to	share	their	genome.	This	dilemma	is	particularly	evident	in	the	field	of	Mendelian	diseases.	It	

is	essential	to	develop	tools	and	methods	to	effectively	share	genomes	while	maintaining	their	privacy	

and	security.	Because	genome	privacy	is	best	served	where	a	definitive	diagnosis	exists,	we	focus	on	

single	disease	gene	discovery	and	diagnosis.	Here	we	present	a	secure	approach	for	multiple	parties	to	

perform	exact	computations	that	diagnose	Mendelian	diseases,	while	keeping	all	participating	genomes	

private.	

The	scenarios	we	present	are	all	real.	Genome	privacy	is	extremely	appealing	in	all	of	them:	

Complete	strangers	in	disease	cohorts	(Table	1A)	learn	nothing	about	each	other	except	their	shared	

disease-causing	gene	mutations.	For	participants	where	the	assay	does	not	provide	an	answer,	

absolutely	nothing	is	revealed.	In	larger	family	trees,	more	distantly	related	members	will	appreciate	

genome	privacy.	Even	in	a	young	nuclear	family	(e.g.,	a	trio;	Table	1B),	the	test	provider	learns	almost	

nothing	except	the	likely	disease-causing	mutation	in	the	offspring.	Moreover,	they	learn	virtually	

nothing	about	the	parents	themselves.	In	the	two	hospital	scenario	(Table	1C),	only	variants	that	are	

worthwhile	comparing	are	revealed	while	the	vast	majority	of	variants	remain	private	to	each	institute’s	

researchers	and	patients.		

In	all	of	these	cases,	the	quantities	revealed	and	those	that	remain	private	are	a	privacy	

advocate’s	dream	come	true:	We	predominantly	reveal	only	variant/s	crucial	for	patient	diagnosis,	

family	counseling	and	any	potential	treatment.	What	remains	private	is	predominantly	variants	of	

unknown	significance	(VUS)	that	are	of	little	value	for	diagnosing	one’s	medical	condition.	However,	

these	same	VUS	variants	almost	certainly	uniquely	identify	a	person	as	a	participant	in	an	analysis,	and	

have	the	potential	to	reveal	now	or	in	the	future	other	personal	traits	that	may	be	further	cause	for	

discrimination.	

For	this	proof-of-concept	work,	we	assume	that	the	protocol	participants	are	“honest-but-

curious,”	(sometimes	referred	to	as	“semi-honest”)—that	is,	we	assume	that	the	parties	are	properly	
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incentivized	to	honestly	follow	the	protocol,	but	at	the	end	of	the	protocol	execution,	they	may	try	to	

learn	some	additional	information	(about	other	parties’	inputs)	based	on	the	messages	they	receive	

during	the	protocol	execution.	We	say	that	a	protocol	is	secure	if	the	only	information	any	party	learns	

by	participating	in	the	protocol	can	be	inferred	just	from	that	parties’	input	and	the	overall	output	of	the	

computation.	In	other	words,	none	of	the	parties	should	be	able	to	learn	something	about	another	

parties’	input	other	than	what	is	explicitly	revealed	by	the	output	of	the	function.		

Yao’s	protocol	gives	an	efficient	solution	for	secure	two-party	computation	in	the	presence	of	

semi-honest	adversaries
23
.	We	note	that	there	are	well-established	ways	to	extend	Yao’s	protocol	to	

additionally	provide	security	against	malicious	parties	who	deviate	from	the	protocol	description	in	

order	to	compromise	the	privacy	of	other	participants	or	corrupt	the	results	of	the	computation
24
.	In	

addition,	protecting	against	participants	that	submit	malicious	(or	malformed)	inputs	to	the	protocol	can	

be	done	by	ensuring	that	if	a	participant’s	variant	vector	does	not	meet	certain	criteria,	or	is	not	

accompanied	by	an	appropriate	certificate,	then	the	computation	aborts	and	does	not	produce	any	

output.	Furthermore,	in	this	paper,	we	introduce	an	operation-specific	“protection	quotient”,	a	novel	

metric	to	assess	the	fraction	of	information	secured	by	the	computation.	The	protection	quotient	can	be	

used	to	further	restrict	the	output	returned	to	all	parties	if	the	defined	privacy	requirements	are	not	

met.	For	instance,	if	a	trio	analysis	results	in	more	than	a	few	expected	de	novo	exome	mutations,	only	

an	error	message	will	be	produced.	This	approach	is	preferred	for	example	to	differential	privacy
25,26

	

which	adds	random	genomic	variation	as	noise	into	aggregated	summary	statistics	to	try	and	avoid	

individual	identification	in	pooled	genomics	data
15
.	

The	basic	principle	underlying	our	design	is	to	perform	exact	secure	computation	on	the	

complete	(private)	genomes	of	all	participating	individuals.	This	is	in	direct	contrast	to	the	more	

traditional	and	less	effective	routes	of	publishing	obfuscated	frequencies	aggregated	across	multiple	

individuals.	The	computational	resources	we	use	to	retain	genomic	privacy	are	not	negligible,	yet	are	

perfectly	within	the	capabilities	of	off-the-shelf	modern	computers	to	complete	the	operation	in	

seconds	or	minutes,	even	when	communicating	between	the	East	and	West	coasts.	And	while	no	

security	mechanism	may	be	perfectly	impenetrable,	it	is	certainly	preferable	to	have	a	security	

mechanism	in	place	(especially	if	it	allows	for	exact	computation)	where	none	currently	exist.	Many	

further	extensions	and	applications	of	our	computational	framework	are	possible,	and	are	sure	to	

provide	incentives	for	the	development	of	more	secure	and	faster	methods.	A	widespread	deployment	

of	computer	libraries	efficiently	implementing	these	principles	will	encourage	individuals	to	securely	

contribute	their	genomes	for	the	common	good,	and	thus	greatly	fuel	advances	in	both	personal	

genomics	and	privacy	in	the	21
st
	century.	

On-Line	Methods		

Patient	datasets	

Whole	exome	sequences	of	patients	were	obtained	from	dbGaP	studies	phs000204.v1.p1
6
	(Freeman	

Sheldon	Syndrome),	phs000244.v1.p1
7
	(Miller	Syndrome),	phs000295.v1.p1

8
	(Kabuki	Syndrome),	and	

phs000477.v1.p1	(Hajdu-Cheney	Syndrome).	Pre-processed	variant	call	format	(VCF)	files	for	patients	

from	2	Centers	for	Mendelian	Genomics	were	obtained	from	dbGaP	studies	phs000693.v4.p1	(University	

of	Washington),	and	phs000711.v3.p1	(Baylor	Hopkins).	Our	trio	family	was	obtained	from	Stanford	

Hospital.	All	human	subject	research	was	performed	under	guidelines	approved	by	the	Stanford	

Institutional	Review	Board.	
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Sequencing	reads	were	mapped	to	the	GRCh37/hg19	assembly	of	the	human	genome	using	

BWA	MEM	v0.7.10-r789
27
.		Variants	were	called	using	GATK	v3.4-46-gbc02625	following	the	

HaplotypeCaller	workflow	from	the	GATK	Best	Practices
28
.	

Variant	annotation	

ANNOVAR	v527	was	used	to	annotate	variants	with	predicted	effect	on	protein	coding	genes	using	gene	

isoforms	from	the	ENSEMBL	gene	set	version	75	for	the	hg19/GRCh37	assembly	of	the	human	

genome
29,30

.		All	canonical	gene	isoforms	were	used	where	the	transcript	start	and	end	are	marked	as	

complete	and	the	coding	span	is	a	multiple	of	three.	

Cryptographic	techniques	

In	a	secure	multiparty	computation	(MPC)	protocol
18,31

,	a	group	of	users	(often	called	parties)	seek	to	

jointly	compute	a	function	over	their	inputs	without	revealing	any	additional	information	about	their	

particular	inputs.	The	function	that	the	parties	compute	is	determined	based	on	the	specific	scenario.	

The	computation	consists	of	several	rounds	of	interaction,	where	in	each	round,	the	parties	exchange	a	

series	of	messages.	At	the	conclusion	of	the	protocol,	each	participant	learns	the	output	of	the	

computation	evaluated	on	everyone’s	joint	input.	No	additional	information	beyond	the	explicit	output	

is	revealed	to	any	party	(the	process	is	abstracted	in	Figure	1).	

Every	arithmetic	computation	can	be	expressed	as	a	sequence	of	Boolean	logical	operations	

(that	is,	operations	on	bits	 0,1 ).	This	is	precisely	how	the	modern	computer	works.	Yao’s	protocol	

allows	two	users,	Alice	and	Bob,	to	compute	arbitrary	functions	over	their	inputs.	More	precisely,	if	Alice	

has	an	input	#	and	Bob	has	an	input	*,	Yao’s	protocol	allows	them	to	compute	!(#, *)	in	a	way	such	that	

Alice	learns	nothing	about	*	and	Bob	learns	nothing	about	#	other	than	the	output	value	!(#, *).	In	

general,	expressing	a	function	in	terms	of	Boolean	operations	greatly	increases	the	computational	cost	

of	evaluating	the	function.	To	maximize	the	efficiency	of	Yao’s	protocol,	it	is	important	to	choose	

functionalities	with	simple	or	compact	representations	as	Boolean	circuits.	An	example	of	a	Boolean	

circuit	is	shown	in	Supplementary	Figure	3.	

In	this	work,	we	cast	diagnosing	Mendelian	patients	as	(simple)	arithmetic/logic	computations	

that	admit	efficient	Boolean	circuit	representations.	We	now	describe	how	the	secure	computation	

protocols	work.	To	do	this	we	first	introduce	two	standard	tools	from	cryptography:	(1)	symmetric	

(secret-key)	encryption
32
	and	(2)	oblivious	transfer

33–35
.		

Encryption	and	decryption	

A	secret-key	encryption	scheme	consists	of	two	functions:	Encrypt	and	Decrypt.	The	encryption	

function	takes	a	cryptographic	key	k	and	a	message	m	and	outputs	a	ciphertext	4.	The	decryption	

function	takes	the	cryptographic	key	5	and	a	ciphertext	4	and	outputs	a	message	6.	Intuitively,	

encryption	and	decryption	are	inverse	operations:	if	we	encrypt	a	message	under	a	key	5,	decrypting	the	

resulting	ciphertext	with	the	same	key	5	recovers	the	original	message.	More	precisely,	we	can	say	that	

for	any	key	5	and	any	message	6,	Decrypt 5, Encrypt 5,6 = 6.	In	a	symmetric	(or	secret-key)	

encryption	scheme,	both	the	encryption	and	the	decryption	functions	require	knowledge	of	the	secret	

cryptographic	key.	The	key	is	a	random	string	drawn	from	some	key-space.	The	precise	nature	of	the	

key-space	varies	depending	on	the	details	of	the	encryption	scheme,	and	is	immaterial	to	our	

presentation	in	this	paper.	An	encryption	scheme	is	considered	to	be	secure	if	the	ciphertext	does	not	

reveal	any	information	about	the	underlying	message	to	any	user	who	does	not	possess	the	secret	

encryption	key	(certainly,	a	user	who	holds	the	secret	key	can	decrypt	and	learn	the	message).	One	way	
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to	formalize	this	is	to	say	that	a	user	who	does	not	have	the	encryption	key	is	unable	to	tell	an	

encryption	of	a	message	68	apart	from	an	encryption	of	another	message	6$.	In	other	words,	

ciphertexts	hide	all	information	about	their	underlying	message	to	all	users	who	do	not	have	the	

encryption	key.	We	illustrate	this	in	Supplementary	Figure	2.	

Under	this	definition,	messages	can	also	be	encrypted	multiple	times.	For	instance,	a	message	6	

can	be	“double	encrypted”	under	two	keys	5$	and	5&	by	first	encrypting	6	using	5$	and	then	encrypting	

the	resulting	ciphertext	using	the	second	key	5&.	This	procedure	yields	another	ciphertext.	Decryption	

proceeds	by	first	decrypting	with	key	5&,	and	then	decrypting	the	result	(a	ciphertext)	with	5$.	In	

particular,	we	can	write		

Decrypt 5$, Decrypt 5&, Encrypt 5&, Encrypt 5$, 6 = 6	

Security	of	the	double	encryption	scheme	follows	directly	from	the	security	of	the	underlying	encryption	

scheme.	In	particular,	a	user	who	does	not	have	both	5$	and	5&	cannot	learn	any	information	about	the	

underlying	message	that	has	been	doubly	encrypted	using	5$	and	5&.	Numerous	symmetric	(secret-key)	

encryption	schemes	exist	in	the	literature
32
.	

Oblivious	transfer	

An	oblivious	transfer	(OT)	protocol
33–35

	is	a	two-party	protocol	between	a	sender	and	a	receiver.	An	OT	

protocol	enables	the	receiver	to	selectively	obtain	one	of	two	possible	messages	from	the	sender	

without	revealing	to	the	sender	which	message	the	receiver	requested.	More	precisely,	the	sender	holds	

two	messages,	denoted	58	and	5$	and	the	receiver	holds	a	selection	bit	: ∈ 0,1 .	At	the	end	of	the	OT	

protocol,	the	receiver	obtains	the	chosen	message	5<	and	learns	nothing	about	the	other	message	5$=<.	

The	sender	does	not	learn	anything	about	the	receiver’s	choice	bit	:.	Numerous	oblivious	transfer	

protocols	have	been	proposed	in	the	literature
33–35

.	

Overview	of	steps	for	secure	computation	

In	a	secure	two-party	computation	protocol,	Alice	holds	an	input	# ∈ 0,1 >	and	Bob	holds	an	input	* ∈

0,1 >.	We	write	 0,1 >	to	denote	a	binary	input	of	length	?	(e.g.,	for	instance,	?	could	be	of	the	binary	

representation	of	the	variant	vector	or	the	gene	vector	we	define	in	our	main	text).	Their	goal	is	to	

compute	a	function	!(#, *)	on	their	joint	input	 #, * .	The	computation	is	considered	“secure”	if	at	the	

end	of	the	computation,	the	only	information	that	Alice	and	Bob	learn	is	the	function	value	!(#, *)	and	

nothing	else	about	the	other	party’s	input.	It	is	important	to	note	here	that	the	function	output	!(#, *)	

could	reveal	some	information	about	the	inputs	#	and	*	(for	example,	in	our	trio	scenario,	whatever	de	

novo	variant	we	report	in	the	child,	we	can	deduce	by	definition	does	not	exist	in	either	parent).	As	we	

note	in	the	Discussion	section,	we	work	in	the	honest-but-curious	model	where	we	assume	that	Alice	

and	Bob	follow	the	protocol	specification	as	directed,	but	may,	at	the	end	of	the	protocol	execution,	try	

to	infer	some	additional	information	about	each	other’s	private	input.	We	now	describe	how	Yao’s	

protocol	can	be	used	to	securely	evaluate	any	function	over	two	inputs	in	the	honest-but-curious	model.	

To	apply	Yao’s	protocol,	it	is	first	necessary	to	represent	the	function	!	as	a	Boolean	circuit	on	

inputs	#	and	*.	At	the	most	basic	level,	the	building	blocks	we	have	are	AND	(x	AND	y	=	True	only	if	x	=	y	

=	True,	otherwise	it	is	False)	and	XOR	(exclusive-or,	x	XOR	y	=	True	only	if	x	=	True	and	y	=	False,	or	if	x	=	

False	and	y	=	True,	otherwise	it	is	False)	gates.	These	basic	gates	can	be	combined	to	obtain	circuits	of	

arbitrary	expressive	functionalities
17
.	In	our	description	below,	we	will	oftentimes	refer	to	the	concrete	

example	of	securely	evaluating	the	AND	function	on	single-bit	inputs	(above).	A	visualization	of	the	

complete	protocol	is	given	in	Figure	1.	
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Overview	of	Yao’s	secure	two	party	computation	protocol	

We	now	describe	Yao’s	protocol.	For	ease	of	presentation,	we	present	a	simplified	(but	less	efficient)	

description	of	Yao’s	protocol	here.	Our	implementation	(based	on	the	JustGarble
36
	library)	follows	the	

high-level	blueprint	described	here,	but	includes	several	optimizations,	notably	the	free-XOR
37
	and	half-

gate
38
	optimizations.	

Step	1:	For	each	wire	in	the	circuit,	Alice	chooses	two	keys.	Recall	that	in	a	Boolean	circuit,	each	wire	in	

the	circuit	can	take	on	two	possible	values	(0	or	1;	sometimes	also	referred	to	as	False	and	True,	

respectively).	Alice	associates	one	of	the	keys	with	the	wire	value	0	and	another	key	with	the	wire	1.	For	

the	particular	case	of	securely	evaluating	the	AND	function	@ = # ∧ *,	Alice	picks	three	pairs	of	keys	and	

associates	one	pair	with	each	of	#,	*,	and	@.	We	denote	these	keys	5B
8, 5B

$, 5C
8, 5C

$ , 5D
8, 5D

$.	In	this	example,	

5B
8	is	the	key	associated	with	the	input	bit	#	taking	on	the	value	0	and	5D

$	is	the	key	associated	with	the	

output	bit	@	taking	on	the	value	1.	This	step	is	shown	in	Figure	1.1.	

Step	2:	For	each	gate	in	the	circuit,	Alice	constructs	a	“garbled”	truth	table.	For	each	row	in	the	truth	

table,	the	algorithm	takes	the	key	associated	with	the	value	of	the	output	wire	and	double	encrypts	it	

using	the	two	keys	associated	with	the	values	of	the	two	input	wires.	For	the	particular	case	of	

evaluating	a	single	AND	gate,	Alice	would	construct	the	following	table	of	ciphertexts	

• E$ = EncryptFGH(EncryptFIH 5D
8 )	

• E& = EncryptFGH(EncryptFIJ 5D
8 )	

• EK = EncryptFGJ(EncryptFIH 5D
8 )	

• EL = EncryptFGJ(EncryptFIJ 5D
$ )	

For	the	output	wires	of	the	circuit,	instead	of	double	encrypting	an	encryption	key,	Alice	directly	double	

encrypts	the	value	of	the	output	wire	(e.g.,	0	or	1).	This	step	is	shown	in	Figure	1.2.	

Step	3:	After	garbling	the	circuit	(Steps	1-2	/	Figure	1.1-1.2),	the	secure	computation	begins	with	Bob	

using	the	oblivious	transfer	protocol	(above)	to	obtain	the	keys	for	the	input	wires	associated	with	his	

input.	The	oblivious	transfer	protocol	ensures	the	following:	Bob	only	learns	one	of	the	two	keys	

associated	with	each	of	his	input	wires	(this	will	ensure	that	Bob	can	only	evaluate	the	function	on	a	

single	set	of	inputs),	and	Alice	does	not	learn	which	wire	Bob	requested	(that	is,	Alice	does	not	learn	

Bob’s	input).	For	the	particular	case	of	evaluating	a	single	AND	gate,	if	Bob’s	input	is	: ∈ {0,1},	then	Bob	

would	play	the	role	of	the	receiver	in	an	OT	protocol	with	input	:.	Alice	would	play	the	role	of	the	

sender	with	messages	5C
8,	5C

$ 	(the	keys	associated	with	Bob’s	input	wire).	At	the	end	of	the	oblivious	

transfer	protocol,	Bob	obtains	5C
<	(the	key	associated	with	his	input),	and	learns	nothing	about	the	key	

associated	with	the	complement	of	his	input	(5C
$=<).	Alice	learns	nothing	about	Bob’s	input	:.	This	step	

is	shown	in	Figure	1.3.	

Step	4:	After	Bob	receives	the	keys	associated	with	his	input	via	the	oblivious	transfer	protocol,	Alice	

sends	Bob	the	garbled	tables	associated	with	each	gate	(after	randomly	permuting	the	rows	of	each	

table).	Additionally,	Alice	sends	Bob	the	wire	encodings	of	her	input.	For	the	particular	case	of	

evaluating	a	single	AND	gate,	if	Alice’s	input	is	O ∈ 0,1 ,	Alice	would	send	5B
P	(the	key	associated	with	

# = O)	to	Bob.	This	step	is	also	shown	in	Figure	1.4.	

Step	5:	With	all	this	information,	Bob	can	complete	the	function	evaluation	and	compute	the	output.	In	

particular,	after	Steps	3	and	4,	Bob	should	have	a	single	key	for	each	of	the	input	wires	of	the	Boolean	

circuit.	Then,	for	each	gate	in	the	circuit,	Bob	takes	the	input	keys	he	has	and	attempts	to	decrypt	the	

rows	in	the	garbled	table	associated	with	that	gate.	Because	the	entries	in	the	garbled	table	are	double	
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encrypted	using	the	keys	associated	with	the	input	wires	to	the	gate	and	Bob	only	has	a	single	key	for	

each	of	the	wires,	Bob	is	only	able	to	decrypt	a	single	row	in	the	garbled	table	as	shown	in	Figure	1.5.		

Step	6:	In	doing	so,	Bob	is	able	to	learn	one	of	the	keys	associated	with	the	gate’s	output	wire	

(moreover,	by	construction	of	the	garbled	table,	the	output	key	Bob	obtains	is	precisely	the	one	

associated	with	the	value	corresponding	to	evaluation	of	the	gate	on	the	input	bits).	Thus,	starting	with	

the	input	wires,	Bob	is	able	to	evaluate	the	circuit	gate-by-gate	as	seen	in	Figure	1.6.	Once	Bob	reaches	

the	output	layer	of	the	circuit,	he	is	able	to	decrypt	the	ciphertexts	and	obtain	the	value	of	each	output	

wire.	

Summary.	To	summarize,	in	Yao’s	secure	two-party	computation	protocol,	Alice	begins	by	constructing	a	

garbled	truth	table	for	each	gate	in	the	Boolean	circuit.	She	does	so	by	double	encrypting	each	row	in	

the	truth	table	(using	the	keys	associated	with	the	input	bits).	She	gives	Bob	the	garbled	truth	tables	as	

well	as	the	keys	associated	with	her	input.	Using	oblivious	transfer,	Bob	obtains	the	keys	associated	with	

his	input.	Armed	with	a	single	key	for	each	of	the	input	wires	in	the	circuit,	Bob	is	able	to	evaluate	the	

garbled	circuit	gate-by-gate.	For	each	gate,	Bob	takes	his	input	keys	and	uses	them	to	decrypt	one	of	the	

rows	of	the	garbled	table	associated	with	the	gate.	This	yields	the	key	associated	with	the	particular	

wire.	Finally,	at	the	end	of	the	computation,	Bob	decrypts	the	ciphertexts	associated	with	the	output	

wires	to	learn	the	output	of	the	circuit.	Bob	then	sends	the	result	of	the	computation	to	Alice.	

Extending	Yao’s	protocol	to	N	parties	

Yao’s	protocol	allows	two	parties	to	securely	evaluate	an	arbitrary	function.	However,	in	general,	we	

desire	to	compute	across	a	large	number	of	parties	(e.g.,	study	participants).	While	there	are	secure	

multiparty	computation	protocols	that	support	more	than	two	parties,	(e.g.,	the	SPDZ
39
,	GMW

31
,	or	

BGW
40
	protocols),	a	key	limitation	of	these	protocols	is	that	they	require	all	participating	parties	to	be	

online	during	the	protocol	execution.	Moreover,	the	number	of	rounds	of	communication	in	the	

protocol	often	grows	with	the	complexity	of	the	computation	(note	that	this	is	in	direct	contrast	with	

Yao’s	protocol	which	is	a	two-round	protocol,	regardless	of	how	complicated	the	computation	is).	As	a	

result,	there	are	substantial	engineering	hurdles	to	deploying	these	general	protocols	for	multiparty	

computation	across	a	large	number	of	parties.	In	some	cases	(e.g.,	BGW
40
	and	GMW

31
),	the	total	

bandwidth	also	scales	quadratically	in	the	number	of	parties,	further	limiting	the	practicality	of	these	

protocols.	

A	more	efficient	solution	for	general	multiparty	computation	that	avoids	both	the	requirement	

that	participating	parties	be	online	during	the	protocol	execution	as	well	as	the	potential	

communication	blowup	is	to	work	in	a	“two-cloud”	model.	In	this	model,	we	assume	there	are	two	non-

colluding	cloud	servers	that	facilitate	the	protocol	execution.	At	the	beginning	of	the	protocol	execution,	

each	of	the	participating	parties	“split”	their	inputs	and	share	it	with	the	two	cloud	servers.	As	long	as	

the	two	clouds	do	not	collude	with	each	other,	they	do	not	learn	anything	about	the	inputs	to	the	

computation.	After	the	two	cloud	servers	have	received	the	inputs	from	each	of	the	participating	

parties,	they	engage	in	a	two-party	secure	computation	protocol	(such	as	Yao’s	protocol)	to	compute	

the	function	of	interest.	Notably,	the	parties	that	contributed	the	data	do	not	have	to	be	online	during	

this	step	of	the	protocol.	And	moreover,	communication	is	only	necessary	between	the	parties	and	the	

cloud	servers;	parties	in	particular	do	not	have	to	communicate	with	each	other.	In	a	practical	

deployment,	these	two	cloud	servers	might	be	managed	by	distinct	governmental	organizations	within	

the	NIH	or	WHO.	Thus,	by	working	in	the	two-cloud	model,	it	is	possible	to	transform	any	computation	

between	?	individuals	into	a	secure	two-party	computation	between	two	non-colluding	parties.	
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Step	7:	We	now	describe	how	to	secure	evaluate	any	functionality	in	the	two-cloud	model.	Suppose	

there	are	?	parties	participating	in	the	protocol	execution	and	let	#$, … , #>	denote	their	private	inputs.	

To	secure	compute	a	function	!,	each	of	the	?	participants	chooses	a	random	value	RS 	and	sends	RS 	to	

one	of	the	two	cloud	servers.	They	then	send	to	the	other	cloud	server	the	value	#S − RS 	(note	that	the	

subtraction	is	performed	modulo	a	large	integer	U).	Once	every	party	has	submitted	their	inputs	RS 	and	

#S − RS 	to	the	two	cloud	servers,	the	first	cloud	server	has	a	vector	of	random	values	O	 = 	 (R$, … , R>)	

and	the	second	cloud	server	has	a	vector	of	random	differences	:	 = 	 (#$ − R$, … , #>	– R>).	Because	the	

subtraction	is	taking	place	modulo	U,	the	values	in	:	are	distributed	uniformly	and	more	importantly,	

independently	of	the	#S’s.	The	pair	(RS , #S − RS)	is	often	referred	to	as	an	“additive	secret	sharing”	of	the	

input	#S.	The	property	that	this	additive	secret	sharing	scheme	satisfies	is	that	a	single	share	reveals	no	

information	about	the	input,	but	two	shares	completely	define	the	input.	This	means	that	as	long	as	the	

two	cloud	servers	do	not	collude,	they	learn	no	information	about	each	party’s	input	(since	they	each	

possess	just	one	share	of	the	secret).	

To	complete	the	secure	computation	(of	a	function	!),	the	two	cloud	servers	simply	apply	Yao’s	

protocol	to	the	following	two-party	functionality:	

W R$, … , R> , #$ − R$, … , #>	– R> = ! R$ + #$ − R$, … , R> + #>	– R> = ! #$, … , #> .	

In	other	words,	the	two	clouds	compute	the	functionality	that	takes	as	input	two	vectors	(each	

containing	?	values)	and	outputs	the	function	!	evaluated	on	the	components	corresponding	to	the	sum	

of	the	two	input	vectors.	Since	summing	the	input	vectors	in	this	case	reconstructs	each	party’s	input,	

this	procedure	corresponds	precisely	to	evaluating	!	on	the	parties’	inputs.	Moreover,	the	two	cloud	

servers	do	not	learn	any	additional	information	about	any	particular	party’s	input	because	the	

evaluation	of	W	is	performed	using	Yao’s	protocol	(which	is	a	secure	two-party	computation	protocol).	

This	procedure	is	shown	in	Figure	1.7.	

Constructing	our	Boolean	circuits	

As	described	above,	arbitrary	Boolean	circuits	can	be	constructed	using	only	AND	and	XOR	gates.	To	

efficiently	represent	our	set-intersection-based	algorithms	as	Boolean	circuits,	we	first	construct	some	

intermediate	building	blocks	from	the	basic	AND	and	XOR	gates.	The	intermediate	building	blocks	we	

require	include	addition	circuits,	comparison	circuits,	and	equality	circuits.	For	these	building	blocks,	we	

use	the	circuits	by	Kolesnikov	et	al.
41
	(see	Supplementary	Figure	5). 

Software	implementation	

In	our	implementation,	we	use	the	JustGarble	library
36
	for	our	implementation	of	Yao’s	garbled	circuits,	

and	we	use	the	Asharov	et	al.
42
	implementation	of	the	oblivious	transfer	protocols.	For	better	

performance,	we	also	implement	the	half-gates	optimization
38
	for	Yao’s	garbled	circuits.	This	

implementation	will	be	released	upon	publication.	For	our	benchmarks,	we	set	up	a	client	and	server	on	

Amazon	EC2	(to	simulate	the	two	cloud	providers),	and	measure	the	total	compute	time,	bandwidth,	

and	overall	protocol	execution	time	(taking	into	account	the	network	communication).	We	run	our	

experiments	on	two	memory-optimized	EC2	instances	(M4.2xlarge).	Each	instance	runs	an	8-core	2.4	

GHz	Intel	Xeon	E5-2676	v3	(Haswell)	processor	and	has	32	GB	of	memory.	While	our	protocols	are	

naturally	parallelizable,	we	use	a	single	thread	of	execution	in	all	of	our	experiments,	and	do	not	take	

advantage	of	the	available	parallelism.	To	simulate	the	non-colluding	two	cloud	model,	we	used	a	wide-

area	network	(WAN)	setting	where	the	two	servers	are	far	apart.	We	placed	one	of	the	servers	on	the	

West	Coast	(specifically,	in	the	Northern	California	availability	zone)	and	the	other	on	the	East	Coast	

(specifically,	in	the	Northern	Virginia	availability	zone).	
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(for each value she may be holding)
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without Bob discovering anything about a,

or Alice discovering anything about b.
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Alice puts on the table the two keys (labeled BT and BF) 

she prepared for the small boxes and leaves the room:
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“Bb”: BT if his secret value b = True, BF if b = False. After 

picking up his key, he leaves the room. Alice then gives 

Bob all four unmarked big locked boxes. She also gives 

him one unmarked key “Aa”: AT if her secret value a = 

True, AF if a = False.

BT BF
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(he received from Alice an unlabeled key).
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Table	1	

Operation	 Relevant	Information	for	each	Operation	 	 Running	Time	Measurements	

(a) MAX	

(over	genes)	

Scenario:	

Small	

disease	

cohort	

#	unrelated	

probands	

(who	avoid	

openly	sharing	

their	data)	

Rare	

functional	

variants	

(genes)	per	

proband	

(median)	

#	probands	

with	rare	

functional	

variant/s	in	

gene	(top	3,	

descending	

order)	

Gene	name	 Proven	

causal	gene	

for	disease	

Protection	

quotient		

(1-	#	of	variants	

shared	of	top	

gene/total	#		

of	variants)	

Bandwidth	

(GB)	

Compute	

(sec)	

Network	

(sec)	

Freeman	

Sheldon	

Syndrome	

3	 258	(253)	

3	 MYH3	

MYH3	
1	-	3/767	=		

99.6%	
0.02	 .15	 4.91	2	 DBT	

1	 ACADVL	

Hajdu-

Cheney	

Syndrome	

7	 278	(272)	

6	 NOTCH2	

NOTCH2	
1	-	8/1853	=	

99.6%	
0.03	 .18	 7.29	3	 HLA-DRBI	

3	 MCC	

Kabuki	

Syndrome	 10	 262	(257)	

8	 KMT2D	

KMT2D	
1	–	8/2754	=	

99.7%	
0.04	 .22	 9.59	3	 COL6A1	

3	 FLNB	

Miller	

Syndrome	 4	 267	(258)	

4	 DHODH	

DHODH	
1	–	8/1063	=	

99.3%	
0.03	 .18	 7.29	3	 DNAH5	

2	 ACOX2	

(b) SETDIFF	

(over	variants)	

Scenario:	

familial	

Patient	ID	

(avoid	sharing	

w	provider)	

#	rare	

functional	

variants	

#	proband	

only	variants	

(revealed)	

Gene	name	
Proven	

causal	gene	

Protection	

quotient		

Bandwidth	

(GB)	

Compute	

(min)	

Network	

(min)	

	

Trio	

	

115-f	 185	 N/R	 N/R		

ACTB		 1	-	2/524	=	99.6%	 18.1	 1.7	 56.7	
115-m	 164	 N/R	 N/R	

115-a1	 175	 2	
ACTB	

USH2A	

(c) INTERSECTION	

(over	variants)	

Scenario:		

2	Hospitals	

#	suspicious	

variants		

(not	shared)	

Total	intersecting	variants	

(for	patient	phenotype	comparison	follow-up)	

Protection	

quotient	
Bandwidth	

(GB)	

Compute	

(min)	

Network	

(min)	

Washington	 5,734	
159		

1	–	318/11,067	=	

97.1%	
3.1	 0.37	 9.4	

Baylor	 5,333	
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Supplementary	Figures	and	Tables	

Supplementary	Figure	1	
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Supplementary	Figure	3	

	

Supplementary	Figure	4	
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Supplementary	Figure	5	
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Figure	and	Table	Legends	
Figure	1.	Yao’s	protocol	for	secure	multiparty	computation.	Steps	0-7	describe	the	overall	secure	

protocol	for	computing	any	function	F	between	two	or	more	parties	F(A,	B,	..	,Y,	Z).	We	first	describe	a	

secure	two-party	computation	protocol	between	Alice	(A)	and	Bob	(B).	Step	0:	Alice	and	Bob	are	trying	

to	compute	a	joint	function	without	revealing	their	inputs	to	the	other	party.	Step	1:	Alice	creates	a	

key/box	for	each	possible	value	for	each	input	(0	or	1).	Step	2:	Alice	double	locks	(double	encrypts)	each	

of	the	four	possible	outputs	by	placing	the	relevant	output	note	in	two	boxes	corresponding	to	each	

combination	of	the	two	inputs.	Step	3:	Alice	gives	Bob	the	option	of	choosing	exactly	one	of	two	

possible	keys,	labeled	BT	and	BF.	Step	4:	Bob	picks	up	exactly	one	key	Bb	where	b	corresponds	to	his	

hidden	input	which	only	he	knows	(the	oblivious	transfer	protocol	ensures	that	Bob	can	only	pick	up	one	

key).	After	Bob	makes	his	selection,	Alice	shuffles	the	doubly-locked	boxes	and	hands	them	to	Bob	along	

with	the	key	Aa	corresponding	to	her	input	a.	Steps	1-4	is	repeated	for	each	of	the	inputs	to	the	function.	

Step	5:	For	each	operator	in	the	function	that	depends	only	on	input	values	(i.e.,	the	first	“layer”	of	the	

circuit),	Bob	has	four	doubly-locked	boxes	and	two	keys	Aa	and	Bb	but	he	does	not	know	Alice’s	input	

and	Alice	does	not	know	Bob’s	input.	He	uses	Aa	and	Bb	and	tries	to	unlock	all	four	boxes.	Only	one	of	

the	four	doubly-locked	boxes	will	successfully	open,	revealing	the	joint	output	without	revealing	Alice’s	

or	Bob’s	inputs.	Step	6:	The	revealed	output	yields	the	key	for	the	next	operation	(gate)	in	the	circuit.	

Steps	5	and	6	are	repeated	for	each	operation	in	the	function.	At	the	end	of	the	computation,	instead	of	

keys,	Bob	obtains	the	values	that	make	up	the	output	of	the	computation.	Step	7:	This	secure	two-party	

computation	process	can	be	expanded	to	N	parties	by	using	additive	secret	sharing	between	two	non-

colluding	cloud	servers.	The	N-input	function	is	thus	transformed	into	a	two-input	function.	

Table	1.	Summary	of	results	for	different	secure	genomic	multiparty	computation	scenarios,	all	using	

real	patient	data.	

Supplementary	Figure	1.	Representing	genomic	data	as	vectors	for	secure	computation.	(A)	Each	

individual	holds	their	personal	genome	private.	(B)	They	are	asked	to	fill	in	a	position	array/vector	with	

True	and	False	values	depending	on	whether	they	have	a	rare	functional	variant	at	the	listed	position,	or	

a		0/1	value	in	a	gene	array	depending	on	whether	they	have	none/some	rare	functional	variant/s	in	

each	listed	gene.	(C)	The	resulting	position/gene	vectors	are	used	to	obtain	the	results	of	Table	1.			

Supplementary	Figure	2.	Encryption	and	decryption	overview.	A	secret-key	encryption	scheme	consists	

of	three	algorithms:	(A)	a	setup	algorithm	which	outputs	a	secret	key	(usually	a	long	random	string);	(B)	

an	encryption	algorithm	that	takes	in	a	secret	key	!	and	a	message	"	and	produces	an	encryption	of	"	

(called	a	ciphertext);	and	(C)	a	decryption	algorithm	that	takes	in	the	same	secret	key	!	and	a	ciphertext	

and	produces	the	original	message.	We	write	Enc&(")	to	denote	an	encryption	of	the	message	"	under	

the	secret	key	!.	The	correctness	requirement	for	an	encryption	scheme	states	that	decrypting	the	

ciphertext	output	by	Enc&(")	using	the	secret	key	!	should	yield	the	original	message	(plaintext)	".	(D)	

The	security	requirement	for	a	secret-key	encryption	scheme	states	that	anyone	who	does	not	possess	

the	secret-key	!	cannot	distinguish	an	encryption	of	a	message	")	from	an	encryption	of	a	message	"*,	

irrespective	of	the	choice	of	messages	")	and	"*.	In	other	words,	without	the	secret	key,	the	ciphertext	

does	not	reveal	any	information	about	the	encrypted	message.	

Supplementary	Figure	3.	Computation	using	circuits.	(A)	A	Boolean	circuit	consists	of	a	sequence	of	

logic	gates	(e.g.,	AND	gates,	OR	gates,	and	NOT	gates).	Each	logic	gate	takes	one	or	two	bits	as	input	and	

produces	a	single	bit	of	output.	In	a	Boolean	circuit,	the	outputs	of	one	logic	gate	can	be	used	as	the	
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input	to	another	logic	gate.	We	refer	to	these	values	as	the	intermediate	values	in	the	computation.	In	

the	circuit	depicted	in	the	figure,	the	inputs	to	the	circuit	are	denoted	+), +*, +-, +., +/	and	the	outputs	

of	the	circuit	are	denoted	0), 0*.	Specifically,	this	particular	circuit	implements	a	function	over	five	input	

bits	and	produces	two	output	bits.	(B)	Each	gate	in	the	Boolean	circuit	can	be	described	by	a	truth	table	

that	specifies	the	mapping	between	each	configuration	of	the	input	bits	to	a	corresponding	output	bit.	

In	the	case	of	an	AND	gate,	there	are	two	input	bits,	and	the	output	is	1	if	and	only	if	both	input	bits	are	

1.	Otherwise,	the	output	is	0.		

Supplementary	Figure	4.	Performance	scale	up	for	secure	computation.	Bandwidth,	compute	(CPU)	

time,	and	overall	protocol	execution	(wall	clock)	time	for	the	secure	MAX,	SETDIFF	and	INTERSECTION	

scenarios	of	Table	1,	using	a	single	thread	on	two	servers,	one	located	on	the	East	Coast	and	the	other	

on	the	West	Coast.	(A)	When	increasing	the	number	of	unrelated	subjects	in	a	small	cohort	study,	all	

parameters	grow	logarithmically.	(B)	When	increasing	the	number	of	family	members	in	an	affected	/	

non	affected	scenario,	parameters	also	grow	logarithmically.	(C)	In	the	two	hospital	scenario,	when	

increasing	the	number	of	genomic	positions	of	potential	interest	(e.g.,	from	the	exome	to	the	non-

coding	genome),	all	parameters	grow	linearly.	Note	that	all	three	scenarios	(A-C)	perform	the	bulk	of	

their	computation	on	each	element	of	the	input	vector	separately	(Supplementary	Figure	1c).	All	

scenarios	are	thus	simple	to	parallelize	for	maximum	speed-up	using	multiple	threads	and	nodes.	

Supplementary	Figure	5.	Boolean	building	blocks	for	composing	complex	functions.	(A)	The	basic	

building	blocks	we	use	to	build	our	circuits	for	identifying	common	mutations	and	shared	de	novo	

variants	include	addition,	comparison,	equality,	and	multiplexer	circuits.	An	addition	circuit	ADD& 	on	!	

bit	inputs	takes	two	!-bit	values	and	outputs	the	!-bit	representation	of	their	sum	(addition	is	

performed	modulo	2&).	The	LT& 	and	EQ& 	circuits	implement	the	less-than	and	equality	operations,	

respectively,	on	!-bit	inputs.	The	MUX& 	circuit	implements	a	multiplexer	circuit	which	on	inputs	a	

selection	bit	: ∈ 0,1 	and	two	!-bit	values	+>, +),	outputs	+?.	The	individual	circuits	can	be	efficiently	

constructed	using	AND	gates	and	XOR	gates,	as	described	by	Kolesnikov	et	al
41
.	These	basic	circuit	

building	blocks	can	be	composed	to	build	a	max	circuit	MAX& 	on	two	inputs	(each	of	length	!),	which	in	

turn	can	be	used	to	build	a	max	circuit	on	@	inputs.	(B)	This	circuit	computes	the	argmax	over	@	

additively	secret-shared	values	A), … , AC.	The	circuit	operates	by	first	combining	the	shares	and	then	

taking	the	max	over	the	resulting	vector	of	values.	The	argmax	is	represented	by	a	bit-string	of	length	@,	

where	a	position	D	has	value	1	if	AE 	is	equal	to	the	max	value,	and	0	otherwise.	(C)	This	circuit	computes	

the	set	of	genes	(represented	by	indices)	that	are	present	in	a	test	vector	A), … , AC	but	not	present	in	a	

pool	F), … , FC.	The	counts	of	the	mutations	appearing	in	the	pool	are	additively	secret	shared.	The	circuit	

first	combines	the	shares,	and	then	identifies	the	indices	D	that	appear	in	the	test	vector	(AE = 1),	but	

not	present	in	the	pool	(FE = 0).	The	circuit	outputs	:E = 1	if	the	gene	indexed	by	D	occurs	in	the	target	

genome	but	not	in	the	test	pool,	and	0	otherwise.				
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