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Abstract

Intrinsic images are a useful midlevel description of scenes
proposed by Barrow and Tenenbaum [1]. An image is de-
composed into two images: a reflectance image and an il-
lumination image. Finding such a decomposition remains
a difficult problem in computer vision. Here we focus
on a slightly easier problem: given a sequence of T im-
ages where the reflectance is constant and the illumination
changes, can we recover T illumination images and a sin-
gle reflectance image? We show that this problem is still ill-
posed and suggest approaching it as a maximum-likelihood
estimation problem. Following recent work on the statistics
of natural images, we use a prior that assumes that illu-
mination images will give rise to sparse filter outputs. We
show that this leads to a simple, novel algorithm for re-
covering reflectance images. We illustrate the algorithm’s
performance on real and synthetic image sequences.

1 Introduction

Barrow and Tenenbaum (1978) introduced the term “intrin-
sic images” to refer to a midlevel decomposition of the sort
depicted in figure 1. The observed image is a product of
two images: an illumination image and a reflectance image.
We call this a midlevel description because it falls short of
a full, 3D description of the scene:the intrinsic images are
viewpoint dependent and the physical causes of changes in
illumination at different points are not made explicit (e.g.
the cast shadow versus the attached shadows in figure 1c).

Barrow and Tenenbaum argued that such a midlevel de-
scription, depsite not making explicit all the physical causes
of image features, can be extremely useful for supporting a
range of visual inferences. For example, the task of segmen-
tation may be poorly defined on the input image and many
segmentation algorithms make use of arbitrary thresholds in
order to avoid being fooled by illumination changes. On the
intrinsic, reflectance image, on the other hand, even prim-
itive segmentation algorithms would correctly segment the
cylinder as a single segment in figure 1b. Similarly, view-

based template matching and shape-from-shading would be
significantly less brittle if they could work on the intrinsic
image representation rather than on the input image.

Recovering two intrinsic images from a single input im-
age remains a difficult problem for computer vision sys-
tems. This is a classic ill-posed problem: the number of
unknowns is twice the number of equations. Denoting by
I(x; y) the input image and by R(x; y) the reflectance im-
age and L(x; y) the illumination image, the three images
are related by:

I(x; y) = L(x; y)R(x; y) (1)

Obviously, one can always set L(x; y) = 1 and satisfy
the equations by setting R(x; y) = I(x; y). Despite this
difficulty, some progress has been made towards achiev-
ing this decomposition. Land and McCann’s Retinex algo-
rithm [7] could successfully decompose scenes in which the
reflectance image was piecewise constant. This algorithm
has been continuously extended over the years (e.g. [4]).
More recently, Freeman and Viola [3] have used a wavelet
prior to classify images into one of two classes: all re-
flectance or all illumination.

In this paper we focus on a slightly easier version of the
problem. Given a sequence of T images fI(x; y; t)gTt=1 in
which the reflectance is constant over time and only the illu-
mination changes, can we then solve for a single reflectance
image R(x; y) and T illumination images fL(x; y; t)gTt=1 ?
Our work was motivated by the ubiquity of image sequences
of this form on the world wide web: “webcam” pictures
from outdoor scenes as in figure 2. The camera is stationary
and the scene is mostly stationary: the predominant change
in the sequence are changes in illumination.

While this problem seems easier, it is still completely
ill-posed: at every pixel there are T equations and T + 1
unknowns. Again, one can simply set L(x; y) = 1 and
R(x; y; t) = I(x; y; t) and fully satisfy the equations. Ob-
viously, some additional constraints are needed.

One version of this problem that has received much at-
tention is the case when L(x; y; t) are attached shadows of
a single, convex, lambertian surface: L(x; y; t) = ~N(x; y) �
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Input = reflectance � illumination

a b c

Figure 1: The intrinsic image decomposition [1].

Figure 2: Images from a “webcam” at www.berkeley.edu/webcams/sproul.html. Most of the changes are changes in
illumination. Can we use such image sequences to derive intrinsic images?

~S(t), with N(x; y) the surface normal at x; y and ~S a vec-
tor in the direction of the light source. This is the photo-
metric stereo problem with unknown light-source, and can
be solved using SVD techniques up to a Generalized Bas
Relief ambiguity [12, 6].

Farid and Adelson addressed a special case of this prob-
lem [2]. They assumed that L(x; y; t) = �(t)L(x; y), i.e.
that all illumination images are related by a scalar. They
used independent component analysis to solve for L(x; y)
and R(x; y).

A similar problem has recently been addressed by
Szeliski, Avidan and Anandan [11]. They dealt with addi-
tive transparency sequences so that I(x; y; t) = R(x; y) +
L(x � tvx; y � tvy; t). Of course, if we exponentiate
both sides we get equation 1 with an additional constraint
that the illumination images are warped images of a sin-
gle illumination image. They showed that since L(x; y; t)
is bounded below (i.e. that L(x; y; t) is positive), setting
R̂(x; y) = mint I(x; y; t) can give a good estimate for the
reflectance. They used the min filter as an initialization for
a second estimation procedure that estimated the motion of
L(x; y) and improved the estimate.

In this paper we take a different approach. We formulate
the problem as a maximum-likelihood estimation problem
based on the assumption that derivative-like filter outputs

applied to L will tend to be sparse. We derive the ML
estimator under this assumption and show that it gives a
simple, novel algorithm for recovering reflectance. We il-
lustrate the algorithm’s performance on real and synthetic
image sequences.

2 ML estimator assuming sparseness

For convenience, we work here in the log domain. De-
note by i(x; y); r(x; y); l(x; y) the logarithms of the in-
put, reflectance and illumination images. We are given:
i(x; y; t) = r(x; y) + l(x; y; t) and wish to recover r(x; y)
and l(x; y; t).

To make the problem solvable, we want to assume a dis-
tribution over l(x; y; t). Our first thought was to make a
similar assumption to that made in the Retinex work: that
illumination images are lower contrast than relfectance im-
ages. We found, however, that while this may hold true
in the Mondrian world studied by Land and McCann, it is
rarely true for the outdoor scenes of the type shown in fig-
ure 2. Edges due to illumination often have as high a con-
trast as those due to reflectance changes.

We use a weaker, more generic prior that is motivated by
recent work on the statistics of natural images. A remark-
ably robust property of natural images that has received
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Figure 3: We use a prior motivated by recent work on the statistics of natural scenes. Derivative filter outputs tend to be sparse
for a wide range of images. a-b images : c-d histograms of horizontal derivative filter outputs. e A Laplcian distribution.
Note the similar shape to the observed histograms.

much attention lately is the fact that when derivative filters
are applied to natural images, the filter outputs tend to be
sparse [8, 10]. Figure 3 illustrates this fact: the image of
the face and the outdoor scene have similar histograms that
are peaked at zero and fall off much faster than a Gaussian.
This property is robust enough that it continues to hold if
we apply a pixelwise log function to each image (the his-
tograms shown are actually for the log images). These pro-
totypical histograms can be well fit by a Laplacian distribu-
tion P (x) = 1

Z e
��jxj (although better fits are obtained with

richer models). Figure 3e shows a Laplacian distribution.

We will therefore assume that when derivative filters are
applied to l(x; y; t) the resulting filter outputs are sparse:
more exactly, we will assume the filter outputs are inde-
pendent over space and time and have a Laplacian density.
Assume we have N filters ffng we denote the filter outputs
by on(x; y; t) = i ? fn. We use rn to denote the reflectance
image filtered by the nth filter rn = r ? fn.

Claim 1: Assume filter outputs applied to l(x; y; t) are
Laplacian distributed and indpendent over space and time.
Then the ML estimate of the filtered reflectance image r̂n
are given by:

r̂n(x; y) = medianton(x; y; t) (2)

Proof: Assuming Laplacian densities and independence

yields the likelihood:

P (onjrn) =
1

Z

Y
x;y;t

e��jon(x;y;t)�rn(x;y)j (3)

=
1

Z
e
��
P

x;y;t
jon(x;y;t)�rn(x;y)j (4)

Maximizing the likelihood is equivalent to minimizing the
sum of absolute deviations from on(x; y; t). The sum of
absolute values (or l1 norm) is minimized by the median.
2.

Claim 1 gives us the ML estimate for the filtered re-
flectance images r̂n. To recover r, the estimated reflectance
function, we solve the overconstrained systems of linear
equations:

fn ? r̂ = r̂n (5)

It can be shown that the psuedo-inverse solution is given by:

r̂ = g ?

 X
n

frn ? r̂n

!
(6)

with frn the reversed filter of fn: fn(x; y) = frn(�x;�y)
and g a solution to:

g ?

 X
n

frn ? fn

!
= Æ (7)
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Figure 4: An illustration of the ML estimation algorithm

Note that g is indpendent of the image sequence being con-
sidered and can be computed in advance.

Figure 4 illustrates the algorithm for calculating the ML
reflectance function. The three frames in the leftmost col-
umn show a circle illuminated with a square cast shadow.
The shadow is moving over time. The middle and right
columns show the horizontal and vertical filter outputs ap-
plied to this sequence. Taking a pixelwise median over time
gives the estimated filtered reflectance images in the bottom
row. Finally, applying equation 6 gives the ML estimated
reflectance function. Once we have an estimate for r(x; y)
we can estimate l(x; y; t) = i(x; y; t)� r(x; y).

The ML estimate has some similarities to the temporal
median filter that is often used in accumulating mosaics
from image sequences (e.g. [9]) but has very different per-
formance characteristics. In figure 4 taking the temporal
median of the three frames in the left column would not
give the right reflectance function. A pixel whose inten-
sity is bright in all frames (e.g. pixel P in figure 4a) and
a pixel whose intensity is dark in all frames (e.g. pixel Q
in figure 4a) must have different medians. Thus, a pixel
whose intensity is always dark must be estimated as having
a different reflectance that a pixel whose intensity is always
light.

In the ML estimate, on the other hand, this is not the

case. Note that pixels P and Q are estimated as having the
same reflectance even though one was always lighter than
the other. This is because the ML estimate performs a tem-
poral median on the filtered images, not the original images.
In terms of probabilistic modeling, a temporal median filter
on images is the ML estimate if we assumed that l(x; y; t)
is sparse, i.e. that most pixels in l(x; y; t) are close to zero.
This is rarely true for natural images. In contrast, here we
are assuming that the filter outputs applied to l(x; y; t) are
sparse, an assumption that often holds for natural images.

What if fn ? l(x; y; t) does not have exactly a Laplacian
distribution? The following claim shows that the exact form
of the distribution is not important as long as the filter out-
puts are sparse.

Claim 2: Let p� = P (jfi ? l(x; y; t)j < �). Then the es-
timated filtered reflectances are within � of the true filtered
reflectances with probability at least:

T=2X
k=1

�
T

k

�
(1� p�)

T�kpk�

Proof: If more than 50% of the samples of fn ? l(x; y; t)
are within � of some value, then by the definition of the
median, the median must be within � of that value. The
claim follows from the binomial formula for the sum of T
independent events. 2
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Claim 2 does not require that the illumination images
have a Laplacian distribution in their filter outputs, rather
the more sparse the filter outputs are the quicker the median
estimate will converge to the true filtered reflectance func-
tion. For example, the lighting image in figure 1c, does not
have a Laplacian distribution but is very sparse: 85% of the
filter outputs have magnitude less than � = 1% of the max-
imal magnitude. Claim 2 guarantees the jr̂n � rnj < � with
probability at least 0:93 given only three frames and with
probability at least 0:97 given five frames.

3 Results - synthetic sequences

All the results shown in this paper used just two filters: hor-
izontal and vertical derivative filters.

Figure 5 show the first and last frames from a sequence
in which a square cast shadow is moving over a circle and
ellipse. Note that the circle is always in shadow and that the
ellipse is always half in shadow. Despite this, the ML re-
flectance estimate correctly gets rid of the shadows on both.
For comparison, figure 5 also shows the temporal min filter
and temporal mean filter. Both of these approaches suffer
from the fact that if a pixel is always in shadow, the esti-
mated reflectance is also darker.

Figure 6 shows the first and last frames from a synthetic
additive transparency sequence. The image of Reagan is
constant for all frames and we added an image of Einstein
that is moving diagonally (speed 4 pixels per frame). Fig-
ure 6 also shows the recovered Reagan and Einstein images.
They are indistinguishable from the original image. For
comparison, figures 6 also shows the min and median fil-
ters. Again, the min filter assumes that all pixels at some
time see a black pixel from the Einstein image. Since that
assumption does not hold, the estimate is quite bad.

4 Results - real sequences

Figure 7 shows two frames from a sequence that is part of
the Yale face database B [5]. A strobe light at 64 different
locations illuminated a person’s face, giving 64 images with
changing illumination. The images were taken with a cam-
era with linear response function. Figure 7 also shows the
estimated reflectance and illumination images. Note that
nearly all the specular highlights are gone although there
are still some highlights at the tip of the nose. Although it is
hard to measure performance in this task, observers describe
the illumination images as “looking like marble statues”, as
would be expected from an illumination image of a face.

Figure 8 shows two frames from a sequence taken from
the “WebCam” at UC Berkeley. We used 35 images taken
at different times. Figure 8 also shows the estimated re-
flectance and illumination images. Note that the cast shad-

ows by the trees and buildings are mostly gone. Note also
that we did not have to do anything special to get rid of the
people in the images: since we use a generic prior for the
lighting images we can easily accomodate changes that are
not purely due to lighting. The results are not as good as the
Yale sequence, and we believe this is partially due to the au-
tomatic gain control on the web camera so that the response
function is far from linear.

Even these results can be good enough for some appli-
cations. Figure 9a shows a color scene of Sproul plaza in
Berkeley. Suppose a malicius Stanford hacker wanted to in-
sert the Stanford logo on the plaza. Figure 9b shows what
happens when � blending is used to composite the logo
and the image. The result is noticeably fake. Figure 9c
shows the result when � blending is used on the estimated
reflectance image, and the image is rerendered with the es-
timated illumination image. The logo appears to be part of
the scene.

5 Discussion

Deriving intrinsic images from a single image remains a dif-
ficult problem for computer vision systems. Here we have
focused on a slightly easier problem: recovering intrinsic
images from an image sequence in which the illumination
varies but the reflectance is constant. We showed that the
problem is still ill-posed and suggested adding a statisti-
cal assumption based on recent work in statistics of natural
scenes: that derivative filter outputs on the illumination im-
age will tend to be sparse. We showed that this assumption
leads to a novel, simple algorithm for reflectance recovery
and showed encouraging results on a number of image se-
quences.

Both the camera model and the statistical assumptions
we have used can be extended. We assumed a linear re-
sponse in the camera model and one can derive the ML esti-
mator when the camera is nonlinear. We have also assumed
that filter outputs are independent across space and time. It
would be interesting to derive ML estimators when the de-
pendency is taken into account. We hope that progress in
statistical modeling of illumination images will enable us
to tackle the original problem posed by Barrow and Tenen-
baum: recovering intrinsic images from a single image.
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first frame last frame ML illumination ML reflectance min filter mean filter

Figure 5: A synthetic sequence in which a square cast shadow translates diagonally. Note that the pixels surrounding the
diamond are always in shadow, yet their estimated reflectance is the same as that of pixels that were always in light. In the
min and mean filters, this is not the case and the estimated reflectances are quite wrong.

Reagan image Einstein image first frame last frame

ML Reagan ML Einstein min filter median filter

Figure 6: Results on a synthetic additive transparency sequence. The Einstein image is translated diagonally with speed 4
pixels per frame and added to the Reagan image. The ML estimates are nearly exact while the min and median filters are not.

frame 2 frame 11 ML reflectance ML illumination 2 ML illumination 11

Figure 7: Results on one face from the Yale Face Database B [5]. There were 64 images taken with variable lighting. Note
that the recovered reflectance image is almost free of specularities and is free of cast shadows. The ML illumination images
are shown with a logarithmic nonlinearity to increase dynamic range.
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frame 1 frame 11 ML reflectance

ML illumination 1 ML illumination 2

Figure 8: Results on a webcam sequence from: www.berkeley.edu/webcams/sproul.html. There were 35 images that
varied mostly in illumination. Note that the ML reflectance image is free of cast shadows. The illumination images are
shown with a logarithmic nonlinearity to increase dynamic range.

a b c

Figure 9: Intrinsic images are useful for image manipulation. a. The original image of Sproul plaza in Berkeley. b. The
Stanford logo is � blended with the image: the result is noticeable fake. c. The Stanford logo is � blended in the reflectance
image and then rendered with the derived illumination image.
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