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Abstract

In this paper we provide a systematic way to construct the robust counterpart of a nonlinear

uncertain inequality that is concave in the uncertain parameters. We use convex analysis

(support functions, conjugate functions, Fenchel duality) and conic duality in order to convert

the robust counterpart into an explicit and computationally tractable set of constraints. It

turns out that to do so one has to calculate the support function of the uncertainty set

and the concave conjugate of the nonlinear constraint function. Conveniently, these two

computations are completely independent. This approach has several advantages. First, it

provides an easy structured way to construct the robust counterpart both for linear and

nonlinear inequalities. Second, it shows that for new classes of uncertainty regions and for

new classes of nonlinear optimization problems tractable counterparts can be derived. We

also study some cases where the inequality is nonconcave in the uncertain parameters.

Keywords: Fenchel duality, robust counterpart, nonlinear inequality, robust optimization,

support functions

JEL codes: C61

1 Introduction

Robust Optimization (RO) has become an important field in the last decade. For a compre-

hensive treatment of RO we refer to [5] or the recent survey [10]. The number of applications

∗Part of this paper was written when the author was visiting Centrum Wiskunde & Informatica in Amsterdam,

The Netherlands, as a CWI Distinguished Scientist.
†Research partly supported by BSF Grant 2008302.
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of RO has increased rapidly in recent years. Moreover, the RO methodology has recently been

implemented into (commercial) mathematical modelling and optimization systems (e.g. AIMMS

[1], ROME [14], and YALMIP [18]). The goal of RO is to immunize an optimization problem

against uncertain parameters in the problem. Such uncertain parameters may arise as a re-

sult of estimation or rounding errors in the parameter values, or due to implementation errors.

Therefore, a so-called uncertainty region for the uncertain parameters is defined, and then it is

required that the constraints should hold for all parameter values that reside in the uncertain

region. For several optimization problems, and for several choices of this uncertainty region,

the so-called Robust Counterpart (RC) can be formulated as a tractable optimization problem.

For example the robust counterpart for a linear programming problem with polyhedral or el-

lipsoidal uncertainty regions can be reformulated as a linear programming or conic quadratic

programming problem, respectively. We refer to [5] for an extensive treatment of these cases.

In this paper we show how Fenchel duality can be used to construct the RC for a nonlinear

constraint that is concave in the uncertain parameters. This approach has several advantages.

First of all, it shows that for new classes of optimization problems a tractable robust counterpart

can be derived. Secondly, for linear programming it provides an easy way to construct the RC,

e.g. in case the uncertainty region is the intersection of several regions. In this paper many

examples are given, some being of direct applications to known problems, some being candidates

for future applications.

We also analyze the tractability of the resulting robust counterparts and show that many RCs

can be written as linear, quadratic, or conic quadratic constraints, or else they can be shown

to admit a self-concordant barrier function. The latter implies that the optimization problem is

solvable in polynomial-time (see [20]).

We now discuss other literature on deriving robust counterparts for nonlinear inequalities fol-

lowing the description in [5]. Exact tractable reformulations for Conic Quadratic Problems are

derived when the uncertainty is a simple interval or unstructured norm-bounded. Approxima-

tion results are derived for structured norm-bounded uncertainty or intersection of ellipsoids.

For Semidefinite Problems exact results are known for unstructured norm-bounded uncertainty,

and approximation results for structured norm-bounded uncertainty. In [3] an explicit tractable

reformulation is derived for a robust inequality that is linear in the uncertain parameters and

the uncertainty set is given by convex inequalities. This is a special case of the type of robust

optimization problems that we study in this paper.

This paper is organized as follows. In Section 2 we derive the RC of a general nonlinear robust

constraint by using Fenchel duality. The RC involves calculating the support function of the

uncertainty region, which is treated in Section 3, and calculating the conjugate function of the

constraint function, which is treated in Section 4, using among other methods the theory of

Conic Quadratic representable (CQr) functions ([6]). Many concrete examples are treated in

Sections 3 and 4. In Section 5 we treat the complexity of the resulting RCs. In the appendices,

we recall known theorems on conjugate functions, support functions, Fenchel duality, Conic

Quadratic duality and Conic Quadratic representability. Those results will be used in the paper

and for the sake of clarity the lemmas and theorems in the appendix will be unambiguously

numbered as such.

Notation. Throughout this paper we use the following notation.

Let f : Rn → R be a closed convex function with dom(f) = {x | f(x) <∞}. Let g : Rn → R be

a closed concave function with dom(g) = {x | g(x) > −∞}. The convex conjugate of f is defined
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as

f∗(y) = sup
x∈dom(f)

{yTx− f(x)}.

The concave conjugate of g is defined as

g∗(y) = inf
x∈dom(g)

{yTx− g(x)}. (1)

For a function g(., .) of two vector variables, g∗(., .) will denote the partial concave conjugate

with respect to the first variable.

A special conjugate function is the support function, which is the conjugate of the indicator

function. The indicator function on the set S is defined as:

δ(x|S) =

{
0 if x ∈ S
∞ otherwise.

(2)

Then the conjugate function of δ(x|S),

δ∗(y|S) = sup
x∈S

yTx, (3)

is the so-called support function of the set S.

The adjoint function of f : R+ −→ R is defined as:

f♦(x) = xf

(
1

x

)
, ∀x ∈ R+. (4)

Note that f♦(x) is convex if f(x) is convex.

Let A be a linear transformation from Rn to Rm, then the function gA is defined by

(gA)(x) = g(Ax).

The relative interior of a set S is denoted by ri(S).

Throughout the paper a subindex i denotes a scalar (the ith element of the vector) and a

superindex denotes a vector.

2 Robust Counterpart (RC) of a general inequality

The Robust Optimization (RO) methodology addresses optimization problems affected by pa-

rameter uncertainty in constraints. We focus here on a nonlinear constraint

f(a, x) ≤ 0, (5)

where x ∈ Rn is the optimization variable, f(., x) is concave for all x ∈ Rn, and a ∈ Rm is an

uncertain vector, which is only known to reside in a set U (called the uncertainty set). The

robust counterpart of (5) is then

(RC) f(a, x) ≤ 0, ∀a ∈ U, (6)
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where the uncertainty set U is modeled as follows:

U = {a = a0 +Aζ | ζ ∈ Z ⊂ RL}.

Here a0 ∈ Rm is the so-called “nominal value”, the matrix A is given column wise: A =

(a1 a2 ... aL) ∈ Rm×L, ζ is called the vector of “primitive uncertainties”, and Z is a given

nonempty, convex and compact set, with 0 ∈ ri(Z).

With this formulation, it is required to determine the value of x before the actual realization of

a is available (“here and now” decisions).

Definition 1 The nominal vector a0 is called regular if a0 ∈ ri(domf(., x)), ∀x.

Note that when a0 is regular and since 0 ∈ ri(Z) then the following holds:

ri(U) ∩ ri(domf(., x)) 6= ∅, ∀x. (7)

The robust inequality (RC) can be rewritten as

max
a∈U

f(a, x) ≤ 0. (8)

In this paper we frequently use a general principle to process (RC). For that purpose we use

the dual of the optimization problem in the left-hand side of (8). The dual has the general form

min{g(b, x) | b ∈ Z(x)}. (9)

Under suitable convexity and regularity conditions on f(., x) and U (such as (7)) strong duality

holds between the maximization problem in (8) and (9), hence x is robust feasible if and only if

min{g(b, x) | b ∈ Z(x)} ≤ 0. (10)

So finally, x is robust feasible for (6) if and only if x and b solve the system{
g(b, x) ≤ 0

b ∈ Z(x).
(11)

In case strong duality does not hold, we still have (by weak duality) that (10) implies (9). Hence,

whenever x and some b solve (11), then x satisfies (6), i.e. it is robust feasible.

The next basic result gives an equivalent reformulation for (RC) which is used throughout the

paper to derive tractable RCs.

Theorem 2 Let a0 be regular. Then the vector x ∈ Rn satisfies (RC) if and only if x ∈ Rn,

v ∈ Rm satisfy the single inequality

(FRC) (a0)T v + δ∗(AT v|Z)− f∗(v, x) ≤ 0, (12)

in which the support function δ∗ and the partial concave conjugate function f∗ are defined in (3)

and (1), respectively.
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Proof: Using the definition of indicator functions (2) and using Fenchel duality (Theorem

A.1), we have

F (x) := max
a∈U

f(a, x) (13)

= max
a∈Rm

{f(a, x)− δ(a|U)} (14)

= min
v∈Rm

{δ∗(v|U)− f∗(v, x)}, (15)

where

f∗(v, x) = inf
a∈Rm

{aT v − f(a, x)},

and

δ∗(v|U) = sup
ζ∈Z
{aT v | a = a0 +Aζ} (16)

= (a0)T v + sup
ζ∈Z

vTAζ (17)

= (a0)T v + δ∗(AT v|Z). (18)

The passage from (14) to (15) is justified, since the regularity of a0 implies condition (7), which

is the condition needed by Fenchel Duality Theorem to obtain strong duality. Since (RC) in (6)

can be written as F (x) ≤ 0, the theorem follows immediately. �

The following corollary is used frequently in this paper.

Corollary 3 Let Z1, ..., ZK be closed convex sets with 0 ∈ ri(Zk),∀k, such that Z =
⋂K
k=1 ri(Zk) 6=

∅. Moreover, let f(a, x) =
∑J

j=1 fj(a, x). If a0 is regular then x ∈ Rn satisfies (RC) if and only

if x ∈ Rn, v ∈ Rm, yk ∈ RL, zj ∈ Rm satisfy the following system of constraints:

(SFRC)


(a0)T v +

∑K
i=1 δ

∗(yi|Zi)−
∑J

j=1(fj)∗(z
j , x) ≤ 0∑K

k=1 y
k = AT v∑J

j=1 z
j = v.

(19)

Proof: Using Lemmas A.2 and A.4, (FRC) can be written as:

(a0)T v + min

{
K∑
k=1

δ∗(yk|Zk) |
K∑
k=1

yk = AT v

}
−max


J∑
j=1

(fj)∗(z
j , x) |

J∑
j=1

zj = v

 ≤ 0,

which is equivalent to (SFRC), by using the general principle mentioned in the beginning of

this section. �

The following remarks with respect to Theorem 2 are important:

1. In (FRC) the computation involving f are completely independent from those involving

Z.

2. To derive (FRC) we did not assume f(a, x) to be convex in x. However, if f(a, x) is convex

in x, ∀a ∈ U , then f∗(v, x) is concave in (v, x), so then (FRC) is a convex inequality in

(v, x).
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3. It is interesting to observe that robustifying a nonlinear constraint may have a “convexifi-

cation effect”. This is illustrated in the next nominal constraint which is nonconvex, but

whose robust counterpart is convex. We consider the following robust counterpart:

f(a, x) :=
m∑
i=1

aifi(x) ≤ b ∀a ∈ U,

where U = {a ∈ Rm | ‖a − a0‖∞ ≤ ρ}, and let ρ + a0i ≥ 0, i = 1, ...,m. We assume that

fi(x), i = 1, ...,m, are convex and fi(x) ≥ 0, ∀x. Suppose (some of) the nominal values a0i
are negative, which means that the nominal inequality

m∑
i=1

a0i fi(x) ≤ b

may not be convex. However, in this case the (FRC)

m∑
i=1

(a0i + ρ)fi(x) ≤ b

is indeed a convex inequality.

4. If we consider additive implementation error

f(x+ a) ≤ 0, ∀a ∈ U, (20)

then, except for the linear case, it can not happen that f is convex in x and concave in a.

However, in several cases, e.g. when f(x) is quadratic, one can reformulate (20) in such a

way that this assumption does hold. See also Section 4.3.

5. If f(a, x) is not concave in a, then it can be easily verified (by weak duality) that

F (x) = max
a∈U

f(a, x) ≤ (a0)T v + δ∗(AT v|Z)− f∗(v, x),

and thus (FRC) is a tighter constraint, i.e., if a pair (x, v) satisfies (FRC) then x is robust

feasible.

6. Suppose that there is also uncertainty in the right-hand-side, i.e., the RC is

f(a, x) ≤ b, ∀(a, b) ∈ Ũ ,

Ũ =

{(
a

b

)
=

(
a0
b0

)
+

L∑
i=1

ζi

(
ai
bi

)
| ζ ∈ Z ⊂ RL

}
, (21)

where a0, a1, ..., aL ∈ Rm are given (a0 is the “nominal value”), b0, b1, ..., bL ∈ R are given

(b0 is the “nominal value”), and Z is a given nonempty, convex and compact set. Then it

can easily be verified that, under the condition that a0 is regular, this is equivalent to

(a0)T v + δ∗(AT v − b|Z)− f∗(v, x) ≤ b0, (22)

where b = (b1, ..., bL)T and A = (a1 a2 ... aL).

To process (FRC) we have to compute δ∗(AT v|Z) and f∗(v, x). This is treated in Sections 3

and 4, respectively.
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3 Computing support functions

In this section we illustrate how to compute δ∗(AT v|Z) in (FRC) for several important choices

of Z. We start with an example for which the support function can explicitly be constructed.

It includes interval and ellipsoidal uncertainty.

Example 4 p-norm. Let Z = {ζ | ‖ζ‖p ≤ ρ}, where ‖.‖p is the p-norm. For the support

function of Z we have:

δ∗(y|Z) = ρ‖y‖∗p = ρ‖y‖q, where 1/p+ 1/q = 1.

Here ‖.‖∗p is the dual norm of the p-norm. We conclude that for this choice of Z, (FRC) is

equivalent to

(a0)T v + ρ‖AT v‖q − f∗(v, x) ≤ 0.

This result is also obtained in [12] for linear constraints. �

For most examples given in this section we apply again the general principle, i.e., we write the

support function as a minimization problem (e.g. by using duality) and omit the ‘min’.

Example 5 Polyhedron. Let Z = {ζ | Bζ ≤ b}, where B ∈ RK×L, b ∈ RK . For the support

function of Z we have:

δ∗(y|Z) = max
ζ
{yT ζ | Bζ ≤ b} = min

z
{bT z | BT z = y, z ≥ 0},

where the last equality follows from LP duality. We conclude that for this choice of Z, (FRC) is

equivalent to 
(a0)T v + bT z − f∗(v, x) ≤ 0

BT z = AT v

z ≥ 0.

�

The next example is a generalization of polyhedral uncertainty.

Example 6 Cone-based set. Let Z = {ζ | b − Bζ ∈ C}, where B ∈ RK×L, b ∈ RK , and

C is a pointed cone that contains a strictly feasible solution (i.e., there exists a ζ̄ such that

b−Bζ̄ ∈ int(C)). By using conic duality, we have for the support function of Z:

δ∗(y|Z) = max
ζ
{yT ζ | b−Bζ ∈ C} = min

z
{bT z | BT z = y, z ∈ C∗}. (23)

We conclude that for this choice of Z, (FRC) is equivalent to
(a0)T v + bT z − f∗(v, x) ≤ 0

BT z = AT v

z ∈ C∗.

�
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Example 7 Conic Quadratic representable sets. In [6] it is shown that many sets are

Conic Quadratic representable (CQr). Many simple operations have been proved to preserve

Conic Quadratic representability of sets. Using this calculus it is rather easy to examine whether

a set is CQr. See Appendix B for a short survey on CQr. If the uncertainty set is CQr, we can

use the result of the previous example to derive a tractable formulation of the robust counterpart.

See Appendix B and [6] for many examples of such sets. �

Example 8 Semi Definite representable sets. In [6] it is shown that many sets are Semi

Definitie representable (SDr). As an example, let us consider the set

Z = {ζ | λmax(B(ζ)) ≤ ρ},

where B(ζ) is a matrix whose elements are linear in ζ, and λmax denotes the maximum eigen-

value. This set can be reformulated as

Z = {ζ | ρI −B(ζ) � 0},

which is a Semi Definite Representation, for which the result of Example 6 can be used to derive

the support function. �

To compute δ∗ for uncertainty regions specified by convex constraints, we first give some helpful

lemmas.

Lemma 9 Let Z = {ζ | hk(ζ) ≤ 0, k = 1, ...,K}, where hk(.) is convex. Moreover, we assume

that ∩Kk=1ri(domhk) 6= ∅. Then

δ∗(y|Z) = min
u≥0

{
K∑
k=1

ukh
∗
k

(
vk

uk

) ∣∣∣∣∣
K∑
k=1

vk = y

}
. (24)

Moreover, if hk(ζ) =
∑Lk

l=1 hkl(ζ), then

δ∗(y|Z) = min
u≥0,{wkl}

{
K∑
k=1

Lk∑
l=1

ukh
∗
kl

(
wkl

uk

) ∣∣∣∣∣
K∑
k=1

Lk∑
l=1

wkl = y

}
, (25)

and if hk(ζ) =
∑Lk

l=1 hkl(ζl) (separable case), then

δ∗(y|Z) = min
u≥0,{wkl}

{
K∑
k=1

Lk∑
l=1

ukh
∗
kl

(
wkl
uk

) ∣∣∣∣∣
K∑
k=1

wkl = yl, l = 1, ..., L

}
. (26)

Proof: It can easily be verified that

δ∗(y|Z) = max
ζ
{yT ζ | hk(ζ) ≤ 0, k = 1, ...,K}

= min
u≥0

(
K∑
k=1

ukhk

)∗
(y)

= min
u≥0

{
K∑
k=1

ukh
∗
k

(
vk

uk

) ∣∣∣∣∣
K∑
k=1

vk = y

}
,
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where the last equality follows by Lemma A.1 and property (51). In the case of separability we

have for the support function of Z, starting from (24) and using Corollary A.1,

δ∗(y|Z) = max
ζ

{
yT ζ

∣∣∣∣∣
Lk∑
l=1

hkl(xl) ≤ 0, k = 1, ...,K

}

= min
u≥0,{vk}


K∑
k=1

uk

(
Lk∑
l=1

hkl

)∗(
vk

uk

) ∣∣∣∣∣
K∑
k=1

vk = y


= min

u≥0,{wkl}

{
K∑
k=1

Lk∑
l=1

ukh
∗
kl

(
wkl
uk

) ∣∣∣∣∣
K∑
k=1

wkl = yl, l = 1, ..., L

}
.

�

Corollary 10 Let a0 be regular and let Z = {ζ | hk(ζ) ≤ 0, k = 1, ...,K}, where hk(.) is convex.

Moreover, we assume that ∩Kk=1ri(domhk) 6= ∅. Then (FRC) is equivalent to
(a0)T v +

∑K
k=1 ukh

∗
k

(
vk

uk

)
− f∗(v, x) ≤ 0∑K

k=1 v
k = AT v

u ≥ 0.

(27)

�

We now give some concrete examples of uncertainty regions defined by nonlinear inequalities.

The first three examples are separable cases.

Example 11 φ-divergence uncertainty. In [8] it is proposed, in case the uncertain parameter

a in (6) can be considered as a probability vector, to use uncertainty regions defined by so-called

φ-divergence functions. Let us concentrate in this example on the well-known Kullback-Leibler

function:

hl(ζl) = ζl log

(
ζl
ζ0l

)
− ρ

L
,

where ζ0l (l = 1, ..., L) are given nominal values. In this case the uncertainty region is defined by

Z =

{
ζ ∈ RL |

L∑
l=1

ζl log

(
ζl
ζ0l

)
≤ ρ

}
.

Thus h∗l (s) = ζ0l e
s−1 + ρ

L and (FRC) is

(a0)T v +

L∑
l=1

ζ0l ue
(al)T v

u
−1 + ρu− f∗(v, x) ≤ 0.

In Table 3 many more examples for hl and their conjugates are given. �

Example 12 Using the adjoint. Let Z = {ζ |
∑

l hl(ζl) ≤ 0}, where hl is convex. Using

Lemma 9, the (FRC) can be written as

(a0)T v +
L∑
l=1

uh∗l

(
(al)T v

u

)
− f∗(v, x) ≤ 0.

9



It may be the case that there is no closed form for h∗l . Then, one can check whether there is a

closed form for the conjugate of the adjoint (see definition (4)), and then Lemma A.5 can be

used. We obtain for (FRC): {
(a0)T v +

∑L
l=1 yl − f∗(v, x) ≤ 0

u
(
h♦l

)∗ (
−yl
u

)
≤ −(al)T v ∀l.

As a concrete example, take hl(t) = te1/t, for which there is no closed form conjugate. However,

h♦l (t) = et, which has a closed form conjugate (see Table 3). �

We now give some examples in which the constraint functions that define the uncertainty region

are not separable. For ease of notation we assume that there is only one such constraint h(ζ) ≤ 0

that defines the uncertainty region. The extension to multiple constraints is straightforward.

The first class of problems is where h(ζ) = g(DT ζ) =
∑

i gi(d
T
i ζ), and hi(ζ) = gi(d

T
i ζ), where

D ∈ RL×r, di is the i-th column of D, g : Rr −→ R, and gi : R −→ R, ∀i. Using Corollary 10

and Lemma A.7 we obtain for the support function

δ∗(y|Z) = min
u≥0, {wi}

{
r∑
i=1

uh∗i

(
wi

u

)
|

r∑
i=1

wi = y

}

= min
u≥0, {wi}

{
u

r∑
i=1

inf
zi

(
g∗i

(zi
u

)
| zidi = wi

)
|
r∑
i=1

wi = y

}
.

Hence, for this choice of the uncertainty region, (FRC) becomes:
(a0)T v + u

∑r
i=1 g

∗
i

(
zi
u

)
− f∗(v, x) ≤ 0

Dz = AT v

u ≥ 0.

(28)

We apply this result to uncertainty regions defined by geometric and lp-programming constraints.

Example 13 Uncertainty region defined by geometric programming constraints. Let

h(ζ) =
∑r

i=1 αie
(di)T ζ , where αi > 0, for all i. Hence gi(t) = αie

t, and g∗i (s) is given in Table

3. Then (28) becomes
(a0)T v +

∑r
i=1

{
zi log

(
zi
αiu

)
− zi

}
− f∗(v, x) ≤ 0

Dz = AT v

u, z ≥ 0.

�

Example 14 Uncertainty region defined by lp-programming constraints. Let h(ζ) =∑r
i=1

αi
pi
|(di)T ζ − βi|pi, where αi > 0 and pi > 1, for all i. Hence gi(t) = αi

pi
|t− βi|pi, and g∗i (s)

can be easily derived from Table 3. Then (28) becomes
(a0)T v + u

∑r
i=1

αi
qi

∣∣∣ ziαiu

∣∣∣qi + βT z − f∗(v, x) ≤ 0

Dz = AT v

u ≥ 0,

where 1/pi + 1/qi = 1. �

10



Example 15 Uncertainty based on Anderson-Darling test. Suppose the uncertain pa-

rameter ζ in (6) can be considered as a probability vector as in Example 15. Instead of using

φ-divergence test statistics, one could also use the well-known Anderson-Darling test statistic [2]

for the definition of the uncertainty region. This leads to

Z =

{
ζ ∈ RL

∣∣∣∣∣ −
N∑
k=1

(
ln(1k)T ζ + ln(1−k)T ζ

)
≤ ρ

}
,

where N is the number of observations and where the first k elements of the vector 1k ∈ RL
are 1, and the others 0, and the last k elements of the vector 1−k are 1, and the others 0, i.e.,

1−k = 1− 1k, where 1 is the all one vector. Applying (28) and Corollary 3 we get for (FRC):

(a0)T v −
∑N

k=1 u
[
1 + ln

−z+k
u

]
−
∑N

k=1 u
[
1 + ln

−z−k
u

]
+ ρu− f∗(v, x) ≤ 0

z+k e
k = wk, k = 1, ..., N

z−k e
−k = w−k, k = 1, ..., N∑N

k=1(w
k + w−k) = AT v

z+k , z
−
k ≤ 0 k = 1, ..., N

u ≥ 0.

�

Example 16 Conic Quadratic representable functions. Let z = {ζ | hk(ζ) ≤ 0, k =

1, ...,K}. If the functions hk(ζ) that define the uncertainty set Z are CQr, then there are two

ways to obtain a tractable robust counterpart. The first way is to construct a Conic Quadratic

representation of Z, and then apply conic duality (see Example 8). The second way is to use

the result of Lemma 9 and construct a Conic Quadratic representation for the convex functions

ukh
∗
k(
vk

uk
). In Appendix B it is shown that these functions are CQr if hk, k = 1, ...,K, are CQr.

�

Computing the support function for the intersection or Minkowski sum of sets is relatively easy

by using Lemmas A.4 and A.3, respectively. This is illustrated in the next examples.

Example 17 Intersection of 1, 2, and ∞ norm ball. Let Zk = {ζ | ‖ζ‖k ≤ ρk}, ρk > 0,

for k = 1, 2,∞, and let Z = Z1 ∩ Z2 ∩ Z∞. Then

δ∗(y|Z) = min
w1,w2,w∞

{δ∗(w1|Z1) + δ∗(w2|Z2) + δ∗(w∞|Z∞) | w1 + w2 + w∞ = y} (29)

= min
w1,w2,w∞

{ρ1‖w1‖∞ + ρ2‖w2‖2 + ρ∞‖w∞‖1 | w1 + w2 + w∞ = y}, (30)

where the first equality follows from Lemma A.4 and the second equality from Example 4. We

conclude that for this choice of Z, (FRC) is equivalent to{
(a0)T v + ρ1‖w1‖∞ + ρ2‖w2‖2 + ρ∞‖w∞‖1 − f∗(v, x) ≤ 0

w1 + w2 + w∞ = AT v.

�
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Example 18 Entropy uncertainty region. In [19] a so-called entropy uncertainty region is

derived to obtain a safe approximation of a chance constraint. This region is defined as

Z =

{
ζ

∣∣∣∣∣ ‖ζ‖∞ ≤ 1,

L∑
l=1

{(1 + ζl) ln(1 + ζl) + (1− ζl) ln(1− ζl)} ≤ β

}
.

To derive a tractable (FRC), let us define

Z1 = {ζ | ‖ζ‖∞ ≤ 1} and Z2 =

{
ζ

∣∣∣∣∣
L∑
l=1

{(1 + ζl) ln(1 + ζl) + (1− ζl) ln(1− ζl)} ≤ β

}
.

Then, using Lemma A.4 we have

δ∗(y|Z) = δ∗(y|Z1 ∩ Z2) = min
w,z
{δ∗(w|Z1) + δ∗(z|Z2) | w + z = y}.

Moreover, if we define h = h1+h2, where h1(ζl) = (1+ζl) ln(1+ζl) and h2(ζl) = (1−ζl)) ln(1−ζl),
then it can be verified (by using Lemma A.1) that

h∗(z) = min
s,t
{h∗1(s) + h∗2(t) | s+ t = z} = min

s,t
{es−1 − s+ e−t−1 + t | s+ t = z}.

Hence, using Lemma 9, the (FRC) can be written as
(a0)T v + ‖w‖∞ +

∑L
l=1

{
tl − sl + u

[
esl/u−1 + e−tl/u−1

]}
− f∗(v, x) ≤ 0

w + s+ t = AT v

u ≥ 0.

�

Example 19 Minkowski sum of sets. Let Z1 = {ζ | ‖ζ‖∞ ≤ ρ∞} and Z2 = {ζ |‖ ζ‖2 ≤ ρ2}.
Then Z = Z1 + Z2 is a box with “rounded corners”. The support function for Z is:

δ∗(y|Z) = δ∗(y|Z1) + δ∗(y|Z2) = ρ∞‖y‖1 + ρ2‖y‖2,

where the first equality follows from Lemma A.3 and the second equality from Example 4. We

conclude that for this choice of Z, (FRC) is equivalent to

(a0)T v + ρ∞‖AT v‖1 + ρ2‖AT v‖2 − f∗(v, x) ≤ 0.

�

The following example shows the (FRC) for cases where the uncertainty set is the convex hull

of sets.

Example 20 Convex hull of sets. Let Z = conv(Z1, ..., ZK). If f(a, x) is linear in a, then

the corresponding robust counterpart can be split over the individual sets Zi, i.e.,

f(a, x) ≤ 0 ∀a = a0 +Aζ, ζ ∈ Zi ∀i,

and there is no need to explicitly construct the convex hull. If f(a, x) is nonlinear then this does

not hold anymore. However, since

δ∗(AT v|Z) = max
i
δ∗(AT v|Zi),

we obtain for (FRC): (
a0
)T
v + max

i
δ∗(AT v|Zi)− f∗(v, x) ≤ 0.

Hence, even in the nonlinear case there is no need for an explicit construction of the convex hull

of the sets Zi. �

An overview of many classes of uncertainty regions and their support functions treated in this

section, is given in Table 1.

12



Uncertainty

region
Z Robust Counterpart

Box ‖ζ‖∞ ≤ ρ (a0)T v + ρ‖AT v‖1 − f∗(v, x) ≤ 0

Ball ‖ζ‖2 ≤ ρ (a0)T v + ρ‖AT v‖2 − f∗(v, x) ≤ 0

Polyhedral b−Bζ ≥ 0


(a0)T v + bT z − f∗(v, x) ≤ 0

BT z = AT v

z ≥ 0

Cone b−Bζ ∈ C


(a0)T v + bT z − f∗(v, x) ≤ 0

BT z = AT v

z ∈ C∗

Convex

functions

hk(ζ) ≤ 0

k = 1, ...,K


(a0)T v +

∑
k ukh

∗
k

(
wk

uk

)
− f∗(v, x) ≤ 0∑

k w
k = AT v

u ≥ 0

Separable

functions

∑Lk

l=1 hkl(ζl) ≤ 0

k = 1, ...,K


(a0)T v +

∑
k,l ukh

∗
kl

(
wkl

uk

)
− f∗(v, x) ≤ 0∑

k wkl = (al)T v, l = 1, ..., L

u ≥ 0

example
∑
l ζl log

(
ζl
ζ0l

)
≤ ρ

{
(a0)T v +

∑
l ζ

0
l ue

(al)T v/u−1 + ρu− f∗(v, x) ≤ 0

u ≥ 0

Composite

separable

functions

g(DT ζ) ≤ 0


(a0)T v + ug∗

(
z
u

)
− f∗(v, x) ≤ 0

Dz = AT v

u ≥ 0

example
∑
i αie

(di)
T ζ ≤ ρ


(a0)T v +

∑
i{zi log

(
zi
αiu

)
− zi} − f∗(v, x) ≤ 0

Dz = AT v

u ≥ 0

z ≥ 0

Intersection Z = ∩iZi

{
(a0)T v +

∑
i δ(w

i|Zi)− f∗(v, x) ≤ 0∑
i w

i = AT v

example
Zk = {ζ | ‖ζ‖k ≤ ρk}

k = 1, 2,∞


(a0)T v + ρ1‖w1‖∞ + ρ2‖w2‖2 + ρ∞‖w∞‖1

−f∗(v, x) ≤ 0

w1 + w2 + w∞ = AT v

Minkowski sum Z = Z1 + ...+ ZK (a0)T v +
∑
i δ(A

T v|Zi)− f∗(v, x) ≤ 0

example
Z1 = {ζ | ‖ζ‖∞ ≤ ρ∞}
Z2 = {ζ | ‖ζ‖2 ≤ ρ2}

{
(a0)T v + ρ∞‖AT v‖1 + ρ2‖AT v‖2

−f∗(v, x) ≤ 0

Convex hull Z = conv(Z1, ..., ZK) (a0)T v + maxi δ(A
T v|Zi)− f∗(v, x) ≤ 0

example
Z1 = {ζ | ‖ζ‖∞ ≤ ρ∞}
Z2 = {ζ | ‖ζ − ζ0‖2 ≤ ρ2}

{
(a0)T v + max{ρ∞‖AT v‖1,

(
Aζ0

)T
v + ρ2‖AT v‖2}

−f∗(v, x) ≤ 0

Table 1: Robust optimization for different choices of the uncertainty region. The functions

hk, hkl, g are assumed to be convex, with conjugates h∗k, h
∗
kl, g

∗ respectively. C∗ denotes the dual

cone of C.
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4 Computing conjugate functions

In this section we show how to construct f∗. Besides several examples for which the conjugate

function can be explicitly constructed, we also give examples for which we apply again the

general principle, i.e., we write the conjugate function as a maximization problem and omit the

‘max’.

We distinguish three categories: f(a, x) is linear in a, concave in a, and nonconcave in a.

4.1 Linear uncertainty

Let f(a, x) =
∑m

i=1 aifi(x) = aT f(x), a ≥ 0, and fi(x) (i = 1, ...,m) be convex. Since

f∗(v, x) = inf
a∈Rm

{aT v − aT f(x)} =

{
0 v = f(x)

−∞ v 6= f(x),
(31)

(FRC) becomes

(a0)T f(x) + δ∗(AT f(x), Z) ≤ 0. (32)

This is basically the type of inequalities studied in [3], where a similar result is obtained as (32).

We now give some concrete examples.

Example 21 Linear in the optimization variables and ellipsoidal uncertainty. Suppose

f(a, x) = aTx− β, and Z = {ζ | ‖ζ‖2 ≤ ρ}. Note that we have

f∗(v, x) =

{
β if v = x

−∞ if v 6= x.
(33)

Moreover, δ∗(AT v|Z) = ρ‖AT v‖2. Hence, (FRC) in this case becomes:

(a0)Tx+ ρ‖ATx‖2 ≤ β.

�

Example 22 Linear in the optimization variables and cone uncertainty. Suppose

f(a, x) = aTx − β, and Z = {ζ | b − Bζ ∈ C}, where C is a pointed cone that contains a

strictly feasible solution. By (23) we have δ∗(AT v|Z) = minz{bT z | BT z = AT v, z ∈ C∗}.
Hence, (FRC) in this case becomes: 

(a0)Tx+ bT z ≤ β
BT z = ATx

z ∈ C∗.

�

Example 23 Linear in the optimization variables and intersections of uncertainty

regions. Suppose f(a, x) = aTx− β, and Z = Z1 ∩ Z2 ∩ Z∞, where Zp = {ζ | ‖ζ‖p ≤ ρp}, for

p = 1, 2,∞. Note that δ∗(AT v|Zp) = ρp‖AT v‖q, where 1/p + 1/q = 1. Using Lemma A.4 we

obtain that (FRC) can be rewritten as as set of conic quadratic constraints:{
(a0)Tx+ ρ1‖AT v1‖∞ + ρ2‖AT v2‖2 + ρ∞‖AT v∞‖1 ≤ β
v1 + v2 + v∞ = x.

(34)

�
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4.2 Concave uncertainty

We first study the case that f(a, x) can be written as f(a, x) =
∑n

i=1 fi(a)xi, where fi(a) is

concave, and xi ≥ 0. Note that

f∗(v, x) = sup
{si}

{
n∑
i=1

(xifi)∗ (si) |
n∑
i=1

si = v

}
= sup
{si}

{
n∑
i=1

xi (fi)∗

(
si

xi

)
|

n∑
i=1

si = v

}
.

Hence (FRC) becomes{
(a0)T v + δ∗(AT v|Z)−

∑n
i=1 xi(fi)∗(s

i/xi) ≤ 0∑n
i=1 s

i = v.
(35)

This is a convex system in the variables v, {si}, and x. When f is separable, i.e., fi(a) = fi(ai),

it can easily be verified that (FRC) becomes

(a0)T v + δ∗(AT v|Z)−
n∑
i=1

xi(fi)∗(vi/xi) ≤ 0.

We now consider examples in which fi(a) is not separable.

Example 24 Quadratic uncertainty. Suppose that

fi(a) = −1

2
aTQia,

where Qi ∈ Rm×m is a symmetric positive semi-definite matrix. If Qi is nonsingular we obtain

for (FRC): {
(a0)T v + δ∗(AT v|Z) + 1

2

∑n
i=1

(si)TQ−1
i si

xi
≤ 0∑n

i=1 s
i = v,

and if Q is singular then (FRC) becomes:
(a0)T v + δ∗(AT v|Z) + 1

2

∑n
i=1

(si)T Q̃is
i

xi
≤ 0∑n

i=1 s
i = v

si ∈ Li ∀i,

where Q̃i is the unique symmetric positive semi-definite matrix such that QiQ̃i = Q̃iQi = Pi,

where Pi is the matrix of the linear transformation which projects Rm orthogonally onto the

orthogonal complement Li of the subspace {a | Qia = 0}. See [21] for more details on the

conjugate of fi(a).

Note that both robust counterpart problems can be reformulated as a conic quadratic optimization

problem. It is well-known that if Qi is not positive semi-definite, and the uncertainty region is

ellipsoidal, then the RC can be reformulated as a system of LMIs. See also Section 4.3. �

Example 25 Variance uncertainty. Suppose that R is a discrete random variable, and that

aj, j = 1, ...,m, is the probability of outcome rj, i.e., aj = P (R = rj), and that f(a, x) =

var [h(x,R)], where h(x,R) is a given function that is convex in x for each R. Note that

f(a, x) = var [h(x,R)] =

m∑
j=1

h2(x, rj)aj −

 m∑
j=1

h(x, rj)aj

2

= α(x)Ta− (β(x)Ta)2,

15



where α(x), β(x) ∈ Rm, βj(x) = h(x, rj), and αj(x) = h2(x, rj) = β2j (x). Note that f(a, x) is

concave quadratic in a for all x. Define g(t1, t2) = t1 − t22, then f(a, x) = g(α(x)Ta, β(x)Ta). It

can easily be verified that1

g∗(w, z) =

{
−1

4z
2 for w = 1

∞ else.

Hence, (FRC) becomes {
(a0)T v + δ∗(AT v|Z) + z2

4 ≤ 0

α(x) + zβ(x) = v.

It can be shown that the equality in this robust counterpart problem can be replaced by an ≤
inequality: {

(a0)T v + δ∗(AT v|Z) + z2

4 ≤ 0

h(x, rj)
2 + zh(x, rj) ≤ v, j = 1, ...,m.

This robust counterpart is convex for fixed values of z. Hence, to solve the robust counterpart

we can optimize for different values of z.

This example is very useful since the variance is often used as a risk measure. A famous example

is the mean-variance portfolio optimization problem. �

We observe that the results above can also be extended to the more general case where f(a, x)

can be written as
∑

i fi(a)gi(x), where gi(x) ≥ 0.

Example 26 Transformed uncertainty region. Suppose f(ã, x) = ãTx− β and the uncer-

tainty region Ũ is defined as follows:

Ũ = {ã | h(ã) = (h1(ã1), ..., hm(ãm))T ∈ U},

where hi(.) is convex for each i, and moreover we assume that h−1i exists for all i. This case

is in fact the linear case, but the difference is that the uncertainty region is now stated in a

transformed space. By substituting ã = h−1(a), we obtain for (RC)

h−1(a)Tx ≤ β ∀a ∈ U.

The corresponding (FRC) becomes:

(a0)T v + δ∗(AT v|Z) +
n∑
i=1

xi((hi)
−1)∗(vi/xi) ≤ β,

which is by Theorem A.6 equivalent to

(a0)T v + δ∗(AT v|Z) +
n∑
i=1

vi(hi)
∗(xi/vi) ≤ β. (36)

The result shows that even if we cannot compute a closed form for h−1i , we can still construct

the robust counterpart. As an example, take hi(t) = −(t + log t). There is no closed form for

h−1i , but we can still construct the robust counterpart (36) since h∗i (s) = −1− log(−(s+ 1)). �

1Here the conjugate is with respect to both arguments.
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Finally we give some examples in which f(a, x) cannot be written as f(a)T g(x), but still f∗(v, x)

can be computed.

Example 27 Suppose f(a, x) = −
∑m

i=1 x
ai
i , xi > 1, and 0 ≤ a ≤ 1. It can be verified that

f(a, x) is concave in a and convex in x. The robust counterpart (FRC) for this case becomes:(a0)T v + δ∗(AT v|Z)−
∑m

i=1

(
vi

lnxi
ln −vilnxi

− vi
lnxi

)
≤ 0

v ≤ 0.

�

Example 28 Suppose f(a, x) = g(a, x) + θ(a, x), in which g(a, x) is concave in a for each x,

and

θ(a, x) = (ϕ)−1(a1 +

m∑
i=2

aiϕ(αi(x))),

where ϕ(.) is convex and such that ϕ−1 exists, ai > 0, i = 1, ...,m, and αi(x) is a linear function

in x. Using the notation β(x)T = (1, ϕ(α1(x)), ..., ϕ(αm(x)))T , we have

θ(a, x) = ϕ−1(aTβ(x)).

It can be verified that θ(a, x) is concave in a. For f∗ we have

f∗(v, x) = supw{g∗(w, x) + θ∗(v − w, x)}
= supw{g∗(w, x) + supz{(ϕ−1)∗(z) | zβ(x) = v − w}}
= supw{g∗(w, x)− infz{(ϕ∗)♦(z) | zβ(x) = v − w}},

where the second equality follows from Lemma A.7 and the last equality from Lemma A.6. Hence,

the robust counterpart (FRC) for this case becomes:{
(a0)T v + δ∗(AT v|Z)− g∗(w, x) + (ϕ∗)♦(z) ≤ 0

zβ(x) = v − w.

Since g∗(w, x) is increasing in w, we may replace the “=” in the second constraint by a “≤”.

Hence, we obtain 

(a0)T v + δ∗(AT v|Z)− g∗(w, x) + (ϕ∗)♦(z) ≤ 0

z


1

ϕ(α2(x))
...

ϕ(αm(x))

 ≤ v − w.
(37)

For fixed z this problem is convex, hence we can solve this problem for different values of z, and

search for the best value of z. However, for special choices of ϕ, (37) can be solved directly.

As an example, take θ(a, x) =
√
a1 +

∑m
i=2 ai(αi(x))2, hence ϕ(t) = t2. From Table 3 we have

ϕ∗(s) = s2/4, and hence (ϕ∗)♦(s) = 1/(4s). The robust counterpart (37) for this case then

becomes (also substitute y = 1/z):

(a0)T v + δ∗(AT v|Z)− g∗(w, x) + y/4 ≤ 0

1
y


1

(α2(x))2

...

(αm(x))2

 ≤ v − w,
(38)
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where the last inequalities can be rewritten as conic quadratic constraints.

Also note that (37) can be given explicitly, even if there is no closed form for ϕ−1. As an example

take ϕ(t) = −t− log t.

Finally, we observe that the so-called certainty equivalent used as a risk measure (see [4]) is of

the same form as θ(a, x), in which a is interpreted as the probability vector. This means that we

can derive tractable robust counterparts for constraints in which the uncertain parameters are

probabilities. �

In several examples (see e.g. Section 4.2, formula (35) and Example 26) there is a need to

compute −f∗(.). A powerful technique to accomplish this task is based on a Conic Quadratic

representation (CQr) of the original concave function f (see also Appendix B.2). We now

describe this technique. Let g(x) = −f(x) and suppose g (a convex function) has the following

CQr of its epigraph:

epi(g) = {(t, x) | t ≥ g(x)} = {(t, x) | ∃u : tq +Qx+Ru+ r ∈ K} ,

for some vectors q and r, and matrices Q and R, where K is the Lorentz cone of appropriate

dimension. Then (see Proposition 3.3.4, p. 98, in [6])

g∗(s) = min
y

{
rT y | qT y = 1, QT y + s = 0, RT y = 0, y ∈ K

}
. (39)

So, finally −f∗(s) = g∗(−s). Recall that in the final (FRC), in which −f∗(.) appears, the min

operator in (39) is omitted and we shall get a “clean” explicit conic quadratic inequality.

4.3 Nonconcave uncertainty

In Theorem 2 we assume that f(a, x) is concave in a for each x. If this assumption does not

hold, one may try to reformulate inequality (6) in such a way that the assumption does hold.

In this subsection we describe different ways for such a reformulation.

1. Reparametrizing and computing convex hull. Suppose f(a, x) can be written as

f(a)T g(x), where f(a) is not necessarily concave and/or g(x) may attain positive and

negative values. Hence, we cannot apply Theorem 2. Let us for ease of notation also

assume that m = L, A = I, and a0 = 0. By the parametrization b = f(a), (RC) becomes

bT g(x) ≤ 0 ∀(a, b) ∈ Ū ,

where Ū = {(a, b) | a ∈ U, b = f(a)}. Since the left-hand side of this constraint is linear

in the uncertain parameter b, we may replace Ū by conv(Ū). Hence, if we can compute

conv(Ū) we can apply Theorem 2.

We do not give an extensive treatment of how to construct conv(Ū); this is the subject of a

future paper. We only give two examples. A well-known example is quadratic uncertainty

and an ellipsoidal uncertainty region. For this case it has been proved that conv(Ū) can

be formulated as an LMI. The resulting robust counterpart is therefore a system of LMIs.

See [5].
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Constraint

function
f(a, x) Robust Counterpart

linear in a aT f(x) (a0)T v + δ∗(AT f(x)|Z) ≤ 0

concave in a

separable in a and x
f(a)Tx

{
(a0)T v + δ∗(AT v|Z)−

∑n
i=1 xi(fi)∗(s

i/xi) ≤ 0∑n
i=1 s

i = v.

example −
∑
i

(
aTQia

)
xi

{
(a0)T v + δ∗(AT v|Z) + 1

2

∑n
i=1

(si)TQ−1
i si

xi
≤ 0∑n

i=1 s
i = v,

example
∑
i h

2
i (x)ai − (

∑
i hi(x)ai)

2

{
(a0)T v + δ∗(AT v|Z) + z2

4 ≤ 0

h2(x) + zh(x) = v

example h−1(a)Tx (a0)T v + δ∗(AT v|Z) +
∑n
i=1 vi(hi)

∗(xi/vi) ≤ β
concave in a

not separable
f(a, x) (a0)T v + δ∗(AT v|Z)− f∗(v, x) ≤ 0

example −
∑m
i=1 x

ai
i , xi > 1, 0 ≤ a ≤ 1

{
(a0)T v + δ∗(AT v|Z)−

∑m
i=1

(
vi

ln xi
ln −viln xi

− vi
ln xi

)
≤ 0

v ≤ 0

example g(a, x) + θ(a, x)



(a0)T v + δ∗(AT v|Z)− g∗(w, x) + (ϕ∗)♦(z) ≤ 0

z


1

ϕ(α2(x))
...

ϕ(αm(x))

 ≤ v − w
sum of

functions

∑
i fi(a, x)

{
(a0)T v + δ∗(AT v|Z)−

∑n
i=1(fi)∗(s

i, x) ≤ 0∑n
i=1 s

i = v.

sum of separable

functions

∑
i fi(ai, x) (a0)T v + δ∗(AT v|Z)−

∑n
i=1(fi)∗(vi, x) ≤ 0

Table 2: Robust counterparts for different choices for the constraint function f(a, x).
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The second example is when fi(a) = fi(ai) and the uncertainty region is a box, i.e.

{a | ‖a‖∞ ≤ 1}. Since Ū is completely separable with respect to i, we basically have

to compute

Ũi = conv((ai, bi) | − 1 ≤ ai ≤ 1, bi = fi(ai)).

It is easy to construct an explicit description of this bivariate convex hull. Suppose, for

example, that fi(ai) is convex. Then, it can easily be verified that

Ũi = {(ai, bi) | − 1 ≤ ai ≤ 1, bi ≥ fi(ai), 2bi ≤ fi(1)(ai + 1)− fi(−1)(ai − 1)}, ∀i.

Hence, (RC) becomes

bT g(x) ≤ 0 ∀(ai, bi) ∈ conv(Ūi) ∀i,

for which now (32) can be used. Since we have δ∗(y|Ũ1 × ... × Ũm) =
∑m

i=1 δ
∗(yi|Ũi), see

Corollary A.2 we have to derive δ∗(yi|Ũi)). By defining

Ũi1 = {(ai, bi) | |ai| ≤ 1}

Ũi2 = {(ai, bi) | fi(ai)− bi ≤ 0},

and

Ũi3 = {(ai, bi) | ai(fi(−1)− fi(1)) + 2bi − fi(1)− fi(−1) ≤ 0},

we have Ũi = Ũi1 ∩ Ũi2 ∩ Ũi3. Using Lemma A.4 we have

δ∗(yi|Ũi)) = min
yi1,yi2,yi3

{δ∗(yi1|Ũi1) + δ∗(yi2|Ũi2) + δ∗(yi3|Ũi3) | yi1 + yi2 + yi3 = yi}.

Using the result of Example 4 we obtain

δ∗(yi1|Ũi1) = max
ai,bi
{yi11 ai + yi12 bi | |ai| ≤ 1}

=

{
|yi11 | if yi12 = 0

∞ else.

Using Lemma 9 we obtain

δ∗(yi2|Ũi2) = max
ai,bi
{yi21 ai + yi22 bi | fi(ai)− bi ≤ 0}

= min
ui≥0
{uif∗i

(
yi21
ui

)
| yi22 = −ui}.

Using the result of Example 5 we obtain

δ∗(yi3|Ũi3) = max
ai,bi
{yi31 ai + yi32 bi | αTi

(
ai
bi

)
≤ γi}

= min
zi≥0
{γizi | ziαi = yi3},

where

αi =

(
fi(−1)− fi(1)

2

)
,
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and γi = fi(1)+fi(−1). Substituting all these expressions into (32) we obtain the following

equivalent system of inequalities for (FRC):
(a0)

Tx+
∑

i |yi11 |+
∑

i uif
∗
i

(
yi21
ui

)
+ 1

2

∑
i γiui ≤ 0

yi11 + yi21 + 1
2ui(fi(−1)− fi(1)) = vi

u ≥ 0.

Explicit examples for such fi and their conjugates can be found in Table 3.

Above we assumed fi(ai) to be convex. However, it can easily be verified that if fi(ai) is

concave then

Ũi = {(ai, bi) | − 1 ≤ ai ≤ 1, bi ≤ fi(ai), 2bi ≥ fi(1)(ai + 1)− fi(−1)(ai − 1)}, ∀i,

and now the same approach as above can be followed to derive the robust counterpart.

2. Reparametrizing and using “hidden concavity” results. For special types of con-

straints we can use the “hidden concavity” result of [9]. Suppose (RC) is of the following

form

aT g1(x) + f(a)T g2(x) ≤ 0 ∀a : αTk a+ βTk f(a) ≤ γk, k = 1, ...,K. (40)

After reparametrizing b = f(a) this robust counterpart problem becomes:

aT g1(x) + bT g2(x) ≤ 0 ∀(a, b) : αTk a+ βTk b ≤ γk, k = 1, ...,K, b = f(a).

Note that the difficulty is now in the nonlinear equality constraint in the definition of

the uncertainty region. We therefore replace b = f(a) in the definition of the uncertainty

region by b ≥ f(a):

aT g1(x) + bT g2(x) ≤ 0 ∀(a, b) : αTk a+ βTk b ≤ γk, k = 1, ...,K, b ≥ f(a), (41)

and under certain assumptions it can be proved that (41) is equivalent to (40). More

precisely, we assume that fi is convex ∀i, and the constraint functions that define the

uncertainty are termwise parallel, which is defined as follows.

Definition 29 The inequalities: αTk a + βTk f(a) ≤ γk (k = 1, ...,K) are termwise parallel

if

rank{(αki, βki) : k = 1, . . . ,K} ≤ 1 for all i = 1, . . . ,m, (42)

where αk = (αki)
m
i=1, βk = (βki)

m
i=1. �

Now, define

ā = argmax{aT g1(x) + bT g2(x) | αTk a+ βTk b ≤ γk, k = 1, ...,K, b ≥ f(a)}.

It has been proved in [9] that if b > f(ā), then there is another optimal solution for a that

satisfies b = f(a). Hence, the RC (40) is equivalent to (41), for which Theorem 2 can be

applied. The final robust counterpart is:


∑m

i=1(g2i(x) +
∑K

k=1 βkivk)f
∗
i

(
−g1i(x)+

∑K
k=1 αkivk

g2i(x)+
∑K

k=1 βkivk

)
+
∑K

k=1 γkvk ≤ 0

g2i(x) +
∑K

k=1 βkivk ≥ 0 (i = 1, . . . ,m)

v ≥ 0.

(43)
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3. Miscellaneous. It might be the case that f(a, x) is convex in a for each x. It is well-

known that a convex function on a polyhedral region attains its maximum in one of the

vertices of the feasible region. Hence, if the uncertainty region is e.g. a box (i.e. interval

uncertainty) then we might obtain a tractable reformulation by enumerating all possible

vertices. Let us illustrate this by the following examples.

Example 30 Implementation error and separable constraint. Consider the fol-

lowing robust constraint:

αT (x+ a) +

n∑
j=1

fj(xj + aj) ≤ 0, ∀a ∈ U, (44)

where fj is convex, and U = {a | ‖a‖∞ ≤ ρ}. Note that the uncertain parameter a can

be considered as additive implementation error. Since bT g(x) is linear in the uncertain

parameter b, we have

max
a∈U

n∑
j=1

{αj(xj + aj) + fj(xj + aj)} =

n∑
j=1

max [αj(xj − ρ) + fj(xj − ρ), αj(xj + ρ) + fj(xj + ρ)] .

Hence, (44) is equivalent to 
αTx+

∑n
j=1 yj ≤ 0

yj ≥ −αjρ+ fj(xj − ρ) ∀j
yj ≥ αjρ+ fj(xj + ρ) ∀j.

(45)

An other example that can be reformulated such that the constraint is concave in a is the

following robust objective function:

min
x

max
a∈U

f(a, x)

α(a)
,

where f(a, x) is concave in a for each x and α(a) > 0 is a linear function in a. This

objective can be reformulated as

min
x,y
{y | f(a, x)− α(a)y ≤ 0, ∀a ∈ U} ,

in which the left-hand side is concave in a for each x and y. A similar reformulation can

be carried out when α(a) is convex and y ≥ 0.

5 Complexity results

In this section we analyze the complexity of the resulting robust counterparts (12) studied in

the previous sections. A key notion in complexity theory for convex optimization problems is

self-concordance. In [20] it is shown that if the optimization problem admits a self-concordant

barrier, then there are interior point methods that yields an ε-optimal solution in O (
√
n| ln ε|)

Newton steps, where n is the number of variables. See also [17]. In this section we show that

the logarithmic barrier function for most of the optimization problems studied in the previous

sections are self-concordant, thereby proving that there are interior point methods that solve

such problems in polynomial time.

We first start with the formal definition of the logarithmic barrier function and self-concordance.

22



Definition 31 The logarithmic barrier function for the set of constraints

{gi(z) ≤ 0, i ∈ I}

in the variables z ∈ Rn, is defined as

ϕ(z) = −
∑
i∈I

ln(−gi(z)).

�

Definition 32 Let F ⊂ Rn be an open and convex set and κ a nonnegative number. A function

ϕ : F → R is called κ-self-concordant on F if ϕ is convex, belongs to C3(F ), and satisfies:

|∇3ϕ(y)[h, h, h]| ≤ 2κ(hT∇2ϕ(y)h)
3
2 , ∀y ∈ F ∀h ∈ Rn,

where ∇3ϕ(y)[h, h, h] denotes the third order differential of ϕ at y and h. We call ϕ self-

concordant if it is κ-self-concordant for some κ. �

We now study the complexity of (FRC) in (12). We rewrite (FRC) as follows:
(a0)T v + t1 + t2 ≤ 0

δ∗(y|Z) ≤ t1
−f∗(v, x) ≤ t2
y = AT v.

(46)

The first constraint of (46) is a linear inequality for which we know that the corresponding

logarithmic barrier is self-concordant. We now consider the second constraint of (46). When the

uncertainty region is polyhedral, ellipsoidal, or norm-based, then it can easily be checked that

the logarithmic barrier function for this constraint is self-concordant. If the uncertainty region

is e.g. defined by separable functions (see (26))

hk(ζ) =

Lk∑
l=1

hkl(ζl) ≤ 0, k = 1, ...,K,

then we have to check whether the logarithmic barrier function for the constraint

K∑
k=1

Lk∑
l=1

ukh
∗
kl

(
wkl
uk

)
≤ t1 (47)

is self-concordant. This inequality can be reformulated as{∑K
k=1

∑Lk
l=1 qkl = t1

ukh
∗
kl

(
wkl
uk

)
≤ qkl, k = 1, ...,K, l = 1, ..., Lk,

(48)

which is easier to analyze with respect to self-concordance by using the following lemma, which

is taken from [8]:

Lemma 33 [8] Assume that a convex function f ∈ C3(R+) satisfies

|f ′′′(s)| ≤ κf ′′(s)/s for some κ > 0. (49)

Then the logarithmic barrier function for the constraints

{rf(s/r) ≤ t, r ≥ 0, s ≥ 0},

i.e., − ln(t− rf(s/r))− ln r − ln s, is (2 +
√
2
3 )κ-self-concordant. �
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f(t) f∗(s) (domain)

t 0 (s = 1)

t2 s2/4 (s ∈ R)

|t|p/p (p > 1) |s|q/q (s ∈ R)

−tp/p (t ≥ 0, 0 < p < 1) −(−s)q/q (s ≤ 0)

− log t (t > 0) −1− log(−s) (s < 0)

t log t (t > 0) es−1 (s ∈ R)

et

{
s log s− s (s > 0)

0 (s = 0)

log(1 + et)

{
s log s+ (1− s) log(1− s) (0 < s < 1)

0 (s = 0, 1)√
1 + t2 −

√
1− s2 (−1 ≤ s ≤ 1)

Table 3: Some examples for f , with conjugate f∗. The parameters p and q are related as follows:

1/p+ 1/q = 1.

Moreover, the following lemma is an easy consequence of Lemma 33.

Lemma 34 [8] Assume that convex functions fi ∈ C3(R+) satisfies

|f ′′′i (s)| ≤ κif
′′
i (s)/s for some κi > 0. (50)

Let f(s) =
∑

i fi(s). Then the logarithmic barrier function for the constraints

{rf(s/r) ≤ t, r ≥ 0, s ≥ 0},

i.e., − ln(t− rf(s/r))− ln r − ln s, is (2 +
√
2
3 ) maxi κi-self-concordant. �

Hence, if all h∗kl in (48) satisfy condition (49), then the logarithmic barrier function for (48)

is self-concordant. In Table 3 several examples are given that satisfy condition (49). Two

examples in this table do not directly satisfy this assumption, but we show that using some

reformulations leads to self-concordant logarithmic barriers. The first one is: h(t) = t log t.

Then uh∗(w/u) = ue−1+w/u ≤ q can be rewritten as −u log q/u ≤ u − w, and since − log t

satisfies condition (49), we conclude from Lemma 33 that the corresponding logarithmic barrier

function for this constraint is self-concordant. The second one is: h(t) =
√

1 + t2. It can easilby

be verified that uh∗(w/u) ≤ q can be rewritten as
√
w2 + q2 ≤ u, which is a conic quadratic

constraint.

The conclusion is that if the functions hkl are such that h∗kl satisfies (49) (see the examples in

Table 3), then the second constraint in (46) allows a self-concordant logarithmic barrier.

Concerning the third constraint in (46), it can easily be checked that for f as given in Examples

22–25 the logarithmic barrier function for this constraint is self-concordant. This is also the case

for the separable case (26) where fi are chosen such that (49) holds. Again, see Table 3 for such

examples.

Finally, the fourth constraint in (46) is a linear equality constraint, that only restricts the domain

of the logarithmic barrier function.

Acknowledgements. We would like to thank Bram Gorissen (Tilburg University) for his

critical reading of the paper.
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A Conjugate functions, support functions and Fenchel duality

In this section we give some basic results on conjugate functions, support functions and Fenchel

duality. For a detailed treatment we refer to [21].

We start with some well-known results on conjugate functions. First, note that f∗ is closed

convex, and g∗ is closed concave, and moreover f∗∗ = f and g∗∗ = g. It is well-known that for

a > 0

(af)∗(y) = af∗
(y
a

)
and (ag)∗(y) = ag∗

(y
a

)
, (51)

and for f̃(x) = f(ax) and g̃(x) = g(ax), a > 0, we have

f̃∗(y) = f∗
(y
a

)
and g̃∗(y) = g∗

(y
a

)
,

and for f̃(x) = f(x− a) and g̃(x) = g(x− a) we have

f̃∗(y) = f∗(y) + ay and g̃∗(y) = g∗(y) + ay.

In this paper wel also frequently use the following sum-rules for conjugate functions.

Lemma A.1 Assume that fi, i = 1, ...,m, are convex, and the intersection of the relative

interiors of the domains of fi, i = 1, ...,m, is nonempty, i.e., ∩mi=1ri(dom fi) 6= ∅. Then(
m∑
i=1

fi

)∗
(s) = inf

{vi}mi=1

{
m∑
i=1

f∗i (vi) |
m∑
i=1

vi = s

}
,

and the inf is attained for some vi, i = 1, ...,m. �

Corollary A.1 Assume that fi, i = 1, ...,m, are convex, and separable, i.e. fi(x) = fi(xi).

Then (
m∑
i=1

fi

)∗
(s) =

m∑
i=1

f∗i (si).

�

Lemma A.2 Assume that gi, i = 1, ...,m, are concave, and the intersection of the relative

interiors of the domains of gi, i = 1, ...,m, is nonempty, i.e., ∩mi=1ri(dom gi) 6= ∅. Then(
m∑
i=1

gi

)
∗

(s) = sup
{vi}mi=1

{
m∑
i=1

(gi)∗(v
i) |

m∑
i=1

vi = s

}
,

and the sup is attained for some vi, i = 1, ...,m. �

The following useful lemma states that the support function of the Minkowski sum of sets is the

sum of the corresponding support functions.

Lemma A.3

δ∗(y|S1 + S2 + ...Sk) =
k∑
i=1

δ∗(y|Si).
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Proof: The proof easily follows by using the definition of the support function:

δ∗(y|S1 + S2 + ...+ Sk) = sup
x1∈S1,...,xk∈Sk

yT (x1 + ...+ xk)

= sup
x1∈S1

yTx1 + ...+ sup
xk∈Sk

yTxk

=
k∑
i=1

δ∗(y|Si).

�

The following lemma is a result on the support function for the intersection of several sets.

Lemma A.4 Let S1, ..., Sk be closed convex sets, such that
⋂
i ri(Si) 6= ∅, and let S = ∩ki=1Si.

Then

δ∗(y|S) = min

{
k∑
i=1

δ∗(vi|Si) |
k∑
i=1

vi = y

}
.

�

Corollary A.2 Let y[1], y[2], ..., y[k] be a partition of the variables (y1, y2, ..., yn) into k mutually

exclusive subvectors. Let S1, ..., Sk be closed convex sets, and let S = S1 × ...× Sk. Then

δ∗(y|S) =
k∑
i=1

δ∗(y[i]|Si).

�

We now state three results which are used in this paper to derive tractable robust counterparts.

The first lemma relates the conjugate of the adjoint function (see (4)) to the conjugate of the

original function. Note that f♦(x) is convex if f(x) is convex. The next proposition can be used

in cases where f∗ is not available in closed form, but (f♦)∗ is available as such.

Lemma A.5 [16] For the conjugate of a function f : R+ −→ R and the conjugate of its adjoint

f♦, we have

f∗(s) = inf{y ∈ R : (f♦)∗(−y) ≤ −s}.

�

The next proposition can be used in cases where f−1 is not available in closed form, but (f−1)∗

is available as such.

Lemma A.6 [4] Let f : R −→ R be strictly increasing and concave. Then, for all y > 0(
f−1

)∗
(y) = −yf∗

(
1

y

)
= −(f∗)

♦(y).

�

The next proposition gives a usefull result related to the conjugate of a function after linear

transformations.

26



Lemma A.7 Let A be a linear transformation from Rn to Rm. Assume there exists an x such

that Ax ∈ ri(dom g). Then, for each convex function g on Rm, one has

(gA)∗(z) = inf
y
{g∗(y)|AT y = z},

where for each z the infimum is attained, and where the function gA is defined by

(gA)(x) = g(Ax).

�

We define the primal problem:

(P ) inf{f(x)− g(x) | x ∈ dom(f) ∩ dom(g)}.

The Fenchel dual of (P ) is given by:

(D) sup{g∗(y)− f∗(y) | y ∈ dom(g∗) ∩ dom(f∗)}.

Now we can give the well-known Fenchel duality theorem.

Theorem A.1 If ri(dom(f))∩ ri(dom(g)) 6= ∅ then the optimal values of (P ) and (D) are equal

and the maximal value of (D) is attained.

If ri(dom(g∗)) ∩ ri(dom(f∗)) 6= ∅ then the optimal values of (P ) and (D) are equal and the

minimal value of (P ) is attained. �

Note that since f∗∗ = f and g∗∗ = g, we have that the dual of (D) is (P ).

B Conic quadratic optimization

B.1 Conic quadratic duality

Consider the following primal conic quadratic optimization problem:

(P ) min
x
{cTx | Rx = r, ‖Dix− di‖2 ≤ pTi x− qi, i = 1, ...,K}.

This can be rewritten as

(P1) min
x
{cTx | Rx = r,Bix− bi ∈ Lmi , i = 1, ...,K},

where

Bi =

[
Di

pTi

]
, bi =

[
di
qi

]
,

and Lmi is the Lorentz cone of order mi.

The dual problem of (P ) is given by

(D)


maxv,y,z

{
rT v +

∑K
i=1

(
dTi zi + qiyi

)}
RT v +

∑K
i=1(D

T
i zi + yipi) = c

‖zi‖2 ≤ yi, i = 1, ...,K.
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The dual problem of (P1) is given by

(D1)


maxv,η

{
rT v +

∑K
i=1 b

T
i ηi

}
RT v +

∑K
i=1B

T
i ηi = c

ηi ∈ Lmi , i = 1, ...,K.

The following theorem states the well-known duality for Conic Quadratic Programming, but

first we need the following definition.

Definition B.1 (P ) is regular if ∃x̂ : Rx̂ = r, ‖Dix̂− di‖2 < pTi x̂− qi,∀i = 1, ...,K. �

Theorem B.1 (Strong duality) If one of the problems (P ) or (D) is regular and bounded, then

the other problem is solvable and the optimal values of (P ) and (D) are equal. If both (P ) and

(D) are regular then both problems are solvable and the optimal values of (P ) and (D) are equal.

�

B.2 Conic Quadratic representation

We start with the definition of Conic Quadratic representable.

Definition B.2 A set X ⊂ Rn is Conic Quadratic representable (CQr) if there exist:

• a vector u ∈ Rl of additional variables

• an affine mapping:

H(x, u) =


H1(x, u)

H2(x, u)
...

HK(x, u)

 : Rn × Rl → Rm1 × ...× RmK ,

such that

X = {x ∈ Rn | ∃u ∈ Rl : Hj(x, u) ∈ Kmj , j = 1, ...,K},
where Kmj is the second-order cone of order mj.

The collection (l,K,H(., .),m1, ...,mK) is called a Conic Quadratic Representation (CQR) of

X. �

Given a CQR (l,K,H(., .),m1, ...,mK) of X, the problem

min{cTx | x ∈ X}

can be posed as a Conic Quadratic Problem (CQP):

min
x,u
{cTx | Hj(x, u) ∈ Kmj , j = 1, ...,K}.

The following definition extends CQr to functions.

Definition B.3 A function f : Rn → R is CQr if its epigraph

epi(f) = {(t, x) ∈ R× Rn | f(x) ≤ t}

is a CQr set.
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B.3 Operations preserving CQr

We now state some operations that preserve CQr of sets (for proofs and a full list we refer to

[6]):

• If Xi is CQr ∀i = 1, ..., N , then ∩Xi and X1 × ...×XN and X1 +X2 + ...+XN are CQr;

• If X is CQr, then the set {Bx+ b | x ∈ X} is CQr;

• If X is CQr, then the set {y | By + b ∈ X} is CQr.

We now state some operations that preserve CQr of functions (for proofs and a full list we refer

to [6]):

• If fi(x) is CQr ∀i = 1, ..., N , then maxi fi(x) and
∑

i αifi(x), αi ≥ 0, are CQr.

• If fi(x) is CQr, then f(Bx+ b) is CQr.

• If f(x) is CQr, then the conjugate function f∗(s) is CQr.

• If f(x) is CQr, then the perspective function fper(x, v) = vf(x/v) , v > 0, is CQr.

Since the last result is new, we give a proof. Note that

epi(fper(x, v)) = {(t, x, v) | vf(x/v) ≤ t} = {(t, x, v) | (x/v, t/v) ∈ epi(f)}.

Let (l,K,H(x, u),m1, ...,mK) be the CQR of epi(f). Since H(x, u) is an affine mapping, also

Hper(x, v, u) := vH(x/v, u/v) is an affine mapping. Moreover, since H(x, u) ∈ K, we have

Hper
j (x, v, u) ∈ Kmj . Hence, we have epi(fper) is CQr, and (l,K,Hper(x, v, u),m1, ...,mK) is its

CQR. �

Note that once we have a CQR of f , we immediately have the CQR of f∗ and fper.

It can easily be verified that the following functions/sets are CQr:

• f(x) = xTQTQx+ qTx+ r;

• Xm = {(t, x1, ..., xM ) | tM ≤ x1...xM} = epi(x1x2...xm)1/M , where m > 0 is an integer,

and M = 2m;

• f(x) = max(x, 0)π, where π ≥ 1 is rational;

• f(x) = |x|π, where π ≥ 1 is rational;

• f(x) = x−π11 x−π22 ...x−πmm , xi > 0, where πi > 0;

• f(x) = ‖x‖p, where 1 ≤ p ≤ ∞ is rational.
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B.4 Example

Consider the set

Z = {y ∈ Rn | By + b ∈ ∩Ki=1Zi},

where B ∈ Rm×n, b ∈ Rn, and

Zi = {z | (dTi z + βi)
2 + 2(dTi z + βi)

8 ≤ 1},

where di ∈ Rn, βi ∈ R. Note that

Z = ∩Ki=1{By + b ∈ Zi},

with

Zi = {z | dTi z + βi ∈ X},

and

X = {x ∈ R | x2 + 2x8 ≤ 1}.

To compute the support function of Z it is enough to compute the CQR of X. Observe that

X =

x ∈ R | ∃t1, t2, t3 :

 2x

t1 − 1

t2 + 1

 ∈ L3,

 2t1
t2 − 1

t2 + 1

 ∈ L3,

 2t2
t3 − 1

t3 + 1

 ∈ L3, t1 + 2t3 ≤ 1

 .

We now can use the rules of intersection of CQr sets and linear transformations of CQr sets

to write down the CQR of Z explicitly. Let δ∗(v|Z) = supy∈Z v
T y. Using the CQR of Z this

optimization problem is a conic quadratic problem. Its dual can be written down explicitly using

conic quadratic duality.
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