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Abstract—Engineering a large IP backbone network without an
accurate network-wide view of the traffic demands is challenging.
Shifts in user behavior, changes in routing policies, and failures of
network elements can result in significant (and sudden) fluctua-
tions in load. In this paper, we present a model of traffic demands
to support traffic engineering and performance debugging of large
Internet Service Provider networks. By defining a traffic demand
as a volume of load originating from an ingress link and destined to
a set of egress links, we can capture and predict how routing affects
the traffic traveling between domains. To infer the traffic demands,
we propose a measurement methodology that combines flow-level
measurements collected at all ingress links with reachability infor-
mation about all egress links. We discuss how to cope with situa-
tions where practical considerations limit the amount and quality
of the necessary data. Specifically, we show how to infer interdo-
main traffic demands using measurements collected at a smaller
number of edge links—the peering links connecting to neighboring
providers. We report on our experiences in deriving the traffic de-
mands in the AT&T IP Backbone, by collecting, validating, and
joining very large and diverse sets of usage, configuration, and
routing data over extended periods of time. The paper concludes
with a preliminary analysis of the observed dynamics of the traffic
demands and a discussion of the practical implications for traffic
engineering.

Index Terms—Internet, measurement, routing, traffic engi-
neering.

I. INTRODUCTION

T HE engineering of large IP backbone networks faces a
number of difficult challenges. Owing to the astonishing

success of Internet applications and the continuing rollout
of faster access technologies, demand for bandwidth across
backbones is growing explosively. In addition, shifts in user
behavior, publishing of new Web content, and deployment
of new applications result in significant fluctuations in the
volume of traffic exchanged between various hosts in the In-
ternet. Furthermore, changes in routing policies and failures of
network elements can cause sudden fluctuations in how traffic
flows through the backbone. This leaves network operators
in the difficult situation of trying to tune the configuration of
the network to adapt to changes in the traffic demands. The
task is particularly daunting since the Internet Service Provider
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(ISP) responsible for administering the backbone does not have
end-to-end control of the path from the source to the destina-
tion. The majority of traffic in an Internet Service Provider
network travels across multiple administrative domains.

The networking community has responded with research and
development on increasing link and router capacity and pro-
viding a more easily configurable infrastructure. However, rel-
atively little attention has been given to the systems needed to
guide the operation and management of the improved infrastruc-
ture. In particular, there has been very little work on models for
traffic demands or on techniques for populating these models
from network measurements. Most existing measurement tech-
niques provide views of theeffectsof the traffic demands—poor
end-to-end performance (e.g., high delay and low throughput)
and heavy load (e.g., high link utilization and long queues).
These effects are captured by active measurements of delay,
loss, or throughput on a path through the network [1], or pas-
sive monitoring of individual routers and links [2], [3].

However, managing an ISP backbone begs for anetwork-wide
understanding of the flow of traffic. An accurate view of the
traffic demands is crucial for a number of important tasks, such
as debugging performance problems, optimizing the configura-
tion of the routing protocols, and planning the rollout of new
capacity. In particular, the recently formed IETF working group
on Internet Traffic Engineering recognizes that 1) accurate de-
mand models are crucial for effective traffic engineering of IP
networks, but 2) developing such models and populating them
via appropriate measurements are open problems [4], [5]. These
are precisely the topics we address in this paper. As far as we
know, no comparable study of the network-wide traffic demands
in an ISP backbone has been conducted to date.

How should traffic demands be modeled and inferred from
network measurements? At one extreme, IP traffic could be rep-
resented at the level of individual source–destination pairs, pos-
sibly aggregating sources and destinations to the network ad-
dress or autonomous system level. Such anend-to-endtraffic
matrix would lend insight into the fluctuations in load over the
Internet across time. However, representing all hosts or network
addresses would result in an extremely large traffic matrix. In
addition, no single ISP is likely to see all of the traffic to and
from each network address, making it virtually impossible to
populate such a model.

Alternatively, IP traffic could be aggregated to point-to-point
demands between edge links or routers in the ISP backbone,
an option suggested in [6] in the context of MPLS-enabled net-
works. However, this approach has fundamental difficulty in
dealing with traffic that traverses multiple domains. A given
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Fig. 1. Point-to-multipoint IP traffic demand.

destination (network address) is typically reachable from mul-
tiple edge routers, as shown in Fig. 1. As a result, IP traffic
demands are naturally modeled aspoint-to-multipointvolumes.
This is a simple, but crucial difference between IP networks and
connection-oriented networks (such as Frame Relay), where de-
mands are naturally modeled as point-to-point volumes. The set
of egress links depends on the ISP’s routing policies and the
Border Gateway Protocol (BGP) advertisements received from
neighboring domains. The selection of a unique link from this
set depends on intradomain routing information. In the example,
suppose the traffic exits the network via the top egress link.
A link failure or a change in the configuration of intradomain
routing could cause the traffic to move to the bottom egress
link. A change in the ISP’s interdomain policies or the with-
drawal of a route advertisement from a neighboring domain
could also alter the flow of traffic. Modeling interdomain traffic
as point-to-point would couple the demand model to the internal
routing configuration, making it difficult to predict how such
changes would affect network load; the routing change itself
could have a major impact on the point-to-point demands.

In this paper, first we propose a simple traffic demand model
that effectively handles interdomain traffic. As discussed in Sec-
tion II, the model is invariant to changes in the internal routing
configuration, and as such provides a sound basis for traffic en-
gineering. Our demand model allows us to predict how changing
the internal routing configuration impacts the distribution of
load on internal links. Second, we provide a methodology for
populating the model from usage measurements collected at
ingress links and reachability information collected at egress
links. Third, we consider how to apply the model when prac-
tical considerations severely limit the location of usage mea-
surements to a much smaller number of edge links. Specifically,
in Section III, we propose a methodology for populating the in-
terdomain demand model when usage measurements are limited
to the links to neighboring service providers, coping (in partic-
ular) with not having usage measurements at customer access
points.

Next, we describe our practical experiences applying the
methods of Sections II and III in a large operational ISP
network—the AT&T IP Backbone. This is where we must
confront practical limitations in the usage, configuration, and
routing data available in today’s IP networks. In Section IV,
we describe the challenges of processing router configuration
files, forwarding tables, flow-level measurements, and SNMP
data collected from multiple locations in the network over an
extended period of time. In particular, we highlight how we
addressed several practical constraints that arose in processing
the large (and lossy) flow-level measurements. In Section V,
we present results showing the effectiveness of the techniques
in Sections II and III. We show that the data sets collected

Fig. 2. Traffic flows in an ISP backbone.

at multiple times and locations are remarkably coherent, and
present a detailed explanation of the occasional inconsistencies
that arise from network dynamics.

Our analysis of the measured demands focuses on the time
scale of tens of minutes to hours or days. Traffic engineering
tasks occur on this time scale [7], where fundamental shifts
in user behavior and changes in network routing introduce
traffic variability beyond statistical fluctuations. On a smaller
time scale, Internet traffic fluctuates in reaction to bursty user
behavior and congestion control mechanisms. In populating
our demand model, we focus on large aggregates of traffic,
rather than the dynamics of individual flows. The distribution
of traffic through the network is sensitive to the dynamics of
interdomain routing, which may change the set of egress points
for a particular destination. Our demand model can be applied
to investigate theimpact of such changes in reachability in-
formation, due to network failures, reconfigurations, or policy
changes.

II. TRAFFIC DEMANDS

This section presents a brief overview of ISP backbone ar-
chitectures and routing protocols. We also propose a model for
IP traffic demands, and discuss its application to several impor-
tant traffic-engineering tasks. Then, we describe how to com-
pute these demands from flow-level measurements at ingress
links and reachability information about egress links.

A. ISP Backbone Networks

An ISP backbone network consists of a collection of IP
routers and bidirectional layer-three links, as shown in Fig. 2.
Backbonelinks connect routers inside the ISP backbone, and
edge links connect to downstream customers or neighboring
providers. Edge links are divided intoaccesslinks andpeering
links. For example, an access link could connect to a modem
bank for dial-up users, a web-hosting complex, or a particular
business or university campus. Multihomed customers have
two or more access links for higher capacity, load balancing,
or fault tolerance. Peering links connect to neighboring service
providers. A peering link could connect to a public Internet
exchange point, or directly to a private peer or transit provider.
An ISP often has multiple peering links to each neighboring
provider, typically in different geographic locations. Depending
on the contractual relationships, the ISP may or may not allow
a pair of peers to communicate across the backbone.
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Each link is bidirectional. When carrying traffic into the ISP
backbone, an edge link is referred to as aningresslink; when
carrying traffic away from the ISP backbone, an edge link is re-
ferred to as anegresslink. Fig. 2 illustrates the four possible
scenarios—internal traffic that travels from an ingress access
link to an egress access link,transit traffic that travels from an
ingress peering link to an egress peering link,inboundtraffic
that travels from an ingress peering link to an egress access link,
andoutboundtraffic that travels from an ingress access link to
an egress peering link. Much of the traffic in the Internet must
travel through multiple domains en route from the source to the
destination. Hence, most of the traffic in an ISP backbone en-
ters or leaves the network on a peering link. As such, an ISP
rarely has complete control of the entire path from the source to
the destination. Even for internal traffic, the customer exercises
control over how the traffic enters the ISP backbone, and how
the traffic travels from the egress link through the customer’s
network to the destination host.

The path traveled by an IP packet depends on the inter-
play between interdomain and intradomain routing. The ISP
employs an intradomain routing protocol, such as OSPF or
IS-IS, to select paths through the backbone between ingress
and egress links. Under OSPF and IS-IS, the routers exchange
link-state information and forward packets along shortest paths,
based on the sum of link weights chosen by the ISP. Typically,
customers and peers do not participate directly in these pro-
tocols with the ISP. Communicating across domains requires
coordination with customers and peers to exchange reacha-
bility information. Interdomain routing operates at the level of
a network address, or prefix, consisting of an IP address and
a mask length (e.g., 135.207.119.0/24 has a 24-bit mask that
specifies a block of 256 contiguous addresses). An ISP typi-
cally uses static routes to direct traffic toward customers who
have a fixed set of network addresses and do not participate in
an interdomain routing protocol. BGP is used to exchange dy-
namic reachability information with the remaining customers
and neighboring providers.

B. Demand Model

The interplay between intradomain and interdomain routing
has important implications for how we define a traffic demand.
The ISP network lies in the middle of the Internet, and may
not have a direct connection to the sender or the receiver of
any particular flow of packets. As such, a particular destina-
tion prefix may be reachable viamultipleegress links from the
ISP. A multihomed customer may receive traffic on two or more
links that connect to different points in the ISP backbone. Like-
wise, an ISP may have multiple links connecting to a neigh-
boring provider. When a router learns multiple routes to the
same destination prefix, the ultimate decision of which route
to use depends on the BGP route-selection process. The deci-
sion process involves multiple steps to select from the set of
advertised routes. First, import policies may prefer one route
over another. For example, the router may prefer routes via one
neighboring autonomous system over another. Then, the deci-
sion process considers the length of the path, in terms of the
number of autonomous systems involved, followed by several
other criteria [8], [9].

Later in the tie-breaking process, the selection of a route (and
the corresponding egress link) depends on information from the
intradomainrouting protocol. For example, suppose the BGP
selection process results in two routes leaving the ISP backbone
in New York and San Francisco, respectively. The egress link for
a particular packet would depend on where this traffic entered
the network. The packet would travel to the “closest” egress
link, where closeness depends on the intradomain routing pa-
rameters. For example, traffic entering the ISP backbone in Los
Angeles would travel to the San Francisco egress link, whereas
traffic entering the ISP backbone in Washington, D.C., would
travel to the New York egress link. Finally, if both egress links
have the same shortest path cost, the tie is broken by com-
paring the identifiers of the two routers responsible for adver-
tising these routes. The dependence on intradomain routing im-
plies that a change in the backbone topology or routing config-
uration could change which egress link is selected. Similarly, if
traffic enters the backbone in a different location, the egress link
could change.

To be practical, our representation of traffic demands should
enable experimentation with changes to the network topology
and routing configuration. Hence, we associate each traffic de-
mand with asetof egress links that could carry the traffic. The
set represents the outcome of the early stages of the BGP route-
selection process, before the consideration of the intradomain
protocol. This is in contrast to models that use a multipoint set to
capture uncertainty in the distribution of customer traffic across
a set of different destinations [10]. In our model, the selection of
a particular egress link within the set depends on the configura-
tion of intradomain and interdomain routing. The ISP typically
has very limited control over the selection of the ingress link
of the traffic. The selection of the ingress link depends on the
routing policies of other autonomous systems and directly con-
nected customers. For our initial work on computing and ana-
lyzing the traffic matrix, we do not attempt to model how the
ingress link is selected. Our model of a traffic demand consists
of an ingress link, a set of egress links, and a volume of load.

C. Traffic-Engineering Applications

The volume of load represents the quantity of traffic dis-
tributed from the ingress link to the set of possible egress links,
averaged over some time scale. This introduces issues of both
spatial and temporal aggregation. On the one extreme, it is pos-
sible to compute a separate demand for each source–destination
pair that exchanges traffic across the backbone. On the other
extreme, there could be a single demand for all traffic with the
same ingress link and set of egress links. The appropriate choice
depends on the application. For example, consider the task of
optimizing the configuration of intradomain routing to balance
network load [11]. This application could combine all traffic
with the same ingress link and set of egress links into a single
demand. Changes in intradomain routing could affect the selec-
tion of the egress link for each demand. The details of which
packets or flows contribute to the demand are not important.
Minor extensions to this approach could define a separate de-
mand for each traffic class under differentiated services. This
would enable the route optimization to consider the load im-
parted on each link by each traffic class.
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As another application, suppose an ISP is considering a
change in its BGP import policies for routes to a particular
destination prefix belonging to another provider. A destination
prefix that receives a large amount of traffic could result in
heavy congestion on one or more peering links. Redirecting
this load to a different set of egress links could alleviate the
congestion. BGP route advertisements, or entries in the BGP
tables, could be used to determine the egress links for a destina-
tion prefix. A change in BGP import policies, such as filtering
a route advertisement or assigning different local preference
values, would change the set of egress links associated with this
destination prefix. Similarly, network failures, policy changes
in other domains, and even network congestion could result
in fluctuations in the BGP reachability information [12], [13].
These intentional and unintentional changes would result in a
new traffic demand. To experiment with different sets of egress
links, the ISP would need to know which traffic is associated
with this particular prefix. For this application, traffic destined
to this prefix should not be aggregated with other traffic with
the same ingress link and set of egress links.

An ISP may also need to predict the effects of adding or
moving an access link. For example, the ISP could rehome an
existing customer to a different edge router. In this situation, all
outbound demands associated with this customer should orig-
inate from the new location, and all inbound demands would
have a new set of egress links to reflect the rehomed access link.
This would enable the ISP to predict how rehoming the customer
would affect the load on the backbone. Similarly, an existing
customer may request a new access link for higher bandwidth or
fault tolerance. The new link could be added to the set of egress
links for inbound demands. The ISP may also have information
about how the customer would direct outbound traffic to its ac-
cess links. This would enable the ISP to predict what portion of
the existing outbound traffic from this customer is likely to enter
the network on the new access link. Finally, the ISP may need
to estimate the effects of adding a new customer. In some situ-
ations, the ISP may have information that can aid in predicting
the demands. For example, a customer that hosts Web content
may have server logs. The traffic statistics could be aggregated
to the client prefix level [14] to predict the outbound demands
for the new access link.

Ultimately, the spatial aggregation of the traffic demands
depends on the particular application, ranging from perfor-
mance debugging and backbone traffic engineering to BGP
policy changes and capacity planning. Likewise, the temporal
aggregation depends on the application. Long-term capacity
planning could consider the traffic on a relatively coarse time
scale, whereas debugging short-term performance problems
would require a more careful consideration of how load
fluctuates across time. In our initial study of traffic demands,
we focus on backbone traffic engineering [7]. As such, we
aggregate traffic with the same ingress link and set of egress
links into a single demand. In a large operational ISP network,
this results in fairly large number of traffic demands. The
volume of load associated with each demand is identified by
flow-level measurements at the ingress links. The set of egress
links is identified based on snapshots of the forwarding tables
from the routers in the operational network. Then, we compute

the current set of demands over a variety of time scales and
study the traffic dynamics.

D. Measurement Methodology

To compute the traffic demands, fine-grain traffic measure-
ments should be collected at allingresslinks. This enables us
to identify the traffic as it enters the ISP backbone. However,
collecting packet-level traces at each ingress link would be pro-
hibitively expensive. In addition, traffic engineering does not
necessarily need to operate at the small time scale of individual
packets. Instead, we propose thatflow-level statistics should be
collected at each ingress link. These measurements can be col-
lected directly by the incident router [15], [16]. A flow is defined
as a set of packets that match in the key IP and TCP/UDP header
fields (such as the source and destination addresses, and port
numbers) and arrive on the same ingress link. The router should
generate a record summarizing the traffic statistics on a regular
basis, either after the flow has become inactive or after an ex-
tended period of activity. The flow record should include suffi-
cient information for computing the traffic demands: theinput
link and thedest IP address to identify the end-points of the
demand, thestart andfinish times of the flow, and the total
number ofbytes in the flow. (Any additional information in
the measurement records, such as TCP/UDP port numbers or
type-of-service bits, could be used to compute separate traffic
demands for each quality-of-service class or application.) Sam-
pling of the measurements may be performed to reduce the total
amount of data.

Computing the traffic demands requires information about
the destination prefixes associated with each egress link. The
aggregation process draws on a list,dest prefix set , of
network addresses, each consisting of an IP address and mask
length. Each prefix,dest prefix , can be associated with a
set of egress links,reachability(dest prefix) . In an
operational network, these prefixes could be determined from
the forwarding tables of the routers that terminate egress links.
In particular, each forwarding-table entry identifies the next-hop
link(s) for a particular prefix. This enables identification of the
prefixes associated with each egress link. (The router connected
to the egress links has the most detailed view of the destination
prefix. Suppose a router has egress links that connect to cus-
tomers that were assigned contiguous blocks of IP addresses.
This egress router’s forwarding table would have an entry for
each prefix to direct traffic to the appropriate access link. How-
ever, the other routers in the ISP backbone, and the rest of the
Internet, do not need such detailed information. As such, the
edge router may advertise an aggregated network address to the
rest of the backbone. In this case, information available at the
ingress router would not be sufficient to identify the customer
prefix and the associated set of egress links.)

Each flow spans some time interval (fromstart to
finish ) and contributes some volume of traffic (bytes ).
Computing traffic demands across a collection of flows at
different routers introduces a number of timing challenges. The
flow records do not capture the timing of the individual packets
within a flow. Since traffic engineering occurs on a time scale
larger than most flow durations, we compute demands on a time
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Fig. 3. Computing traffic demands based on measurements at ingress links.

scale of tens of minutes to multiple hours. Consequently, we
are not concerned with small variations in timing on the scale
of less than a few minutes. We divide time into consecutive
width -second bins. Most flows start and finish in a single bin.
When a flow spans multiple bins, we subdivide the traffic in
proportion to the fraction of time spent in each time period. For
example, suppose a 10-kB flow spent 1 s in the first bin and 9
s in the second bin. Then, we associate 1 kB with the first bin
and 9 kB with the second bin. The algorithm for computing the
traffic demands in summarized in Fig. 3.

III. M EASUREMENT AT PEERING LINKS

Collecting fine-grain measurements at each ingress link
would be the ideal way to determine the traffic demands. In
this section, we extend our methodology to measurements
collected at a much smaller number of edge links—the links
connecting the ISP to neighboring providers. We describe how
to infer where outbound traffic enters the backbone, based on
customer address information and a model of how traffic from
each of the customer’s access links would be routed across the
ISP backbone.

A. Adapted Measurement Methodology

Collecting fine-grained measurements at every ingress link
would introduce substantial overhead in a large network. ISP
backbones typically include a large number of access links
that connect to customers at various speeds. The routers that
terminate these links often vary in functionality and must
perform computationally intensive access control functions to
filter traffic to/from customers. Collecting flow-level statistics
at every access link is not always feasible in practice. In some
cases, a router may not be capable of collecting fine-grain mea-
surements. In other cases, enabling measurement would impart
a heavy load on the router or preclude the use of other features
on the router. In contrast, a small number of high-end routers
are used to connect to neighboring providers. These routers
typically have much fewer links with substantial functionality
(including measurement functions) implemented directly on
the interface cards. Collecting fine-grain measurements on
these links is much less difficult. In addition, throughout the
Internet, the links between major service providers carry a

large amount of traffic and are vulnerable to fluctuations in
interdomain routing, making it very important to have detailed
usage statistics from these locations.

By monitoring both the ingressandegress links at these loca-
tions, we capture a large fraction of the traffic in the ISP back-
bone. Measurement data is available at the ingress links for in-
bound and transit traffic, and at the egress links for outbound
traffic. Reachability data is available at the egress links for all
four types of traffic. Measuring only at the peering links intro-
duces three main issues:

• Internal traffic: Monitoring the peering links doesnot
capture the internal traffic sent from one access link to an-
other. Some customer traffic may travel over particularly
important access links to and from the ISP’s e-mail, Web,
and DNS services. Flow-level measurements should be
enabled on these access links—effectively treating these
connections as peering links.

• Ambiguous ingress point for outbound traffic: Com-
puting theoutbounddemands that travel from access links
to peering links becomes more difficult, since flow-level
measurements are not available at theingresspoints. In-
ferring how these flows entered the network is the main
focus of the rest of this section.

• Duplicate measurement of transit traffic: Measuring
both ingress and egress traffic at the peering links may
result induplicatemeasurements of transit traffic. These
flows should not be counted twice.

Classifying a flow: The first step in computing the traffic
demands is to classify a flow as inbound, transit, or outbound, as
illustrated in Fig. 2. The classification depends on the input and
output links at the router that measured the flow, as summarized
in Table I. We initially focus our discussion on inbound and
outbound flows, and discuss transit traffic in greater depth at
the end of the subsection. For inbound flows, traveling from
a peering link to a backbone link, we can directly apply our
methodology from Section II, since flow-level measurements
are available from the ingress link. The process for aggregating
the flow records is summarized in Fig. 4, skipping the details
from Fig. 3 of dividing thebytes of the flow across multiple
time bin s.

Handling outbound flows: Outbound flows require more
careful handling. The flow measurements provide two pieces
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TABLE I
FLOW CLASSIFICATION BASED ON INPUT AND OUTPUT LINKS

Fig. 4. Computing traffic demands based on measurements at peering links.

of information that help us infer the ingress link responsible
for outbound traffic—the source IP address and the input/output
links that observed the flow at the egress router. The source ad-
dress indicates which customer generated the traffic. We can
match the source address with a customer prefix and, in turn,
match this prefix with a set of possible access links that could
have generated the traffic. (Note that we must assume that the
source address correctly identifies the sender of the traffic. Al-
though this is typically the case, a small fraction of the packets
may have spoofed source addresses; that is, the sender may put
a bogus source address in the IP packet header to evade detec-
tion while attacking the destination host.) The pseudocode in
Fig. 4 draws on a list,src access prefix set , of the net-
work addresses introducing traffic at access links. Each source
prefix, src prefix , can be associated with a set of ingress
links based on the mapsendability() . We also retain infor-
mation about the input and output links that measured the flow.
This information helps us infer which of these access link(s)
could have originated the traffic, as discussed in Section III-C.

Handling transit flows: Next, we discuss how our method-
ology applies to transit traffic that travels from one neighboring
provider to another. Transit traffic falls into two categories—
single-hop and multiple-hop, as shown in Fig. 2. A single-hop
transit flow enters and exits the ISP backbone at the same edge
router, without traversing any backbone links; in this case, the
flow is measured once, at this router. A multihop transit flow
enters at one router, traverses one or more backbone links, and
exits at another router; in this case, the flow is measured twice—
at the ingress and egress points. The best place to capture a
transit flow is at its ingress link, where we can apply the method-
ology of Section II. To avoid double-counting the flow, we need
to discard the flow records generated by multihop transit flows
as they leave the network. This requires distinguishing outbound
flows (introduced by an access link) from transit flows (intro-
duced by a peering link). For a flow leaving the network, the al-
gorithm in Fig. 4 attempts to match the source IP address with a

customer prefix. For transit flows, this matching process would
fail, and the associated flow record would be excluded.

B. Identifying Candidate Ingress Links

To associate each outbound flow with a set of ingress links,
we must determine which source IP addresses could introduce
traffic on each access link. On the surface, this problem seems
equivalent to determining the set ofdestinationprefixes associ-
ated with each access link. However, Internet routing is not sym-
metric. Traffic to and from a customer does not necessarily leave
or enter the backbone on the same link. Hence, the forwarding
table of the router terminating the access link may not have suf-
ficient information to identify the source prefixes. For example,
suppose a customer with two IP prefixes has two access links
to the ISP. For load-balancing purposes, the customer may wish
to receive traffic for one prefix on the first access link, and the
rest of the traffic on the second access link. (This may involve
configuring static routes for these prefixes in the edge routers
that terminate the access links. Alternatively, the customer may
announce these routes to the ISP using a routing protocol such
as RIP or BGP.) In this example, each prefix would be reach-
able via a single access link. Yet, the customer could conceiv-
ablysendtraffic from either prefix via either access link. Hence,
the router forwarding tables are not sufficient for identifying the
source addresses that might generate traffic on an access link.

Fortunately, an ISP typically knows the IP addresses of its
directly connected customers. In fact, the customer may be as-
signed IP prefixes from a larger address block belonging to the
ISP. In other situations, the customer already has its own block
of IP addresses. Information about the assignment of address
blocks may be available in a variety of places, including the
ISP’s database of its customers or in a configuration database.
As part of provisioning a new customer, the ISP configures the
router that terminates the associated access link. Packet filters
are specified to detect and remove traffic with bogus source
IP addresses [17]. These packet filters indicate which sources
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Fig. 5. Example of disambiguating the ingress link.

might send traffic via a particular access link. The packet fil-
ters for each interface are specified in the router’s configuration
file. By parsing the router configuration files, we can determine
which source prefixes to associate with each access link. From
this information, we can determine the set of access links asso-
ciated with each source prefix.

Using packet filters to identify source IP addresses is most ap-
propriate for access links to directly connected customers that
do not connect to other service providers, or have downstream
customers of their own. For customers thatdo connect to other
service providers, or have downstream customers of their own,
it is difficult to specify static packet filters for each source prefix
on each possible ingress link. For example, when a neighboring
domain acquires a new customer, traffic from these new source
addresses could enter the ISP’s backbone. Although the down-
stream provider typically performs packet filtering, these filters
may not be known to the upstream ISP. This is a fundamental
issue that arises in the Internet due to the use of dynamic routing
protocols based on destination reachability information. In these
situations, our measurement methodology would argue for per-
forming flow-level measurements at the ingress links, rather
than depending on knowing the set of links where these sources
could enter the ISP backbone.

C. Matching Flows With Routes

For inbound and transit flows, the algorithm in Fig. 4 re-
sults in a point-to-multipoint demand. However, each outbound
flow is associated with asetof ingress links, resulting in amul-
tipoint-to-multipoint aggregate. Computing point-to-multipoint
demands for outbound traffic requires an additional step to de-
terminewhichaccess link initiated the traffic. Knowledge of in-
tradomain routing can help resolve the ambiguity. For example,
consider a source IP address that is associated with access links
in Los Angeles and Washington, D.C., as shown by the two “?”
symbols in Fig. 5. Suppose the customer sends traffic to a des-
tination with egress links in San Francisco and New York, and
the actual flow was observed leaving the backbone on a peering
link in San Francisco. Suppose that traffic from the Washington,
D.C., access link to that destination would have been routed to
the New York peering link. Then, the flow observed in San Fran-
cisco could not have originated from the D.C. access link. In-
stead, the flow entered the ISP backbone in Los Angeles.

Determining whether an outbound flow could have entered
the network at a given ingress link requires knowledge of the

backbone topology and intradomain routing configuration at the
time the flow was measured. For a given ingress link and set
of egress links, we determine on which egress link the flow
would exit the network. If this was not the egress link where
the flow was observed, then this ingress link can be eliminated
from consideration. In fact, knowing the path(s) from the ingress
link to the egress link provides additional information. The flow
was observed as it traveled from an input (backbone) link to an
output (peering) link at the egress router. The path of the flow
from the ingress link must includeboth of the links that ob-
served the flow. Otherwise, this ingress link should be excluded
from consideration. This process must be repeated for each of
the possible ingress links, as shown in Fig. 6. Thedisambigua-
tion process has three possible outcomes:

• One ingress link: A single ingress link could have gen-
erated the traffic. This is the ideal situation, resulting in a
single point-to-multipoint demand.

• Multiple ingress links: More than one of the candidate
ingress links could have generated the traffic. This would
happen if multiple ingress links would send the traffic to
the same egress router, and would enter this router on the
same input link. Traffic from these access links may follow
a similar path through the backbone, imparting load on
some of the same links and routers. When multiple ac-
cess links could have generated the traffic, the disambigua-
tion process generates multiple demands, each with the an
equal fraction of the traffic.

• Zero ingress links: If none of the candidate ingress
links could have generated the traffic, the disambiguation
process has failed and the flow record is discarded. These
“misses” are discussed in more detail in Section V-B.

In a similar manner, the routing model is useful for verifying the
correctness of the inbound and transit demands.

The disambiguation process depends on knowing the pos-
sible paths from each ingress link to each egress link. We ob-
tain this information from a routing model that captures the de-
tails of path selection in the ISP backbone. For each point-to-
multipoint demand, the routing model determines the particular
egress point as well as the path(s) through the network from
the ingress link to the egress link. The set of egress links repre-
sents the outcome of the early steps of the BGP route-selection
process. The routing model captures the last two steps—selec-
tion of the shortest path egress link(s) based on the intradomain
routing protocol and tie-breaking based on the router identifier.
The main complexity stems from the modeling of intradomain
routing. Our routing model [7] captures the details of OSPF
routing in networks with multiple areas, including the splitting
of traffic across multiple shortest path routes. Snapshots of the
router forwarding tables from the operational network have been
used to verify the correctness of our routing software.

IV. DATA SETS FROMAT&T B ACKBONE

This section describes our experiences harvesting, parsing,
and joining four large data sets, each collected from multiple
locations in the AT&T IP Backbone. Monitoring the peering
links produces, on average, one byte of measurement data for
every 138 bytes of data traffic. We describe how we join these
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Fig. 6. Disambiguating the set of ingress links based on routing information.

TABLE II
DATASETS AND KEY FIELDS USED IN COMPUTING AND VALIDATING THE TRAFFIC DEMANDS

flow-level measurements with information from router config-
uration files, router forwarding tables, and SNMP data to com-
pute the traffic demands. Then, we discuss how we addressed
several practical constraints in processing the large set of flow-
level measurements.

A. Data Sets

The computation of the traffic demands draws on several dif-
ferent data sets, as summarized in Table II.

Router configuration files: Router configuration files reflect
the configuration of a router as part of the IP network. The file
specifiestheconfigurationof therouterhardware, thepartitioning
of resources(e.g.,buffersand linkcapacity), theroutingprotocols
(e.g., static routes, OSPF, and BGP), and the packet-forwarding
policies.Aglobalviewof thenetworktopologyandconfiguration
can be constructed by joining information across the configura-
tionfilesofthevariousrouters intheISP’sbackbone[18].Thisen-
ables us to identify all of the routers and links, and their connec-
tivity. In addition, the joined configuration files enable us to de-
termine the type of each link (access, peering, or backbone), as
well as the packet filters associated with each access link. This
information is important for aggregating the flow-level mea-
surements. Finally, the configuration files indicate the link ca-
pacities, as well as the OSPF weight and area for each backbone
link, which are necessary input for the routing model.

Router forwarding tables: Each router has a forwarding
table that identifies the IP address(es) and name(s) of

the next-hop interface(s) for each destination prefix (e.g.,
“135.207.0.0/16 12.126.223.194 Serial2/0/0:26”). We use the
forwarding tables to associate each destination prefix with
a set of egress links. The name of the next-hop interface is
joined with the name of the corresponding egress link from the
router configuration files. Joining this information produces
the list, dest prefix set , of destination prefixes and the
map, reachability() , of each destination prefix to a set
of egress links. In addition, the forwarding tables are used to
verify the correctness of the routing model. Having a snapshot
of the forwarding tables close together in time enables us
to determine how each router forwarded traffic toward each
destination prefix. In particular, the forwarding tables enable
us to identify which subset of the backbone links would carry
traffic destined to a particular prefix. These paths were checked
against the routes computed by our routing model.

Netflow records: The flow-level measurements were col-
lected by enabling Netflow [15] on each of routers that ter-
minate peering links. Each router exports the measurements as
UDP packets in groups of one to thirty flow records. These UDP
packets are sent to a collection server. Each flow record corre-
sponds to a collection of packets that match in their key IP and
TCP/UDP header fields and were routed in the same manner
(i.e., same input and output link, and same forwarding-table
entry). The record includes the packet header and routing infor-
mation, as well as the time (i.e., start and finish time in seconds)
and size (i.e., number of bytes and packets) of the flow. Our
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analysis focuses on the source and destination IP addresses, the
input and output links, the start and finish time, and the number
of bytes. The other fields in the Netflow records could be used
to compute separate traffic demands for different subsets of the
traffic.

SNMP interface indices: Processing a Netflow record re-
quires associating the input and output link that observed the
flow with the corresponding links in our model of the network
topology. However, the Netflow record identifies each link in
terms of an integer SNMP index, whereas the forwarding tables
and router configuration files reference a link by its name and
IP address. The SNMP index is an integer value that uniquely
identifies each interface in the router. The index does not change
unless the interface is moved or another interface is installed in
the same router. However, this identifier is not available in the
router configuration files or the router forwarding tables. Peri-
odic polling of the router’s SNMP variables allows us to de-
termine the IP address and name associated with each SNMP
index. SNMP data also includes statistics about the number of
bytes carried on each link on a five-minute time scale. We used
these statistics as an independent verification of the loads com-
puted by aggregating the Netflow data.

B. Practical Constraints

The processing of the Netflow data introduced several prac-
tical challenges, which we briefly summarize:

Router clock synchronization: Each router synchronizes
the clock of its route processor to a central server using
the Network Time Protocol (NTP). However, the clocks on
individual interface cards are not always synchronized, due to
a historical bug in Cisco’s Internet operating system. We ad-
dressed this problem by aligning the Netflow records collected
on the interface cards with records from the route processor.
All timestamps within the Netflow data are relative to a base
clock. For each router, it suffices to adjust the base clock of the
records originating each link with those originated by the route
processor. In post-processing the Netflow data, we realign the
base clock of each interface to match with the most recent
record from the route processor. The route processor receives
a relatively small number of data packets (such as routing
protocol traffic and packets with expired time-to-live (TTL)
values), compared to the interface cards. Still, flow records are
generated by the route processor quite frequently on a busy
router; during a sampled 24-h period, the interarrival time of
flow records from the route processor has a mean of 0.32 s and
a maximum of 91.4 s. Hence, the uncertainty introduced by
correcting for timestamp problems is very small compared to
the time scale of the subsequent aggregation.

Lost measurement data:Netflow records are transmitted to
the collection server using UDP. As such, the measurement data
is not delivered reliably. Limited bandwidth to our collection
server resulted in loss of up to 90% of the UDP packets during
heavy load periods. Nearly all of these packets were lost on the
link connecting to our measurement server, dwarfing the losses
experienced by the Netflow data in the rest of the backbone. The
traffic on the link to the collection server consists mainly of the
UDP Netflow data. The traffic dynamics typically introduced by

TCP congestion control do not arise in this context. The dom-
inance of UDP traffic, coupled with the limited bandwidth, re-
sults in a nearly random sampling of the measurement records.
To test our hypothesis of random packet loss, we analyzed the
loss patterns based on the sequence numbers of the Netflow
records that arrived successfully. Detailed analysis of the loss
characteristics showed that the distribution of the number of
consecutive losses is consistent with assuming independent loss.
Based of the assumption of random independent loss, we apply
a correction factor to the received flow records to account for
lost measurement data, taking in to account the fact that the loss
rate varies across time and (potentially) across routers. First, we
determine the loss rate during each (ten-minute) time interval
for each router (and each “engine” that exports Netflow data),
based on sequence numbers in the stream of flow records. Then,
we assume that flows that are observed are statistically similar
to other flows that ended during the same time period. We apply
a correction factor based on the loss probability during that time
period, corresponding to the time that the flow record was ex-
ported to the collection server. This correction factor is applied
to all bytes within the flow. To verify our approach, and to select
the ten-minute interval for applying the loss correction, we com-
pared our corrected Netflow data against independent link-load
statistics from SNMP. For example, Fig. 7 plots the utilization
of both directions of a peering link on a 1-h timescale over the
course of a day. The plots for loss-corrected Netflow match the
SNMP statistics relatively closely.

Data sets from multiple time periods: Computing the
traffic demands required joining four independent data sets,
each collected from multiple locations in the network at
different times during the day. This introduces significant chal-
lenges in joining and analyzing the data. These data sets also
provide a unique opportunity to quantify the effects of routing
instability on an operational network. Table III summarizes
the data sets used in the experiments in the next section. We
focus on four days in November 1999. November 3 and 4
are a Wednesday and a Thursday, respectively. November 11
and 12 are a Thursday and a Friday, respectively. These flow
measurements enable us to compare traffic on two consecutive
days and two consecutive weeks. Daily configuration files are
used to generate the topology model. Each experiment uses
the most recent forwarding tables and SNMP data available.
The SNMP data is the least sensitive, since the SNMP index
for each link does not change unless the network undergoes
a structural change; these changes occur infrequently on the
routers that terminate peering links. Independent verification
assured that this did not occur during the periods of our data
collection.

V. EXPERIMENTAL RESULTS

In this section, we present the results from aggregating and
validating the flow-level measurements collected at the peering
links. Then, we discuss the application of the routing model
to disambiguate and validate the demands. In both cases, we
discuss the implications of the ambiguity of the ingress links
for outbound flows, fluctuations in egress reachability informa-
tion, and inconsistencies across the various data sets. Then, we
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Fig. 7. Comparison of link utilization for SNMP and corrected Netflow.

TABLE III
COLLECTION TIMES FOREACH DATA SET

TABLE IV
PERCENT OFBYTES UNMATCHED IN AGGREGATING THENETFLOW DATA

present our initial results from analyzing the spatial and tem-
poral properties of the traffic demands.

A. Netflow Aggregation

The first phase of computing the traffic demands applies the
methodology in Fig. 4 to the Netflow data. Typically, more than
98% of the bytes observed at the peering links can be mapped to
a point-to-multipoint (inbound/transit flows) or multipoint-to-
multipoint aggregate (outbound flows), as shown in the “miss”
column of Table IV. These mismatches stem from the three key
steps in Fig. 4: 1) identifying the input and output links that
observed the flow; 2) associating the destination IP address with

a set of egress links; and 3) associating the source IP address (of
an outbound flow) with a set of ingress links.

Identifying the input and output links that observed the
flow: A significant fraction of the misses can be explained by
step 1), as shown in the “Out 0” and “Loop” columns in Table IV.
Each Netflow record logs the SNMP indices for the input and
output links that observed the flow. In our data sets, every Net-
flow record had valid input and output fields that matched with
our SNMP data. Approximately 0.5%–0.7% of the bytes in the
network had a output link of 0, meaning that the data was deliv-
ered to the route processor. Further inspection of the raw Net-
flow data reveals that about 0.4% of these bytes stem from traffic
actuallydestinedto the router.1 The remaining flows with an
output link of 0 correspond to unroutable traffic. For example, a
packet with an expired TTL field, as generated by traceroute,
would fall in this category. These unroutable packets are di-
rected to the route processor for further handling. The second
category of misses (“loop”) arises when a flow enters and leaves
the router on the same link. These transient forwarding loops
account for an extremely small portion of the total bytes in the
network (e.g., less than 0.03%).

Associating the destination IP address with a set of egress
links: As expected, the matching process is most successful
when measurements are collected at the ingress link, as seen
in the “Inbound (Egress)” column. Still, a small number of
mismatches arise in associating a flow’s destination IP address
with the egress links. That is, the destination IP address does
not match with any of the prefixes observed in the snapshots
of the router forwarding tables. These mismatches stem from

1The destination address of these flows is the router’s loopback IP address.
This traffic comes from ICMP (Internet Control Message Protocol) messages,
Telnet, and SNMP polling for routine operational tasks.
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TABLE V
DISAMBIGUATION STATISTICS

transient changes in reachability information. For example, the
destination may have been temporarily unreachable when the
forwarding tables were collected. Or, perhaps the destination’s
egress point moved from one router to another, with neither
snapshot showing a route to that destination. These kinds of
fluctuations in reachability information are unavoidable in
dynamic routing protocols. Fortunately, they did not have a
significant affect on our ability to match the flows. To verify
this hypothesis, we identified the top few destinations, respon-
sible for the majority of the missed traffic, and found that these
destinations were represented in the forwarding tables collected
on subsequent days. Identifying the egress links for outbound
traffic has similar challenges, as seen by the statistics in the
“Outbound (Egress)” column.2

Associating the source IP address (of an outbound flow)
with a set of ingress links:The most challenging part of ag-
gregating the outbound flows arises in matching thesourceIP
address with one or more access links, as shown in the “Out-
bound (Ingress)” column in Table IV. The aggregation process
identifies at least one candidate ingress link for over 99.3% of
the outbound bytes. However, matching the source IP address
with a set of access links does not necessarily imply that one
of these links actually generated the traffic. This check does not
occur until the later stage of disambiguating the set of ingress
links based on the routing model.

Overall, the results are consistent across the four experiments.
However, the November 11 data has a higher proportion of mis-
matched bytes (4.7% versus less than 2% for the other days).
These extra misses arise in two categories—egress links for in-
bound traffic and ingress links for outbound traffic. Both er-
rors relate tocustomerIP addresses. Upon further inspection,
most of these misses stem from a single access link. The ac-
cess link was upgraded some time after 8pm GMT, when the
configuration files were collected. Hence, our copy of the con-
figuration file of the router terminating the new link had the
name and IP address of theold link. The forwarding table was
collected several days later on November 14. In this table, the
next-hop entries pointing to the new link are used to direct traffic
to a collection of customer prefixes. However, in our automated
joining of the data sets, we did not associate these customer pre-
fixes with the old link specified in the configuration file. Hence,
these customer prefixes were unknown during the aggregation
of the Netflow data. Manually associating the prefixes with the
old link, and repeating the experiment, reduced the number of

2The statistics for egress matching for outbound traffic are slightly lower than
the corresponding statistics for inbound traffic. This arises from the operation of
our aggregation software, which does not try to identify a set of egress links for
an outbound flow unless one or more possible ingress links could be identified.

egress misses (for outbound traffic) from 1.019% of the bytes to
0.468% and the number of ingress misses (for inbound traffic)
from 2.939% of the bytes to 0.595%, consistent with results
from other days.

B. Route Disambiguation

The second phase of computing demands applies the method-
ology in Fig. 6 to match the aggregated traffic with routes. The
disambiguation process is primarily used to infer the ingress link
associated with each outbound demand. However, we find that
the procedure also provides a useful consistency check on our
initial processing of the flow-level data, and aids in studying the
dynamics of the other data sets involved in the computation.

1) Inbound and Transit Flows:Our methodology is most ef-
fective for inbound and transit traffic, where measurements are
available at the ingress links. In this case, the techniques in Sec-
tion III produce a point-to-multipoint demand. Still, our exper-
imental results from aggregating the Netflow data are not suf-
ficient to show that we associated each traffic demand with the
correct ingress link and set of egress links. The routing model
provides an important consistency check by verifying that traffic
from the ingress link to the set of egress links would actually tra-
verse the links that measured the flow. The results of this check
are shown in the “Inbound (miss)” column in Table V, which
shows that the routing test failed for less than 1% of all bytes en-
tering the network at the peering links. This is very promising,
though not perfect. Not all changes in the set of egress links
would result in a change in how the observed traffic would exit
the network. Still, an error rate of less than 1% suggests that
our methodology is effective for handling traffic measured on
ingress links.

2) Outbound Flows:We expect our approach to be less ef-
fective for outbound traffic, due to unavoidable ambiguity about
the ingress links. In addition, the peering links are vulnerable to
fluctuations in reachability information due to the dynamics of
interdomain routing between neighboring ISPs.

Inconsistent forwarding tables at peering links: In a
small number of cases, the forwarding tables at the peering
links are inconsistent with the observed flows. That is, the
forwarding table suggests that the router that observed the
flow would have forwarded the traffic to a different link!
These inconsistencies are flagged in the “baddest” column, and
account for 1.0%–3.5% of the bytes leaving the network on
peering links. We observed the fewest errors on the November
4th data set, where we had forwarding tables and Netflow data
from the same day. To verify our hypothesis that these incon-
sistencies stem from fluctuations in reachability information,
we inspected a single day of flow data in greater detail. The
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source–destination pairs in the affected demands typically
moved in and out of the “baddest” category across the day,
suggesting that the forwarding table entries in the operational
router were changing across time.

Disambiguation to a single ingress point:Computing de-
mands for outbound flows is also complicated by uncertainty
about which ingress link generated the traffic. Approximately
35%–45% of the bytes leaving the network at the peering links
were associated with multiple candidate ingress links. Some of
this ambiguity could be resolved by the routing model. In fact,
between one-third and one-fourth of these bytes could be re-
solved to a single ingress link after applying the disambiguation
process outlined in Fig. 6, as seen by the “perfect” column in
Table V. With further inspection, we see that some of these de-
mands came from customers with access links on the east and
west coasts. Traffic from these access links are likely to exit the
network on different egress links. However, complications arise
when a customer has more than one link in the same region
of the country. For example, a single customer may have two
access links terminating on different routers in the same city.
This offers protection from the failure of a single router without
forcing customer traffic to enter the network in a different city.

Disambiguation to multiple ingress points in the same city:
The routing model typically cannot disambiguate traffic from
two access links from the same customer in the same city. Traffic
from these two access links would typically exit the network on
the same peering links for most (if not all) destination prefixes,
and often follows a similar path through the ISP backbone. This
occurs when the intradomain path costs to and from these two ac-
cess links are very similar, if not the same. In this case, success-
fully disambiguating the two access links is not very important!
Associating the traffic with the wrong access link does not have
much influence on the flow of traffic in the backbone. In fact, as-
suming that the traffic was split evenly across the two links, as
shown in Fig. 6, is quite reasonable. Customers often configure
their routers to perform load balancing across their multiple ac-
cess links, resulting in a nearly even division of the traffic on
the two links. Overall, disambiguation to a single city accounts
for 13%–19% of the outbound bytes, as seen in the “one city”
column in Table V. In total, about two-thirds of the ambiguous
ingress sets were resolved to one or more access links in a single
city (“perfect” or “one city”).

Disambiguation to multiple ingress points in different
cities: Some customers are multihomed to routers in different
cities, and may even generate traffic from a single block of
IP addresses on both links. Such multihoming is useful for
additional fault-tolerance, or because the customer has sites in
multiple geographic locations. When the homing locations are
relatively close to each other, the routing model may not be able
to disambiguate the set of ingress links. This is a situation where
additional measurement at the ingress links would be useful.
Still, overall, the disambiguation process is quite successful.
Only 2.5%–4% of the bytes could not be associated with (one
or more) point-to-multipoint demands. These results are shown
in the “Outbound (miss)” column in Table V, which includes
the contribution of the “Outbound (baddest)” statistics. Based
on these results, the rest of this section focuses on analyzing
the statistical properties of the observed demands.

(a)

(b)

Fig. 8. Percent bytes attributed to top ranked traffic volumes, listed in
decreasing order.

C. Traffic Analysis

In this section, we present initial results of a statistical
analysis of the traffic demands. We focus on: 1) statistical char-
acteristics of inbound and outbound traffic, at different levels
of aggregation (point-to-multipoint demands, or corresponding
point-to-point loads on edge routers); 2) time-of-day variations
in traffic demands; and 3) variations at coinciding time intervals
within the two weeks.

Statistical characteristics of inbound and outbound
traffic: A network with many access and peering links has
a large number of point-to-multipoint demands. However, a
very small proportion of these demands contribute the majority
of the traffic. In Fig. 8, we rank point-to-multipoint demands
(or point-to-point loads) from largest to smallest, and plot the
percentage of the total traffic attributable to each. These plots
are restricted to the upper tail of the distribution, accounting for
80% of the total traffic. We refer to the particular demands (or
loads) in this upper tail as theheavy hitters. We found the plots
to be nearly linear on the log–log scale, as is characteristic of
a Zipf-like distribution, where the contribution of theth most
popular item varies as , for some . We found this general
pattern to hold for all data sets and at all levels of temporal
and spatial aggregation. Fig. 8(b) shows greater concentration
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(a)

(b)

Fig. 9. Time-of-day effects in the measured traffic demands for November 3
and 4.

of traffic over fewer heavy hitters in outbound versus inbound
traffic. Similar trends have been seen in earlier studies that
consider the load on individual links or servers. For example,
link-level traces show that the distribution of traffic at the prefix
and AS level follows Zipf’s law [19]. Studies of the World
Wide Web have shown that a small fraction of the requests,
resources, and servers are responsible for the bulk of the traffic
[20], [21]. The small number of heavy hitters has important
implications for traffic engineering. On the positive side, since
the leading heavy hitters account for so much traffic, care in
routing just these demands should provide most of the benefit.
In addition, when measuring traffic demands, relatively coarse
statistical subsampling should suffice. On the negative side,
if the internal routing configuration concentrates heavy-hitter
traffic on common links, through error or inherent fluctuations
in the identities of the heavy hitters, the negative impact on
performance could be severe. In general, the concentration of
demand on a few sources opens up the possibility of large-scale
network variability if these sources change behavior.

Time-of-day variations in traffic demands: In Fig. 9(a) we
plot the percentage of bytes attributable to the top 500 point-
to-multipoint outbound demands over a half hour, ranked in
decreasing order. The graph includes 48 curves, to cover the

(a)

(b)

Fig. 10. Stability of the measured traffic demands across time (two-
dimensional histograms).

day. (The identities of the top 500 may change from half hour to
half hour.) There is significant variation in demand sizes at the
highest ranks. We have looked at the top demands more closely,
and found that they may exhibit quite different time-of-day
patterns. This is demonstrated in Fig. 9(b), where we have
plotted the time of day variation for three heavy demands en-
tering the network in San Francisco. We informally label these
three demands as domestic consumer, domestic business, and
international, because they correspond of the usage patterns of
consumer and business domestic dial traffic, with international
traffic roughly similar to a time-shifted business pattern.

Traffic variations at coinciding time intervals within the
two weeks:To investigate change among the heavy hitters more
systematically, we consider grouping the demands into quan-
tiles (e.g., the first group corresponds to the highest ranked de-
mands together accounting for 5% of the traffic, the second
group to the remaining highest ranked demands accounting for
the next 5% of the traffic, and so forth). How do the group-
ings change with time-of-day? Fig. 10 provides a two-dimen-
sional histogram, where the grayscale of theth block indi-
cates the proportion of the demands in quantilein one time pe-
riod that move to quantilein another time period, hours later.
In Fig. 10(a), the lag is a half hour, and in Fig. 10(b) it is 24 h.
The top demands (top right corner) show the least variation. In
both cases, the concentration of mass along the diagonal indi-
cates little quantile jumping. Demands in a given quantile ap-
pear in the same quantile or a nearby quantile 24 h later. Varying

over the 24-h interval we found the mass along the diagonal
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first tends to diffuse and the band widens up to h, where-
upon the mass then tends to concentrate and the band narrows up
to h. These preliminary results suggest a certain amount
of stability in the identity of the top demands across time.

VI. CONCLUSION

Engineering a large ISP backbone introduces fundamental
challenges that stem from the dynamic nature of user behavior
and reachability information, and the lack of end-to-end con-
trol over the path of a flow. Yet, careful engineering of the net-
work is important, since the routing configuration and backbone
topology have significant implications on user performance and
resource efficiency. In this paper, we propose a model of traffic
demands that captures 1) the volume of data; 2) the entry point
into the ISP network; and 3) destination reachability informa-
tion. This simple abstraction facilitates a wide range of traffic
engineering applications, such as performance debugging, route
optimization, and capacity planning. We also present a method-
ology for populating the demand model from flow-level mea-
surements and interdomain routing information, and apply our
approach to a large operational ISP network. Our analysis of
the measured demands reveals significant variations in demand
sizes and popularities by time-of-day, but a certain amount of
stability between consecutive days.

In populating our demand model, we faced three main chal-
lenges:

• Working with four different datasets: Organizing ac-
cess to all data sets during the same time period is dif-
ficult. Insuring their completeness and consistency posed
both operational and computational challenges. Last, de-
termining how best to join the datasets forced us to address
the questions of subsampling and temporal uncertainties
between the datasets.

• Ambiguity of ingress points: For a flow measured only
at its egress link, determining the ingress link is chal-
lenging. This difficulty arises because hop-by-hop routing
(based on the destination IP address) implies that down-
stream routers do not necessarily have (or need!) informa-
tion about how packets entered the domain. In addition,
the increasing decentralization of the Internet makes it dif-
ficult for any one ISP to know the source IP addresses of
downstream domains.

• Dynamics of the egress points:Policy changes in one do-
main can have unforeseen implications on the reachability
information seen by other ISPs. We see evidence of this
in the churn in the forwarding tables across time, and the
resulting inconsistencies between the data sets. This com-
plicated the identification the set of egress links for traffic
demands.

Despite these challenges, our approach for populating the
demand model performs quite well. Inconsistencies that arose
could be explained by natural network dynamics.

Our ongoing work focuses on how to compute the traffic de-
mands in real time in an efficient and accurate manner. This
requires a scalable monitoring architecture for collecting mea-
surement data:

• Flow/packet sampling: Collecting fine-grain traffic
statistics introduces a large amount of measurement

data. Relatively aggressive sampling should suffice for
estimating the traffic demands, especially since the traffic
volumes are dominated by a small number of “heavy
hitters” as discussed in Section V-C. We are interacting
with router vendors to socialize the need for good support
for packet-header sampling in the line cards. The industry
needs to treat measurement functionality as a “first class”
feature of routers and line cards.

• Distributed collection infrastructure: Transferring a
large amount of measurement records to a central col-
lection machine places a load on the network and on the
processor. A distributed infrastructure can substantially
reduce the overhead of collecting and processing the data.
With the core research and development team for the
AT&T IP backbone, we are in the process of developing
a distributed infrastructure for collecting and aggregating
measurement data.

• Measurement at ingress points:Computing traffic de-
mands from ingress measurements is more accurate than
depending on route disambiguation to identify the ingress
points. Efficient sampling techniques and a distributed col-
lection infrastructure reduce the overhead of enabling mea-
surement at the edge links. However, some routers and line
cards may not have efficient support for measurement. Se-
lective measurement at certain important edge links may be
sufficient to capture the bulk of the important traffic.

An accurate real-time view of topology and reachability data is
also important:

• Online intradomain data: Computing the traffic de-
mands and engineering the flow of traffic through
the backbone requires an accurate view of the current
topology and routing configuration. This requires tracking
the up/down status of individual routers and links, as well
as changes in the configuration of the routing protocols
(e.g., OSPF weights). With our colleagues, we are in the
process of building an intradomain route monitor that
captures this information.

• Online reachability data: The computation of the traffic
demands depends on associating each destination prefix
with a set of egress links. The set of egress links changes
over time. However, frequent dumping of the forwarding
tables imposes a high overhead on the router. Monitoring
the BGP advertisements sent through the backbone is a
more efficient way to collect reachability information.
With the core research and development team, we are in
the process of building an interdomain route monitor that
tracks this information.

In addition to evolving the monitoring infrastructure, we plan
to devote more attention to the analysis our measured traffic
demands. The network-wide view of configuration and usage
data in an ISP backbone provides a rich opportunity to charac-
terize the fluctuations in IP traffic demands. Our initial analysis
suggests that these demands have interesting spatial and tem-
poral properties with significant implications for Internet traffic
engineering. Further statistical analysis of this data would lend
insight into new techniques for the design and operation of IP
backbone networks.
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