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Abstract—Engineering a large IP backbone network withoutan  (ISP) responsible for administering the backbone does not have
accurate network-wide view of the traffic demands is challenging. end-to-end control of the path from the source to the destina-
Shifts in user behavior, changes in routing policies, and failures of tion. The majority of traffic in an Internet Service Provider

network elements can result in significant (and sudden) fluctua- twork t | ltiole administrative d .
tions in load. In this paper, we present a model of traffic demands network travels across multiplie administrative aomains.

to support traffic engineering and performance debugging of large ~ The networking community has responded with research and
Internet Service Provider networks. By defining a traffic demand development on increasing link and router capacity and pro-
as a volume of load originating from an ingress link and destined to viding a more easily configurable infrastructure. However, rel-

a set of egress links, we can capture and predict how routing affects _.,. . . .
the traffic traveling between domains. To infer the traffic demands, atively little attention has been given to the systems needed to

we propose a measurement methodology that combines flow-level9uide the operation and management of the improved infrastruc-
measurements collected at all ingress links with reachability infor- ture. In particular, there has been very little work on models for

mation about all egress links. We discuss how to cope with situa- traffic demands or on techniques for populating these models
tions where practical considerations limit the amount and quality  from network measurements. Most existing measurement tech-

of the necessary data. Specifically, we show how to infer interdo- . : : : -
main traffic demands using measurements collected at a smaller niques provide views of theffectsof the traffic demands—poor

number of edge links—the peering links connecting to neighboring €nd-to-end performance (e.g., high delay and low throughput)
providers. We report on our experiences in deriving the traffic de- and heavy load (e.g., high link utilization and long queues).
mands in the AT&T IP Backbone, by collecting, validating, and These effects are captured by active measurements of delay,
joining very large and diverse sets of usage, configuration, and loss, or throughput on a path through the network [1], or pas-
routing data over extended periods of time. The paper concludes sive monitoring of individual routers and links [2], [3].

with a preliminary analysis of the observed dynamics of the traffic . .
demands and a discussion of the practical implications for traffic However, managing an ISP backbone begs fetaork-wide

engineering. understanding of the flow of traffic. An accurate view of the
Index Terms—internet, measurement, routing, traffic engi- traffic demands is crucial for a number of important tasks, such
neering. as debugging performance problems, optimizing the configura-

tion of the routing protocols, and planning the rollout of new
capacity. In particular, the recently formed IETF working group
on Internet Traffic Engineering recognizes that 1) accurate de-
HE engineering of large IP backbone networks facesmand models are crucial for effective traffic engineering of IP
number of difficult challenges. Owing to the astonishingetworks, but 2) developing such models and populating them
success of Internet applications and the continuing rollouia appropriate measurements are open problems [4], [5]. These
of faster access technologies, demand for bandwidth acress precisely the topics we address in this paper. As far as we
backbones is growing explosively. In addition, shifts in use&now, no comparable study of the network-wide traffic demands
behavior, publishing of new Web content, and deploymeft an ISP backbone has been conducted to date.
of new applications result in significant fluctuations in the How should traffic demands be modeled and inferred from
volume of traffic exchanged between various hosts in the Ifetwork measurements? At one extreme, IP traffic could be rep-
ternet. Furthermore, changes in routing policies and failures@kented at the level of individual source—destination pairs, pos-
network elements can cause sudden fluctuations in how tra@my aggregating sources and destinations to the network ad-
flows through the backbone. This leaves network operataffess or autonomous system level. Suctead-to-endraffic
in the difficult situation of trying to tune the configuration ofmatrix would lend insight into the fluctuations in load over the
the network to adapt to changes in the traffic demands. Thfernet across time. However, representing all hosts or network
task is particularly daunting since the Internet Service Providgfidresses would result in an extremely large traffic matrix. In
addition, no single ISP is likely to see all of the traffic to and
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destination (network address) is typically reachable from mul- flow ; -
tiple edge routers, as shown in Elg. 1. As a rgsult, IP traffic memal  Jecess links
demands are naturally modeledpasnt-to-multipointvolumes.

This is a simple, but crucial difference between IP networks amg@. 2. Traffic flows in an ISP backbone.
connection-oriented networks (such as Frame Relay), where de-

mands are naturally modeled as point-to-point volumes. The §¢tmtiple times and locations are remarkably coherent, and
of egress links depends on the ISP's routing policies and thgssent a detailed explanation of the occasional inconsistencies
Border Gateway Protocol (BGP) advertisements received frafht arise from network dynamics.
neighboring domains. The selection of a unique link from this gy analysis of the measured demands focuses on the time
set depends on m'Frado_mam routing |nformat|0n. Inthe exam_pjs%me of tens of minutes to hours or days. Traffic engineering
suppose the traffic exits the network via the top egress linfgsys occur on this time scale [7], where fundamental shifts
A Injk failure or a change in t.he configuration of intradomain, \;ser behavior and changes in network routing introduce
routing could cause the traffic to move to the bottom egreggic variability beyond statistical fluctuations. On a smaller
link. A change in the ISP’s interdomain policies or the withgime scale, Internet traffic fluctuates in reaction to bursty user
drawal of a route advertisement from a neighboring domaguhayior and congestion control mechanisms. In populating
could also alter the flow of traffic. Modeling interdomain trafficy,,; gemand model. we focus on large aggregates of traffic
as point-to-pointwould couple the demand model to the inteMakner than the dynamics of individual flows. The distribution
routing configuration, making it difficult to predict how suchyf traffic through the network is sensitive to the dynamics of
changes would affect network load; the routing change its¢lfierdomain routing, which may change the set of egress points
could have a major impact on the point-to-point demands.  for g particular destination. Our demand model can be applied
In this paper, first we propose a simple traffic demand modg jnyestigate thémpactof such changes in reachability in-

that effectively handles interdomain traffic. As discussed in Seﬁ)'rmation, due to network failures, reconfigurations, or policy
tion Il, the model is invariant to changes in the internal rOUti”Shanges.

configuration, and as such provides a sound basis for traffic en-
gineering. Our demand model allows us to predict how changing
the internal routing configuration impacts the distribution of
load on internal links. Second, we provide a methodology for This section presents a brief overview of ISP backbone ar-
populating the model from usage measurements collectedchitectures and routing protocols. We also propose a model for
ingress links and reachability information collected at egre!R traffic demands, and discuss its application to several impor-
links. Th|rd, we consider how to app|y the model when praéant trafﬁc-engineering tasks. Then, we describe how to com-
tical considerations severely limit the location of usage meBute these demands from flow-level measurements at ingress
surements to a much smaller number of edge links. Specificalijks and reachability information about egress links.
in Section Ill, we propose a methodology for populating the in-
terdomain demand model when usage measurements are limiedSP Backbone Networks
to the links to neighboring service providers, coping (in partic- An ISP backbone network consists of a collection of IP
ular) with not having usage measurements at customer acaesgers and bidirectional layer-three links, as shown in Fig. 2.
points. Backbondinks connect routers inside the ISP backbone, and
Next, we describe our practical experiences applying tlelgelinks connect to downstream customers or neighboring
methods of Sections Il and Il in a large operational ISProviders. Edge links are divided insmcesdinks andpeering
network—the AT&T IP Backbone. This is where we muslinks. For example, an access link could connect to a modem
confront practical limitations in the usage, configuration, angink for dial-up users, a web-hosting complex, or a particular
routing data available in today’s IP networks. In Section IMjusiness or university campus. Multihomed customers have
we describe the challenges of processing router configuratiovo or more access links for higher capacity, load balancing,
files, forwarding tables, flow-level measurements, and SNM#t fault tolerance. Peering links connect to neighboring service
data collected from multiple locations in the network over aproviders. A peering link could connect to a public Internet
extended period of time. In particular, we highlight how wexchange point, or directly to a private peer or transit provider.
addressed several practical constraints that arose in procesgingSP often has multiple peering links to each neighboring
the large (and lossy) flow-level measurements. In Section Movider, typically in different geographic locations. Depending
we present results showing the effectiveness of the techniquesthe contractual relationships, the ISP may or may not allow
in Sections Il and Ill. We show that the data sets collectexpair of peers to communicate across the backbone.

Il. TRAFFIC DEMANDS
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Each link is bidirectional. When carrying traffic into the ISP Later in the tie-breaking process, the selection of a route (and
backbone, an edge link is referred to asirgresslink; when the corresponding egress link) depends on information from the
carrying traffic away from the ISP backbone, an edge link is raatradomainrouting protocol. For example, suppose the BGP
ferred to as aregresslink. Fig. 2 illustrates the four possible selection process results in two routes leaving the ISP backbone
scenarios—internal traffic that travels from an ingress accesin New York and San Francisco, respectively. The egress link for
link to an egress access linkansit traffic that travels from an a particular packet would depend on where this traffic entered
ingress peering link to an egress peering limhoundtraffic the network. The packet would travel to the “closest” egress
that travels from an ingress peering link to an egress access lilikg, where closeness depends on the intradomain routing pa-
andoutboundtraffic that travels from an ingress access link toameters. For example, traffic entering the ISP backbone in Los
an egress peering link. Much of the traffic in the Internet mugtngeles would travel to the San Francisco egress link, whereas
travel through multiple domains en route from the source to thmffic entering the ISP backbone in Washington, D.C., would
destination. Hence, most of the traffic in an ISP backbone etnavel to the New York egress link. Finally, if both egress links
ters or leaves the network on a peering link. As such, an I®Rve the same shortest path cost, the tie is broken by com-
rarely has complete control of the entire path from the sourcepiaring the identifiers of the two routers responsible for adver-
the destination. Even for internal traffic, the customer exercistsing these routes. The dependence on intradomain routing im-
control over how the traffic enters the ISP backbone, and hgWes that a change in the backbone topology or routing config-
the traffic travels from the egress link through the customerngation could change which egress link is selected. Similarly, if
network to the destination host. traffic enters the backbone in a different location, the egress link

The path traveled by an IP packet depends on the interuld change.
play between interdomain and intradomain routing. The ISP To be practical, our representation of traffic demands should
employs an intradomain routing protocol, such as OSPF enable experimentation with changes to the network topology
IS-1S, to select paths through the backbone between ingressl routing configuration. Hence, we associate each traffic de-
and egress links. Under OSPF and IS-1S, the routers exchangand with asetof egress links that could carry the traffic. The
link-state information and forward packets along shortest patisgt represents the outcome of the early stages of the BGP route-
based on the sum of link weights chosen by the ISP. Typicalbglection process, before the consideration of the intradomain
customers and peers do not participate directly in these ppretocol. This is in contrast to models that use a multipoint set to
tocols with the ISP. Communicating across domains requireapture uncertainty in the distribution of customer traffic across
coordination with customers and peers to exchange reachaet of different destinations [10]. In our model, the selection of
bility information. Interdomain routing operates at the level od particular egress link within the set depends on the configura-
a network address, or prefix, consisting of an IP address amsh of intradomain and interdomain routing. The ISP typically
a mask length (e.g., 135.207.119.0/24 has a 24-bit mask that very limited control over the selection of the ingress link
specifies a block of 256 contiguous addresses). An ISP typi the traffic. The selection of the ingress link depends on the
cally uses static routes to direct traffic toward customers whouting policies of other autonomous systems and directly con-
have a fixed set of network addresses and do not participatengcted customers. For our initial work on computing and ana-
an interdomain routing protocol. BGP is used to exchange dyzing the traffic matrix, we do not attempt to model how the
namic reachability information with the remaining custometiagress link is selected. Our model of a traffic demand consists
and neighboring providers. of an ingress link, a set of egress links, and a volume of load.

B. Demand Model C. Traffic-Engineering Applications

The interplay between intradomain and interdomain routing The volume of load represents the quantity of traffic dis-
has important implications for how we define a traffic demandributed from the ingress link to the set of possible egress links,
The ISP network lies in the middle of the Internet, and magveraged over some time scale. This introduces issues of both
not have a direct connection to the sender or the receiverspfatial and temporal aggregation. On the one extreme, it is pos-
any particular flow of packets. As such, a particular destinaible to compute a separate demand for each source—destination
tion prefix may be reachable viaultiple egress links from the pair that exchanges traffic across the backbone. On the other
ISP. A multihomed customer may receive traffic on two or morextreme, there could be a single demand for all traffic with the
links that connect to different points in the ISP backbone. Liksame ingress link and set of egress links. The appropriate choice
wise, an ISP may have multiple links connecting to a neigldepends on the application. For example, consider the task of
boring provider. When a router learns multiple routes to theptimizing the configuration of intradomain routing to balance
same destination prefix, the ultimate decision of which routeetwork load [11]. This application could combine all traffic
to use depends on the BGP route-selection process. The dedih the same ingress link and set of egress links into a single
sion process involves multiple steps to select from the setdgmand. Changes in intradomain routing could affect the selec-
advertised routes. First, import policies may prefer one routen of the egress link for each demand. The details of which
over another. For example, the router may prefer routes via queckets or flows contribute to the demand are not important.
neighboring autonomous system over another. Then, the dédinor extensions to this approach could define a separate de-
sion process considers the length of the path, in terms of timand for each traffic class under differentiated services. This
number of autonomous systems involved, followed by sevemabuld enable the route optimization to consider the load im-
other criteria [8], [9]. parted on each link by each traffic class.
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As another application, suppose an ISP is consideringtte current set of demands over a variety of time scales and
change in its BGP import policies for routes to a particulastudy the traffic dynamics.
destination prefix belonging to another provider. A destination
prefix that receives a large amount of traffic could result iy pmeasurement Methodology
heavy congestion on one or more peering links. Redirecting
this load to a different set of egress links could alleviate the To compute the traffic demands, fine-grain traffic measure-
congestion. BGP route advertisements, or entries in the B@&ENts should be collected at @gresslinks. This enables us
tables, could be used to determine the egress links for a destfi@aldentify the traffic as it enters the ISP backbone. However,
tion prefix. A change in BGP import policies, such as filteringollecting packet-level traces at each ingress link would be pro-
a route advertisement or assigning different local preferengiitively expensive. In addition, traffic engineering does not
values, would change the set of egress links associated with fhggessarily need to operate at the small time scale of individual
destination prefix. Similarly, network failures, policy changeBackets. Instead, we propose tflatv-level statistics should be
in other domains, and even network congestion could res@llected at each ingress link. These measurements can be col-
in fluctuations in the BGP reachability information [12], [13].lected directly by the incident router [15], [16]. A flow is defined
These intentional and unintentional changes would result irf& @ set of packets that match in the key IP and TCP/UDP header
new traffic demand. To experiment with different sets of egre§glds (such as the source and destination addresses, and port
links, the ISP would need to know which traffic is associated@umbers) and arrive on the same ingress link. The router should
with this particular prefix. For this application, traffic destinedyenerate a record summarizing the traffic statistics on a regular
to this prefix should not be aggregated with other traffic withasis, either after the flow has become inactive or after an ex-
the same ingress link and set of egress links. tended period of activity. The flow record should include suffi-
An ISP may also need to predict the effects of adding étentinformation for computing the traffic demands: tingut
moving an access link. For example, the ISP could rehome litk and thedest IP address to identify the end-points of the
existing customer to a different edge router. In this situation, alemand, thetart andfinish  times of the flow, and the total
outbound demands associated with this customer should origimber ofbytes in the flow. (Any additional information in
inate from the new location, and all inbound demands wouttie measurement records, such as TCP/UDP port numbers or
have a new set of egress links to reflect the rehomed access ligke-of-service bits, could be used to compute separate traffic
This would enable the ISP to predict how renoming the custon@mands for each quality-of-service class or application.) Sam-
would affect the load on the backbone. Similarly, an existing/ing of the measurements may be performed to reduce the total
customer may request a new access link for higher bandwidttesnount of data.
fault tolerance. The new link could be added to the set of egres€Computing the traffic demands requires information about
links for inbound demands. The ISP may also have informatidine destination prefixes associated with each egress link. The
about how the customer would direct outbound traffic to its aaggregation process draws on a lidést _prefix _set , of
cess links. This would enable the ISP to predict what portion nétwork addresses, each consisting of an IP address and mask
the existing outbound traffic from this customer is likely to entdength. Each prefixdest _prefix , can be associated with a
the network on the new access link. Finally, the ISP may nesét of egress linkggeachability(dest _prefix) .Inan
to estimate the effects of adding a new customer. In some sityperational network, these prefixes could be determined from
ations, the ISP may have information that can aid in predictinige forwarding tables of the routers that terminate egress links.
the demands. For example, a customer that hosts Web contamqtarticular, each forwarding-table entry identifies the next-hop
may have server logs. The traffic statistics could be aggregatetk(s) for a particular prefix. This enables identification of the
to the client prefix level [14] to predict the outbound demandsrefixes associated with each egress link. (The router connected
for the new access link. to the egress links has the most detailed view of the destination
Ultimately, the spatial aggregation of the traffic demandsrefix. Suppose a router has egress links that connect to cus-
depends on the particular application, ranging from perfolemers that were assigned contiguous blocks of IP addresses.
mance debugging and backbone traffic engineering to BAmis egress router’s forwarding table would have an entry for
policy changes and capacity planning. Likewise, the tempordch prefix to direct traffic to the appropriate access link. How-
aggregation depends on the application. Long-term capadcityer, the other routers in the ISP backbone, and the rest of the
planning could consider the traffic on a relatively coarse timaternet, do not need such detailed information. As such, the
scale, whereas debugging short-term performance probleeage router may advertise an aggregated network address to the
would require a more careful consideration of how loarkst of the backbone. In this case, information available at the
fluctuates across time. In our initial study of traffic demandsngress router would not be sufficient to identify the customer
we focus on backbone traffic engineering [7]. As such, warefix and the associated set of egress links.)
aggregate traffic with the same ingress link and set of egres€ach flow spans some time interval (frostart to
links into a single demand. In a large operational ISP networfiish ) and contributes some volume of traffibytes ).
this results in fairly large number of traffic demands. Th€omputing traffic demands across a collection of flows at
volume of load associated with each demand is identified lojfferent routers introduces a number of timing challenges. The
flow-level measurements at the ingress links. The set of egréiesv records do not capture the timing of the individual packets
links is identified based on snapshots of the forwarding tablesthin a flow. Since traffic engineering occurs on a time scale
from the routers in the operational network. Then, we computger than most flow durations, we compute demands on a time
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For each flow: (input, dest, start, finish, bytes)
dest_prefix = longest_prefix_match(dest, dest_prefix_set);
egress_set = reachability(dest_prefix);
start_bin = |start/width} * width;
finish-bin = |finish/width] * width;
if (start_bin == finish_bin)
volumefinput, egress_set, start_bin] += bytes;
else /* Compute volume of traffic for each time. bin */
byte_rate = bytes/(finish - start);
volume[input, egress_set, start_bin] += byte_rate * (start.bin + width - start);
for (time_bin = start_bin + width; time_bin < finish_bin; time_bin += width)
volume(input, egress.set, time_bin] += byte_rate * width;
volumelinput, egress_set, finish_bin] += byte_rate * (finish - finish.bin);
Output for each aggregate: (input, egress_set, time_bin, volume)

Fig. 3. Computing traffic demands based on measurements at ingress links.

scale of tens of minutes to multiple hours. Consequently, ierge amount of traffic and are vulnerable to fluctuations in
are not concerned with small variations in timing on the scaieterdomain routing, making it very important to have detailed
of less than a few minutes. We divide time into consecutivesage statistics from these locations.

width -second bins. Most flows start and finish in a single bin. By monitoring both the ingresndegress links at these loca-
When a flow spans multiple bins, we subdivide the traffic itions, we capture a large fraction of the traffic in the ISP back-
proportion to the fraction of time spent in each time period. F@one. Measurement data is available at the ingress links for in-
example, suppose a 10-kB flow spent 1 s in the first bin andd®und and transit traffic, and at the egress links for outbound
s in the second bin. Then, we associate 1 kB with the first biraffic. Reachability data is available at the egress links for all
and 9 kB with the second bin. The algorithm for computing theur types of traffic. Measuring only at the peering links intro-

traffic demands in summarized in Fig. 3. duces three main issues:
« Internal traffic: Monitoring the peering links doesot
I1l. M EASUREMENT AT PEERING LINKS capture the internal traffic sent from one access link to an-

other. Some customer traffic may travel over particularly
important access links to and from the ISP’s e-mail, Web,
and DNS services. Flow-level measurements should be
enabled on these access links—effectively treating these
connections as peering links.
Ambiguous ingress point for outbound traffic: Com-
puting theoutbounddemands that travel from access links
to peering links becomes more difficult, since flow-level
measurements are not available at ithgresspoints. In-
ferring how these flows entered the network is the main
focus of the rest of this section.
» Duplicate measurement of transit traffic: Measuring
Collecting fine-grained measurements at every ingress link  both ingress and egress traffic at the peering links may
would introduce substantial overhead in a large network. ISP result induplicatemeasurements of transit traffic. These
backbones typically include a large number of access links flows should not be counted twice.
that connect to customers at various speeds. The routers thalassifying a flow: The first step in computing the traffic
terminate these links often vary in functionality and mustemands is to classify a flow as inbound, transit, or outbound, as
perform computationally intensive access control functions itustrated in Fig. 2. The classification depends on the input and
filter traffic to/from customers. Collecting flow-level statisticsoutput links at the router that measured the flow, as summarized
at every access link is not always feasible in practice. In sorimeTable I. We initially focus our discussion on inbound and
cases, a router may not be capable of collecting fine-grain meaitbound flows, and discuss transit traffic in greater depth at
surements. In other cases, enabling measurement would implaet end of the subsection. For inbound flows, traveling from
a heavy load on the router or preclude the use of other featugepeering link to a backbone link, we can directly apply our
on the router. In contrast, a small number of high-end routarsethodology from Section Il, since flow-level measurements
are used to connect to neighboring providers. These routars available from the ingress link. The process for aggregating
typically have much fewer links with substantial functionalitthe flow records is summarized in Fig. 4, skipping the details
(including measurement functions) implemented directly dnom Fig. 3 of dividing thebytes of the flow across multiple
the interface cards. Collecting fine-grain measurements tme _bin s.
these links is much less difficult. In addition, throughout the Handling outbound flows: Outbound flows require more
Internet, the links between major service providers carry careful handling. The flow measurements provide two pieces

Collecting fine-grain measurements at each ingress link
would be the ideal way to determine the traffic demands. In
this section, we extend our methodology to measurements
collected at a much smaller number of edge links—the links
connecting the ISP to neighboring providers. We describe how
to infer where outbound traffic enters the backbone, based on
customer address information and a model of how traffic from
each of the customer’s access links would be routed across the
ISP backbone.

A. Adapted Measurement Methodology
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TABLE |
FLOW CLASSIFICATION BASED ON INPUT AND OUTPUT LINKS
Input Output Classification Action
Peer Backbone | Inbound or multi-hop transit Point-to-multipoint demand
Peer Peer Single-hop transit Point-to-multipoint demand
Backbone | Backbone | Backbone traffic Omit flow
Backbone | Peer Outbound or multi-hop transit | Identify possible ingress link(s)
Omit flow or compute demand

For each flow: {input, output, source, dest, start, finish, bytes)
dest_prefix = longest_prefix_match(dest, dest_prefix_set);
egressset = reachability(dest_prefix);
if (input.type == peer) /* Inbound or (ingress) transit flow */
compute volumefinput, egress_set, input, output, time_bin} for each bin;
else /* Outbound or (egress) transit flow */
src.prefix = longest.prefix_match(source, src.access_prefix_set);
if (src_prefix # ¢)
ingress.set = sendability(src_prefix);
compute volume[ingress_set, egress.set, input, output, time.bin] for each bin
Output for each aggregate: (ingress_set, egress_set, input, output, time_bin, volume)

Fig. 4. Computing traffic demands based on measurements at peering links.

of information that help us infer the ingress link responsibleustomer prefix. For transit flows, this matching process would
for outbound traffic—the source IP address and the input/outgail, and the associated flow record would be excluded.

links that observed the flow at the egress router. The source ad-

dress indicates which customer generated the traffic. We dan Identifying Candidate Ingress Links

match the source address with a customer prefix and, in turn;To associate each outbound flow with a set of ingress links,
match this prefix with a set of possible access links that coulge must determine which source IP addresses could introduce
have generated the traffic. (Note that we must assume that thefic on each access link. On the surface, this problem seems
source address correctly identifies the sender of the traffic. Adquivalent to determining the setdéstinatiorprefixes associ-
though this is typically the case, a small fraction of the packeigsed with each access link. However, Internet routing is not sym-
may have spoofed source addresses; that is, the sender mayrattic. Traffic to and from a customer does not necessarily leave
a bogus source address in the IP packet header to evade dejeenter the backbone on the same link. Hence, the forwarding
tion while attacking the destination host.) The pseudocode tiible of the router terminating the access link may not have suf-
Fig. 4 draws on alissrc _access _prefix _set , of the net- ficient information to identify the source prefixes. For example,
work addresses introducing traffic at access links. Each sougtgpose a customer with two IP prefixes has two access links
prefix, src _prefix , can be associated with a set of ingres® the ISP. For load-balancing purposes, the customer may wish
links based on the maendability() .We also retaininfor- to receive traffic for one prefix on the first access link, and the
mation about the input and output links that measured the flomgst of the traffic on the second access link. (This may involve
This information helps us infer which of these access link(spnfiguring static routes for these prefixes in the edge routers
could have originated the traffic, as discussed in Section IlI-Ghat terminate the access links. Alternatively, the customer may
Handling transit flows: Next, we discuss how our method-announce these routes to the ISP using a routing protocol such
ology applies to transit traffic that travels from one neighborings RIP or BGP.) In this example, each prefix would be reach-
provider to another. Transit traffic falls into two categories—able via a single access link. Yet, the customer could conceiv-
single-hop and multiple-hop, as shown in Fig. 2. A single-hagbly sendraffic from either prefix via either access link. Hence,
transit flow enters and exits the ISP backbone at the same ettgerouter forwarding tables are not sufficient for identifying the
router, without traversing any backbone links; in this case, tBeurce addresses that might generate traffic on an access link.
flow is measured once, at this router. A multihop transit flow Fortunately, an ISP typically knows the IP addresses of its
enters at one router, traverses one or more backbone links, dirdctly connected customers. In fact, the customer may be as-
exits at another router; in this case, the flow is measured twicesigned IP prefixes from a larger address block belonging to the
at the ingress and egress points. The best place to captul&R In other situations, the customer already has its own block
transit flow is at its ingress link, where we can apply the methodf IP addresses. Information about the assignment of address
ology of Section Il. To avoid double-counting the flow, we neelilocks may be available in a variety of places, including the
to discard the flow records generated by multihop transit flowSP’s database of its customers or in a configuration database.
as they leave the network. This requires distinguishing outbouAd part of provisioning a new customer, the ISP configures the
flows (introduced by an access link) from transit flows (introrouter that terminates the associated access link. Packet filters
duced by a peering link). For a flow leaving the network, the akre specified to detect and remove traffic with bogus source
gorithm in Fig. 4 attempts to match the source IP address withRaaddresses [17]. These packet filters indicate which sources
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measured

outbound flow  Peering links A backbone topology and intradomain routing configuration at the

e S time the flow was measured. For a given ingress link and set
V. NY of egress links, we determine on which egress link the flow
would exit the network. If this was not the egress link where
the flow was observed, then this ingress link can be eliminated
from consideration. In fact, knowing the path(s) from the ingress
link to the egress link provides additional information. The flow
was observed as it traveled from an input (backbone) link to an
output (peering) link at the egress router. The path of the flow
from the ingress link must includeoth of the links that ob-
served the flow. Otherwise, this ingress link should be excluded
from consideration. This process must be repeated for each of
the possible ingress links, as shown in Fig. 6. dieambigua-
tion process has three possible outcomes:
might send traffic via a particular access link. The packet fil- , ope ingress link: A single ingress link could have gen-
ters for each interface are specified in the router’s configuration  grated the traffic. This is the ideal situation, resulting in a
file. By parsing the router configuration files, we can determine  gjngle point-to-multipoint demand.
which source prefixes to associate with each access link. From, pytiple ingress links: More than one of the candidate
this information, we can determine the set of access links asso-  jngress links could have generated the traffic. This would

ciated with each source prefix. _ happen if multiple ingress links would send the traffic to
Using packet filters to identify source IP addresses ismostap-  the same egress router, and would enter this router on the

Fig. 5. Example of disambiguating the ingress link.

propriate for access links to directly connected customers that
do not connect to other service providers, or have downstream
customers of their own. For customers tbatconnect to other
service providers, or have downstream customers of their own,
it is difficult to specify static packet filters for each source prefix
on each possible ingress link. For example, when a neighboring

same input link. Traffic from these access links may follow

a similar path through the backbone, imparting load on
some of the same links and routers. When multiple ac-
cess links could have generated the traffic, the disambigua-
tion process generates multiple demands, each with the an
equal fraction of the traffic.

domain acquires a new customer, traffic from these new source,
addresses could enter the ISP’s backbone. Although the down-
stream provider typically performs packet filtering, these filters
may not be known to the upstream ISP. This is a fundamental
SSuSihabanisesinine ”.“emet gueio th.e. use of dyngmm routm% similar manner, the routing model is useful for verifying the
protocols based on destination reachability information. Intheégrrectness of the inbound and transit demands.

snuguons, our measurement methodology would argue for Perrpe disambiguation process depends on knowing the pos-
forming flow-level measurements at the ingress links, rather,

. . . &hhle paths from each ingress link to each egress link. We ob-
than depending on knowing the set of links where these SOUTEER this information from a routing model that captures the de-
could enter the ISP backbone. tails of path selection in the ISP backbone. For each point-to-
. . multipoint demand, the routing model determines the particular
C. Matching Flows With Routes egress point as well as the path(s) through the network from
For inbound and transit flows, the algorithm in Fig. 4 rethe ingress link to the egress link. The set of egress links repre-
sults in a point-to-multipoint demand. However, each outbourg@nts the outcome of the early steps of the BGP route-selection
flow is associated with aetof ingress Iinks, reSUlting in mul- process. The routing model captures the last two Steps_se|ec-
tipoint-to-multipoint aggregate. Computing point-to-multipointion of the shortest path egress link(s) based on the intradomain
demands for outbound traffic requires an additional step to d@uting protocol and tie-breaking based on the router identifier.
terminewhichaccess link initiated the traffic. Knowledge of in-The main complexity stems from the modeling of intradomain
tradomain routing can help resolve the ambiguity. For exampl@uting. Our routing model [7] captures the details of OSPF
consider a source IP address that is associated with access I}@l@ing in networks with multiple areas, including the splitting
in Los Angeles and Washington, D.C., as shown by the two “3j traffic across multiple shortest path routes. Snapshots of the
symbols in Fig. 5. Suppose the customer sends traffic to a desater forwarding tables from the operational network have been

tination with egress links in San Francisco and New YOI’k, a%ed to Verify the correctness of our routing software.
the actual flow was observed leaving the backbone on a peering

link in San Francisco. Suppose that traffic from the Washington,
D.C., access link to that destination would have been routed to
the New York peering link. Then, the flow observed in San Fran- This section describes our experiences harvesting, parsing,
cisco could not have originated from the D.C. access link. land joining four large data sets, each collected from multiple
stead, the flow entered the ISP backbone in Los Angeles. locations in the AT&T IP Backbone. Monitoring the peering
Determining whether an outbound flow could have enterdithks produces, on average, one byte of measurement data for
the network at a given ingress link requires knowledge of tlevery 138 bytes of data traffic. We describe how we join these

Zero ingress links: If none of the candidate ingress
links could have generated the traffic, the disambiguation
process has failed and the flow record is discarded. These
“misses” are discussed in more detail in Section V-B.

IV. DATA SETS FROMAT&T B ACKBONE
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For each aggregate: (ingress_set, egress_set, input, output, time_bin, volume)
For each a in ingress_set
route = Route (a, egress_set);
if (route does not use input and output links)
remove a from ingress_set;
if (ingress.set # ¢)
for each a in ingress_set
dvolumela, egress_set, time_bin] += volume/size_of(ingress.set};
else
count as a miss;
Output for each demand: (a, egress_set, time_bin, dvolume)

Fig. 6. Disambiguating the set of ingress links based on routing information.

TABLE I
DATASETS AND KEY FIELDS USED IN COMPUTING AND VALIDATING THE TRAFFIC DEMANDS

Dataset Location Key Fields

Configuration files Router | Per interface: IP address, name, type
(peer/access/backbone), and capacity

Per backbone interface: OSPF configuration (weight
and area)

Per access interface: network addresses for packet filters

Forwarding tables Router | Per interface: set of network addresses (IP address and
prefix length)

Netflow logs Peer link | Per flow: input and output interfaces (SNMP index), src
and dest IP addresses, start and finish times, and
number of bytes and packets

SNMP data Interface | Per interface: SNMP index, IP address, name, and
utilization

flow-level measurements with information from router configthe next-hop interface(s) for each destination prefix (e.g.,
uration files, router forwarding tables, and SNMP data to cormit35.207.0.0/16 12.126.223.194 Serial2/0/0:26"). We use the
pute the traffic demands. Then, we discuss how we addres$eavarding tables to associate each destination prefix with
several practical constraints in processing the large set of floa-set of egress links. The name of the next-hop interface is
level measurements. joined with the name of the corresponding egress link from the
router configuration files. Joining this information produces

A. Data Sets the list, dest _prefix _set , of destination prefixes and the
The computation of the traffic demands draws on several difiap, reachability() , of each destination prefix to a set
ferent data sets, as summarized in Table II. of egress links. In addition, the forwarding tables are used to

Router configuration files: Router configuration files reflect verify the correctness of the routing model. Having a snapshot
the configuration of a router as part of the IP network. The filef the forwarding tables close together in time enables us
specifiesthe configuration ofthe router hardware, the partitioniitg determine how each router forwarded traffic toward each
ofresources (e.qg., buffers and link capacity), the routing protocelgstination prefix. In particular, the forwarding tables enable
(e.g., static routes, OSPF, and BGP), and the packet-forwardirgyto identify which subset of the backbone links would carry
policies. Aglobalview ofthe network topology and configurationtraffic destined to a particular prefix. These paths were checked
can be constructed by joining information across the configuragainst the routes computed by our routing model.
tionfiles ofthe variousroutersinthe ISP’sbackbone[18]. Thisen- Netflow records: The flow-level measurements were col-
ables us to identify all of the routers and links, and their connelected by enabling Netflow [15] on each of routers that ter-
tivity. In addition, the joined configuration files enable us to deminate peering links. Each router exports the measurements as
termine the type of each link (access, peering, or backbone) \H3P packets in groups of one to thirty flow records. These UDP
well as the packet filters associated with each access link. Tpeckets are sent to a collection server. Each flow record corre-
information is important for aggregating the flow-level measponds to a collection of packets that match in their key IP and
surements. Finally, the configuration files indicate the link c&FCP/UDP header fields and were routed in the same manner
pacities, as well as the OSPF weight and area for each backbree, same input and output link, and same forwarding-table
link, which are necessary input for the routing model. entry). The record includes the packet header and routing infor-

Router forwarding tables: Each router has a forwardingmation, as well as the time (i.e., start and finish time in seconds)
table that identifies the IP address(es) and name(s) afd size (i.e., number of bytes and packets) of the flow. Our
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analysis focuses on the source and destination IP addressesT @ congestion control do not arise in this context. The dom-
input and output links, the start and finish time, and the numbieiance of UDP traffic, coupled with the limited bandwidth, re-
of bytes. The other fields in the Netflow records could be useslts in a nearly random sampling of the measurement records.
to compute separate traffic demands for different subsets of ffeetest our hypothesis of random packet loss, we analyzed the
traffic. loss patterns based on the sequence numbers of the Netflow
SNMP interface indices: Processing a Netflow record re-records that arrived successfully. Detailed analysis of the loss
quires associating the input and output link that observed tbiaracteristics showed that the distribution of the number of
flow with the corresponding links in our model of the networkonsecutive losses is consistent with assuming independent loss.
topology. However, the Netflow record identifies each link ilBased of the assumption of random independent loss, we apply
terms of an integer SNMP index, whereas the forwarding tablesorrection factor to the received flow records to account for
and router configuration files reference a link by its name andst measurement data, taking in to account the fact that the loss
IP address. The SNMP index is an integer value that uniquebte varies across time and (potentially) across routers. First, we
identifies each interface in the router. The index does not changistermine the loss rate during each (ten-minute) time interval
unless the interface is moved or another interface is installedfét each router (and each “engine” that exports Netflow data),
the same router. However, this identifier is not available in thgased on sequence numbers in the stream of flow records. Then,
router configuration files or the router forwarding tables. Penive assume that flows that are observed are statistically similar
odic polling of the router's SNMP variables allows us to deto other flows that ended during the same time period. We apply
termine the IP address and name associated with each SN¥¢drrection factor based on the loss probability during that time
index. SNMP data also includes statistics about the numberp@‘riod, corresponding to the time that the flow record was ex-
bytes carried on each link on a five-minute time scale. We usggrted to the collection server. This correction factor is applied
these statistics as an independent verification of the loads ca@all bytes within the flow. To verify our approach, and to select

puted by aggregating the Netflow data. the ten-minute interval for applying the loss correction, we com-
pared our corrected Netflow data against independent link-load
B. Practical Constraints statistics from SNMP. For example, Fig. 7 plots the utilization

of both directions of a peering link on a 1-h timescale over the

i The processing O,f the Netﬂow data intrgduced several Pralsurse of a day. The plots for loss-corrected Netflow match the
tical challenges, which we briefly summarize: SNMP statistics relatively closely.

Router clock synchronization: Each router synchronizes p,ia sets from multiple time periods: Computing the

the clock of its route processor to a central server Usif@.ic jemands required joining four independent data sets,
the Network Time Protocol (NTP). However, the clocks 0R,cp collected from multiple locations in the network at
individual interface cards are not always synchronized, due dkerent times during the day. This introduces significant chal-
a historical bug in Cisco’s Internet operating system. We aglqeq in joining and analyzing the data. These data sets also
dresseq this problem by gllgnmg the Netflow records collect ovide a unique opportunity to quantify the effects of routing
on the interface cards with records from the route processpigapility on an operational network. Table Il summarizes
All timestamps within the Netflow data are relative to a basg s gata sets used in the experiments in the next section. We
clock. For each router, it suffices to adjust the base clock of t'ﬂ?cus on four days in November 1999. November 3 and 4
records originating each link with those originated by the routge 4 Wednesday and a Thursday, respectively. November 11
processor. In post-processing the Netflow data, we realign €y 15 are a Thursday and a Friday, respectively. These flow
base clock of each interface to match with the most recefbasyrements enable us to compare traffic on two consecutive
record from the route processor. The route processor receiygss and two consecutive weeks. Daily configuration files are
a relatively small number of data packets (such as routindaq to generate the topology model. Each experiment uses
protocol traffic and packets with expired time-to-live (TTLkne most recent forwarding tables and SNMP data available.
values), compared to the interface car(_JIs. Still, flow records 3fie SNMP data is the least sensitive, since the SNMP index
generated by the route processor quite frequently on a by§y each link does not change unless the network undergoes
router; during a sampled 24-h period, the interarrival time of sy ctural change; these changes occur infrequently on the
flow records from the route processor has a mean of 0.32 S 8ffliers that terminate peering links. Independent verification

a maximum of 91.4 s. Hence, the uncertainty introduced B¥.q req that this did not occur during the periods of our data
correcting for timestamp problems is very small compared {Q);action.

the time scale of the subsequent aggregation.

Lost measurement data:Netflow records are transmitted to
the collection server using UDP. As such, the measurement data
is not delivered reliably. Limited bandwidth to our collection In this section, we present the results from aggregating and
server resulted in loss of up to 90% of the UDP packets duringlidating the flow-level measurements collected at the peering
heavy load periods. Nearly all of these packets were lost on fiveks. Then, we discuss the application of the routing model
link connecting to our measurement server, dwarfing the losgesdisambiguate and validate the demands. In both cases, we
experienced by the Netflow data in the rest of the backbone. Tthiecuss the implications of the ambiguity of the ingress links
traffic on the link to the collection server consists mainly of théor outbound flows, fluctuations in egress reachability informa-
UDP Netflow data. The traffic dynamics typically introduced byion, and inconsistencies across the various data sets. Then, we

V. EXPERIMENTAL RESULTS



274 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 3, JUNE 2001
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Fig. 7. Comparison of link utilization for SNMP and corrected Netflow.

TABLE Il a set of egress links; and 3) associating the source IP address (of
COLLECTION TIMES FOREACH DATA SET

an outbound flow) with a set of ingress links.

Netflow | Configuration | Forwarding SNMP Identifying the input and output links that observed the

Logs Files Tables Indices flow: A significant fraction of the misses can be explained by

(all day) | (8pm GMT) | (4pm GMT) | (8pm GMT)  step 1), as showninthe “Out 0” and “Loop” columns in Table IV.
11/03/1999 | 11/03/1999 11/04/1999 | 11/01/1999 Each Netflow record logs the SNMP indices for the input and
ﬁﬁ‘;ﬁggg ﬁ;%ﬁggg ﬂ;gjﬁggg ﬂ;g;ﬁggg output links that observed the flow. In our data sets, every Net-
11/12/1999 | 11/12/1999 11/14/1999 11/08/1999 flow record had valid input and output fields that matched with
our SNMP data. Approximately 0.5%—0.7% of the bytes in the

network had a output link of 0, meaning that the data was deliv-

TABLE IV

ered to the route processor. Further inspection of the raw Net-

PERCENT OFBYTES UNMATCHED IN AGGREGATING THENETFLOW DATA flow data reveals that about 0.4% of these bytes stem from traffic

actually destinedto the routet. The remaining flows with an
Inbound Outbound . 2

Run Miss | Out 0 | Loop | Egress | Ingress | Egress outputlink of 0 correspond to unroutable traffic. For example, a
11/03/99 | 1.720 | 0.691 | 0.006 0.442 0.451 0.127 packet with an expired TTL field, as generated by traceroute,
11/04/99 | 1.630 | 0.749 | 0.010 | 0.379 0.452 0.039  would fall in this category. These unroutable packets are di-
11/11/99 ) 4.720 | 0.540 | 0.009 | 1.019 2939 | 0210  rected to the route processor for further handling. The second
11/12/99 [ 1.778 | 0.563 | 0.022 | 0475 0.642 | 0.074

category of misses (“loop”) arises when a flow enters and leaves
the router on the same link. These transient forwarding loops
present our initial results from analyzing the spatial and terﬁpcount for an extremely small portion of the total bytes in the
poral properties of the traffic demands. network _(e..g., less thaf‘ 0'93%)' .

Associating the destination IP address with a set of egress
links: As expected, the matching process is most successful

when measurements are collected at the ingress link, as seen
The first phase of computing the traffic demands applies tie the “Inbound (Egress)” column. Still, a small number of

methodology in Fig. 4 to the Netflow data. Typically, more thamismatches arise in associating a flow’s destination IP address
98% of the bytes observed at the peering links can be mappeaith the egress links. That is, the destination IP address does
a point-to-multipoint (inbound/transit flows) or multipoint-to-not match with any of the prefixes observed in the snapshots

multipoint aggregate (outbound flows), as shown in the “misgf the router forwarding tables. These mismatches stem from
column of Table IV. These mismatches stem from the three key,

. . . . e . . . The destination address of these flows is the router’s loopback IP address.
steps in Fig. 4: 1) |dent|fy|.ng. the input e.md output links tha1Fhis traffic comes from ICMP (Internet Control Message Protocol) messages,
observed the flow; 2) associating the destination IP address witimet, and SNMP polling for routine operational tasks.

A. Netflow Aggregation
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TABLE V
DISAMBIGUATION STATISTICS
Inbound Outbound
Disambiguation
Run miss mult. ingress | perfect | one city | mult. cities | miss | baddest
11/03/99 0.83 37.89 9.49 16.27 11.25 3.55 1.51
11/04/99 0.71 38.49 9.78 16.42 11.77 2.45 0.96
11/11/99 0.14 39.73 11.91 13.75 12.47 4.39 347
11/12/99 0.98 44.07 11.43 18.95 11.96 4.01 3.12

transient changes in reachability information. For example, tegress misses (for outbound traffic) from 1.019% of the bytes to
destination may have been temporarily unreachable when thd68% and the number of ingress misses (for inbound traffic)
forwarding tables were collected. Or, perhaps the destinatioffem 2.939% of the bytes to 0.595%, consistent with results
egress point moved from one router to another, with neithieom other days.
snapshot showing a route to that destination. These kinds of ) _ _
fluctuations in reachability information are unavoidable - Route Disambiguation
dynamic routing protocols. Fortunately, they did not have a The second phase of computing demands applies the method-
significant affect on our ability to match the flows. To verifyology in Fig. 6 to match the aggregated traffic with routes. The
this hypothesis, we identified the top few destinations, respatlisambiguation process is primarily used to infer the ingress link
sible for the majority of the missed traffic, and found that thesgssociated with each outbound demand. However, we find that
destinations were represented in the forwarding tables collecthd procedure also provides a useful consistency check on our
on subsequent days. Identifying the egress links for outbouingtial processing of the flow-level data, and aids in studying the
traffic has similar challenges, as seen by the statistics in thgnamics of the other data sets involved in the computation.
“Outbound (Egress)” columa. 1) Inbound and Transit FlowsOur methodology is most ef-
Associating the source IP address (of an outbound flow) fective for inbound and transit traffic, where measurements are
with a set of ingress links: The most challenging part of ag-available at the ingress links. In this case, the techniques in Sec-
gregating the outbound flows arises in matchingsbarcelP tion Il produce a point-to-multipoint demand. Still, our exper-
address with one or more access links, as shown in the “Olttental results from aggregating the Netflow data are not suf-
bound (Ingress)” column in Table IV. The aggregation procefisient to show that we associated each traffic demand with the
identifies at least one candidate ingress link for over 99.3% eérrectingress link and set of egress links. The routing model
the outbound bytes. However, matching the source IP addrgssvides an important consistency check by verifying that traffic
with a set of access links does not necessarily imply that oftem the ingress link to the set of egress links would actually tra-
of these links actually generated the traffic. This check does neirse the links that measured the flow. The results of this check
occur until the later stage of disambiguating the set of ingresge shown in the “Inbound (miss)” column in Table V, which
links based on the routing model. shows that the routing test failed for less than 1% of all bytes en-
Overall, the results are consistent across the four experimeésing the network at the peering links. This is very promising,
However, the November 11 data has a higher proportion of migough not perfect. Not all changes in the set of egress links
matched bytes (4.7% versus less than 2% for the other dayguld result in a change in how the observed traffic would exit
These extra misses arise in two categories—egress links fortifle network. Still, an error rate of less than 1% suggests that
bound traffic and ingress links for outbound traffic. Both ereur methodology is effective for handling traffic measured on
rors relate tocustomerP addresses. Upon further inspectioningress links.
most of these misses stem from a single access link. The ac2) Outbound Flows:We expect our approach to be less ef-
cess link was upgraded some time after 8pm GMT, when thective for outbound traffic, due to unavoidable ambiguity about
configuration files were collected. Hence, our copy of the cotthe ingress links. In addition, the peering links are vulnerable to
figuration file of the router terminating the new link had thdluctuations in reachability information due to the dynamics of
name and IP address of tbtd link. The forwarding table was interdomain routing between neighboring ISPs.
collected several days later on November 14. In this table, theinconsistent forwarding tables at peering links: In a
next-hop entries pointing to the new link are used to direct traffigimall number of cases, the forwarding tables at the peering
to a collection of customer prefixes. However, in our automat¢ifiks are inconsistent with the observed flows. That is, the
joining of the data sets, we did not associate these customer geewarding table suggests that the router that observed the
fixes with the old link specified in the configuration file. Henceflow would have forwarded the traffic to a different link!
these customer prefixes were unknown during the aggregatibifese inconsistencies are flagged in the “baddest” column, and
of the Netflow data. Manually associating the prefixes with theccount for 1.0%-3.5% of the bytes leaving the network on
old link, and repeating the experiment, reduced the numbermgdering links. We observed the fewest errors on the November
4th data set, where we had forwarding tables and Netflow data

2The statistics for egress matching for outbound traffic are slightlylowerthqum the same day. To verify our hypothesis that these incon-
the corresponding statistics for inbound traffic. This arises from the operation o

our aggregation software, which does not try to identify a set of egress links ﬁ:'rSt?nCieS stem from fluctuations in reaphabmty |nform-at|on,
an outbound flow unless one or more possible ingress links could be identifigde inspected a single day of flow data in greater detail. The
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5.00

source—destination pairs in the affected demands typicall ‘ _
moved in and out of the “baddest’ category across the da ; —_ zg::mg:rﬁfﬂfpoim
suggesting that the forwarding table entries in the operation:
router were changing across time. .
Disambiguation to a single ingress point:Computing de-
mands for outbound flows is also complicated by uncertaintz
about which ingress link generated the traffic. Approximately::_o
35%-45% of the bytes leaving the network at the peering link
were associated with multiple candidate ingress links. Some ¢
this ambiguity could be resolved by the routing model. In fact,
between one-third and one-fourth of these bytes could be rt
solved to a single ingress link after applying the disambiguatio : — — —
process outlined in Fig. 6, as seen by the “perfect” column ir 1 5 10 50 100 500
Table V. With further inspection, we see that some of these de¢ sorted demands
mands came from customers with access links on the east and (a)
west coasts. Traffic from these access links are likely to exit the
network on different egress links. However, complications aris §
when a customer has more than one link in the same regi ;
of the country. For example, a single customer may have tv
access links terminating on different routers in the same cit ]
This offers protection from the failure of a single router withou o
forcing customer traffic to enter the network in a different city.z
Disambiguation to multiple ingress points in the same city:
The routing model typically cannot disambiguate traffic fron
two access links from the same customer in the same city. Traf 7
from these two access links would typically exit the network o
the same peering links for most (if not all) destination prefixes
and often follows a similar path through the ISP backbone. Th , , . , , ,
occurs when the intradomain path costs to and from these two i 1 5 10 50 100 500 1000
cess links are very similar, if not the same. In this case, succe sorted demands
fully disambiguating the two access links is not very important! (b)
ASSOC.IatIng the traffic with the wrpn_g access link does not ha\é%. 8. Percent bytes attributed to top ranked traffic volumes, listed in
much influence on the flow of traffic in the backbone. In fact, astecreasing order.
suming that the traffic was split evenly across the two links, as
shown in Fig. 6, is quite reasonable. Customers often configure
their routers to perform load balancing across their multiple ac-
cess links, resulting in a nearly even division of the traffic on In this section, we present initial results of a statistical
the two links. Overall, disambiguation to a single city accountnalysis of the traffic demands. We focus on: 1) statistical char-
for 13%-19% of the outbound bytes, as seen in the “one citgtteristics of inbound and outbound traffic, at different levels
column in Table V. In total, about two-thirds of the ambiguousf aggregation (point-to-multipoint demands, or corresponding
ingress sets were resolved to one or more access links in a sigglat-to-point loads on edge routers); 2) time-of-day variations
city (“perfect” or “one city”). in traffic demands; and 3) variations at coinciding time intervals
Disambiguation to multiple ingress points in different within the two weeks.
cities: Some customers are multihomed to routers in different Statistical characteristics of inbound and outbound
cities, and may even generate traffic from a single block tfaffic: A network with many access and peering links has
IP addresses on both links. Such multihoming is useful farlarge number of point-to-multipoint demands. However, a
additional fault-tolerance, or because the customer has sitesény small proportion of these demands contribute the majority
multiple geographic locations. When the homing locations aoé the traffic. In Fig. 8, we rank point-to-multipoint demands
relatively close to each other, the routing model may not be alfte point-to-point loads) from largest to smallest, and plot the
to disambiguate the set of ingress links. This is a situation whevercentage of the total traffic attributable to each. These plots
additional measurement at the ingress links would be usefate restricted to the upper tail of the distribution, accounting for
Still, overall, the disambiguation process is quite successf80% of the total traffic. We refer to the particular demands (or
Only 2.5%—4% of the bytes could not be associated with (of@ads) in this upper tail as tHeeavy hittersWe found the plots
or more) point-to-multipoint demands. These results are shotmbe nearly linear on the log—log scale, as is characteristic of
in the “Outbound (miss)” column in Table V, which includesa Zipf-like distribution, where the contribution of tti¢h most
the contribution of the “Outbound (baddest)” statistics. Basgubpular item varies ak/k®, for somea. We found this general
on these results, the rest of this section focuses on analyzpajtern to hold for all data sets and at all levels of temporal
the statistical properties of the observed demands. and spatial aggregation. Fig. 8(b) shows greater concentration
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day. (The identities of the top 500 may change from half hour to
() half hour.) There is significant variation in demand sizes at the
Fig. 9. Time-of-day effects in the measured traffic demands for Novemberdighest ranks. We have looked at the top demands more closely,
and 4. and found that they may exhibit quite different time-of-day
patterns. This is demonstrated in Fig. 9(b), where we have
of traffic over fewer heavy hitters in outbound versus inbounglotted the time of day variation for three heavy demands en-
traffic. Similar trends have been seen in earlier studies thating the network in San Francisco. We informally label these
consider the load on individual links or servers. For examplthree demands as domestic consumer, domestic business, and
link-level traces show that the distribution of traffic at the prefiinternational, because they correspond of the usage patterns of
and AS level follows Zipf's law [19]. Studies of the Worldconsumer and business domestic dial traffic, with international
Wide Web have shown that a small fraction of the requestsaffic roughly similar to a time-shifted business pattern.
resources, and servers are responsible for the bulk of the traffidraffic variations at coinciding time intervals within the
[20], [21]. The small number of heavy hitters has importaritvo weeks:To investigate change among the heavy hitters more
implications for traffic engineering. On the positive side, sincgystematically, we consider grouping the demands into quan-
the leading heavy hitters account for so much traffic, care fites (e.g., the first group corresponds to the highest ranked de-
routing just these demands should provide most of the benefitands together accounting for 5% of the traffic, the second
In addition, when measuring traffic demands, relatively coargeoup to the remaining highest ranked demands accounting for
statistical subsampling should suffice. On the negative sidbe next 5% of the traffic, and so forth). How do the group-
if the internal routing configuration concentrates heavy-hitténgs change with time-of-day? Fig. 10 provides a two-dimen-
traffic on common links, through error or inherent fluctuationsional histogram, where the grayscale of ithgth block indi-
in the identities of the heavy hitters, the negative impact arates the proportion of the demands in quarititeone time pe-
performance could be severe. In general, the concentratiorriofl that move to quantilgin another time periody hours later.
demand on a few sources opens up the possibility of large-scaié-ig. 10(a), the lag is a half hour, and in Fig. 10(b) it is 24 h.
network variability if these sources change behavior. The top demands (top right corner) show the least variation. In
Time-of-day variations in traffic demands: In Fig. 9(a) we both cases, the concentration of mass along the diagonal indi-
plot the percentage of bytes attributable to the top 500 poimates little quantile jumping. Demands in a given quantile ap-
to-multipoint outbound demands over a half hour, ranked pear in the same quantile or a nearby quantile 24 h later. Varying
decreasing order. The graph includes 48 curves, to cover thever the 24-h interval we found the mass along the diagonal
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first tends to diffuse and the band widens upte: 12 h, where- data. Relatively aggressive sampling should suffice for
upon the mass then tends to concentrate and the band narrows up estimating the traffic demands, especially since the traffic
to A = 24 h. These preliminary results suggest a certain amount volumes are dominated by a small number of “heavy
of stability in the identity of the top demands across time. hitters” as discussed in Section V-C. We are interacting
with router vendors to socialize the need for good support
for packet-header sampling in the line cards. The industry
needs to treat measurement functionality as a “first class”
feature of routers and line cards.
Distributed collection infrastructure: Transferring a
large amount of measurement records to a central col-
lection machine places a load on the network and on the
processor. A distributed infrastructure can substantially
reduce the overhead of collecting and processing the data.
With the core research and development team for the
AT&T IP backbone, we are in the process of developing
a distributed infrastructure for collecting and aggregating
measurement data.
Measurement at ingress points:Computing traffic de-
mands from ingress measurements is more accurate than
depending on route disambiguation to identify the ingress
points. Efficient sampling techniques and a distributed col-
lection infrastructure reduce the overhead of enabling mea-
surement at the edge links. However, some routers and line
cards may not have efficient support for measurement. Se-
In populating our demand model, we faced three main chal- lective measurementatcertainimportantedge links may be
lenges: sufficient to capture the bulk of the important traffic.

» Working with four different datasets: Organizing ac- An accurate real-time view of topology and reachability data is
cess to all data sets during the same time period is diftso important:
ficult. Insuring their completeness and consistency posed
both operational and computational challenges. Last, de-
termining how best to join the datasets forced us to address

VI. CONCLUSION

Engineering a large ISP backbone introduces fundamental
challenges that stem from the dynamic nature of user behavior
and reachability information, and the lack of end-to-end con- *
trol over the path of a flow. Yet, careful engineering of the net-
work is important, since the routing configuration and backbone
topology have significant implications on user performance and
resource efficiency. In this paper, we propose a model of traffic
demands that captures 1) the volume of data; 2) the entry point
into the ISP network; and 3) destination reachability informa-
tion. This simple abstraction facilitates a wide range of traffic
engineering applications, such as performance debugging, route
optimization, and capacity planning. We also present a method- *
ology for populating the demand model from flow-level mea-
surements and interdomain routing information, and apply our
approach to a large operational ISP network. Our analysis of
the measured demands reveals significant variations in demand
sizes and popularities by time-of-day, but a certain amount of
stability between consecutive days.

e Online intradomain data: Computing the traffic de-
mands and engineering the flow of traffic through

the questions of subsampling and temporal uncertainties
between the datasets.

Ambiguity of ingress points: For a flow measured only

at its egress link, determining the ingress link is chal-
lenging. This difficulty arises because hop-by-hop routing
(based on the destination IP address) implies that down-
stream routers do not necessarily have (or need!) informa-
tion about how packets entered the domain. In addition,
the increasing decentralization of the Internet makes it dif-
ficult for any one ISP to know the source IP addresses of
downstream domains.

Dynamics of the egress pointsPolicy changes in one do-
main can have unforeseen implications on the reachability
information seen by other ISPs. We see evidence of this
in the churn in the forwarding tables across time, and the
resulting inconsistencies between the data sets. This com-
plicated the identification the set of egress links for traffic
demands.

the backbone requires an accurate view of the current
topology and routing configuration. This requires tracking
the up/down status of individual routers and links, as well
as changes in the configuration of the routing protocols
(e.g., OSPF weights). With our colleagues, we are in the
process of building an intradomain route monitor that
captures this information.

» Online reachability data: The computation of the traffic
demands depends on associating each destination prefix
with a set of egress links. The set of egress links changes
over time. However, frequent dumping of the forwarding
tables imposes a high overhead on the router. Monitoring
the BGP advertisements sent through the backbone is a
more efficient way to collect reachability information.
With the core research and development team, we are in
the process of building an interdomain route monitor that
tracks this information.

In addition to evolving the monitoring infrastructure, we plan

Despite these challenges, our approach for populating teedevote more attention to the analysis our measured traffic
demand model performs quite well. Inconsistencies that araf@mands. The network-wide view of configuration and usage
could be explained by natural network dynamics. data in an ISP backbone provides a rich opportunity to charac-

Our ongoing work focuses on how to compute the traffic deerize the fluctuations in IP traffic demands. Our initial analysis
mands in real time in an efficient and accurate manner. Thigggests that these demands have interesting spatial and tem-
requires a scalable monitoring architecture for collecting megoral properties with significant implications for Internet traffic
surement data: engineering. Further statistical analysis of this data would lend

» Flow/packet sampling: Collecting fine-grain traffic insight into new techniques for the design and operation of IP

statistics introduces a large amount of measuremdsdckbone networks.
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