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Abstract

Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate,
a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus

can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide
host range: over 60 different wild and domesticated hosts are known for the three active developmental stages.
Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment
of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists,
physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on
this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current
knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight
the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis

is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus,
D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne
encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available
in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’
experience where needed. Besides the dominant literature available in English, we also tried to access scientific
literature in German, Russian and eastern European languages as well. We hope to inspire future research projects
that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent
disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology
of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and
the key factors resulting in the observed geographical spread of D. reticulatus.

Keywords: Dermacentor reticulatus, Ecology, Geographical distribution, Spread, Epidemiology, Host associations, Europe,
Asia, Babesia canis, Omsk haemorrhagic fever virus

Background

An ideal arthropod vector has a high reproduction

rate, an ability to survive and even spread within vari-

able habitats and an opportunity to host and transmit

a great variety of pathogens. All these conditions are

perfectly met by the hard tick species Dermacentor

reticulatus. Fertilised females lay up to 7,200 eggs [1]

and adults possess an extreme tolerance to the chan-

ging environment. Adapted to river basins among

other habitats, they survive under water containing

organic residues for up to one month and in cool

and clean water for more than 100 days [2]. In contrast

to dipteran vectors, adult D. reticulatus specimens have a

long lifespan; they have been shown to survive for up to

four years without taking a blood meal [3]. They are even

able to tolerate -10 °C for 150 days under laboratory

conditions [4] and are shown to be active during the win-

ter in many climatic zones at temperatures at which

Ixodes ricinus is not active [5]. Furthermore, the speed of

its developmental rate from larvae to nymphs and again

to adults surpasses I. ricinus [6]. Dermacentor reticulatus

attaches and feeds on a wide range of hosts, including wild

and domesticated mammals, for days at a time enabling

the tick to spread over large distances. The high adaptive-

ness of this species is exemplified by the recent new estab-

lishments of D. reticulatus populations in many countries

and regions of Europe. The multitude of pathogens that can

(potentially) be transmitted by this vector highlights the
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long-shared evolutionary history of several viruses,

bacteria and protists with D. reticulatus and its hosts.

First of all, it is a vector of pathogens causing animal

health problems. Canine babesiosis caused by Babesia

canis is a severe leading canine vector-borne disease

in many endemic areas. Although less frequently than

I. ricinus, D. reticulatus adults bite humans and can

transmit several Rickettsia spp., Omsk haemorrhagic

fever virus and tick-borne encephalitis virus. Here we

attempt to summarize current knowledge on the sys-

tematics, ecology, geographical distribution and recent

expansion of D. reticulatus, and highlight the great

spectrum of possible veterinary and public health

threats posed by this tick species, which is currently

invading new areas.

Systematics

Dermacentor reticulatus (Fabricius, 1794) is a metastri-

ate tick species belonging to the almost globally cosmo-

politan genus Dermacentor (consisting of 35 currently

recognised species), subfamily Rhipicephalinae, family

Ixodidae, order Ixodida, subclass Acari, class Arachnida

[7, 8]. It has previously been known by several junior

synonym names (see e.g. Guglielmone and Nava [9]),

with Dermacentor pictus (Hermann, 1804) as one of the

most widespread of these, especially in the former

Soviet Union and eastern Europe [10]. It was originally

named Acarus reticulatus Fabricius, 1794 and given its

current status by Koch in 1844 [11]. English names of

this species used in scientific publications are ornate

cow tick [12], ornate dog tick [13], meadow tick [14] or

marsh tick [15–17].

Dermacentor reticulatus can be unambiguously dis-

tinguished from D. marginatus, despite its morpho-

logical resemblance [18]. Although a bit smaller than

D. marginatus, D. reticulatus is considerably larger than

most Ixodes and Haemaphysalis ticks. Males (4.2–

4.8 mm) are larger than females (3.8–4.2 mm) when un-

fed, however a fully fed female reaches 1 cm [12]. Nymphs

are 1.4–1.8 mm and larvae only 0.5 mm in size [4].

There are excellent keys [12, 13] available for the mor-

phological identification of adults using some key features

such as the palps and coxae, as shown on Figs. 1, 2, 3 and

4. Like all species of Dermacentor, D. reticulatus has rela-

tively short mouthparts with a basis capitulum of straight

lateral margins, both sexes have white enamel ornamenta-

tion and the males have very large fourth coxae [10, 12,

13]. As D. reticulatus can sometimes be found on the

same host with D. marginatus, differentiation of the two

species is important. For both sexes, the most important

feature is the presence of a palpal spur in D. reticulatus

(vs absent in D. marginatus) (Figs. 1 and 2). For females,

most prominent details are the shape of porose areas, the

shape of the gap between internal and external spurs on

coxa I and the size of the lips in the genital aperture

(Fig. 1). For males, cornua are long in D. reticulatus (vs

short in D. marginatus) and the lateral groove is in the

form of punctations only in D. reticulatus (no groove vis-

ible, see Fig. 2) [13]. Compared to adults, larvae (Fig. 5a)

and nymphs (Fig. 5b), are difficult to identify. They resem-

ble Rhipicephalus spp. immatures, especially when

engorged. Usually, D. reticulatus immatures are only ac-

cessible as engorged specimens because they cannot be

collected from the vegetation (see also section “Life-cycle

and ecology” below). Engorgement modifies their mor-

phological characters and identification requires mounting

and careful examination of the specimen under light mi-

croscopy by an experienced entomologist (Fig. 5).

Life-cycle and ecology

Our current understanding of life-cycle traits and eco-

logical aspects of D. reticulatus is rather limited com-

pared to the well-studied Ixodes ricinus or Ixodes

scapularis. This may be partly due to the hidden nature

of the larvae and nymphs of this species. Although it is a

three-host tick, as is I. ricinus, in contrast to the latter

species the larvae and nymphs of D. reticulatus are re-

portedly nidicolous, while adults show an exophilic

(non-nidicolous) behaviour [10, 19, 20]. For this reason,

immatures, in contrast to adults, are rarely collected by

flagging, with some exceptions [5]. Adults, in contrast,

are easy to collect by flagging where they are abundant,

and thus it is easier to gain phenology data for them. To

assess seasonality or population dynamics of immatures,

their preferred hosts have to be investigated.

Larvae usually appear on small mammal hosts in May-

June, with their highest abundance in June-July in tem-

perate Europe [6, 10, 19, 20]. Dermacentor reticulatus

was shown to have a higher developmental rate com-

pared to I. ricinus but a relatively low mortality rate [10].

Engorged larvae moult and give rise to feeding nymphs

within a month and the whole generation is completed

within a few months in nature [6]. The relatively rapid

development is also obvious from a table that lists 37

hard tick species maintained in the laboratory, among

which D. reticulatus was shown to have one of the

shortest life-cycles [7]. The fact that nymphs are usually

active only for one month (July-August) [6, 19, 20] re-

sults in a very small window of opportunity for co-

feeding larvae and nymphs. Whereas only 3 % of I. rici-

nus nymphs were recorded on hosts without conspecific

larvae, 28 % of D. reticulatus nymphs occurred in the

absence of larvae [6]. Another difference from the

ecology of I. ricinus is that while I. ricinus nymphs and

larvae feeding on the same host probably represent two

different generations, separated in age by a year, D.

reticulatus nymphs and larvae are part of the same

generation, maturing within the same summer [21].
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Laboratory data show that larvae feed for 2.5–6 days

and nymphs for 4–12 days [22–24]. The large accumula-

tion of endosomes (or inclusion bodies in the gut epithe-

lium) [7] during immature feeding and rapid digestion is

associated with their short premoulting period [23]. In

the more slowly moulting I. ricinus, food inclusions are

only formed after detachment [23].

Adults are mainly active from March with a peak in

April; they are less abundant during the summer (they

completely disappear from vegetation in continental cli-

mates) and have a second activity peak in September-

October [25–27]. During the winter they undergo dia-

pause which is different from quiescence and is defined

as a neurohormonally-mediated dynamic state of low

metabolic activity [28]. The relatively early activation of

D. reticulatus adults after winter diapause is associated

with their ability to withstand low temperatures [29]

which results in an evolutionary advantage compared to

other ticks. Adult D. reticulatus follow an ambush strat-

egy to find their hosts [30]. They climb onto weeds,

grasses, bushes, or other leafy vegetation (as shown in

Additional file 1: Video 1, Additional file 2: Video 2) to

wait for passing hosts. The average height for this

questing behaviour is 55 cm [19]. Since adult female

and male specimens of D. reticulatus are three and five

times larger respectively than I. ricinus [5], they are

often visible at the tips of the vegetation (Fig. 6) and

can be easily collected by hand during their activity

period. Because of their highly sensitive chemical re-

ceptors [30] they are attracted by host odours, and are

therefore often associated with tracks used by wildlife,

dogs and humans [5, 31]. At preferred sites the number

of adults collected per hour per flag can reach 222 [32].

Many authors observed female predominance in quest-

ing tick populations [5, 33–35] possibly resulting from

their metastriate mating strategy, i.e. males need to find

a host and tend to spend more time on the host while

fertilising several females [7, 36]. Furthermore, females

of D. reticulatus may have a higher survival rate as they

were shown to be more resistant to desiccation than

males, as proven in laboratory experiments [37]. In

addition, females were shown to predominate also in

Fig. 1 Most important morphological characters of female Dermacentor reticulatus. a Dorsal capitulum. b Ventral coxa. c Dorsal body. d
Genital aperture. 1, Porose areas shape is a broad oval (nearly circular). 2, Palp articles 2 posterior spur is present on the dorsal surface. 3,
Coxae 1 gap between external and internal spurs is narrow (also the external spur is as long as the internal spur). 4, Genital
aperture posterior lips have a broad U shape (this shape is truncated posteriorly). Original drawings by Alan R. Walker [13]
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Fig. 3 Photomicrograph of female Dermacentor reticulatus. a Dorsal view. b Ventral view

Fig. 2 Most important morphological characters of male Dermacentor reticulatus. a Dorsal capitulum. b Ventral body. c Dorsal body. 1, Cornua
length is long. 2, Palp articles 2 posterior spur is long on the dorsal surface. 3, Coxae 1 gap between external and internal spurs is narrow (also
the external spur is as long as the internal spur). 4, Lateral groove type is in the form of punctations only (there is no groove visible). 5, Trochanter 1
posterior spur is long on the dorsal surface. Original drawings by Alan R. Walker [13]
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artificially bred groups of D. reticulatus [19] even in

lines derived from single, fertilised females suggesting

the existence of a genetic mechanism.

Adults prefer medium-sized and large mammals and

tend to feed in clusters, resulting in macroscopically

visible lesions with local inflammation [38]. The aggre-

gated feeding is probably a consequence of aggregation-

attachment pheromones as shown in other metastriate

ticks [7] but not studied in D. reticulatus. Females feed

for 7–15 days under laboratory conditions [1, 22–24, 38,

39]. Balashov [23] noted that D. reticulatus females

usually attach on the first day but 2–3 days are needed

in autumn and winter leading to 1–2 days longer feeding

in autumn and 3–4 days longer feeding in winter

compared to spring. Overwintering on the host, an

unusual trait among three-host ticks, has also been

reported for this species [40]. Ticks were observed to

remain attached on domestic animals from autumn until

the onset of warm spring weather, during which period

they do not feed [23]. Another impressive trait is the

amount of blood ingested. Although larger species (e.g.

D. marginatus or Hyalomma spp.) are able to take lar-

ger blood meals, D. reticulatus is the only one for

which it has been observed that its faecal weight during

feeding may exceed that of the engorged tick [23].

Male individuals also attach and are able to feed for

3–5 days [23] (Hans Dautel, personal communication)

and fertilise females exclusively on the host. Dermacen-

tor reticulatus males remain on the host for 2–3 months

[23] and are considered important vectors of several

pathogenic agents due to their intermittent feeding

behaviour which is a relevant epidemiological difference

compared with Ixodes spp. males. Fully-fed fertilised

females drop to the ground and lay 3,000–7,200 eggs

while covering them with the secretion of the Gené’s

organ, protecting the eggs from drying out [1, 41].

Oviposition lasts for 6–25 days and the new generation

of larvae will hatch from the egg batch after 12–19 days

[22]. The whole life-cycle (Fig. 7) can be completed

within the same year or, if the unfed adults overwinter

(behavioural diapause), within two years [22]. Nosek

[42] observed that usually unfed adults overwinter,

Fig. 5 Photomicrograph of Dermacentor reticulatus. a Larva. b Nymph

Fig. 4 Photomicrograph of male Dermacentor reticulatus. a Dorsal view. b Ventral view
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however, overwintering of engorged females, engorged

nymphs and engorged larvae also occurred during the six-

year study [42]. If engorged nymphs overwinter and moult

during next spring, the size of the resulting adult is con-

siderably smaller compared to average [42]. Overwintered

engorged females are also smaller in size and weight. [42]

According to the six years of observation, overwintering

unfed females represented the general life-cycle and the

overwintering of engorged females, nymphs and larvae

was observed less frequently, e.g. spring emergence of

freshly moulted adults occurred in 5 % of individuals [42].

Both behavioural and developmental diapause described

in this species are obviously biological adaptations to in-

crease chances for survival and consequently to prolong

the tick lifespan [23].

All stages of D. reticulatus are more seasonal com-

pared to I. ricinus. However, if the winter is relatively

mild, adults of the former are active throughout the

year [5, 25, 43]. During a 24-hour monitoring of quest-

ing at a marsh site in March in Wales the minimum

temperature at which D. reticulatus adults were re-

corded active was 3.3 °C (at 9 am) and the minimum

overnight temperature was -5.4 °C with some adults

being active even when the underlying sand surface was

frozen. The questing-temperature limit also depends on

the tick’s physiological age (Olaf Kahl, personal com-

munication). However, considerable variation can be

observed in the seasonal activity of adults according to

differences in climatic conditions. It has experimentally

been observed that adults were still alive 2.5 years after

moulting (third spring) indicating a great tolerance to

starvation [44]. According to Olsuf ’ev [3], adults can

survive for as long as 3–4 years in the absence of hosts

in nature [3]. At the eastern end of its range (western

Siberia) adults were only active during the brief spring

(April-June) with brief autumn activity occurring al-

most immediately afterwards (July-September) and no

activity during the rest of the year. At the western end

of the range (Wales, France), they were active for most of

the year with a short summer diapause (two months,

June-August) and a brief winter period of inactivity (one

Fig. 7 Life-cycle of Dermacentor reticulatus

Fig. 6 Two female and a male host seeking Dermacentor reticulatus
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month, December-January) [5, 45]. The latter does not

qualify as a true diapause [46] since D. reticulatus adults

can reappear relatively quickly during warmer winter days

[5, 33]. The winter diapause found in central Europe [22],

eastern Europe and western Siberia [33] is likely to be a

response to the harsh winter conditions, while such a

diapause is not required on the western limit of the

species range. In temperate Europe, adults are most active

in April-May, activity declines during summer, and there

is a second, usually smaller activity peak in September-

October [4, 19, 22, 25, 26, 33, 45]. Photoperiod is clearly

of underlying importance in controlling behavioural dia-

pause (i.e. suppression of host-seeking activity) [47, 48]. It

may be that there is an East-West cline in the inductive

photoperiod. Alternatively, the diapause in Europe may re-

sult from a temperature-photoperiod interaction in which

mild winter conditions are not sufficient to induce dia-

pause [5]. Cessation of adult questing activity at the end of

spring may be associated with temperatures but reactiva-

tion in the autumn occurs before temperatures fall indicat-

ing the importance of photoperiod (decreasing daylight) [5].

During a field study in Wales, UK [5] the observed D.

reticulatus population exhibited a plastic behavioural

response (variation in seasonal activity) within a local area.

Macro-temperature appeared to have exerted the predom-

inant influence on ticks at the dune sites, whereas photo-

period was the only macroclimate variable with a

significant effect on activity at the marsh site. A micro-

climatic effect of vegetation temperature and humidity on

tick activity was found at the dune site and only vegeta-

tion temperature had an effect at the marsh site. Such

variation in behaviour within a population is likely to

reflect individual responses to microenvironmental

cues, i.e. phenotypic plasticity of the species.

Larvae and nymphs usually use the same, predomin-

antly small, mammalian host (Table 1; Fig. 7) for their

blood meal. In Europe, D. reticulatus immatures are

found at higher mean intensity and prevalence on voles

than on mice [5, 6, 19–21]. This host-association is the

opposite to that in I. ricinus which occurs more fre-

quently on mice compared to voles [20, 49]. Hedgehogs,

shrews, moles, hares and rabbits are typical hosts, and

birds [50, 51] can be occasional hosts for D. reticulatus

larvae, while nymphs, in addition to these hosts, might

feed on weasels, polecats, cervids, goats, dogs [10, 12, 22,

52] and occasionally on birds [22, 50, 51, 53] and humans

[4, 54–56]. Szymanski [33] suggested that different species

may act as the main host depending on geographical

location and habitat type. In open areas in Siberia, the

narrow-headed vole (Microtus gregalis) was the main host,

whereas in forest areas, root voles (Microtus oeconomus),

northern red-backed voles (Myodes rutilus) and common

shrews (Sorex araneus) were the main hosts. Host species

was of more importance than host abundance at study

sites in Poland. Although the common shrew was the

most abundant host, root voles and field voles (Microtus

agrestis) fed most of the nymphs. Reports of larvae [57,

58] and even a female [57] from lizards and a nymph from

a frog [57] are either mistakes, erroneous translations

from Russian or accidental infestations [4, 8]. Neumann

[59] listed two bat species and also rhinoceros and hippo-

potamus as hosts. Since these records have never been

confirmed by others, they cannot be considered as bona

fide host-associations.

Adults use an even wider range of host animals

(Table 1; Fig. 7). Wild hosts include various cervids, wild

boars, foxes, golden jackals, wolves, hedgehogs, hares

and rabbits. Domesticated animals are equally important

as hosts or even the dominant [25, 60] hosts (e.g. in cit-

ies or agricultural areas) for adults and are represented

mostly by dogs, horses, donkeys, cattle, buffalo, sheep,

goats and pigs [10, 12, 22, 61]. Like immatures, adults

possess the adaptive trait to use different vertebrates as

dominant (often domesticated) hosts depending on their

local availability [60]. Humans can also be occasional

hosts of adults [61–66] increasing the public health im-

portance of pathogens harboured by these ticks. The role

of immatures in their epidemiology is largely unknown.

Concerning ecological aspects, Nosek [22] has already

emphasised that original ecosystems have been changed

or greatly affected by human activity across the distribu-

tion range of D. reticulatus. Although some authors [19]

referred to this tick as a species with restricted habitat

use, on a geographical scale it in fact exists in a wide

range of habitat types. These include meadows and open

mixed or oak forests [67, 68], clearings [19, 22] river ba-

sins, swampy mixed woods, lakeshore vegetation [15, 22,

69], pastured land, heath, scattered scrub, suburban

wasteland [31, 70] and coastal dune systems. [5] Derma-

centor reticulatus is rarely found in closed, dark forests

[31] such as the taiga [22, 71] and coniferous forests

[72]. It apparently prefers riparian forests (river basins),

ecotones between fields and mixed deciduous forests,

forest paths and lake shore vegetation [22, 32, 73]. The

presence of eyes and the relatively bright and patchy

colouration are obvious morphological adaptations to

living in open habitats with a relatively high insolation.

Its association with wet habitats is clearly shown by its

resistance to water. Eggs survive in pools of rainwater

[74] and adults remain alive during periodic floods that

are often characteristic for their preferred habitats [67].

Accordingly, D. reticulatus can also be collected from

the common reed (Phragmites australis) in wetland

habitats [75].

A recent ecological approach [35] found empirical

evidence that the niches of D. reticulatus and I. ricinus

segregate along temperature and moisture axes. Based

on 25 habitat variables derived from digital maps using
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Table 1 Reported hosts of Dermacentor reticulatus

Host Stagea Area References

Yellow-necked mouse (Apodemus flavicollis) L, N Europe [22, 33]

Wood mouse (A. sylvaticus) L, N Europe [22, 279, 280]

Striped field mouse (A. agrarius) L, N Eurasia [22, 279–281]

Northern birch mouse (Sicista betulina) L, N Northern Europe, Western Russia [281]

European pine vole (Microtus subterraneus) L, N Europe [22]

Common vole (Mi. arvalis) L, N Europe, Western Russia [22, 280, 281]

Narrow-headed vole (Mi. gregalis) L, N Asia [279]

Root vole (Mi. oeconomus) L, N Eurasia [279, 281]

Field vole (Mi. agrestis) L, N Europe, Western Russia [281]

Major’s pine vole (Mi. majori) L, N Caucasus, North-western Iran [282]

Bank vole (Myodes glareolus) L, N Europe, Western Russia [22, 280, 281]

Northern red-backed vole (My. rutilus) L, N Eurasia [279]

European water vole (Arvicola amphibius) L, N Eurasia [72]

Eurasian harvest mouse (Micromys minutus) L, N Eurasia [281]

European hamster (Cricetus cricetus) L, N Europe, South-western Russia [279]

Muskrat (Ondatra zibethicus) L Eurasia [279]

Red-cheeked ground squirrel (Spermophilus erythrogenys) L Asian steppes [279]

European rabbit (Oryctolagus cuniculus) L, N, A Europe [22]

European hare (Lepus europeus) L, N, A Eurasia [22, 283]

Common shrew (Sorex araneus) L, N, A Europe, Russia [22, 72, 279–281, 284]

Eurasian pygmy shrew (So. minutus) L, N Europe, Russia [22, 281]

Eurasian water shrew (Neomys fodiens) L, N Europe, Russia [22, 281]

European mole (Talpa europea) L, N Europe, Western Russia [281]

Northern white-breasted hedgehog (Erinaceus roumanicus) L, N, A Eastern Europe, Western Russia [22, 283]

European hedgehog (E. europeus) N, A Western Europe [283]

Least weasel (Mustela nivalis) L, N, A Eurasia [22, 279–281]

Stoat (Mu. erminea) N Eurasia [279]

European polecat (Mu. putorius) N, A Europe, Western Russia [22, 285]

European badger (Meles meles) A Europe [286]

Racoon dog (Nyctereutes procyonoides) A Europe [140]

Roe deer (Capreolus capreolus) Nb, A Europe, [22, 59, 69, 280, 287, 288]

Fallow deer (Dama dama) A Europe [62]

Red deer (Cervus elaphus) Nb, A Europe, Western Asia [22, 59, 279–281, 285, 288, 289]

Moose (Alces alces) A Eurasia [68, 289]

European bison or wisent (Bison bonasus) A Europe, Western Russia [60, 144, 290–292]

Wild boar (Sus scrofa) A Eurasia [22, 59, 61, 70, 285, 289, 293]

Red fox (Vulpes vulpes) A Eurasia [22, 31, 61, 286, 294–296]

Golden jackal (Canis aureus) A Eurasia [52]

Gray wolf (Canis lupus) A Eurasia [42]

Iberian wolf (Canis lupus signatus) A Iberian Peninsula [286]

Common starling (Sturnus vulgaris) Nb Eurasia [50]

Blackbird (Turdus merula) Nb Eurasia [50]

Mistle thrush (Turdus viscivorus) Lb Eurasia [50]

Eurasian jay (Garrulus glandarius) Nb Eurasia [22]
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GIS for the locations with sympatric populations of the

two tick species, D. reticulatus appeared to be more

thermophilic and hygrophilous than I. ricinus while still

tolerating large diurnal and seasonal temperature vari-

ation. This is not necessarily at variance with the conclu-

sion that D. reticulatus is a psychrophilic tick, thriving at

relatively low temperatures [76]. Moreover, quantitative

evidence suggests that it occurs in places with less precipi-

tation seasonality, near watercourses and water bodies

(Široký et al., unpublished data), which further emphasizes

its bond to water in the landscape, a feature noted by

several observers [22, 42, 76, 77]. Higher tolerance to

temperature variation may also explain why it can be en-

countered along riverbanks and wet grasslands in a cold

region of Poland with sunny and hot summers [77] or

mountains in Hungary that are often characterised by

much higher humidity, especially compared to the low-

lands in the Pannonian biogeographical region [34]. The

tick’s negative host-seeking activity in response to increas-

ing soil temperatures [76] may thus indicate its higher

sensitivity to desiccation relative to I. ricinus. Moreover,

its larvae are also known to require high relative humidity

for successful embryonic development and hatching [78].

Kubelová [35] demonstrated that adult D. reticulatus

prefers warmer and wetter sites with greater diurnal and

seasonal variation in temperature but with less precipita-

tion seasonality than I. ricinus. A further difference is that

I. ricinus seems to be more tolerant of forested habitats

than D. reticulatus, which prefers open spaces, such as

temperate grassland with high moisture conditions,

covered by a mosaic of bush and woods [22, 35]. Adults

of D. reticulatus were shown to survive better in the

meadow microclimate than in the forest microhabitat.

About 55 % of unengorged females and 58 % of males sur-

vived for 399 days in the meadow (including two periods

of hibernation), while only 33 % of females and 34 % of

males survived in the forest habitat in South Moravia [67].

Dermacentor reticulatus has also been observed in

urban areas, e.g. in Grenoble, Munich, Warsaw, Lublin,

Kiev, Košice and Budapest [31, 50, 75, 79–86]. Although

usually absent in downtown parks [87, 88] where larger

maintenance hosts are not permanently present, the tick

may occur in suburban forests with natural hosts for

adults, or even in urbanised areas where dogs (including

stray dogs) or horses are common.

Geographical distribution and recent spread

Dermacentor reticulatus is not a newcomer in Europe.

A specimen was collected from a fossil woolly rhino

(Coelodonta antiquitatis) from the Pliocene (extending

from 5.33 million to 2.58 million years before present)

[89]. It is likely that the distribution patterns of the

species have changed over this time and more recently

man has likely had a profound effect on the distribution

of D. reticulatus through the introduction of domestic

animals and the alteration of the environment.

Table 1 Reported hosts of Dermacentor reticulatus (Continued)

Medow pipit (Anthus pratensis) Nb Eurasia [53]

Tree pipit (Anthus trivialis) Lb,Nb Eurasia [51]

Song thrush (Turdus philomelos) Nb Eurasia [51]

Green sandpiper (Tringa ochropus) Nb Eurasia [51]

Yellow wagtail (Motacilla flava) Lb Eurasia [51]

White wagtail (Motacilla alba) Lb, Nb Eurasia [51]

Reed bunting (Emberiza schoeniclus) Nb Eurasia [51]

Siberian stonechat (Saxicola maurus) Lb Eurasia [51]

House sparrow (Passer domesticus) Lb Eurasia [51]

Tree sparrow (Passer montanus) Lb, Nb Eurasia [51]

Pig (Sus scrofa domesticus) A entire D. reticulatus range [22]

Sheep (Ovis aries) A entire D. reticulatus range [22, 61, 72, 280, 283, 284, 287]

Goat (Capra aegagrus hircus) Lb, Nb, A entire D. reticulatus range [22, 59, 245, 280, 283, 284, 297]

Cattle (Bos taurus) A entire D. reticulatus range [60, 61]

Horse (Equus caballus) A entire D. reticulatus range [60, 61, 69, 245]

Donkey (Eq. africanus asinus) A entire D. reticulatus range [10]

Cat (Felis catus) A entire D. reticulatus range [69, 113, 280, 285, 287]

Dog (Ca. lupus familiaris) Nb, A entire D. reticulatus range [25, 26, 60, 61, 113, 245, 288, 298]

Human Nb, A entire D. reticulatus range [4, 54–56, 59, 61–66, 69, 280, 284]
aL, larva; N, nymph; A, adult
brarely
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Dermacentor reticulatus occurs in the western Palae-

arctic in regions with generally mild climates. Feider [90]

published a map showing patchy distribution of the spe-

cies in Europe from Germany to Bulgaria and in the

western part of the former Soviet Union. Immler [19]

also included occurrences in western Europe in his map.

The world distribution of D. reticulatus was completely

described for the first time by Kolonin [91]. Based on

this publication, its range extends from northern

Portugal and Spain in the west to central Asia in the

east, forming a quite narrow and long strip in a west-

east orientation, with a separate enclave in the Caucasus

[91]. The same author published a map (Fig. 8) on the

geographical distribution of this species [92]. Although

this represents useful information for world-scale stud-

ies, the resolution of the map is too low to be applied

for regional epidemiological purposes. Currently, D. reti-

culatus receives growing public interest because of its

expected increasing epidemiological importance. There-

fore, the growing number of studies on its biology, vec-

tor competence, and spread helps us to better demarcate

its distributional range as a result of the growing num-

ber of precise localisations.

Dermacentor reticulatus is absent in the dry Mediter-

ranean climate zone, for example in northern Africa,

most of Iberian Peninsula, Italy, the Balkans and Turkey;

however, it is present in southern France and Portugal.

It is also absent in the cold regions in the north of Brit-

ish Islands, the whole of Scandinavia, and the northern

part of the Baltic region. The distribution pattern of D.

reticulatus seems to be enigmatic even within this frame,

being somehow mosaic or highly focal, following eco-

logical requirements of the species. An on-line available

map published by the European Centre for Disease Pre-

vention and Control (ECDC) and Vector-Net project

(Fig. 9) shows this pattern, however with some impre-

ciseness, for example false occurrence data in the Czech

Republic. There are entire districts in the Czech Repub-

lic, which are marked on the map; however, there are no

published records of D. reticulatus occurrence, e.g. from

central and eastern Bohemia, Prague, district Vysočina

(Pavel Široký, personal communication). Typical foci

have to offer proper microclimate with high relative hu-

midity. Open unploughed habitats with high level of

ground water in lowlands or low-altitude hills seem to

match best its requirements [22, 32]. In higher mountain

regions D. reticulatus is absent; however, it can occur in

climatically favourable valleys.

During the last decades, the distribution of D. reticula-

tus has considerably expanded in some regions. Large

areas of north-western and central Europe, formerly

thought to be too cold for its survival and completion of

its life-cycle, have experienced a remarkable spread of

these ticks in Germany, Poland, Hungary, Slovakia, but

also the Netherlands and Belgium (for an excellent review

see Rubel et al. [93]). The recent climatic changes have

been frequently reported as the predominant driving force

[62]. However, anthropogenic impact and socioeconomic

changes after the fall of the Iron Curtain should not be

overlooked [94]. Human activities, agricultural practices in

land use, and particularly travelling with animals and ani-

mal trade have changed notably during the last decades.

For example, increased availability of unploughed open

habitats in central Europe with favourable microclimates

has enabled settlement of founder engorged female ticks,

probably imported on dogs. International motorway stops

are also possible hotspots for D. reticulatus introduction

(Michiel Wijnveld, personal communication) as many

people travel by car with dogs. Reforestations and a steady

increase in wildlife populations that are appropriate main-

tenance hosts for the species, may have contributed to the

recent spread [82]. The National Game Management

Database estimated a two-fold growth of the red fox

population and a 5–10 fold growth of populations of wild

boar, red, roe, and fallow deer in Hungary during the last

five decades [95]. Similar figures have been published for

other European countries [62, 69, 82]. A recent study in

Poland demonstrated a dynamic expansion of D. reticula-

tus into areas historically free of this species, and under-

lined the significance of river valleys as important

ecological corridors for wildlife [17]. Populations of dogs,

one of the most important maintenance hosts, in and

around human dwellings are also increasing. According to

Fig. 8 Geographical distribution of Dermacentor reticulatus (red area,
26) based on Kolonin [92]
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a 2012 estimation [96], 75.3 million dogs live in Euro-

pean households. The number of stray dogs, that are

usually more heavily infested, is estimated to be 100

million in Europe [97]. Increased grazing in natural re-

serves, together with reduction of pesticide usage might

well contribute to the growing population of D. reticu-

latus. From 1965 to 1971, the incidence of tick-borne

encephalitis in the former Soviet Union decreased by two-

thirds mainly because of the widespread use of DDT

(dichloro-diphenyl-trichloroethane) to kill the vector ticks

[98]. With the worldwide abandonment of DDT, the

incidence of tick-borne encephalitis cases in the former

Soviet Union gradually returned to pre-intervention levels

within 20 years [99].

Our knowledge about the tick’s recent distribution

depends on the availability of published accurate data.

Most of the Iberian Peninsula, the western limit of the

range of D. reticulatus is covered by unsuitably dry

habitats; this explains the absence of this tick in most of

Portugal and Spain. Nevertheless, reports from northern

administrative regions of Portugal (particularly from

Montesinho Natural Park, Braganca district) [100] and

from northern Spain (particularly in the Basque Country,

Cantabria and Navarre) [101, 102] imply that the tick ex-

ists in areas with continental climates [103]. Regarding

georeferenced data, France could be considered as a distri-

bution centre in the western Europe [93, 103]. Occurrence

is reported throughout this country, including the Pyren-

ean foothills, the Mediterranean zone, and Biscay areas

(Fig. 10) [104–106]. Data on D. reticulatus distribution are

missing from northern France, particularly along the shore

of the English Channel [103]. However, in Belgium and

particularly in the Netherlands, the species is reported

throughout both countries, including coastal lowlands

along the North Sea [69, 107–110]. Dermacentor reti-

culatus is absent from the Alps; however, it penetrates

Fig. 9 Geographical distribution of Dermacentor reticulatus based on the European Centre for Disease Prevention and Control (ECDC) and Vector-
Net project. The map shows the current (January 2016) known distribution of the tick species in Europe at ‘regional’ administrative level (NUTS3).
They are based on published historical data and confirmed data provided by experts from the respective countries as part of the Vector-Net pro-
ject; see more at: http://ecdc.europa.eu/en/healthtopics/vectors/vector-maps/Pages/VBORNET-maps-tick-species.aspx#sthash.ca6HyLb6.dpuf
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deeply into warmer valleys both in France and western

Switzerland, where its occurrence is known for many

decades [31, 111–113]. The tick’s north-western limit is

located in the United Kingdom. Dermacentor reticulatus

has been found here for over 100 years and is considered

to be endemic, with an apparent recent expansion of its

range [114]. Its distribution is restricted particularly to

western Wales, Devon and parts of Essex. The tick is ap-

parently absent in Ireland (Fig. 10) [5, 115].

Although central Europe was thought to be free of

this species [82] from the Alps in the south, through

eastern Switzerland, most of Austria, Slovenia, Czech

Republic, Poland, and Germany in the north (neverthe-

less, without any proof provided by population genetic

studies using adequate markers), intensive geographical

spread was documented during the last decades in this

region. The tick became common within the Pannonian

iogeographical region, not only in Hungary [25, 34,

116–118] but also in neighbouring Slovakia [22, 83,

119–121], eastern Austria [122–124] and adjacent areas

of the Czech Republic [22, 32, 76, 119, 125]. Focal

distribution of D. reticulatus has been reported also

throughout Germany [62, 126, 127] and recently from

Poland [14, 15, 17, 60, 77, 80, 84, 128–131]. Based on

this trend, the central European gap in the geographical

distribution of the tick may disappear very soon

(Fig. 10).

The tick’s range around the Pannonian biogeograph-

ical region includes eastern Slovenia [93, 132], northern

Croatia [133, 134], and northern Serbia [135, 136]. Ticks

have also been occasionally reported from dogs in

Bosnia and Herzegovina [133, 137]. In the eastern Bal-

kans, Romania is another example of a rapidly growing

number of records of D. reticulatus [61, 138, 139]. The

tick exhibits an uninterrupted distribution from eastern

Poland to Belarus and Baltic countries. Reported distri-

bution is quite even, without remarkable foci through-

out Belarus [140, 141], while a bit more clustered in

Lithuania and southern Latvia [142, 143]. Local data is

absent from the area eastwards of Romania [93], however,

we can expect its occurrence in western regions of

Ukraine and probably also in Moldavia. Detailed distribu-

tion data on D. reticulatus have recently been published

for areas of central and north-eastern Ukraine, as well as

for the Crimean Peninsula (Fig. 10) [50, 85, 93, 144].

The eastern part of D. reticulatus distribution was

demarcated for the first time by Pomerantsev [71]. The

species occurred within the USSR, with its northern

limits in the regions of Smolensk, Moscow, Ivanovo,

Ryazan, further through Gorki and Kamyshlov area of

Fig. 10 Map of georeferenced Dermacentor reticulatus locations based on Rubel et al. [93]
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Sverdlovsk District, Tyumen, Omsk, and Novosibirsk dis-

tricts, eastwards up to Kansk in Krasnojarsk District. The

southern limits extend to the southern Crimean Penin-

sula, Ciscaucasia and Transcaucasia, eastern Kazakhstan,

Kirgizstan, and western Altai Mountains [71]. A similar

but more roughly estimated range was depicted in Kolo-

nin [91, 92] (Fig. 8) [91]. Filippova [145] described the

eastern part of D. reticulatus distribution showing that its

occurrence has a disjunctive character, being spread

mostly through the southern Taiga in zones of mixed or

deciduous forests, from the Baltic region of Kaliningrad,

south of Saint Petersburg region, up to the upper reaches

of Yenisei River. The species also occurs in the steppe

zone along river valleys. Southern limits were established

to be in south-western Moldavia, the mountains of the

Crimean Peninsula, both Greater and Lesser Caucasus,

and northern Kazakhstan. Further, the tick is known from

the foothills of Kopet-Dag, Altai, and Tian-Shan Moun-

tains [145]. Recently, the tick and canine babesiosis has

been reported from three dogs in the eastern Anatolia re-

gion of Turkey [146]. Some areas of the Russian part of

the range of D. reticulatus have recently been subjected to

intensive research resulting in additional distribution data;

nevertheless, the exact location, with coordinates, is usu-

ally missing [29, 147–151]. China (provinces Xinjiang and

even Shaanxi and Shanxi) is considered to be the south-

eastern limit of its distribution [152].

Veterinary health importance

Babesia canis

Considering geographical distribution, economic and

health impact, Babesia canis is undoubtedly the most

significant pathogen transmitted to animals by D. reti-

culatus. This piroplasmid apicomplexan parasite is able

to invade ovaries of female ticks and is transmitted transo-

varially to the next generation of larvae [153]. Together

with transstadial transmission, this feature enables D. reti-

culatus populations to function as a reservoir in addition

to their vector role, enabling maintenance of B. canis

locally for several tick generations even without a verte-

brate reservoir host [154]. A further consequence of the

highly specialised B. canis life-cycle is that, the key driver

of genetic variability of this emerging canine pathogen,

the piroplasmid parasite’s exchange of genetic material,

occurs within D. reticulatus [153].

As reviewed by Matijatko et al [155], the considerable

differences in the clinical disease manifestations may also

reflect the above mentioned genetic variability leading to

different B. canis strains. Uncomplicated canine babesiosis

(with a mortality rate <5 %) has been suggested to be a

consequence of anaemia resulting from haemolysis,

whereas complicated canine babesiosis may be a conse-

quence of the development of systemic inflammatory re-

sponse syndrome (SIRS) and multiple organ dysfunction

syndrome (MODS). Clinical signs of uncomplicated

babesiosis include pale mucous membranes, fever, an-

orexia, depression, splenomegaly, hypotension and water

hammer pulse. Clinical manifestations of the complicated

form of babesiosis (mortality rates of up to 20 %) depend

on the particular complications that develop, such as cere-

bral babesiosis, shock, rhabdomyolysis, acute renal failure,

acute respiratory distress syndrome, acute liver dysfunc-

tion and acute pancreatitis [155]. A recent study [156]

classified B. canis strains based on major merozoite sur-

face antigens coding DNA (bc28.1 gene). However, the

recognised two groups, Bc28.1-A strains (relatively viru-

lent or mild) and Bc28.1-B (virulent), showed great vari-

ation in their geographical distribution. The authors

hypothesised that the distribution of B. canis genotypes

might be dependent on the presence of genetically differ-

ent D. reticulatus strains in certain geographical areas, but

this remains to be demonstrated [156]. Such genetic vari-

ability and antigenic variation are not only important for

the survival of B. canis in their vertebrate hosts but has

implications for vaccine development strategies. The cap-

acity of B. canis to change the antigenic make-up of its

merozoite surface is one of the major impediments of vac-

cine development, and has been suggested as a possible

explanation for the limited efficacy of a commercially

available vaccine in the field [156, 157].

The wide geographic distribution of B. canis is in line

with that of its vector, i. e. from western Europe to

Siberia [155, 158]. Based on molecular screening of

field collected ticks, the prevalence of B. canis in adult

D. reticulatus ticks varies from 0 % (n = 197) in studies

conducted for instance in Germany [159] or Belarus

(n = 142) [141] to 0.7 % (n = 582) in eastern Poland,

1.64 % (n = 855) in the Netherlands [69], 2.3 % (n =

1, 205) in south-western Slovakia [120], 3.41 % (n = 205) in

Ukraine [144], 4.18 % (n = 2,585) in Poland [15] to excep-

tionally as high as 14.7 % (n = 327) in eastern Slovakia

[120] and 14.8 % (n = 233) in southern Poland [15].

The natural cycle of B. canis is enigmatic since it has

no known wildlife reservoir host. Studies performed on

candidate reservoir wild canids did not find evidence for

a wild-living host capable of maintaining the parasites.

Reports from Italy (205 red foxes, seven grey wolves)

[160], Hungary (404 red foxes) [161], Austria (36 red

foxes) [162] and Slovakia (nine red foxes) [163] found

no B. canis despite the large number of wildlife samples

screened. Single foxes were found to have B. canis infec-

tion based on PCR in one of 91 samples in Portugal

[164] and one of 73 samples in Bosnia and Herzegovina

[165]. This is not surprising as D. reticulatus occurs on

foxes and can transmit the parasite to this host; however,

based on the rarity of infection, the red fox can be ex-

cluded as a natural reservoir. Another candidate, the

golden jackal (Canis aureus) which has spread into new
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areas recently, has also not been found to be infected in

the limited samples tested so far [52, 124, 166]. Captive

grey wolves were shown to be susceptible to B. canis in-

fection which can be even lethal for them [167], but no

evidence exists on their potential role as asymptomatic

carriers. There is, therefore, no indication that wolves

are capable of playing a role in the natural cycle of this

piroplasm. As other D. reticulatus hosts were not so far

shown to be frequently or at all infected with B. canis,

the only remaining plausible candidate to fill the gap in

the reservoir position of the transmission cycle is the do-

mesticated dog. Our hypothesis is that B. canis can per-

sist in some dogs asymptomatically for a long time, so

that when infested by D. reticulatus serve as a source of

the parasite to the feeding ticks. There is empirical evi-

dence for subclinical canine babesiosis, e.g. from France

[168, 169], Slovakia [170], Poland [171] and Turkey

[172]. However, in order to establish the reservoir role of

dogs, experimental infections using xenodiagnostic D.

reticulatus ticks have to be performed. For the closely

related species, Babesia caballi, long-term asymptomatic

carrier horses have already been reported [173–176].

There are several implications of the probable reservoir

role of dogs in the B. canis cycle. First, asymptomatic dogs

may be able to infect puppies vertically as shown for

Theileria equi in horses [177]. Although vertical transmis-

sion appears to be rare in Babesia (sensu stricto), it has

been described for B. divergens [178]. A recent observa-

tion confirmed vertical transmission of B. canis from fe-

male dogs to puppies [179]. Second, this would provide a

sound explanation for the recent geographical spread of

canine babesiosis [26, 69, 120, 180]. Based on the relatively

low prevalence of the pathogen in field-collected ticks, it

is more probable to import a dog with either symptomatic

or asymptomatic B. canis infection into a new area, than

importing infected D. reticulatus specimens. When the

piroplasm has already been imported with dogs into a

new area, the local D. reticulatus population is likely to

become infected and can sustain B. canis for several years

by transovarial and transstadial transmission, leading to

a detectable presence in the local tick population. Con-

sequently, dogs are not necessarily required for the

short term maintenance of infected ticks. In line with

this, in many new foci, e.g. in the Netherlands, Belgium,

Norway, Switzerland, Hungary, Slovakia, Germany, ca-

nine babesiosis was observed first without the presence of

infected ticks or even the tick itself in the area [107, 112,

120, 180–185]. Finally, we assume that in evolutionary

terms B. canis originated in domesticated dogs (or their

ancestors) and not in a related wildlife reservoir host.

Babesia caballi and Theileria equi

Equine piroplasmosis caused by B. caballi and T. equi is

the most prevalent tick-borne disease in equids (horses,

mules, donkeys, zebras) in certain areas of the world

and besides causing important economic losses it also

leads to movement restrictions [173]. Worldwide, cases

are tracked by the World Organisation for Animal

Health (OIE: Office International des Epizooties)

(http://www.oie.int/). According to this, most of the

equid-inhabited regions of the world are considered en-

demic for infection and disease. Cases are consistently re-

ported from Central and South America, Cuba, Europe,

Asia and Africa. In non-endemic countries such as

Australia, Canada, Great Britain, Ireland, Japan, New

Zealand, and until recently, the United States, only sero-

negative horses are allowed to be imported to prevent the

introduction of carrier animals [186]. Seropositive horses

cannot cross borders to compete in races or horse shows,

be used for breeding purposes, or be sold abroad [187].

These two parasites have biological differences but cause

similar pathology and have similar vector relationships.

Acute disease is characterised by fever, malaise and re-

duced appetite, increased pulse rates and respiration,

anorexia, constipation followed by diarrhoea, tachycar-

dia, petechiae, splenomegaly, thrombocytopenia, and

haemolytic anaemia leading to haemoglobinuria and ic-

terus [174, 186]. Horses that recover from acute disease

remain persistently infected carriers without overt signs

of disease and can be reservoirs for transmission of

these protozoan pathogens by vector ticks. Parasitaemia

is often too low to be detected on blood smears, but

infected animals can be identified by serology or poly-

merase chain reaction (PCR). Similarly to B. canis,

sexual-stage development (resulting in genetically new

offspring) is completed in ticks for both T. equi and B.

caballi [153, 186].

Dermacentor reticulatus is not the only vector species

for B. caballi, several members of the genera Hyalomma,

Rhipicephalus, Dermacentor and Haemaphysalis are able

to transmit it [174]. The life-cycle of B. caballi involves

transovarial transmission from females via eggs to hatch-

ing larvae. Consequently, B. caballi can be sustained for

several tick generations similarly to B. canis. As D. reti-

culatus is a common ectoparasite of horses [60, 69, 131]

and acts as vector of this parasite with transovarial and

transstadial transmission [186], it can often infect them

with B. caballi. This can lead to relatively high seropreva-

lences of B. caballi in endemic areas [173]. Within the

world domestic equine population (approximately 112

million in 2013), rates of infection in endemic regions are

often above 60 %, and in some regions more than 90 % of

the animals are infected with one or both parasites [186].

Most of these are persistently infected without any sign of

clinical disease. As suspected for B. canis, it has been

shown for B. caballi, that the basis for its spread is

movement of these clinically healthy carrier animals into

regions with competent tick vectors, where they can be a
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source of infection for the naïve horse populations [186].

Once recovered from an acute episode, horses were re-

ported to remain carriers of B. caballi for up to four years

[174].

Theileria equi, previously considered a species of

Babesia, was reclassified [188] because of the absence of

transovarial transmission in the vector and because spo-

rozoites do not infect red blood cells, but first penetrate

a lymphocyte (or macrophage) where they develop into

schizonts [173]. Infections with T. equi (which is more

frequently reported [189]), are usually more severe than

those with B. caballi but it is impossible to distinguish

between the two parasitic infections based on clinical

signs alone. Equine theileriosis differs from equine

babesiosis also in the length of asymptomatic carrier sta-

tus: once infected, horses remain carriers of T. equi for

life [174] thereby serving as a continuous source of in-

fection for vector ticks. Similarly to B. caballi, T. equi

can be transmitted by several tick species [186]. The

vector competence of D. reticulatus for T. equi, with ex-

perimental evidence of transstadial infection, has been

confirmed [190, 191]. The worldwide spread T. equi is

more prevalent than B. caballi [186]; this reflects differ-

ences in their vector biology as well as differences in

persistence of the parasites in the equine host mentioned

above.

Anaplasma marginale

Bovine anaplasmosis is an important tick-borne disease of

domesticated ruminants worldwide caused by infection of

cattle with the obligate intraerythrocytic bacterium Ana-

plasma marginale of the family Anaplasmataceae, order

Rickettsiales [192]. The acute phase of bovine anaplasmo-

sis is characterised by anaemia, icterus, weight loss, fever,

abortion, decreased milk production, and often results in

death [193]. Animals surviving the acute phase develop a

lifelong persistent infection and can serve as reservoirs for

mechanical transmission and biological transmission by

ticks [194].

Mechanical transmission occurs in various ways:

blood-contaminated fomites, including hypodermic nee-

dles, castration instruments, ear tagging devices, tattoo-

ing instruments, and dehorning saws or by blood-

contaminated mouthparts of biting flies [193–195]. Bio-

logical transmission is by ticks and over 20 species have

been incriminated as vectors worldwide. Recently, an

experimental study has shown that D. reticulatus can

also transmit A. marginale intrastadially [194]. This

route of pathogen transmission is enhanced by the

extended stay of male D. reticulatus ticks on the host

and their intermittent feeding behaviour (as detailed

above in the section “Life-cycle and ecology”). Males

can feed and transmit A. marginale multiple times as

they transfer among cattle. Indeed D. reticulatus can be

the main vector of A. marginale as shown in a study

performed on ticks removed from cattle in Hungary,

where D. reticulatus, rather than the other three tick

species were involved in A. marginale transmission [196].

The main route for tick-transmitted bovine anaplasmosis

is probably the intrastadial infection by male D. reticula-

tus, since immatures of this tick species usually do not

feed on cattle, thus cannot provide transstadial infection

for the adult ticks.

Public health importance

Dermacentor reticulatus has been reported parasitising

humans in Russia, Austria, the United Kingdom, France,

Hungary and Spain [63, 64, 74] but bites humans much

less frequently than I. ricinus or I. persulcatus [63, 197].

It is considered to be the most common [32, 60, 69] or

second most common [51, 116] species in many areas

and in western Siberia, this species was the second most

common tick found on humans after I. persulcatus [56].

Based on this, the direct impact of D. reticulatus on

public health, and its relative contribution to the disease

burden caused by vector-borne diseases, is relatively

small in many regions of Eurasia, but can be substantial

in endemic areas and should definitely not be ignored.

An example of emergence as a result of efficient trans-

port by human travel is shown by a recent paper report-

ing the detection of a male D. reticulatus on a patient in

Irkutsk (eastern Siberia) who acquired the tick in the

Tula region (western Russia), 5,000 km to the west

[198]. Even longer journeys have already been made by

this species, because its presence was reported on horses

transported to the USA in the 1960s, 1970s and 1980s

from France [199].

Dermacentor reticulatus transmits a particular set of

pathogens to humans, which might cause serious disease

if not diagnosed and treated appropriately in a timely

manner. Awareness by medical doctors of the potential

public health risk of this tick in their patient population,

and availability of supportive laboratory diagnoses are

essential. The pathogens (and associated diseases) that

can be transmitted by D. reticulatus are briefly reviewed

below. The 40 microbial agents that have been detected

in this tick are listed, though there is uncertainty about

its vector role for some of them (Table 2). It should be

noted that molecular techniques have weaknesses, in-

cluding the inability to distinguish living from dead

microorganisms and the risk exists of contamination or

PCR artefacts from various sources. Whether D. reticu-

latus can transmit these pathogens should first be estab-

lished in vector-competence experiments. The unknown

relevance of molecular detection of pathogens is exem-

plified by a study performed on field-collected adult D.

reticulatus in Poland, where 2.5 % of the 468 ticks were

positive for Babesia microti [200]. The authors used
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Table 2 Pathogens detected in Dermacentor reticulatus

Status Pathogen Disease Region Relevance Note References

Vector Omsk
haemorrhagic
fever virus

Omsk
haemorrhagic
fever

Western
Siberia

PH [207]

Tick-borne
encephalitis
virus

Tick-borne
encephalitis

Eurasia PH [80, 149, 228, 299]

Rickettsia raoultii TIBOLA/DEBONEL Eurasia PH [15, 62, 64, 107, 126,
141, 159, 235, 238,
245, 247–249, 300–
303]

Rickettsia slovaca TIBOLA/DEBONEL Eurasia PH [64, 238, 245, 300,
304]

Anaplasma
marginale

Bovine
anaplasmosis

France VET Disseminated infection
and mechanical
(surgery) calf to calf
transmission

[104, 194, 196]

Babesia canis Canine babesiosis Eurasia VET [69, 112, 123, 144,
180, 300, 305]

Babesia caballi Equine babesiosis Southern
Europe

VET [69]

Theileria equi Equine theileriosis Eurasia VET [188, 306, 307]

Carrier: found in questing or fed
ticks or used in experimental
infection studies (with unknown
vector role)

Kemerovo virus Kemerovo tick
fever

Western
Siberia

PH [148]

Bluetongue virus
(BTV-8)

Bluetongue
disease

n.a. PH Disseminated infection
but no transstadial or
transovarial infection

[308]

Palma virus ? n.a. ? transmission by co-
feeding on laboratory
mice

[309]

Murid
herpesvirus 4

Not known Slovakia ? [310]

Rickettsia
helvetica

Aneruptive fever,
endocarditis

Eurasia PH [115, 141, 250]

Rickettsia sibirica
sibirica

Siberian tick
typhus

Asia PH [311, 312]

Anaplasma
phagocytophilum

Human, canine
and equine
granulocytic
anaplasmosis

Eurasia PH + VET [104, 144, 247, 313,
314]

Borrelia
burgdorferi (s.s.)

Lyme borreliosis Eurasia PH [141]

Borrelia
burgdorferi (s.l.)

Lyme borreliosis Eurasia PH [104, 107, 141, 315,
316]

Borrelia afzelii Lyme borreliosis Eurasia PH Also detected in
engorged larvae
removed from
uninfected mice

[15, 141, 206]

Borrelia
valaisiana

Lyme borreliosis Eurasia PH [141]

Borrelia garinii Lyme borreliosis Eurasia PH [158]

Coxiella burneii Q-fever Eurasia PH [104, 317]

Francisella
tularensis ssp.
holarctica

Tularemia Eurasia PH [200, 318, 319]

Francisella
philomiragia

Eurasia PH + VET Not tick-transmitted [104]
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amplified rDNA fragments that were only 238 base

pairs long and the similarity of their PCR products was

only 97–99 % to known B. microti sequences. Based on

these findings, no conclusions should be drawn about

the potential vector role or the public health relevance

of D. reticulatus in transmission of B. microti. Czech

scientists cultured an additional 38 bacterial strains

with mainly unknown medical or veterinary importance

from field-collected D. reticulatus [201] that are not

listed in our table. One of the latest additions to the

long list of microbes is Toxoplasma gondii [202], a

parasite with a life-cycle involving a multitude of hosts

but surely not specialised for tick transmission.

We would like to call attention also to the possible in-

direct role of this tick species in pathogen cycles. As has

been shown for A. phagocytophilum and Babesia microti

transmitted by nidicolous Ixodes trianguliceps to rodents

[203, 204] and B. burgdorferi (sensu lato) (s.l.) transmitted

by I. hexagonus to hedgehogs [205], immatures of D. reti-

culatus are probably also involved in the endophilic patho-

gen cycles of disease agents [206]. Similarly to the recently

published endophilic cycle of B. afzelii maintained by the

nidicolous I. acuminatus on rodents and by I. ricinus in

an exophilic cycle [206], D. reticulatus immatures may

also maintain pathogens that could be transmitted to

humans or domesticated animals by adults of the same

Table 2 Pathogens detected in Dermacentor reticulatus (Continued)

Opportunistic
human pathogen,
fish pathogen

Francisella-like
organisms

Not known Eurasia – [105, 150, 320–324]

Bartonella
henselae

Cat scratch
disease

Eurasia PH [141, 158]

Bartonella
quintana

Five-days fever Eurasia PH [158]

Bartonella sp. ? n.a. ? [104]

Gordonia sputi Endocarditis,
mediastinitis

Europe PH In immunosuppressed
individuals, not tick-
transmitted

[325, 326]

Microbacterium
floriorum

? Europe ? In immunosuppressed
individuals, not tick-
transmitted

[325]

Arthrobacter
oxydans

? Europe ? Not tick-transmitted [325]

Kocuria kristinae Endocarditis,
peritonitis

Europe PH Not tick-transmitted [325]

Curtobacterium
flaccumfaciens

Septic arthritis Europe PH Not tick-transmitted [325]

Salmonella
typhimurium

Salmonellosis Eurasia PH Not tick-transmitted but
transovarially
transmitted

[327, 328]

Babesia microti Human babesiosis Eurasia PH [200, 305]

Babesia
divergens

Bovine babesiosis,
Redwater fever

Spain PH + VET [307, 329]

Human babesiosis Europe

Babesia
bigemina

Texas fever Spain VET [307]

Theileria sp. OT1 Not known Spain ? [307]

Hepatozoon
canis

Canine
hepatozoonosis

Worldwide VET In engorged nymphs
from infected dogs

[298]

Toxoplasma
gondii

Toxoplasmosis Worldwide PH + VET Not tick-transmitted [202]

Nosema slovaca – Slovakia,
Hungary

– [330]

Abbreviations: PH public health; VET. veterinary; n.a. not applicable
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species or by other (exophilic) ticks. Exploration of the

endophilic pathogen cycles associated with D. reticulatus

is therefore of fundamental importance.

Omsk haemorrhagic fever virus (OHFV)

The first cases of Omsk haemorrhagic fever (OHF) were

diagnosed in the 1940s in four adjacent Provinces of

Russia: Omsk, Novosibirsk, Kurgan, and Tyumen. Be-

tween 1946 and 1958, more than 1,000 cases of OHF

were diagnosed, after which the incidence decreased. Al-

though OHF cases have not been officially recorded, an

increase of OHF in endemic areas has been apparent

since 1988. In about 80 % of cases, OHF infection results

in mild flu-like, symptoms. Common symptoms include

fever, headache, myalgia, cough, bradycardia, dehydra-

tion, hypotension, and gastrointestinal symptoms [207].

Such OHF cases may be easily missed or misdiagnosed

[208]. The onset of OHF is sudden, with fever lasting

five to 12 days. Approximately 30 to 50 % of patients

experience a second febrile phase. During the second

phase, patients can develop meningeal signs, but neuro-

logical involvement has not been reported. The haemor-

rhagic manifestations of OHF are typically nosebleeds,

bleeding gums, vomiting of blood, blood in the lungs

and non-menstrual bleeding of the uterus. Recovery

from OHF is generally slow and its case-fatality rate var-

ies from 0.5 to 2.5 % [207].

Omsk haemorrhagic fever virus (OHFV) belongs to the

tick-borne virus group, genus Flavivirus, family Flaviviri-

dae. It is phylogenetically closely related to tick-borne en-

cephalitis virus (TBEV), and to a lesser extent to Kyasanur

forest disease virus (KFDV) and Alkhurma haemorrhagic

fever virus (AHFV). It is remarkable that TBEV has spread

from western Europe to Japan [209], whereas the circula-

tion of OHFV remained restricted within four Siberian

provinces during hundreds of years of evolution [210].

Humans can become infected through tick bites, with

D. reticulatus being the main vector, or through contact

with body fluids of infected animals and environmental

samples. The sylvatic cycle of OHFV appears to include

several vertebrates, particularly water voles (Arvicola

amphibius, formerly A. terrestris) and narrow-headed

voles (Microtus gregalis) and the principal vector is D.

reticulatus which is able to transmit the virus transova-

rially [7]. Vole populations are cyclic, and expansion of

the virus-infected tick population coincides with in-

creases in vole populations [211]. The prevalence of

ticks infected with OHF virus corresponds to the dens-

ity of ticks in a given focus. During the epidemic period

(1945-1949) of OHF in the lake region of Omsk district,

the density of D. reticulatus was ten times greater than

during the non-epidemic period of 1959 to 1962. In the

former period, all cattle in the region were infested, and lar-

vae and nymphs were mainly found on voles, particularly

narrow-headed voles, with the prevalence of infected ticks

at 6 %. In contrast, only 0.1-0.9 % of ticks was infected dur-

ing the non-epidemic period [212].

The disease emerged in Omsk Province shortly after the

introduction of the North American muskrat (Ondatra

zibethicus), when more than 4,000 muskrats were released

into the wild. This muskrat species turned out to be highly

susceptible to OHFV infection. Many deadly epizootics in

muskrats have been recorded since the 1940s. Although

OHFV is transmitted mainly by D. reticulatus, occupa-

tional and recreational activities such as hunting, trapping

or skinning muskrats may have also caused OHF out-

breaks [208, 213].

Two important unresolved issues remain: (i) What

caused the outbreak in the 1940s? Is it really a new patho-

gen, having sprung up 70 years ago, or an indigenous

arbovirus re-emerging as a consequence of new ecological

conditions? (ii) What limits the further geographical

spread of OHFV? The main vector, D. reticulatus, as well

as its main vertebrate hosts, the water vole and the musk-

rat, are widely distributed over northern Eurasia. Perhaps

OHFV transmission is only possible in specific climatic

conditions, where co-feeding of nymphal and larval stages

of D. reticulatus occur, which is regarded as a rare event.

Another possibility is that other tick-borne flaviviruses,

notably TBEV, compete with OHFV. The latter is not un-

likely as TBEV protective antibodies cross-react with and

neutralize OHFV [214, 215].

Tick-borne encephalitis virus (TBEV)

Tick-borne encephalitis (TBE) is a common and occasion-

ally fatal tick-transmitted disease in central and eastern

Europe and Russia [216, 217]. It is an infection of the cen-

tral nervous system caused by the tick-borne encephalitis

virus (TBEV). The clinical aspects and epidemiology of

TBE, as well the ecological aspects of TBEV have been

reviewed elsewhere [218–220], and therefore, they are

only mentioned here briefly. The clinical spectrum of the

disease ranges from mild meningitis to severe meningo-

encephalitis with or without paralysis and death. A post-

encephalitic syndrome, causing long-lasting morbidity,

may occur in patients after acute tick-borne encephalitis.

The clinical course and outcome vary by subtype of tick-

borne encephalitis virus, age of patients, and host genetic

factors [221]. TBEV is transmitted to humans predomin-

antly by I. ricinus and I. persulcatus and, to a far lesser

extent, by D. reticulatus. During the last few decades the

incidence of the disease has increased and poses a growing

health problem in almost all endemic European and Asian

countries. Vaccination can effectively prevent the disease

and is suggested for persons living in or visiting tick-

borne encephalitis endemic areas [222].

Transovarial transmission of the TBEV via the eggs from

an infected adult female tick to its offspring has been
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documented, but seems to be rare and its importance to

the maintenance of the virus in nature is considered to be

rather low [223]. Compared to, for example, the highly ef-

ficient (94–100 %) filial infection rate of Rickettsia conorii

in Rhipicephalus sanguineus [224], the proportion of lar-

vae transovarially infected with TBEV is low (< 5 %) [225].

Although rodents and large mammals (e.g. deer, cattle)

can be infected and become viraemic, systemic infection is

not necessary and of little importance for viral transmis-

sion [226]. TBEV can be transmitted from infected to

non-infected ticks when they co-feed in close proximity

on the same host [227]. For successful co-feeding trans-

mission nymphs and larvae should feed simultaneously on

the same host. It is unlikely that D. reticulatus can main-

tain TBEV in enzootic cycles in Europe as there is only a

very short interval for the possibility of co-feeding larvae

and nymphs [6] (see also section “Life-cycle and ecology”).

The potential role of D. reticulatus in the maintenance

and circulation of TBEV and a link with cattle as poten-

tial reservoir hosts has been suggested in recent studies

from Poland [80, 228]. Mierzejewska et al. [228] recently

reported high prevalence of TBEV (7.6 %) in D. reticula-

tus that is consistent with the results (10.8 %) obtained

by a previous survey. Interestingly, prevalence of TBEV

in D. reticulatus may be up to ten times higher than in I.

ricinus (7–11 % vs 0–1.2 %) [228, 229]. Cattle serve fre-

quently as hosts for D. reticulatus [10] and the domin-

ance of this tick over I. ricinus on bovine hosts in

regions endemic for D. reticulatus has been reported re-

cently [60]. According to these studies, grazing cattle

may play a dual role; they serve as an easily available

source of blood meals compared to wild animals, thus

supporting the expansion of D. reticulatus and might act

as a reservoir for the TBEV. Transmission of TBEV to

cattle may be followed by transfer of this virus to

humans via non- pasteurised milk or other dairy prod-

ucts from infected animals (mainly goats, sheep and

cows) [94]. Milk-borne TBE outbreaks or single cases

have been reported from Russia, the former Czechoslo-

vakia, Hungary, Austria and Germany [220, 230, 231]. A

recent study confirmed that TBEV is transmitted transo-

varially in D. reticulatus [232]. However, the role of D.

reticulatus compared to that of I. ricinus and I. persulca-

tus remains secondary or of local importance in TBEV

transmission cycle.

Rickettsia slovaca and Rickettsia raoultii

The two spotted fever rickettsiae transmitted by D.

reticulatus are Rickettsia slovaca and R. raoultii. They

are the causative agents of the syndromes known as

Tick-borne lymphadenopathy (TIBOLA) [233, 234],

recently also referred to as Dermacentor-borne-necrosis-

erythema-lymphadenopathy (DEBONEL), and Scalp es-

char neck lymphadenopathy (SENLAT) [235, 236]. Tick-

borne lymphadenopathy is the most common tick-

borne rickettsiosis in Europe after Mediterranean spot-

ted fever and occurs in Spain, France, Portugal, Italy,

Hungary, Germany, Bulgaria and Poland [235, 236].

Although originally only D. marginatus was implicated

as a vector, recent studies clarified the role of D. reti-

culatus having a similarly important role in the trans-

mission of rickettsiae causing TIBOLA [64, 236]. The

role of male D. reticulatus ticks in the transmission of

R. raoultii has also been shown [64]. In earlier reports,

only R. slovaca was found to be the main agent of

TIBOLA [237, 238], however it seems that R. raoultii

can be an important or even frequent pathogen in this

emerging infection [64].

Clinical manifestations include an eschar at the site

of the tick attachment (nearly always on the scalp) sur-

rounded by an erythema and regional/painful lymph-

adenopathies. If the tick bite is on the scalp, patients

may suffer from facial oedema. In rare cases when the

tick bite is located elsewhere than the scalp, an ery-

thema with an eschar at the site of the tick-bite usually

appears. Reports about these syndromes are rare, but

have occurred throughout Europe [235, 239]. Little is

known about the enzootic cycles of R. slovaca and R.

raoultii. Probably co-feeding transmission between

ticks from the same generation in combination with ef-

ficient transovarial transmission may suffice to sustain

the enzootic cycle of tick-borne rickettsiae [240]. It is

unclear which vertebrate hosts are involved in the amp-

lification of Rickettsia-infected ticks, as systemic infec-

tion of vertebrate hosts is rarely reported. Contact with

horses was found to be an important risk factor for ac-

quiring TIBOLA, however it is not known whether

horses might be reservoirs or whether they contribute

indirectly with the high number of Dermacentor ticks

feeding on them [65]. A recent study found R. slovaca

by PCR in Apodemus spp. mice ear biopsies [241].

Another member of the spotted fever group, R. massi-

liae was shown to be transmitted by co-feeding (and

possibly mating) between Rhipicephalus turanicus ticks

[242]. The efficiency of co-feeding transmission of R.

conori between Rh. sanguineus feeding on naïve dogs is

estimated to be between 92–100 %, whereas for ticks

on seropositive dogs the estimate was between 8–28.5 %

transmission via co-feeding [242]. Accordingly, a relatively

high prevalence of R. raoultii was observed in questing D.

reticulatus adults in Austria (minimum prevalence of

14.9 %) [243], Romania (18 %) [244], Slovakia (22.3–27 %)

[245], UK (27 %) [246], the Baltic countries (1–36.9 %)

[247], Germany (44 %) [126], Poland (44–53 %) [15, 248]

and Hungary (58 %) [249]. For unknown reasons, R.

slovaca is found with lower prevalence or not detected at

all in this species and occurs more often in D. marginatus

[245, 250].
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Francisella tularensis and Coxiella burnetii

Tularaemia is a zoonosis caused by Francisella tularensis,

a highly infectious Gram-negative coccobacillus which has

been isolated from over 250 species of mammals, birds,

reptiles, amphibians, fish and invertebrates. Francisella

tularensis can be transmitted by several routes, including

direct contact with infected body fluids, ingestion of con-

taminated food or water, inhalation of aerosols and arthro-

pod bites [251]. Ticks have been shown to be infected

with F. tularensis and F. tularensis-like microorganisms

and even transstadial transmission has been demon-

strated. Dermacentor reticulatus has been implicated in

the transmission of F. tularensis in outbreaks in Russia

[252]. However, and most importantly, the incrimination

of this vector in transmitting the pathogen to humans has

never been proved, and only circumstantial evidence for

its vector competence exists [253, 254]. A recent study

found no evidence of F. tularensis transovarial transmis-

sion in D. reticulatus [255].

A similar situation holds true for Q fever, which is

caused by Coxiella burnetii. It can infect a broad spectrum

of hosts including livestock, pets, wildlife, birds, fish,

reptiles and even invertebrates such as D. reticulatus

[256, 257], and has several transmission routes. Al-

though other ticks than D. reticulatus may readily transmit

C. burnetii and F. tularensis in experimental systems,

reports with irrefutable evidence of tick-transmitted Q

fever in humans are scarce, if not non-existent [258].

Similarly to the case of F. tularensis obscured by F. tularen-

sis-like endosymbionts, Coxiella-like bacteria are also

widespread in ticks and may have been misidentified as C.

burnetii as emphasised by Duron et al. [258]. Although

ticks other than D. reticulatus may readily transmit C.

burnetii in experimental systems, they only occasionally

transmit the pathogen in the field. Indirectly, however, D.

reticulatus may act as entrance for highly infectious agents,

such as F. tularensis and C. burnetii, since bites of this

species cause lesions in the host skin [38]. Thus, although

transmission of F. tularensis and C. burnetii by D. reticula-

tus cannot be excluded, other transmission routes to

humans play a more important role.

Conclusions and future challenges

A growing number of reports show that D. reticulatus

is establishing new foci. We have reviewed the adaptive

traits of this species to explain this successful invasion

of new areas in the section “Life-cycle and ecology”.

The most important biological characters (intrinsic fac-

tors) of this species that contribute to the geographical

spread are summarised in Fig. 11. Certainly, many driv-

ing forces influence the adaptability of a tick species to

new areas as reviewed for I. ricinus recently [114]. The

key extrinsic factors that have enabled the recent

spread of D. reticulatus were reviewed in the section

“Geographical distribution and recent spread” and are

summarised in Fig. 12.

Many basic ecological traits of D. reticulatus still re-

main elusive and have to be explored in order to better

understand the eco-epidemiological role of this vector

species. We do not entirely understand why its larvae

are hardly ever found by flagging, while they obviously

find their (usual) vole host. Field data to show whether

they are mainly inside the rodent nests (endophilous

nidicoles) or only near but not within the nests

(harbourage nidicoles) [7, 28] do not exist. Dermacentor

reticulatus larvae in fact cannot be nidicolous by defin-

ition, since they can only hatch at places in the leaf litter

where the engorged females are randomly dropped off

from their hosts and lay eggs, except if gravid females

are somehow able to lay eggs in the rodent burrows,

Fig. 11 Biological features (intrinsic factors) contributing to successful geographical spread of Dermacentor reticulatus (see details and references
in the text)
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which is highly unlikely as also pointed out by Pfäffle et al.

[20]. Several alternative and mutually non-exclusive hy-

potheses can be proposed to explain the host-finding

success of larvae despite their lack during sampling via

flagging. First, there might be differences in the questing

behaviour of D. reticulatus larvae compared to I. ricinus.

Indeed, D. reticulatus larvae are able to move faster and

they hardly if ever quest on vegetation compared to I.

ricinus larvae (Hans Dautel, personal communication).

Given their relatively high speed and dominantly horizon-

tal movement, they have been shown to occupy a rela-

tively large territory, several square meters [259]. Second,

differences in the ecology and behaviour of the domin-

ant host species (voles for D. reticulatus and mice for I.

ricinus) may also account for this observation. A

marked ecological difference is that voles build burrows

with corridors some centimetres under the surface that

often rise into the leaf litter. The nests are 50 cm under

the surface in tree trunks, under dead wood or in the

ground vegetation [260] and this might further increase

the contact rate with larvae preferring leaf litter [20]. In

contrast, yellow-necked field mice (A. flavicollis) tend

to show arboreal occurrence by climbing on trees and

nesting in bird nest boxes and tree hollows [261]. As a

behavioural difference, yellow-necked field mice move

differently through their habitat than bank voles (My.

glareolus). Short distances are covered by running,

while distances longer than two or three metres are

covered by jumping, with a jump length up to 80 cm

[262]. This can also lead to a dominance of I. ricinus

(questing higher) and not D. reticulatus on mice. A

third important factor is that the species structure in

small rodent communities in central European flood-

plain forests is not uniform but changes along the

moisture gradient. Bank voles dominate in the lower

alluvial plains that hold water for a long time whereas in

drier places, mice and voles show the same abundance

[263]. Unlike mice, bank voles are capable of acquiring

effective resistance against feeding larvae of Ixodes spp.,

resulting in reduced engorged weight and reduced survival

of the nymphal stage [264–266]. Finally, field and labora-

tory experiments may also elucidate a possible host odour

preference of larval D. reticulatus.

A deeper insight into host associations and their

consequences on the eco-epidemiology of pathogens will

undoubtedly benefit preventive approaches. The high

preference of D. reticulatus for dogs together with the

appearance of the tick in new areas will surely affect the

emergence of certain pathogens too. As in the case of

Dermacentor andersoni and Dermacentor variabilis, the

abundant stray dogs and other free ranging dogs largely

contributed to the high prevalence of Rickettsia rickettsii

in ticks and led to hyperendemic foci of Rocky Mountain

spotted fever in Mexico and south-west USA [7]. Simi-

larly, the increase of dog populations might easily elevate

the risk of infection by some pathogens transmitted by

D. reticulatus, especially those that are maintained

through transovarial transmission by the tick itself

[267]. A similar effect exerted by horses was described

in the case of TIBOLA infections and contact with

horses [65].

Better understanding and mapping of the spread of D.

reticulatus is pivotal to assess the (local) risk of infections

transmitted by this vector species. A joint initiative of the

European Food Safety Authority (EFSA) and the European

Centre for Disease Prevention and Control (ECDC) re-

sulted in a European network for sharing data on the

geographic distribution of arthropod vectors transmitting

human and animal disease agents (VectorNet), including

D. reticulatus. A large database on the presence and

Fig. 12 Extrinsic factors contributing to successful geographical spread of Dermacentor reticulatus (see details and references in text)
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distribution of vectors and pathogens in vectors in Europe

and the Mediterranean basin is maintained, through a

multidisciplinary network of experts and organizations,

which (locally) collects these data. An up-to-date map on

D. reticulatus (Fig. 9) can be found on the ECDC website

[268]. Recent maps of this tick’s distribution were pub-

lished for Poland [17], Germany [127] and Europe [93]

(Fig. 10), the digital dataset presented in the latter study

are provided on the website http://epidemic-modeling.vet-

meduni.ac.at/tickmodel.htm. Enhanced tick surveillance

with harmonised approaches for comparison of data

enabling follow-up of trends will improve the messages to

policy makers, other stakeholders and to the general pub-

lic on risks related to tick-borne diseases [114].

As reviewed in the veterinary and public health sections,

there are a multitude of pathogens that can be transmitted

or at least carried by D. reticulatus. However, we would

like to emphasise that from the pathogen’s point of view,

since co-feeding larvae and nymphs are rare, there is a

strong selection for pathogens that are transmitted transo-

varially or that persist in reservoir hosts. For those patho-

gens that are not transmitted transovarially or cause

transient infections in hosts suitable for D. reticulatus, this

tick species does not play an important role as a vector.

As a future research topic, we would like to call attention

to the importance of controlled laboratory and field

experiments and studies exploring pathogen life-cycles.

Molecular biology methods have evolved in an unprece-

dented way and many laboratories have sophisticated and

ever cheaper tools as real-time PCR, microarrays and

whole-genome sequencing become available, but funda-

mental studies clarifying reservoir and vector roles played

in pathogen cycles lag behind.

Dermacentor reticulatus causes considerable public

and veterinary health costs (surveillance, diagnosis and

treatment) due to the pathogenic agents transmitted

(Table 2). In addition, it can cause losses in livestock

production. It has been quantified that the blood

amount taken by 100 female D. reticulatus causes a loss

of at least 400 ml of blood from the host [23]. In heavily

infested Belorussian cattle, the average milk yield de-

creased 2–3 litres per cow [269]. Animal health pharma-

ceutical companies spend hundreds of millions of Euros

on research and development of new products and one of

the leading areas is tick control on dogs, very often target-

ing D. reticulatus [270–277]. Dog owners also spend large

amounts of money on preventing tick infestations. In the

UK alone, the sale figures for ectoparasiticides have dou-

bled in the last decade, exceeding 120 million Euros in

2014 [278]. Despite these financial efforts and the consid-

erable and intensifying research, it seems that due to its

adaptive traits, the tick is extending its range and increas-

ing its epidemiologic impact. Dermacentor reticulatus is

still on the rise.

Additional files

Additional file 1: Video 1. Male Dermacentor reticulatus showing
vertical questing behaviour in the laboratory. Field-collected individuals
were used on a 30 cm stick. (MP4 3970 kb)

Additional file 2: Video 2. Male and female Dermacentor reticulatus

individuals showing vertical questing behaviour in the laboratory. Field
collected individuals were used on a 30 cm stick. (MP4 3679 kb)
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