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This article defines and studies the down entrance state (DES) and the restart entrance state (RES) classes of

quasi skip free (QSF) processes specified in terms of the nonzero structure of the elements of their transition

rate matrix Q. A QSF process is a Markov chain with states that can be specified by tuples of the form

(m, i), where m∈Z represents the “current” level of the state and i∈Z+ the current phase of the state, and

its transition probability matrix Q does not permit one step transitions to states that are two or more levels

away from the current state in one direction of the level variable m. A QSF process is a DES process if and

only if one step “down” transitions from a level m can only reach a single state in level m− 1, for all m. A

QSF process is a RES process if and only if one step “up” transitions from a level m can only reach a single

set of states in the highest level M2, largest of all m.

We derive explicit solutions and simple truncation bounds for the steady state probabilities of both DES

and RES processes, when in addition Q insures ergodicity. DES and RES processes have applications in

many areas of applied probability comprising computer science, queueing theory, inventory theory, reliability

and the theory of branching processes. To motivate their applicability we present explicit solutions for the

well-known open problem of the M/Er/n queue with batch arrivals, an inventory model, and a reliability

model.
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1. Introduction

Consider a Markov chain with states that can be specified by tuples of the form (m,i),

where m ∈ Z represents the “current” level of the state and i ∈ Z+ the current phase

of the state. The process is called quasi skip free (QSF) to the left (down) when its

transition rate matrix Q (cf. Eq. (1)) does not permit one step transitions to states

that are two or more levels away from the current state in the downwards direction of

the level variable m. QSF processes generalize the well studied class of quasi birth and

death processes (QBD) for which one step transitions to states that are two or more

levels away from the current state in either direction of the level variable m are not

allowed. QSF to the right (up) process can be defined with an apparent modification

of the definition of the transition rate matrix Q. In the sequel for simplicity we will

refer to a QSF process when the skip free direction is apparent (and without loss of

generality taken to be the “down” direction).

This article defines and studies the down entrance state (DES) and the restart

entrance state (RES) classes of QSF processes specified in terms of the nonzero struc-

ture of the elements of the matrix Q. Explicitly: a) a QSF process satisfies the (DES)

property if and only if one step “down” transitions from a level m can only reach a

single state in level m−1, for all m and b) a QSF process satisfies the (RES) property

if and only if one step “up” transitions from a level m can only reach a single set of

states in the highest level M2, largest of all m.

The main contributions of this paper are as follows. First, we derive explicit solutions

for the steady state probabilities of level dependent DES and RES processes, cf. Eqs.

(10), (13), (26) and (29). Second, we use state truncation to derive tight bounds for the

steady state probabilities. Third, we show that the DES property is satisfied by many

models that arise in practice and we obtain explicit solutions for the well-known open

problem of the M/Er/n queue with batch arrivals. We note that to our knowledge

there are no explicit expressions in the literature for the rate matrix set (and hence

for the invariant measure) of this model. This is due to the QSF structure. We also

demonstrate the applicability of DES processes to an inventory model with random

yield. Finally we discuss the restart hypercube model as an example of a RES process.
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Although our methodology applies to infinite values for the number of levels in the

process in the downward and/or in the upward direction as well as for the number

of phases, we take up explicitly only the case of finite values so that we can employ

finite matrices in the analysis. In this way the basic features of the theory will not be

obscured by additional formalism. However, we want to emphasize that all the results

generalize to infinite values in a natural way using truncation, cf. Section 3.2 herein

and Vere-Jones (1967), Tweedie (1973) and Seneta (1980). We will allow the lowest

level value to be negative in order to have a natural state description for e.g. inventory

models where shortage is allowed. We also note that the results regarding the explicit

expressions for the rate matrix set hold for the case that one “boundary-side” (up or

down side) of the state space is a transient class of states. However, for simplicity we

will not consider this case.

The smaller class of level homogenous QBD (LHQBD) processes cf. Neuts (1981),

has been used to model systems in many areas including queueing theory, cf. Riska and

Smirni (2002), retrial queues, cf. Artalejo et al. (2010). For algorithmic usages of QBDs

we refer to the anti-plagiarism scanner software of Viper. We note that most of the early

literature devoted to level homogeneous QBDs typically follows the approach presented

in Chapter 6, p. 129, in Latouche and Ramaswami (1999), whereby the computation

of the steady state distribution is based on computing a rate matrix “R”. This matrix

is specified as one of the solutions of the, not easy to solve, matrix quadratic equation:

R2D + RW + U = 0, where we use our current (cf. Eq. (1)) notation: D, W, U for

the matrices A2 A1, A0 in Latouche and Ramaswami (1999). Numerical methods for

computing R involve cyclic reduction Bini and Meini (1996) and logarithmic reduction

Pérez and van Houdt (2011), Latouche and Ramaswami (1993). For instance R is

expressed in terms of a matrix G (such that R = U(I −W − UG)−1) which is the

solution of matrix quadratic equation: UG2 +WG+D= 0. For recent work on numerical

methods for computing the matrix G for QBD processes of special structure we refer to

van Houdt and van Leeuwaarden (2011), Etessami et al. (2010), Bini et al. (2005) and

references therein. A general approach to compute G, exists only in special cases when

the down transition matrix has the form c · r with c a column vector and r a row vector

normalized to one. We note that the DES property is implied by the c · r structure but

in our present setting we deal with the much more general class of QSF processes.
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In Latouche and Ramaswami (1999), Chapter 13, p. 268-270, a method is given to

analyze level homogeneous QSF (LHQSF) processes by considering them as embedded

processes in suitably defined QBDs. However, as stated therein, the success of this

approach has been limited. We note that the matrix analytic method has been used in

Ramaswami (1988) to derive a recursive solution for the M/G/1 queue which is a QSF

process, using matrix ‘G’ described above.

In Bright and Taylor (1995) recursive algorithms are given to compute the rate

matrices for level dependent QBD processes (LDQBD). We note that when this model

satisfies the DES property then our Eq. (8) and Eq. (9) provide a rate matrix set

explicitly.

The classes of DES and RES processes have the capacity to model many complex

problems, such as Lin et al. (2009), Guillemin et al. (2004), Zwart and Boxma (2000),

Gaver et al. (2006) and Baer et al. (2013). Indeed in this paper we obtain explicit

solutions for a well-known queueing problem. In addition, RES processes have been

used to represent restart systems, cf. Katehakis and Veinott Jr. (1987), Tong et al.

(2006) and Sonin (2011), chains that represent inventory systems with random yield or

lead times, reliability, cf. Kapodistria (2011), and computer science and the theory of

branching processes, cf. Brown et al. (2010).

The rest of the article is organized as follows. In Section 2 we formally define a

QSF process and show that the DES property implies a successive lumpable property

for a QSF process, cf. Katehakis and Smit (2012). Then, in Theorem 2 we provide

explicit expressions for the a rate matrix set, that provides a recursive relation for the

steady state probabilities between a level of the state space and its sub-levels. These

expressions readily yield the state state probabilities as shown in Theorem 3. In Section

3.2 we show how the state space can be truncated, both in the downwards as in the

upward directions. In Section 5 we show how this methodology can be applied to the

M/Er/n queue with batch arrivals, and to an inventory model with random yield. We

note that the analysis of these models readily extends to the case of the Phase type

distributions, we consider the Er distributions for simplicity of the exposition. In the

Appendix we give a proof of Theorem 1.
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2. Basic Notation for DES and RES Processes

A QSF to the left (or “down”) process is a continuous time Markov process X(t) on

state space X that can be expressed as X =
⋃M2

m=M1
{(m,1), (m,2), . . . , (m,`m)}, where

`m, M1, M2, are some fixed finite integers, with 1≤ `m <∞, −∞<M1 <M2 <∞, and

M1 ≤m≤M2. A state (m,i) specifies its “current” level m and its within the level state

i, with i= 1, . . . , `m.

For a QSF process, the transition rate matrix has the form:

Q=



WM1 UM1,M1+1 · · · UM1,m UM1,m+1 · · · UM1,M2−1 UM1,M2

DM1−1 WM1+1 · · · UM1+1,m UM1+1,m+1 · · · UM1+1,M2−1 UM1+1,M2

...
... · · ·

...
... · · ·

...
...

0 0 · · · Wm Um,m+1 · · · Um−1,M2−1 Um−1,M2

0 0 · · · Dm+1 Wm+1 · · · Um,M2−1 Um,M2

...
... · · ·

...
... · · ·

...
...

0 0 · · · 0 0 · · · WM2−1 UM2−1,M2

0 0 · · · 0 0 · · · DM2 WM2


, (1)

where in the above specification of Q we use the notation Dm, Wm, and Um,k to

describe respectively the “down” (to level m−1), “within” (level m), and “up” (to level

k=m+ 1,m+ 2, . . . ,M2) transition rate sub-matrices in relation to the current level m

of a state (m,i). The dimensions of these matrices are respectively `m× `m−1, `m× `m
and `m× `k ; the 0 sub-matrices of Q have position dependent dimensions so that Q is

a well defined transition rate matrix.

Note that in the special case that there exist matrices D, W, Uk such that Dm =D,

Wm =W and Um,k = Uk, for all m, the process is called (level) homogeneous. When

Um,m+k are all 0 matrices for all k≥ 2 and all m, the QSF process reduces to the well

studied QBD process, cf. Artalejo and Gómez-Corral (2008).

In the sequel we will assume that the QSF processes discussed are ergodic. Explicit

sufficient conditions for the elements of Q can be derived to support this claim,

cf. Remark 3; such conditions on ergodicity for multi dimensional Markov Chains can

be found in Szpankowski (1988) and various criteria in Tweedie (1981), in Hordijk and

Spieksma (1992) and in Spieksma and Tweedie (1994).
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We consider Markov process X(t), introduced above. Clearly the state space X of

this process can be partitioned into a (possibly infinite) sequence of mutually exclusive

and exhaustive level sets: Lm = {(m,1), (m,2), . . . , (m,`m)}.

Definition 1. For any fixed m we define the sub-level set of Lm to be the set of

states L˜m =∪mk=M1
Lk while the set L̃m =∪M2

k=mLk is the super-level set of Lm.

We let π(m,i) denote the steady state probability of state (m,i). The vectors πm :=

[π(m,1), . . . , π(m,`m)] and π˜m := [πM1 , . . . , πm], will denote respectively the steady state

probabilities of states in level Lm and sub-level L˜m. The vector of the steady state

probabilities over all states will be denoted by π := [πM1 , . . . , πM2 ] = π˜M2 .

Using the QSF structure of Eq. (1) of the rate matrix Q, the (potentially non-zero)

elements of the matricesDm, Wm, Um,k will be denoted respectively by d(m−1, j |m,i),
(a “down” rate), w(m,j |m,i) (a “within” rate) and u(k, j |m,i), (an “up” rate) for

k >m. Note that the diagonal elements of Wm are the negative sum of all other elements

in the m row of Q.

The DES and RES processes we consider in the sequel are are level dependent and

ergodic QSF processes with a transition rate matrix Q that satisfies one of the two

properties stated in Definition 2. These conditions follow from the structure of the

nonzero elements of Q.

Definition 2.

i) The down entrance state (DES) property: one step “down” transitions from a level

m can only reach a single state in level m− 1, for all levels m.

ii) The restart entrance state (RES) property: one step “up” transitions from any

level m can only reach a single state in level M2 (M2 is the highest level) for all levels

m.

3. The Class of DES processes

The following lemmas show that the simple algebraic characterization of the DES prop-

erty is a sufficient condition for a QSF process to be successively lumpable. Following

Katehakis and Smit (2012), a state is an entrance state of a subset X0 of the state
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space X if all one step transitions from outside this set X0 into X0 can only occur via

a transition to the entrance state.

We start with the following Lemma which characterizes an entrance state of a sub-

level set Lm of a QSF process in terms of an algebraic property of the “down” transition

sub-matrix Dm of its transition rate matrix Q.

Lemma 1. For a QSF process X(t) and for a fixed m ∈ {M1, . . . ,M2}, a state

(m,ε(Lm)) ∈ Lm is an entrance state for L˜m if and only if the following is true for

all (m+ 1, i)∈Lm+1:

d(m,j |m+ 1, i) = 0, if (m,j) 6= (m,ε(Lm)). (2)

Proof. The structure of the rate matrix Q implies that “down” transitions leaving

the set L̃m+1 = Lm+1 ∪ Lm+2 ∪ . . . can only come from states in Lm+1. Further, by

Eq. (2) the latter type of transitions are possible only when they lead into the same

state (m,ε(Lm))∈Lm. �

It is easy to see that Eq. (2) of Lemma 1 is equivalent to the statement that the

`m× `m−1 matrix Dm has a single nonzero column.

For any fixed n∈ {M1, . . . ,M2}, let Dn denote the partition {L˜n,Ln+1, . . . ,LM2
} of X .

For a fixed n, the next lemma establishes that when Dm has a single non-zero column

for all m≥ n+ 1, i.e., Q has the DES property, then the QSF process is successively

lumpable with respect to the partition Dn.

Lemma 2. A QSF process is successively lumpable with respect to a partition DM1
if

Dm contains a single non-zero column vector for all m=M1 + 1, . . . ,M2.

Proof. It is a direct consequence of Lemma 1, that for a QSF process, a sub-level

set L˜m has an entrance state (m,ε(Lm)) if Dm+1 contains a single non-zero column

vector. This is true for all m≥M1. Since L˜m =L˜m−1∪Lm it follows from the definition

that the chain is successively lumpable: in the notation of Katehakis and Smit (2012),

“D0” corresponds to L˜M1
and for m>M1: “Dm” corresponds to Lm−M1

. �

Note that when a QSF process is successively lumpable with respect to a partition

Dn then it is successively lumpable with respect to partition Dm for all m >M1. A
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m − 1,
1

m − 1,
ℓm−1

m, 1

m, ℓm

m + 1,
1

m + 1,
ℓm+1

Lm−1 Lm Lm+1

Figure 1 Graphical representation of a Successively Lumpable QSF process

graphical representation of the transitions that are allowed in a successively lumpable

QSF process can be found in Figure 3.

We next state the following assumption that will be used in the sequel, where for

notational simplicity we let the entrance state of a set L˜m be state (m,1), for all m

without loss of generality.

Assumption 1. The DES process has a transition rate matrix Q with the following

properties:

A1. For all m ∈ {M1 + 1, . . . ,M2}, only the first column of sub-matrix Dm contains

non-zero elements, i.e., d(m− 1,1 |m,i)> 0 for at least one (m,i) ∈ Lm and all other

columns of Dm are equal to zero.

A2. The QSF process is ergodic (irreducible).

A3. The QSF process has bounded rates.

Remark 1. Part (A3) of Assumption 1 is given to make the proofs applicable for an

infinite state space and is not strictly necessary. It can be relaxed without further

conditions; it has been added to the assumption to make some of the proofs easier to

state.
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3.1. Explicit Solutions

We will express the steady state distribution of states in Lm in that of L˜m. The presence

of entrance states guarantees that sojourn times in L˜m are independent of the rates

from states in L̃m.

We will use the the following notation. We first define the scalar
˜
`m :=

∑m

k=M1
`k

and use the symbols Im and
˜
Im for the identity matrices of dimension `m × `m and

˜
`m×

˜
`m, respectively. Second we define the (row)vectors of dimension `m 0m, 1m and δm

to represent a vector identically equal to 0, a vector identically equal to 1, a vector with

1 as its first coordinate and 0 elsewhere respectively. Next we define the (row)vectors

of dimension
˜
`m: 0˜m and 1˜m to be the vectors will all its coordinates equal to 0 and 1,

respectively. Finally, we define the matrix Ũ m,n of dimension `m× `m by:

Ũ m,n =

M2∑
k=n

Um,k1′kδm, (3)

where the elements of Ũ m,n will be denoted by ũ(m,i), thus,

ũ(m,i) :=

M2∑
k=n

`k∑
j=1

u(k, j |m,j).

We next define the rate sub-matrices:

Am =

 Ũ M1,m+1 +UM1,m

...

Ũ m−1,m+1 +Um−1,m

 , (4)

Bm = Ũ m,m+1 +Wm. (5)

and

Γm :=

[
Am
Bm

]
.

Note that:

i) The matrix Am contains all rates of Q corresponding to transitions from states in

L˜m−1, into states of Lm plus rates corresponding to transitions under Q from states in

L˜m−1 into states of L̃m+1, which under Am have been re-directed to transitions into the

entrance state (m,1).
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ii) The `m× `m matrix Bm contains all rates of Q corresponding to transitions from

states in Lm, into states of Lm plus rates corresponding to transitions under Q from

states in Lm into states of L̃m+1, which under Bm have been re-directed to transitions

into the entrance state (m,1). Thus, for m>M1 since the construction of Bm excludes

all down transitions it a transient transition rate matrix. However, by the definition of

Ũ M1,M1+1 and by its construction the matrix BM1
is an `M1

×`M1
conservative transition

rate matrix.

We next state and prove a proposition regarding basic properties of Bm.

Proposition 1. The following are true:

i) The matrix BM1
is irreducible.

ii) The matrices Bm are non-singular, for all m>M1.

iii) The inverse of Bm has non-positive elements, for all m>M1.

Proof. To prove i), we will show that every state (M1, j) in level LM1
that is not

the entrance state (M1,1) communicates with state (M1,1). First, recall that in the

construction of BM1
, “up”-transitions are redirected to the entrance state. If there are

no “up”-transitions from the communicating class containing (M1, j), this class would

be a closed class in Q which would not contain state (M1,1), a contradiction to the

irreducibility assumption of Q. So the entrance state is reachable from (M1, j) under

BM1
. Second, we show that (M1, j) is reachable from state (M1,1) under BM1

. Indeed,

the only way to reach (M1, j) from a state in L̃M1+1 is via the entrance state, and such

a path has to exist by irreducibility of Q. Since the “within” LM1
transition rates under

Q are all preserved under BM1
, state (M1, j) is reachable from state (M1,1) under BM1

.

Thus every state communicates with the entrance state, and we conclude that BM1
is

irreducible.

For ii), we will call a matrix diagonally dominant if the absolute value of a diagonal

elements are greater or equal than the sum of the absolute values of the off diagonal

elements in that row, and strict inequality holds for at least one row. An irreducible

diagonally dominant matrix is non singular by the well-known Levy-Desplanques the-

orem, cf. Varga (1963) (p. 85) or Varga (1976).

The construction of Bm excludes all down transitions and that makes it a diagonally

dominant matrix. So when Bm is irreducible, the claim of the lemma is true.
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However, in general it is possible that the matrix Bm is not irreducible (even though

the matrix Q is irreducible). In this case we will show that the construction of Bm

with the irreducibility of Q implies the non-singular property of Bm. Indeed, suppose

Bm contains two or more communicating classes of states, say C1, . . . ,Ckm , where Ce

contains the entrance state (m,1). We will relabel the states such that states in the

same class have adjacent indices and such that if a state in a class Ci has a transition

to a state in a class Cj then i < j. It is clear that this relabeling is feasible and we can

write Bm as:

Bm =


Z11 Z12 Z13 . . .
0 Z22 Z23 . . .
0 0 Z33 . . .
...

...
...
. . .

 ,
where Zii is a matrix of size |Ci| × |Ci| containing transition rates within Ci and the

matrix Zij is of size |Ci|× |Cj| containing transition rates from Ci to Cj (and is possible

to have some nonzero elements). We next show that the determinants of Zii are all non

zero. This is sufficient to show that Bm is non-singular, since its determinant is the

product of the determinants of the Zii’s.

First, at least one state in Ce has to have a transition “down” or to another class Cj

within Bm, since otherwise Ce would be part of a closed absorbing class under Q. This

class does not contain any states in L˜m and this is a contradiction to the irreducibility

of Q. Thus Zee is diagonally dominant and therefore non-singular.

Furthermore, any other class Cj (j 6= e) has to have a state that has a transition rate

leaving this class (i.e., down, up or to another class Cj′ (j′ 6= j)) otherwise Cj would

be a closed class under Q. Therefore, the sum of the off diagonal elements of Zjj in at

least one of its row is strictly less than the absolute value of the corresponding diagonal

element, since at least one transition leads to a state out of Cj. Thus Zjj is diagonally

dominant for all j and the proof of part ii) is complete.

For iii), let τi denote the maximum of the absolute values of the diagonal elements

of Zii and let

Γi = τiI +Zii.

Since τi is finite and positive and Γi is non-negative with row sum less or equal to

τi, (and strictly less than τi for at least one row), the row sum of τ−1
i Γi is smaller or
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equal to one for each row. This implies that τ−1
i Γi is a transient transition matrix with

spectral radius smaller than 1, and thus all elements of
∑∞

j=0(τ−1
i Γi)

j are non-negative

and finite, see for example Seneta (1981), Theorem 4.3. Note also that

(Zii)
−1 = (τi(τ

−1
i Γi− I))−1 = τ−1

i (τ−1
i Γi− I)−1 = τ−1

i

∞∑
j=0

−(τ−1
i Γi)

j.

The above implies that all elements of (Zii)
−1 are non-positive.

By Woodbury’s identity, cf. Woodbury (1950) we know:[
Z11 Z12

0 Z22

]−1

=

[
Z−1

11 −Z−1
11 Z12Z

−1
22

0 Z−1
22

]
,

which is a non-positive matrix by the above; an induction argument can establish the

same for (Bm)−1. �

We next state the following theorem for successively lumpable Markov chains within

the context and notation of the DES model. This theorem is a consequence of Theorem

2 of Katehakis and Smit (2012); to avoid the introduction of the notation used in the

latter paper, we provide a separate proof in the appendix.

Theorem 1. Under Assumption 1, the following equality is true for the steady state

probabilities π˜m of X(t) for every m :

π˜mΓm = 0m. (6)

We next introduce the idea of a rate matrix set for Q as a sequence of matrices R=

{Rkm}m,k such thatRkm satisfy Eq. (7), for all k= 1, . . . ,m−M1 and m=M1 +1, . . . ,M2;

cf. Latouche and Ramaswami (1999) and references therein.

πm = π˜m−kRkm. (7)

Note that there are multiple rate matrix sets, for a given Q. To see this note that for any

fixed k, m and known vectors πm = [π(m,1), . . . , π(m,`m)] and π˜m−k = [πM1 , . . . , πm−k]

Eq. (7) is essentially a system of `m equations with
˜
`m−k× `m unknowns, the elements

of the matrix Rkm. These equations have many solutions.

In Theorem 2 we show that the specific set R0 := {Rk
m}m,k obtained recursively using

Eq. (8) starting with Eq. (9), is a rate matrix set for Q. For all m=M1 + 1, . . .M2 with

k= 2, . . .m−M1 we define:



13

Rk
m :=

[̃
Im−k |R1

m−(k−1)

]
Rk−1
m , (8)

where:

R1
m :=−Am(Bm)−1. (9)

By virtue of Proposition 1ii we know that Bm is non sinular.

Theorem 2. The set R0 defined by Eqs. (8) and (9) above is a rate matrix set for Q.

Proof. The proof is by induction. For k= 1 we know by Theorem 1 that

π˜mΓm = 0m.

We can rewrite this as:

[π˜m−1|πm]

[
Am
Bm

]
= 0m,

and thus:

πm =−π˜m−1Am(Bm)−1 = πm−1R1
m.

Suppose the statement is true for any m and for k−1. We next show that the statement

holds for k:

πm = π˜m−(k−1)Rk−1
m

= [π˜m−k|πm−(k−1)]Rk−1
m

= [π˜m−k|π˜m−kR1
m−(k−1)]R

k−1
m

= π˜m−k [̃Im−k|R1
m−(k−1)

]
Rk−1
m

= π˜m−kRk
m.

Thus the statement is true for k= 1, . . . ,m−M1 and therefore:

πm = π˜m−kRk
m. �

Note that the above implies that we can express all vectors πm in terms of the steady

state distribution of level M1, since M1 is finite, By the irreducibility assumption all

vectors are strictly larger than 0. Therefore we state:

πm = πM1 Rm−M1
m > 0m, (10)
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For any m1,m2 ∈ {M1, . . . ,M2}, with m1 <m2, we define the column vector Sm2
m1

of

length `m1
by Eq. (11) below.

Sm2
m1

=

[
1′m1

+

m2∑
m=m1+1

Rm−m1
m 1′m

]
. (11)

Remark 2.

The elements of Rk
m are non-negative ∀ k,m where M1 + 1≤m≤M2, 1≤ k≤m−M1.

To check this claim for R1
m, it suffices to note that Am ≥ 0 by definition and −B−1

m > 0,

by Proposition 1. Alternatively, the (i, j)-th element of R1
m can be given an expected

first passage time interpretation as is described for QBD processes in Latouche and

Ramaswami (1999), chapter 6. The claim for Rk
m, with k≥ 2, follows using Eq. (8).

The lemma below establishes the relation between πM1 and SM2
M1

.

Lemma 3. The following relation holds for πM1 and SM2
M1

:

πM1SM2
M1

= 1. (12)

Proof. Since the chain is ergodic we have πM11′M1
+
∑M2

m=M1+1 π
m1′m = 1, thus

Eq. (10) implies:

πM1

[
1′M1

+

M2∑
m=M1+1

Rm−M1
m 1′m

]
= 1.

Substituting
[
1′M1

+
∑M2

m=M1+1R
m−M1
m 1′m

]
by SM2

M1
in the above gives Eq. (12). �

We now state and prove the following theorem.

Theorem 3. Under Assumption 1, the following is true:

πM1 = δM1

[
SM2
M1
δM1
−BM1

]−1
. (13)

Proof. Since BM1
is an irreducible rate matrix (Proposition 1 i), it has rank (`M1

−1)

by basic linear algebra theory, see for example Seneta (1981).

Furthermore, at the boundary M1 we have ΓM1
=BM1

and π˜M1 = πM1 . Thus Theorem

1 implies that Eq. (6) can be written as Eq. (14) below.

πM1BM1
= 0M1

. (14)

Thus it follows that the vector SM2
M1

is not an element of the linear space spanned by

the columns of BM1
, since by Lemma 3 πM1SM2

M1
= 1.
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The above imply that −BM1
has rank (`M1

− 1) and when we add to its first column

the vector SM2
M1

the resulting matrix [SM2
M1
δM1
−BM1

] has full rank and it is invertible.

We use Lemma 3 to state [
πM1SM2

M1

]
δM1

= δM1
,

and via

πM1
[
SM2
M1
δM1
−BM1

]
= δM1

− 0M1
= δM1

,

we conclude

πM1 = δM1

[
SM2
M1
δM1
−BM1

]−1
.

�

The results above justify the following algorithm to find the steady state distribution

of a DES-QSF process.

Algorithm 1 (DES-QSF)

- Calculate R1
m with Eq. (9) for all m=M1 + 1, . . . ,M2.

- Compute Rk
m recursively via Eq. (8) for m=M1 + 1 . . . ,M2 and k= 2, . . . ,m−M1.

- Calculate SM2
M1

via Eq. (11).

- Calculate πM1 via Eq. (13).

- Calculate πm via Eq. (10) for all m=M1 + 1, . . . ,M2.

3.2. State Space Truncations

In this section we show how to truncate the state space in the upward direction, in

order to obtain upper bounds for the steady state probabilities π(m,i) of states in L˜m2

where m2 ∈ {M1,M1 + 1, . . . ,M2−1}. To this end we first define a process Xm2
(t) with

truncated state space Xm2
=L˜m2

and transition rate matrix:

QXm2
=


. . .

...
...

...
...

· · · Dm2−2 Wm2−2 Um2−2,m2−1 Um2−2,m2 + Ũm2−2,m2

· · · 0 Dm2−1 Wm2−1 Um2−1,m2 + Ũm2−1,m2

· · · 0 0 Dm2 Wm2 + Ũm2,m2

 , (15)

where the elements of the last column are given by Eq. (3). We denote the steady

state distribution of this process as the row vector πXm2
= [πM1

Xm2
, . . . , πm2

Xm2
] of size:
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m=M1
`m, where its mth component contains the steady state probabilities for level m

of the truncated process.

We next state the following. We emphasize that this proposition clearly holds for

M2 =∞ under the ergodicity assumption.

Proposition 2. For all finite m2 ≥M1, and any level m = M1,M1 + 1, . . . ,m2, the

following are true:

i) πmXm2
= πM1

Xm2
Rm−M1
m , (16)

πM1
Xm2

= δM1

[
Sm2
M1
δM1
−BM1

]−1
. (17)

ii) π(m,i)<πXm2
(m,i).

iii) For all states (m,i), πXν (m,i) is a strict decreasing function in ν =m2,m2 + 1, . . .

Proof. By its construction, the process Xm2
(t) is a QSF process which satisfies

Assumption A1. Further, by its definition the matrix QXm2
gives rise to the same rate

matrices Rk
m as the matrix Q of the original process X(t). This follows from the fact

that this specific truncation ensures that the matrices Am,Xm2
, Bm,Xm2

of the truncated

process corresponding to the matrices Am Bm of the original process are identical and

this proves Eq. (16). The proof of Eq. (17) follows as the proof of Theorem 3, if we

replace M2 with m2.

For the proof of part ii), using Proposition 1 of Katehakis and Smit (2012), (where

πXm2
(m,i) = vL˜m(m,i)) we obtain that Eq. (18) below is valid for all m≤ ν:

πXν (m,i) =
π(m,i)∑

(k,j)∈L˜ν π(k, j)
for all ν =m2,m2 + 1, . . . . (18)

Since
∑

(k,j)∈L˜ν π(k, j) < 1, for all finite ν, it follows from the above that π(m,i) <

πXm2
(m,i).

For the proof of part iii), note that since L˜ν ⊂L˜ν+1, we have that
∑

(k,j)∈L˜ν π(k, j)<∑
(k,j)∈L˜ν+1

π(k, j). Thus, we conclude that πXν+1
(m,i)<πXν (m,i). We can repeat this

argument for L˜ν+2,L˜ν+3, . . . and the proof is complete. �

Note that Proposition 2 is closely related the results of Bright and Taylor (1995)

(pp. 499-500), derived for LDQBDs. Specifically, Eq. (16)-(17) are the QSF process

extensions of Eqs. (1.7)-(1.8) of that paper, with k and m reversed and the change of

notation K∗, xk, Rk+1, R0 in place of our m2, πm, Rm R1.
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Note that the matrix Rm−M1
m is finite even when the the QSF process is not ergodic;

such a non-ergodic case exists for instance when there is a drift to “up” direction. We

can however state the following:

Remark 3. The successively lumpable QSF process is ergodic if
∑M2

m=M1
Rm−M1
m <

∞, since then Theorem 3 and Eq. (10) show that there exist positive steady state

probabilities for all states. Similarly, it follows that for QSF processes to be ergodic it

is sufficient that SM2
M1

<∞.

Remark 4. One can also construct truncations with respect to M1 or to any `m sep-

arately. This is especially important when some of these constants are infinite. There

are various truncations methods possible to truncate the matrix Q of infinite size, some

are described in Vere-Jones (1967), Seneta (1980) and Tweedie (1973). Most of these

truncations will preserve the successively lumpable property. Such as truncation to

m1 ≥M1 =−∞ we provide below, following Seneta (1980).

Define a process Xm1
(t) with state space Xm1

= L̃m1
and transition rate matrix:

QXm1
=


W

m1
Um1,m1+1 Um1,m1+2 Um1,m1+3 · · ·

Dm1+1 Wm1+1 Um1+1,m1+2 Um1+1,m+3 · · ·
0 Dm1+2 Wm1+2 Um1+2,m1+3 · · ·
...

...
...

...
. . .

 , (19)

where w(m1, j |m1, i) =w(m1, j |m1, i) if j 6= 1 and otherwise we have w(m1,1 |m1, i) =

w(m1,1 |m1, i) + d(m1 − 1,1 |m1, i). Let πXm1
denote the steady state distribution of

Xm1
(t). For this truncation it can be shown as in Seneta (1980) (Theorem on p. 262)

that for all (m,i):

π(m,i) = lim
m1→−∞

πXm1
(m,i).

4. The Class of RES processes

In this section we consider QSF processes of the form described in Definition 2ii. Because

the current section has the same structure as Section 3.1, most of the theorems and

lemmas can be given without proof. We will refer to the corresponding statement in

the previous section and add some clarification when necessary.

We start with the following lemmas that show that the simple algebraic characteri-

zation of the RES property is a sufficient condition for a QSF process to be successively

lumpable.
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We start with the following lemma that characterizes an entrance state of the super-

level set L̃m of a QSF process in terms of an algebraic property of the “up” transition

sub-matrices Um,k of its transition rate matrix Q.

Lemma 4. For a QSF process X(t) and for all levels m ∈ {M1, . . . ,M2}, the state

(M2,ε(Lm))∈LM2
is an entrance state for the set L̃m if the following is true for all

states (n, i)∈L˜m−1:

u(k, j |n, i) = 0, if (k, j) 6= (M2,ε(Lm)). (20)

Proof. Similar to statement made in the proof of Lemma 1 that regards DES pro-

cesses. �

It is easy to see that Eq. (20) of Lemma 4 is equivalent to the statement that the

matrices Um,M2 have a single nonzero column and that Um,k = 0 for all k ∈ {m +

1, . . . ,M2− 1}. This is equivalent to the RES property.

For any fixed n∈ {M1, . . . ,M2}, let Dn denote the partition {LM1
, . . . ,Ln−1, L̃n} of X .

For a fixed n, the next lemma establishes that when Q has the RES property (cf. 2 ii),

then the QSF process is successively lumpable with respect to the partition Dn.

Lemma 5. A QSF process is successively lumpable with respect to a partition DM2
if

the matrices Um,M2 have a single nonzero column and that Um,k = 0 for all k ∈ {m+

1, . . . ,M2− 1}.

Proof. Similar to the proof of Lemma 2 in the previous section. �

A graphical representation of the transitions that are allowed in a RES QSF process

can be found in Figure 2.

We now state the following assumption that will be used in the sequel of this section,

where for notational simplicity we let the entrance state of a set L̃m be state (M2,1),

for all m without loss of generality.

Assumption 2. The RES process under consideration has a transition rate matrix Q

with the following properties:

A1. The process is ergodic (irreducible);
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m − 1,
1

m − 1,
ℓm−1

m, 1

m, ℓm

M2, 1

M2,
ℓM2

Lm−1 Lm LM2

Figure 2 Graphical representation of a RES QSF process

A2. For all m ∈ {M1, . . . ,M2 − 1}, only the first column of sub-matrix Um,M2 can

contain non-zero elements.

A3. The RES process has bounded rates.

Since the process is positive recurrent, there has to be a transition back to the

entrance state from a state in L˜m, i.e. u(M2,1 |n, i) > 0 for at least one (n, i) ∈ L˜m
and all other columns of Um,M2 are equal to zero. In addition, Um,k = 0 for all k ∈
{m, . . . ,M2− 1}.

4.1. Explicit Solutions

We will use the notation introduced in the previous section. In addition we define the

matrix D̃m of dimension `m× `m by:

D̃m =Dm1′mδm. (21)

We next state and prove a proposition regarding basic properties of Wm and D̃M2 .

Proposition 3. The following are true:

i) The matrix WM2 + D̃M2 is irreducible.

ii) The matrices Wm are non-singular, for all m∈ {M1, . . . ,M2}.
iii) The elements of the inverse of Wm are non positive, for all m<M2.

Proof. The proves are analogous to that of Proposition 1 in the previous section,

that states similar results for a DES process.
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We can now state the following theorem for RES process, within the context and

notation of the present section.

Theorem 4. Under Assumption 2, the following equality is true for the steady state

probabilities πm of X(t) for every m∈ {M1, . . . ,M2− 1} :

πmWm +πm+1Dm+1 = 0m. (22)

πM2(WM2 + D̃M2) = 0M2
. (23)

Proof. The proof is along the same lines as Theorem 1, since the RES process is

successively lumpableas well. We can complete the proof by only considering the states

that have possibly positive transitions out of set L̃m+1. �

For a RES process, we define a rate matrix set for Q as a sequence of matrices

R= {Rm}m such that Rm satisfy Eq. (24), for all m=M1, . . . ,M2− 1. Note that this

is a slightly different definition than the one introduced for DES processes.

πm = πm+1Rm. (24)

In Theorem 5 we show that the specific set R0 := {Rm}m given by Eq. (25) below, is

a rate matrix set for Q. For all m=M1, . . . ,M2− 1 we define:

Rm :=−Dm+1(Wm)−1. (25)

By virtue of Proposition 3ii we know that Wm is non singular.

Theorem 5. The set R0 defined by Eq. (25) above is a rate matrix set for Q.

Proof. Follows directly from Theorem 4. �

Note that the above implies that we can express all vectors πm in terms of the

steady state distribution of elements in level M2, since M2 is finite. By the irreducibility

assumption all vectors are strictly larger than 0. Therefore we state:

πm = πM2

M2−1−m∏
k=0

RM2−1−k > 0m, (26)
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For any m1 ∈ {M1, . . . ,M2}, with m1 <M2, we define the column vector TM2
m1

of length

`M2
by Eq. (27) below.

TM2
m1

=

[
1′M2

+

M2−1∑
m=m1

M2−1−m∏
k=0

RM2−1−k1
′
m

]
. (27)

Note that Rm is non-negative for all m.

The lemma below establishes the relation between πM2 and TM2
M1

.

Lemma 6. The following relation holds for πM2 and TM2
M1

:

πM2TM2
M1

= 1. (28)

Proof. Analogous to Lemma 6. �

We now state and prove the following theorem.

Theorem 6. Under Assumption 2, the following is true:

πM2 = δM2

[
TM2
M1
δM2
−WM2 − D̃M2

]−1

. (29)

Proof. Since WM2 − D̃M2 is an irreducible rate matrix, Proposition 3 i, it has rank

(`M2
− 1) by basic linear algebra theory, see for example Seneta (1981). Furthermore,

we know that πM2(WM2 − D̃M2) = 0M2
and πM2TM2

M1
= 1, thus that the vector TM2

M1
is

not an element of the linear space spanned by the columns of WM2 − D̃M2 . Therefore

[TM2
M1
δM1
−WM2 − D̃M2 ] has full rank and is invertible. The remainder of the proof is

similar to the proof of Theorem 3. �

The results above justify the following algorithm to find the steady state distribution

of a RES QSF process.

Algorithm 2 [RES-QSF]

- Compute Rm via Eq. (25) for m=M1 . . . ,M2− 1.

- Calculate TM2
M1

via Eq. (27).

- Calculate πM2 via Eq. (29).

- Calculate πm via Eq. (26) for all m=M1, . . . ,M2− 1.
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4.2. State Space Truncations

In this section we show how to truncate the state space of a RES QSF process in the

downward direction in order to obtain upper bounds for the steady state probabilities

π(m,i) of states in L̃m1
where m1 ∈ {M1 + 1,M1 + 2, . . . ,M2}. To this end we define a

process Xm1
(t) with truncated state space Xm1

= L̃m1
and transition rate matrix:

QXm1
=



Wm1 0 · · · 0 0 0 D̃m1 +Um1,M2

Dm1+1 Wm1+1 · · · 0 0 0 Um1+1,M2

...
...

. . .
...

...
...

...
0 0 · · · DM2−2 WM2−2 0 UM2−2,M2

0 0 · · · 0 DM2−1 WM2−1 UM2−1,M2

0 0 · · · 0 0 DM2 WM2


. (30)

We denote the steady state distribution of this process as the row vector πXm1
=

[πm1
Xm1

, . . . , πM2
Xm1

] of size:
∑M2

m=m1
`m, where its mth component contains the steady state

probabilities for level m of the truncated process.

We next state the following. We emphasize that this proposition clearly holds for

M1 =∞ under the ergodicity assumption.

Proposition 4. For all finite m1 ≤M2, and any level m = m1,m1 + 1, . . . ,M2, the

following are true:

i) πmXm1
= πM2

Xm1

M2−1−m∏
k=0

RM2−1−k (31)

πM2
Xm1

= δM2

[
TM2
m1
δM2
−WM2 − D̃M2

]−1

. (32)

ii) π(m,i)<πXm1
(m,i).

iii) For all states (m,i), πXν (m,i) is a strict decreasing function in ν =m1,m1− 1, . . .

Proof. Similar to the proof of Proposition 2: the RES property remains intact, the

rate matrices do not change. The entrance state will never be removed from the state

space. �

Remark 5. It is not useful to truncate the process in the upward direction. Since we

consider a ergodic process with a restart entrance state, returns will go to the highest

level. Removing this set would effect the structure of the process too much to give any

bounds of interest.
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5. Applications

To illustrate the application of the results we provide explicit solutions and approx-

imations to well known open problems of queueing, cf. Adan et al. (2013), and to a

stochastic inventory theory problem, cf. Veinott (1965). The queueing models under

consideration are the M/Er/n queueing model with batch arrivals and the Er/M/n

queueing model. In the two subsequent sections, we take the number of phases to be

constant, i.e. `m = ` for all m, this is done solely for presentation simplicity. The anal-

ysis is easy to extend when the number of phases of the corresponding distribution

is a function of “m” - the state of the queue, the number of customers in line. The

steady state distribution of the M /Er/n is known for the case of Poisson arrivals, as

for example discussed in Latouche and Ramaswami (1999). As far as we known this is

the first time the steady state distribution of the M/Er/n model with batch arrivals

is obtained. We note that the same book gives an exact solution procedure for QBD

processes only when M1 is finite. Below we show that our direct method works for the

Er/M/n queueing system, i.e., we provide explicit formulas for the rate matrix set,

even when M1 =−∞. For the inventory model we show that is has the same structure

as the M /Er/n and it can be handled similarly.

The construction in the following remark can be used to extend the applicability of

the methods described in the previous section to models that are QSF and successively

lumpable in the ‘upward’ direction.

Remark 6. Consider a process with a transition rate matrix Q that has the block

form shown in Eq. (33), where its elements are labeled by (m,i)∈X , the states of the

underlying process.

Q=


. . .

...
...

...
...

... . .
.

· · · Dm−1,m−2 Wm−1 Um−1 0 0 · · ·
· · · Dm,m−2 Dm,m−1 Wm Um 0 · · ·
· · · Dm+1,m−2 Dm+1,m−1 Dm+1,m Wm+1 Um+1 · · ·
. .
. ...

...
...

...
...

. . .

 . (33)

Then, we can construct a transition rate matrix Q̂ of the form of Eq. (1) by relabeling

the states so that a new state (−m,i) corresponds to the original (m,i)∈X by redefining

the down, within and up sub-matrices of Q̂ as follows: D̂−m =Um, Û−m,−k =Dm,k, and

Ŵ−m =Wm. The steady state probabilities of the Q-process can be readily obtained

from those of the Q̂-process.
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5.1. The Classic M/Er/n Model with Batch Arrivals.

In a M/Er/n queueing system with batch arrivals the service of a customer occurs in

` phases, each exponentially distributed with parameter µi for the i-th phase of the

service. For notational simplicity of the exposition we describe in detail the case in

which a batch may contain either 1 or 2 customers. Batches with a single customer

arrive according to a Poisson process with rate pλm,i when there are m customers in

the system and the served customer has gone through the first i phases of services.

Similarly, batches of 2 customers arrive with rate (1−p)λm,i with p∈ [0,1]. The service

of a customer has to be completed before another customer can start his first phase.

In order to have state notation that is consistent with that of Section 2, we use

the following state description. For i < `, state (m,i) denotes the event that there are

m customers in the waiting line of the system and a customer in service that has

gone through i phases of the service. State (m,`) denotes the event that there are m

customers in the waiting line and a service completion has just occurred, so that one of

the waiting customers is starting service. Note that with this awkward but convenient

notation the empty state of the system is state (0, `). Then, it is easy to see that this

system can be modeled as a QSF process. Its state space is X = {L0,L1, . . . ,LM2
} with

Lm = {(m,1), . . . , (m,`)} and M2 ≤∞. The Q matrix is defined by Eq. (1), with Um,

Wm and Dm (all of size `× `) as given below.

W 0 =


−λ0,1−µ1 µ1 0 · · · 0

0 −λ0,2−µ2 µ2 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −λ0,`−1−µ`−1 µ`−1

0 · · · 0 0 −λ0,`

 ,

and for m≥ 1 :

Wm =


−λm,1−µ1 µ1 0 · · · 0

0 −λm,2−µ2 µ2 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −λm,`−1−µ`−1 µ`−1

0 · · · 0 0 −λm,`−µ`

 , Dm =


0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
...
...
. . .

...
...

µ` 0 · · · 0 0

 .
For m= 0,1, . . . :

Um,m+1 = p


λm,1 0 0 · · · 0

0 λm,2 0 · · · 0
0 0 λm,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λm,`

 , Um,m+2 = (1− p)



λm,1 0 0 · · · 0
0 λm,2 0 · · · 0
0 0 λm,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λm,`
0,


.
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Figure 3 An M/Er/n queueing process with batch arrivals

Note that (m,1) is the entrance state of the set L˜m, because Dm has a single nonzero

column. The matrices Am and Bm, described in Section 2, are:

Am =



0m−3,m

(1− p)λm−2,1 0 0 . . . 0
0 (1− p)λm−2,2 0 . . . 0
0 0 (1− p)λm−2,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . (1− p)λm−2,`

λm−1,1 0 0 . . . 0
(1− p)λm−1,2 pλm−1,2 0 . . . 0
(1− p)λm−1,3 0 pλm−1,3 . . . 0

...
...

...
. . .

...
(1− p)λm−1,` 0 0 . . . pλm−1,`



where 0m−3,m is a matrix of size
˜
`m−3× `m with a 0 at every entry. For m= 1,2, . . .:

Bm =


−µ1 µ1 0 · · · 0
λm,2 −λm,2−µ2 µ2 · · · 0
λm,3 0 −λm,3−µ3 · · · 0
...

...
...

. . .
...

λm,` 0 0 · · · −λm,`−µ`


and

B0 =


−µ1 µ2 0 · · · 0
λ0,2 −λ0,2−µ2 µ2 · · · 0
λ0,3 0 −λ0,3−µ3 · · · 0
...

...
...

. . .
...

λ0,` 0 0 · · · −λ0,`

 .

Now we can calculate R1
m using Eq. (9): R1

m =−Am(Bm)−1, where πm = π˜m−1R1
m.
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Since the first
˜
`m−3 rows of R1

m are zero (due to multiplication of (Bm)−1 with the

0m−3,m sub-matrix of Am) this expression reduces to the following

πm = [πm−2|πm−1]R∗1m ,

where R∗1m denotes the nonzero rows of R1
m.

We can construct the sequence of rate matrices Rk
m using Eq. (8) and the notation

R∗km for the sub-matrix of the nonzero rows of Rk
m we obtain:

πm = [πm−k−1|πm−k]R∗km

and πm = π0R∗mm .

When M2 is finite (i.e. there is a finite buffer for the number of customers allowed

in the system), then Theorem 3 readily provides the solution: π0 = δ0

[
SM2

0 δ0−B0

]−1
,

πm = π0R∗mm .

When M2 is infinite, using Proposition 2, we can construct upper bounds for π(m,i)

via the process Xm2
(t) described therein. This result is stated in the next theorem.

Theorem 7. The following is true for the M/Er/n model with batch arrivals:

π0
Xm2

= δ0 [Sm2
0 δ0−B0]

−1
(34)

where Sm2
0 = [1′0 +

∑m2

m=1R
∗m
m 1′m] and

πm ≤ πmXm2
= π0

Xm2
R∗mm .

Proof. Directly from Theorem 3 (for Eq. (34)) and Section 2 (Proposition 2) for the

second claim. �

5.2. An Inventory Model with Random Yield

In this section we consider an inventory model with random yield. Specifically, we

investigate a system where customers arrive with rate λ and a batch of products arrives

according to an exponential distribution with rate µ. Random yield is possible in this

model, i.e. the size of the batch is n` with probability pn, where ` is a fixed positive

constant, cf. Veinott (1965). We model this inventory model process as a QSF process

X(t) on state space X = {L0,L1, . . .} with Lm = {(m,1), . . . , (m,`)}. In state (m,i)
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there are m`+ i products in stock. Figure 5.2 displays the transition diagram of the

described model with `= 3 and where the size of the batch is 3 with probability p and

6 with probability 1− p. This model is a successively lumpable QSF process, where

states (m,`−1) are the entrance states of sub-sets L˜m. In this QSF process, Um,k, Wm

and Dm are of size `× `. It has the same structure as the queueing model described in

Section 5.1 and it can be solved analogously.

We note that we can easily obtain explicit formulas for the steady state probabilities

even in the case that both λ and µ may depend on the state. For example, when there is

too much (little) inventory a discount (premium) price may be used for the product and

this may change the arrival rate of the customers, i.e., λ= λ(m,i). Also, when there is a

high level of inventory one may decide not to order. This can be easily incorporated in

product arrival rate, i.e., µ= µ(m,i). Finally we note that just as easily one can handle

the extension where the batch size n` is replaced by n`m to represent dependency on

the inventory level m. We omitted all these dependencies in this exposition only to

simplify the notation.
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0, 2

1, 0

1, 1

1, 2

2, 0

2, 1

2, 2

L0 L1 L2
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pµ

pµ

(1− p)µ

λ
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λ

pµ

(1 − p)µ
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λ

pµ
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pµ

λ

(1− p)µ (1− p)µ

Figure 4 An Inventory Model with random yield.

5.3. Restart Hypercube Models

In this section we illustrate the methods of Section 4.1 using a simplified version of this

classical model for the special case of a three dimensional hypercube. The extension to
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the arbitrary dimension case will become apparent. This type of systems have many

applications in diverse fields and have been studied by many authors, cf. the papers we

next list and the references therein. Larson (1974), Hooghiemstra and Koole (2000),

Katehakis and Melolidakis (1995), Righter (1996), Koole and Spieksma (2001) and

Ungureanu et al. (2006).

A basic version of the model is as follows, cf. Derman et al. (1980), Weber (1982), Nash

and Weber (1982), Katehakis and Derman (1984), Katehakis (1985), Frostig (1999). A

system of known structure is composed of M components and it operates continuously.

The time to failure of component i= 1, . . . ,M is exponentially distributed with rate µi

and it is independent of the state of the other components.

In this section we make the modelling assumption that when the system fails it

is restored (or replaced) to a state “as good as new” and the time it takes for this

restoration is exponentially distributed with rate λ. It follows under these assumptions

that at any point in time the state of the system can be identified by a boolean M -

vector x = (x1, . . . , xM), with xi = 1 if the i−th component is working, else xi = 0.

Hence X = {0,1}M is the set of all possible states. Under these conditions the time

evolution of the state of the system can be described by a continuous time Markov

chain. The structure of the system is specified by a binary function φ defined on X . Let

G = {x : φ(x) = 1} denote the set of all operational (good) states of the system and

let B = {x : φ(x) = 0} denote all failed states of the system. For such a system it is

important to compute measures of performance such as the availability of the system

defined as αφ =
∑

x∈G π(x). Regardless of the choice of the structure φ it is easy to

see that the corresponding chain is successively lumpable. For example, for the parallel

system we have B = {(0, . . . ,0)}.
Figure 5 illustrates the transition diagram of the corresponding Markov process for

the parallel system when M = 3. It is clear that this process is a RES QSF process with

respect to partition D= {L0,L1,L2,L3} of size M + 1 and ∀x∈X :

x∈Lm iff
∑
i

xi =m.

It is apparent that in this RES process, M1 = 0 and M2 = 3. The states are ordered as

is shown in Figure 5, e.g., (0,0,1) is the first state of level L1, (0,1,0) is the second

state of level L1, . . . , (1,1,0) is the third state of level L2, etc. We derive that Dm,Wm
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Figure 5 Transition diagram for parallel system with M = 3 servers.

and Um,M2 have the from given below:

W 0 =−λ, U 0,3 = λ,

D1 =

µ3

µ2

µ1

 , W 1 =

−µ3 0 0
0 −µ2 0
0 0 −µ1

 , U 1,3 = 0′1,

D2 =

µ2 µ3 0
µ1 0 µ3

0 µ1 µ2

 , W 2 =

−µ2−µ3 0 0
0 −µ1−µ3 0
0 0 −µ1−µ2

 , U 2,3 = 0′2,

and

D3 =
[
µ1 µ2 µ3

]
, W 3 =−(µ1 +µ2 +µ3).

The following rate matrices readily follow from Eq. (25), or equivalently the first step

of Algorithm 2.

R0 =−D1(W 0)−1 = 1/λ

µ3

µ2

µ1

 , R1 =−D2(W 1)−1 =

µ2/µ3 µ3/µ2 0
µ1/µ3 0 µ3/µ1

0 µ1/µ2 µ2/µ1


R2 =−D3(W 2)−1 =

[
µ1/(µ2 +µ3) µ2/(µ1 +µ3) µ3/(µ1 +µ2)

]
.

Thus, we can find the steady state distribution using Eqs. (27), (29), (26) or equivalently

the remaining steps of Algorithm 2. Note that in this case T 3
0 is a scalar and δ3 = 1.

T 3
0 = 1 +

∑2

m=0

∏2−m
k=0 R2−k1

′
m = 1 +R2R1R01′0 +R2R11′1 +R21′2,
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π3 = π(1,1,1) = δ3[T 3
0 δ3−W 3− D̃3]−1 = [T 3

0 ]−1,

π2 = π3R2, π1 = π2R1, π0 = π1R0.

It is important to note the above approach that exploits the RES property of the

process results in the following computational gains: instead of solving a system of size

2M we only need to solve M systems the largest of which is of size
(

M
bM/2c

)
+ 1.

Appendix. Proof of Theorem 1

We start this appendix with an observation.

Remark 7. We let ∆0 = L˜m = {(M1,1), . . . , (M1, `M1
), . . . , (m,1), . . . , (m,`m)}, where

m is any fixed integer m=M1, . . . ,M2. The lumped process on ∆0 has a rate matrix

“U∆0
” (defined in Katehakis and Smit (2012)) of size

˜
`m×

˜
`m that can be written as:

[Λm |Γm]

where Λm contains the rates of transitions into states of the set L˜m−1 (i.e., it is a matrix

of dimension
˜
`m×

˜
`m−1 and the construction of the

˜
`m× `m, matrix Γm is done above

following Katehakis and Smit (2012)). Note that we do not need to explicitly define the

elements of the matrices Λm as they are not explicitly used in the sequel.

For the proof of Theorem 1, consider the partition D = {L˜m,Lm+1, . . . ,LM2
} of the

state space X of the chain, for any fixed m. We note that the sets ∆m of Katehakis and

Smit (2012) within the present context, are given by: ∆k = {(k 0)} ∪ Lk; where (k 0)

represents the “lumped state”.

By Lemma 2 we know that X(t) is successively lumpable with respect to D. Let

v∆0
= vL˜m denote the steady state probability vector of the lumped process on ∆0 =L˜m,

cf. Remark 7. By Proposition 1 of Katehakis and Smit (2012) (with (k, i)∈L˜m in place

of (0, i)∈∆0) we know that for all k≤m:

π(k, i) =
∑

(k′,j)∈L˜m
π(k′ j)vL˜m(k, i). (35)

Further, since vL˜m is a steady state probability vector of the lumped process on

L˜m(=“∆0”), it is the normalized to 1 solution of the equation below (see Remark 7):

vL˜m [Λm−1 |Γm] = 0˜m. (36)
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If we let c=
∑

(k′ j)∈L˜m π(k′, j)≥ 0, then from Eq. (35) we know π˜m = c vL˜m . Eq. (37)

below then follows by multiplying both sides of Eq. (36) by c:

π˜m[Λm−1 |Γm] = [π˜mΛm−1 |π˜mΓm] = 0˜m = [0˜m−1 |0m], (37)

and the proof of Theorem 1 is complete. �
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Brown, M., E.A. Peköz, S.M. Ross. 2010. Some results for skip-free random walk. Probability

in the Engineering and Informational Sciences 24(04) 491–507.

Derman, C., G.J. Lieberman, S.M. Ross. 1980. On the optimal assignment of servers and a

repairman. Journal of Applied Probability 577–581.



32

Etessami, K., D. Wojtczak, M. Yannakakis. 2010. Quasi-birth-death processes, tree-like qbds,

probabilistic 1-counter automata, and pushdown systems. Performance Evaluation 67(9)

837–857.

Frostig, E. 1999. Jointly optimal allocation of a repairman and optimal control of service rate for

machine repairman problem. European Journal of Operational Research 116(2) 274–280.

Gaver, D.P., P.A. Jacobs, G. Samorodnitsky, K.D. Glazebrook. 2006. Modeling and analysis of

uncertain time-critical tasking problems. Naval Research Logistics (NRL) 53(6) 588–599.

Guillemin, F., P. Robert, A.P. Zwart. 2004. Aimd algorithms and exponential functionals. The

Annals of Applied Probability 14(1) 90–117.

Hooghiemstra, G., G. Koole. 2000. On the convergence of the power series algorithm. Perfor-

mance Evaluation 42(1) 21–39.

Hordijk, A., F. Spieksma. 1992. On ergodicity and recurrence properties of a Markov chain

with an application to an open Jackson network. Advances in Applied Probability 24(2)

343–376.

Kapodistria, S. 2011. The M/M/1 queue with synchronized abandonments. Queueing Systems

68(1) 79–109.

Katehakis, M.N. 1985. A note on the hypercube model. Operations Research Letters 3(6)

319–322.

Katehakis, M.N., C. Derman. 1984. Optimal repair allocation in a series system. Mathematics

of Operations Research 9(4) 615–623.

Katehakis, M.N., A.F. Veinott Jr. 1987. The multi-armed bandit problem: decomposition and

computation. Mathematics of Operations Research 12(2) 262–268.

Katehakis, M.N., C. Melolidakis. 1995. On the optimal maintenance of systems and control of

arrivals in queues. Stochastic Analysis and Applications 13(2) 137–164.

Katehakis, M.N., L.C. Smit. 2012. A successive lumping procedure for a class of Markov chains.

Probability in the Engineering and Informational Sciences 26(4) 483–508.

Koole, G.M., F.M. Spieksma. 2001. On deviation matrices for birth–death processes. Probability

in the Engineering and Informational Sciences 15(2) 239–258.

Larson, R.C. 1974. A hypercube queuing model for facility location and redistricting in urban

emergency services. Computers & Operations Research 1(1) 67–95.

Latouche, G, V. Ramaswami. 1993. A logarithmic reduction algorithm for quasi-birth-death

processes. Journal of Applied Probability 650–674.



33

Latouche, G., V. Ramaswami. 1999. Introduction to Matrix Analytic Methods in Stochastic Mod-

eling , vol. 5. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia,

PA.

Lin, K., M. Kress, R. Szechtman. 2009. Scheduling policies for an antiterrorist surveillance

system. Naval Research Logistics 56(2) 113–126.

Nash, P., R.R. Weber. 1982. Dominant strategies in stochastic allocation and scheduling prob-

lems. Deterministic and Stochastic Scheduling . Springer, 343–353.

Neuts, M.F. 1981. Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach.

Dover Publications, Inc., New York.
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