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1 Introduction

Recent decades have seen many discoveries of alternative mathematical structures from
which the standard principles of perturbative QFT emerge as derived consequences. One
of the primary motivations of such investigations has been to find a holographic description
for scattering amplitudes in flat space, akin to the highly successful AdS/CFT paradigm.
In this context, celestial conformal field theory (CCFT) is a recent proposal that claims
to identify Yang-Mills and gravitational amplitudes in R1,3 with correlators of a puta-
tive 2d CFT living on the celestial sphere at null infinity. And even though no explicit
candidate or stringy construction for such a holographic dual has been found yet, great
progress is being made in understanding the abstract structures and symmetries that such
a CFT could possess. Some of the notable advances include the main work on celestial
amplitudes [1–11], on asymptotic symmetries and soft theorems [12–27], and on the CCFT
operator algebra [28–31].
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Due to the absence of an actual candidate CFT, most of the work has been kinematical
and one-sided: trying to understand the CFT side by studying properties of the amplitudes.
This begs the question: how do we begin to test this holographic proposal? An interesting
direction was taken in [29], which provided a purely holographic derivation of the CCFT
operator product expansions (OPE) via imposing asymptotic symmetry constraints. In
turn, this gave a new holographic foundation for the universality of the well-known collinear
limits of gluon and graviton amplitudes [32–34]. The work of [30, 31] took this further by
showing that even subleading terms in the collinear expansions of low-multiplicity graviton
amplitudes can be ascribed to BMS descendants in the gravitational CCFT. Coupled with
the idea that a CFT is in principle completely determined from its CFT data, i.e., its
operator content and OPE algebra, such computations are enough to allow us to come up
with some simple tests of the duality.

One of the hallmarks of scattering amplitudes is the structure of their factorization
poles and residues. These are completely fixed by the principles of locality and unitarity.
An important test of any holographic dual would then be to discover them as emergent
properties of the corresponding CFT correlators. From the viewpoint of the OPE, the most
natural object to study in this regard are multi-collinear limits of the amplitudes. These
are maximally singular limits that recursively probe all possible factorization poles and
residues (see [35] and references therein). In this work, we show that these can indeed be
holographically determined by the symmetries and OPE of the dual CCFTs. This provides
an example of a calculation that utilizes the CCFT to essentially “bootstrap” the physics
of amplitudes.

Such a reconstruction of the bulk physics requires us to understand the contributions
of descendants to the celestial OPE, and we will mostly focus on the gluon OPE for sake
of simplicity. After a review of some standard material in section 2 and section 3.1, we
begin with this task in section 3.2. Global supertranslation symmetry is used to fix the
OPE coefficients of all the (global) conformal descendants of celestial gluon operators.
For completeness, in section 3.3 we also compute examples of Kac-Moody descendants
contributing to the OPE of two positive helicity gluons. This is done by imposing Poincaré
as well as Kac-Moody invariance. In fact, naively the symmetries overdetermine the OPE
coefficients, but the results are beautifully mutually consistent. In appendix A, we directly
verify that these descendants are exchanged in the 4-gluon amplitude with precisely the
predicted OPE coefficients.

In section 4, we look at multi-gluon collinear limits. In the language of conformal
correlators, this corresponds to bringing multiple operators close together. To get a feel
for the idea, consider a correlator of N operators in a CFT2,

〈O1(z1, z̄1)O2(z2, z̄2) · · ·ON (zN , z̄N )〉 , (1.1)

with (zi, z̄i) denoting complex coordinates. The various operators have operator products
taking the generic form,

Oi(zi, z̄i)Oj(zj , z̄j) ∼
∑
k

Cijk Ok(zj , z̄j) , (1.2)

with Cijk ≡ Cijk(zij , z̄ij , ∂j , ∂̄j) denoting Wilson coefficients that depend on the CFT data
and zij ≡ zi − zj . Now, for operators in a given ordering, say |z12| < |z23| < · · · < |zn−1,n|
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(where n ≤ N), we can replace the n-fold product
∏n
i=1Oi(zi, z̄i) by using the OPE to

perform n sequential Wick contractions:∑
{ka}

C12k1Ck13k2 · · ·Ckn−2,n,kn−1

〈
Okn−1(zn, z̄n)On+1(zn+1, z̄n+1) · · ·ON (zN , z̄N )

〉
. (1.3)

Then the product of Wilson coefficients gives the equivalent of a multi-collinear splitting
function (or more appropriately “splitting operator”) for CFT correlators. It is auto-
matically universal since it does not depend on the other N − n operators inserted in
the correlator.

Thus, having determined the CCFT Wilson coefficients to the desired accuracy, we can
approximate celestial amplitudes with such recursive celestial OPEs in the limit of small zij .
As the main utility of these coefficients, we will find the leading multi-collinear factorization
behavior of the usual momentum space amplitudes without any input whatsoever from
Feynman rules or the usual techniques of 4d QFT. Finally, the existence of a CCFT
interpretation can guarantee the universality of these limits. Some integration techniques
relevant to these computations are described in appendix B.

In section 5, we attempt a similar calculation for graviton amplitudes. Due to a lack of
literature to compare with on the gravitational side, we will only be able to outline a lead-
ing order computation for the simplest multi-graviton collinear limits. This nevertheless
provides a nice consistency check of the formalism and a motivation for further work.

Note added. Since this paper was completed, new work [36] has shown that one also
finds descendants of subleading soft gluon symmetries in the celestial gluon OPE. We have
neglected these here but suspect that they will be required for a more complete derivation
of factorization limits in the future.

2 Background

In this section, we collect some standard conventions about celestial amplitudes and results
for celestial gluon and graviton operator product expansions. Then we review the basics of
multi-collinear limits that will come to use later, noting relevant results from the literature.

2.1 Celestial amplitudes and OPE

The null 4-momentum kαα̇ of a typical massless particle can be decomposed as

kαα̇ = s ω qαα̇(z, z̄) , qαα̇(z, z̄) =
(

1 z̄

z zz̄

)
αα̇

. (2.1)

Here, the sign s = ±1 denotes whether the particle is outgoing or incoming, while ω ∈ R+

denotes its energy. The remaining null vector qαα̇ stands for the embedding of the celestial
sphere CS2 as the projective light cone of any point in flat space, with z, z̄ giving complex
coordinates on the sphere. By convention, the corresponding spinor-helicity variables are
taken to be

kαα̇ = λα λ̄α̇ , λα =
√
ω

(
1
z

)
α

, λ̄α̇ = s
√
ω

(
1
z̄

)
α̇

. (2.2)
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With Lorentzian signature (−+ ++), one chooses the standard reality condition on these:
z̄ = z∗ (complex conjugation). We will stick to this, except for using split signature
(−−++) in appendix A.

“Celestial amplitudes” are the scattering amplitudes of conformal primary wavepackets
of gluons and gravitons. In short, they can be defined in terms of a change of basis
implemented by Mellin transforms:

An({si,∆i, `i, zi, z̄i}) =
n∏
j=1

∫ ∞
0

dωj
ωj

ω
∆j

j An({ki, `i}) δ4
(

n∑
l=1

kl

)
. (2.3)

Here i = 1, . . . , n are particle labels, with ki = si ωi qi, qi ≡ q(zi, z̄i) as described above. An
denotes the usual momentum space amplitude. For gluons, it will be further augmented
with color indices. `i = ±1 or ±2 are the gluon/graviton helicities.

Under a Möbius transformation of CS2 coordinates, the celestial amplitudes An trans-
form conformally covariantly with weights [2, 3]

hi = ∆i + `i
2 , h̄i = ∆i − `i

2 (2.4)

in the (zi, z̄i). Consequently, these are conjectured to be the correlators of certain conformal
primary operators in a 2d CFT living on CS2, called a celestial CFT. Such conformal
primaries dual to gluons and gravitons are referred to as celestial gluon/graviton operators.
Celestial gluons are denoted by O` a, s

∆ (z, z̄), where a is an adjoint index. Celestial gravitons
are commonly denoted by G`,s∆ (z, z̄). For most of what follows, we will focus only on
outgoing particles for which s = +1, so we drop this superscript to avoid cluttering notation.

Collinear singularities zij → 0 in momentum space amplitudes are interpreted as OPE
singularities of the correlators obtained from the Mellin transform. This has allowed a
determination of the leading celestial OPE of gluons and gravitons [28, 29]. For instance,
the OPEs of two outgoing gluons read

O+a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2) ∼− i fabc

z12
B(∆1 − 1,∆2 − 1)O+c

∆1+∆2−1(z2, z̄2) , (2.5)

O−a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2) ∼− i fabc

z12
B(∆1 + 1,∆2 − 1)O−c

∆1+∆2−1(z2, z̄2)

− i fabc

z̄12
B(∆1 − 1,∆2 + 1)O+c

∆1+∆2−1(z2, z̄2) , (2.6)

and similarly for the O−O− case, with fabc denoting the gauge group’s structure constants
and B(a, b) referring to the Euler beta function. For gravitons, one instead finds

G+
∆1

(z1, z̄1)G+
∆2

(z2, z̄2) ∼− κ

2
z̄12
z12

B(∆1 − 1,∆2 − 1)G+
∆1+∆2

(z2, z̄2) , (2.7)

G−∆1
(z1, z̄1)G+

∆2
(z2, z̄2) ∼− κ

2
z̄12
z12

B(∆1 + 3,∆2 − 1)G−∆1+∆2
(z2, z̄2)

− κ

2
z12
z̄12

B(∆1 − 1,∆2 + 3)G+
∆1+∆2

(z2, z̄2) , (2.8)

where κ =
√

32πGN is the gravitational coupling.
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2.2 Multi-collinear factorization

Gluon and graviton amplitudes in flat space are completely characterized by on-shell meth-
ods like BCFW recursion and MHV diagrams [37–39]. Such relations follow from their
factorization poles and residues as a consequence of locality and unitarity. However, unlike
collinear limits, general factorization limits don’t seem to have an obvious analog for celes-
tial amplitudes. One possibility to make a connection between the two formalisms is thus
to study more involved collinear singularities, namely multi-collinear limits. They corre-
spond to simultaneously taking all possible factorization limits involving a certain subset
of the scattering particles. Such limits have been well-studied in the literature on QCD,
with important progress originating from the usage of CSW rules and MHV diagrams [35].
For gravity, there has been no such progress beyond the 2-graviton collinear limit, more or
less due to a lack of strong theoretical foundations for similar recursive methods.1

The kinematic configuration probing a multi-collinear singularity corresponds to the
null momenta k1, . . . , kn of a subset of the particles becoming collinear. For simplicity,
we take all of these to be outgoing. Then all the propagators of the form (ki1 + · · · +
kir )−2, i1, . . . , ir ∈ {1, . . . , n}, diverge. This leads to a maximally singular sub-amplitude
to bubble off, yielding a universal factor called a splitting function. From a 4d perspective,
its universality in the gluon case again follows from MHV diagrams. From the holographic
viewpoint, our claim is that its universality is a consequence of the celestial OPE — an
argument which might also extend to gravity.

To make the limits precise and set up some notation, note that we can always express
the sum of multiple momenta in terms of two auxiliary null momenta,

k1 + k2 + · · ·+ kn = p+ ε n , (2.9)

where for instance we can somewhat canonically choose n to be the null generator of I +.
It follows that since ωi = n · ki, this choice results in

ωp =
n∑
i=1

ωi , (2.10)

where ωp = n·p is the energy of p. Define the longitudinal-momentum fractions ξi := ωi/ωp.
The collinear regime is defined by

ki ∼ ξi p+O(ε) , ∀ i ∈ {1, . . . , n} , (2.11)

along with taking ε to be infinitesimal.
In this regime, an N -point momentum space amplitude (with n ≤ N) factorizes as

AN (1`1 . . . N `N ) ∼
∑
`

split (1`1 . . . n`n → p`)AN−n+1
(
p` (n+ 1)`n+1 . . . N `N

)
, (2.12)

where the superscripts are particle helicities. The universal splitting functions split (· · · ) are
neatly organized by the number of negative helicity gluons participating in the collinearity.

1Gravitational MHV rules seem to work only for amplitudes involving n ≤ 11 gravitons [40].
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If 1, 2, . . . , k are negative helicity among the n collinear particles, then the corresponding
splitting function is denoted by

split(n)
` (1−2− . . . k−) . (2.13)

These will take center-stage in the latter half of this work.
For gluons, we will content ourselves with considering the k = 0, 1 cases. In this case,

the collinear gluons must be adjacent for the splitting function to be maximally singular.
For these, the results for the splitting functions come in fairly compact expressions found
in [35]. Using the convention (2.2), we can write them in variables adapted to the celestial
sphere. The simplest of these occur in the case when all the collinear gluons have positive
helicity (in this case we denote them by split(n)

` without any arguments),

split(n)
− = 0 , split(n)

+ = ωp

ωn
∏n−1
i=1 ωi zi,i+1

, (2.14)

having stripped off color factors (these will be reinstated for comparison with OPE later).
When the first gluon is negative helicity, one finds

split(n)
− (1−) = ω2

1
ωp ωn

∏n−1
i=1 ωi zi,i+1

, (2.15)

along with the relatively much more interesting expression,

split(n)
+ (1−) = ωpω

2
1

ωn
∏n−1
i=1 ωizi,i+1

[
n−1∑
j=2

(
∑j
l=1 ωlz1l)3

(
∑j
l=1 ωl)(

∑j
l=1 ωlzjl)(

∑j
l=1 ωlzj+1,l)

zj,j+1
s1j

− (
∑n
l=1 ωlz1l)3

(
∑n
l=1 ωl)2(

∑n
l=1 ωlznl)

1
s1n

]
, (2.16)

where s1j is the generalized Mandelstam variable,

s1j :=
∑

1≤k<l≤j
ωk ωl |zkl|2 . (2.17)

At the level of the first three among these, one only observes two-particle factorization poles.
In the language of MHV diagrams, this is a consequence of the fact that only MHV sub-
amplitudes happen to blow up for these configurations. The collinearity 1−2+ · · ·n+ → p+

is the first case where NMHV sub-amplitudes can blow up. It will be much more novel for
celestial CFT to make contact with multi-particle factorization poles of the sort showing
up in (2.16), even if only in leading order approximations in some of the variables. This
will be our goal in section 4.

For gravitons, as mentioned above, there is a distinct lack of data for multi-collinear
limits beyond n = 2. The double-collinear limits that we need are given by [33]

split(2)
+ = −κ2

z̄12
z12

(ω1 + ω2)2

ω1 ω2
, split(2)

− (1−) = −κ2
z̄12
z12

ω3
1

ω2 (ω1 + ω2)2 . (2.18)

The graviton collinear limits are not singular in general and will even depend on the order
in which the momenta are made collinear. So we will have to restrict our analysis to
the simplest case: using the double-collinear limit to sequentially compute leading order
approximations to the multi-collinear splitting functions.
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3 Descendants of celestial gluons

3.1 Symmetry algebra

In a conformal field theory with an extended symmetry, the states and their correspond-
ing local operators arrange themselves in representations of the symmetry algebra. In the
2d CCFT dual to 4d Yang-Mills, the conjectured symmetry algebra is Poincaré plus a
holomorphic Kac-Moody symmetry [41–43].2,3 The representation multiplets are then or-
ganized into primaries of the Kac-Moody symmetry and their global conformal descendants
and Kac-Moody descendants.

The 4d Lorentz group acts as the global conformal group of CS2. Its generators can
be denoted by the standard combinations {L0, L̄0, L±1, L̄±1} of SL(2,C) dilatations and
rotations. The generators of global supertranslations Pa,b are identified with translation
generators (momenta) in the bulk, with the following convenient arrangement:

Pαα̇ =
(
P−1,−1 P−1,0
P0,−1 P0,0

)
αα̇

. (3.1)

Their algebra is given by [17, 24, 30]

[Lm, Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)L̄m+n,

[Ln,Pa,b] =
(
n− 1

2 − a
)
Pa+n,b, [L̄n,Pa,b] =

(
n− 1

2 − b
)
Pa,b+n,

[Lm, L̄n] = 0, [Pa,b,Pc,d] = 0. (3.2)

Celestial gluons are primaries of the full Poincaré group, with transformation laws:

[Ln, O` a
∆ (z, z̄)] =

(
zn+1 ∂ + (n+ 1)h zn

)
O` a

∆ (z, z̄) , (3.3)

[L̄n, O` a
∆ (z, z̄)] =

(
z̄n+1 ∂̄ + (n+ 1) h̄ z̄n

)
O` a

∆ (z, z̄) , (3.4)

[Pa,b, O` a
∆ (z, z̄)] = za+1z̄b+1O` a

∆+1(z, z̄) . (3.5)

Notice that the action of Pa,b induces a flow, (h, h̄) 7→ (h + 1
2 , h̄ + 1

2), in the
conformal dimensions.

As for the Kac-Moody generators, the holomorphic current is identified with the con-
formally soft limit of the outgoing positive helicity celestial gluon [16, 19, 28],

ja(z) := lim
∆→1

(∆− 1)O+a
∆ (z, z̄) . (3.6)

Using the OPEs (2.5) and (2.6), one can show that celestial gluons also transform as
Kac-Moody primaries in the adjoint representation,

ja(z1)O` b
∆ (z2, z̄2) ∼ − i fabc

z12
O` c

∆ (z2, z̄2) . (3.7)

2It has level 0 as far as tree level amplitudes in the bulk are concerned.
3One can also instead realize an anti-holomorphic Kac-Moody symmetry, but not both simultaneously,

see also [15, 26].
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Taking ` = +1 and ∆ → 1 again in this OPE gives the usual OPE bewteen Kac-Moody
currents at level 0. Expanding the current in its holomorphic modes,

ja(z) =
∞∑

n=−∞

ja
n

zn+1 , ja
n =

∮
0

dz
2πi z

n ja(z) , (3.8)

one can straightforwardly find their action on O` a
∆ from (3.7),

[ja
n, O

` b
∆ (z, z̄)] = −i fabc znO` c

∆ (z, z̄) . (3.9)

Including the Kac-Moody modes, we obtain the following extended algebra:

[ja
m, j

b
n] = −i fabc jc

m+n , [Lm, ja
n] = −n ja

m+n , [Pa,b, ja
n] = 0 . (3.10)

The last of these can be justified by taking a conformally soft limit of (3.5), or equivalently
by showing that the OPE of [Pa,b, ja(z)] with an arbitrary celestial gluon is non-singular.
These form the leading4 global symmetry algebra of the Yang-Mills CCFT.

A typical descendant occurring as a subleading term in the OPEs (2.5), (2.6) is of
the form,

ja1
−k1
· · · jap

−kp
(L−1)m(L̄−1)nO` c

∆ (z, z̄) , (3.11)

with each ka ≥ 1. Adding these to the OPEs with unknown OPE coefficients, one can apply
various symmetry generators to generate constraints on the coefficients. However, the con-
straints coming from conformal and Kac-Moody actions become increasingly cumbersome
very quickly. But quite luckily, since Pa,b commutes with the Kac-Moody generators, its
action does not mix descendants of different Kac-Moody weights. In section 3.2, this allows
us to use just translation invariance to fix the OPE coefficients accompanying all the purely
conformal descendants (L−1)m(L̄−1)nO` c

∆ without having to worry about the Kac-Moody
descendants. For completeness, we also give an example of how OPE coefficients of some
ja
−1-descendants can be determined from this data in section 3.3.

Note however that this idea hinges on the assumption that there are no further global
symmetries of the Yang-Mills CCFT whose descendants might mix with these purely con-
formal descendants under translations. Thus, our calculations in section 4 and appendix A
also bolster our confidence that these are all the kinds of descendants that occur in the
gluon OPE. However, more work along the lines of [31] might be needed to confirm this.

3.2 Conformal descendants

We will use the action of P0,−1 and P−1,0 to determine the coefficients of conformal descen-
dants in celestial gluon OPEs. To do this, we need the following easily derived relations,

[P0,−1, (L−1)m(L̄−1)nO`c∆1+∆2−1(0, 0)] = m(L−1)m−1(L̄−1)nO`c∆1+∆2(0, 0), (3.12)

4We will not discuss the subleading soft gluon symmetry found in [44] in this work. Since its action
shifts the conformal weight by ∆ 7→ ∆ − 1, its “descendants” would enter as more — instead of less —
singular terms in the OPE. But gluon amplitudes are clearly not infinitely singular.
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and

[P−1,0, (L−1)m(L̄−1)nO`c∆1+∆2−1(0, 0)] = n(L−1)m(L̄−1)n−1O`c∆1+∆2(0, 0), (3.13)

evaluated at the origin for simplicity.
Let us denote the contribution of a celestial gluon of helicity ` to the OPE of two

gluons of helicity `1, `2 by

O`1 a
∆1

(z1, z̄1)O`2 b
∆2

(z2, z̄2) ∼ −
i fabcC`1`2`∆1,∆2

(z12, z̄12, ∂2, ∂̄2)O` c
∆1+∆2−1(z2, z̄2)

zh1+h2−h
12 z̄h̄1+h̄2−h̄

12
, (3.14)

where (h, h̄) are the conformal weights of O` c
∆1+∆2−1, and C`1`2`∆1,∆2

encodes contributions
from this primary and its conformal descendants:

C`1`2`∆1,∆2
(z12, z̄12, ∂2, ∂̄2) =

∞∑
m,n=0

C`1`2`m,n (∆1,∆2) zm12 z̄
n
12 (L−1)m (L̄−1)n . (3.15)

Here, we are viewing L−1, L̄−1 respectively as the holomorphic and antiholomorphic deriva-
tives ∂2, ∂̄2 when taken against the primary O` c

∆1+∆2−1(z2, z̄2).
To find recursion relations on the coefficients C`1`2`m,n (∆1,∆2), we set z2 = 0 = z̄2 and

act with P0,−1 and P−1,0 on (3.14). Applying (3.5), (3.12) and (3.13), this process generates

C`1`2`m,n (∆1,∆2) =
C`1`2`m−1,n(∆1 + 1,∆2)

m
=
C`1`2`m,n−1(∆1 + 1,∆2)

n
. (3.16)

From the leading OPE (2.5) and (2.6), we have the following boundary conditions for these
recursion relations:

C+++
0,0 (∆1,∆2) = B(∆1 − 1,∆2 − 1) ,

C−+−
0,0 (∆1,∆2) = B(∆1 + 1,∆2 − 1) ,

C−++
0,0 (∆1,∆2) = B(∆1 − 1,∆2 + 1) . (3.17)

Thus, solving (3.16), we readily discover the entire series of OPE coefficients,

C+++
m,n (∆1,∆2) = B(∆1 − 1,∆2 − 1)

m!n!
(∆1 − 1)m+n

(∆1 + ∆2 − 2)m+n
, (3.18)

C−+−
m,n (∆1,∆2) = B(∆1 + 1,∆2 − 1)

m!n!
(∆1 + 1)m+n

(∆1 + ∆2)m+n
, (3.19)

C−++
m,n (∆1,∆2) = B(∆1 − 1,∆2 + 1)

m!n!
(∆1 − 1)m+n

(∆1 + ∆2)m+n
, (3.20)

where (a)q := Γ(a+ q)/Γ(a) are Pochhammer symbols.
Hence, we observe that translation symmetry is a very powerful constraint on the

structure of the CCFT which would be absent from a garden-variety CFT. Performing
such an all order calculation using Virasoro and Kac-Moody symmetry constraints is almost
inconceivable, and it is almost always more useful to work out 4-point conformal blocks
rather than the descendants’ OPE coefficients. However, knowing all order contributions
to the OPE as we do here will help us make contact with interesting universal statements
about scattering amplitudes at arbitrary multiplicity.
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3.3 Kac-Moody descendants

As an example, we analyze the first Kac-Moody descendants contributing to the like-
helicity OPE (2.5). In particular, we need to justify that the OPE data generated above
using translation invariance is consistent with the other symmetries in the problem.

To begin with, let us take the following ansatz containing ja
−1-descendants:

O+a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2) ∼− i
z12

B(∆1 − 1,∆2 − 1)
[
fabd + fabd c1 z12 L−1

+ i cabcd
2 z12 j

c
−1 +O(z̄12, z

2
12)
]
O+d

∆1+∆2−1(z2, z̄2) , (3.21)

with to-be-determined coefficient functions c1(∆1,∆2) and cabcd
2 (∆1,∆2). Now, we observe

that c1 can be read off from (3.18) evaluated for m = 1, n = 0,

c1(∆1,∆2) = ∆1 − 1
∆1 + ∆2 − 2 . (3.22)

To fix cabcd
2 , we set z2 = 0 = z̄2 and act with je

1 on this OPE. Using (3.9) and (3.10), this
yields the relation,

fabcf ecf c1 + f ecgfgdf cabcd
2 = f eacf cbf . (3.23)

To solve for the remaining coefficient, we further guess an ansatz of the form

cabcd
2 = α δacδbd + β δadδbc + γ δabδcd . (3.24)

One can in principle add other group-invariant “tensor structures” to this ansatz, like
higher degree polynomials in structure constants, but we won’t need them at this level.
Courtesy of the Jacobi identity, this already satisfies (3.23) for the values,

α = 1− c1 , β = c1 , γ = 0 . (3.25)

Hence, we have

cabcd
2 (∆1,∆2) = ∆2 − 1

∆1 + ∆2 − 2 δ
acδbd + ∆1 − 1

∆1 + ∆2 − 2 δ
adδbc . (3.26)

So, we find not one but two descendants contributing at this level: ja
−1O

b
∆1+∆2−1 as well

as its permuted partner jb
−1O

a
∆1+∆2−1.

Next, we work out the constraint coming from an application of L1. The resulting
relation is

fabe (∆1 + ∆2) c1 + f cde cabcd
2 = fabe ∆1 . (3.27)

Substituting (3.22), (3.24) into this, we find the excess condition,

α− β = ∆2 −∆1
∆1 + ∆2 − 2 , (3.28)

which a priori overdetermines the system of equations. But this is already beautifully
satisfied by our solution (3.26). This demonstrates, at least by way of an example, that
the enormous amount of symmetry in a CCFT can indeed allow for non-trivial CFT data
consistent with all of it.

For the details of how these descendants can be extracted from the OPE limit of an
actual 4-gluon amplitude, the reader is directed to appendix A.
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4 Multi-gluon collinear limits

The OPE of two celestial gluons was derived in [28] by Mellin transforming the double-
collinear splitting functions. The goal of this section is to generalize this computation to
obtain multi-gluon OPE from Mellin transforms of multi-collinear limits. But the former
can also be computed holographically by recursively applying the 2-point OPE. Most
importantly, in section 4.2.1, we match the contributions of conformal descendants derived
in section 3.2 to all orders with the triple-collinear limit. This provides a mechanism for
factorization poles and residues of 4d amplitudes to emerge from the CCFT, generating
the footprints of locality and unitarity.

A celestial amplitude of N gluons, the first n of which are outgoing and will be taken
collinear, can be written as a CCFT correlation function,

AN
(
1`1 a1

∆1
. . . n`n an

∆n
. . . N `N aN

∆N

)
=
〈

n∏
i=1

O`i ai
∆i

(zi, z̄i)
N∏

j=n+1
O
`j aj ,sj

∆j
(zj , z̄j)

〉
. (4.1)

We can use the OPE to expand this around the multi-collinear regime. Fixing an ordering
of points |z12| < |z23| < · · · < |zn−1,n|, the OPE of the collinear gluons can be accessed by
sequentially applying the 2-gluon OPE. It takes the general form,

n∏
i=1

O`iai
∆i

(zi, z̄i) ∼ (−i)n−1fa1a2b1 · · · fbn−2anc ∑
∆p,`

ope(1`1 . . . n`n → p`)O`c∆p
(zn, z̄n), (4.2)

where the quantity “ope” (in general a differential operator) is the celestial analog of the
color-stripped splitting function in (2.12) and we have suppressed its dependence on the
∆i’s. Inserting this in (4.1) leads to universal asymptotics,

AN
(
1`1a1

∆1
. . . n`nan

∆n
. . . N `N aN

∆N

)
∼ (−i)n−1fa1a2b1fb1a3b2 · · · fbn−2anc

×
∑
∆p,`

ope
(
1`1 . . . n`n → p`

)
AN−n+1

(
p`c∆p

. . . N `N aN
∆N

)
. (4.3)

But (4.3) can also be obtained from Mellin transforming (2.12) (after reinstating color
factors). Hence, to leading order in the collinear kinematics, holographic duality will relate
the multi-gluon OPE with the splitting functions via Mellin transform,

n∏
i=1

∫ ∞
0

dωi
ωi

ω∆i
i split

(
1`1 . . . n`n → p`

)
= ope

(
1`1 . . . n`n → p`

) ∫ ∞
0

dωp
ωp

ω∆p
p , (4.4)

where both sides are to be viewed as “integration kernels” acting on the remaining non-
singular momentum space amplitude. Matching these will be our primary “test” of celestial
holography. For brevity, we will use the same notation ope(n)

` (1−2− . . . k−) for the ope factor
that we introduced for the splitting functions in (2.13). Recall that this corresponds to the
case when gluons 1, 2, . . . , k among the collinear ones have negative helicity. Our focus will
be on the k = 0, 1 cases, with the notation being just ope(n)

` when k = 0.
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4.1 1+2+ . . . n+ → p+

As a warm up, we consider the easiest case when all the gluons in the collinearity are of
positive helicity. The descendants do not get involved at this stage, but it nonetheless gives
a useful consistency check of the formalism.

First let us see what holography predicts for the multi-collinear singularity. For n pos-
itive helicity gluons, the multi-gluon OPE at leading order can be calculated by using (2.5)
to perform sequential Wick contractions,

O+a1
∆1

(z1, z̄1)O+a2
∆2

(z2, z̄2) · · ·O+an
∆n

(zn, z̄n)

∼ (−i)n−1fa1a2b1fb1a3b2 · · · fbn−2anc ope(n)
+ O+c

∆p
(zn, z̄n), (4.5)

where ∆p =
∑n
i=1 ∆i − n+ 1, along with the leading order result,

ope(n)
+ = 1

z12 z23 · · · zn−1,n

n∏
k=2

B

(
k−1∑
i=1

(∆i − 1),∆k − 1
)
. (4.6)

In 4d terms, this specific singularity comes from partial amplitudes in the color-order
{1, 2, . . . , n, . . . }. Also, in this case we did not need to keep descendants in the OPE as
they always produce subleading contributions to the multi-collinear limit. For instance,
keeping conformal descendants in the first contraction would generate terms with non-
negative powers of z12, etc. We will see more examples of such computations below.

Next we perform a direct calculation in the bulk. A celestial amplitude involving these
gluons factorizes as

AN
(
1+a1

∆1
. . . N `N aN

∆N

)
∼ (−i)n−1fa1a2b1fb1a3b2 · · · fbn−2anc (4.7)

×
N∏
i=1

∫ ∞
0

dωi
ωi

ω∆i
i split(n)

+ AN−n+1(p+c . . . N `N aN )δ4

ωpqp +
N∑

j=n+1
sjωjqj

 ,
with ωp =

∑n
i=1 ωi and qp ∼ qn, and the relevant splitting function given in (2.14).

The Mellin integrals over ω1, . . . , ωn can be easily done via a change of variables to the
longitudinal-momentum fractions, ξi = ωi/ωp ∈ (0, 1), and the total energy ωp ∈ (0,∞).
Straightforward manipulations bring (4.7) to the general form (4.3). Evaluating the left
side of (4.4), one finds ∆p =

∑n
i=1 ∆i − n+ 1 as expected, along with the ope factor,

ope(n)
+ =

n∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

1−
n∑
j=1

ξj

 1
ξn
∏n−1
l=1 ξlzl,l+1

(4.8)

= B(∆1 − 1, . . . ,∆n − 1)
z12z23 · · · zn−1,n

.

where B(a1, . . . , an) = Γ(a1) · · ·Γ(an)/Γ(a1+· · ·+an) is the multivariate beta function, and
the integral has been performed by recognizing that its integrand is a standard Dirichlet
distribution ([45], chapter 49).5 To see that this evaluation of the OPE singularity matches
with (4.6), simply rewrite the beta functions in (4.6) in terms of gamma functions. The
product of gamma functions collapses telescopically, yielding a match.

5Alternatively, see appendix B and recursively apply the beta function’s defining integral formula (B.1).
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4.2 1−2+ . . . n+ → p±

Next we come to the case when one negative and n − 1 positive helicity gluons become
collinear. Using sequential Wick contractions, this time we arrive at

O−a1
∆1

(z1, z̄1)O+a2
∆2

(z2, z̄2) · · ·O+an
∆n

(zn, z̄n) ∼ (−i)n−1fa1a2b1fb1a3b2 · · · fbn−2anc

×
[
ope(n)
− (1−) O−c

∆p
(zn, z̄n) + ope(n)

+ (1−)O+c
∆p

(zn, z̄n)
]
, (4.9)

with ∆p =
∑n
i=1 ∆i − n+ 1 the same as before. Here, at leading order,

ope(n)
− (1−) = B(∆1 + 1,∆2 − 1, . . . ,∆n − 1)

z12 z23 · · · zn−1,n
, (4.10)

while

ope(n)
+ (1−) = B(∆1−1,∆2 +1)B(

∑2
l=1 ∆l−2,∆3−1, . . . ,∆n−1)

z̄12 z23 · · ·zn−1,n

+B(∆1 +1,∆2−1)B(
∑2
l=1 ∆l−2,∆3 +1)B(

∑3
l=1 ∆l−3,∆4−1, . . . ,∆n−1)

z12 z̄23 z34 · · ·zn−1,n

+ · · ·+B(∆1 +1,∆2−1, . . . ,∆n−1−1)B(
∑n−1
l=1 ∆l−n,∆n+1)

z12 · · ·zn−2,n−1 z̄n−1,n
, (4.11)

which we have simplified by collapsing individual beta functions to multivariate beta func-
tions. However, we will see that we will also need subleading contributions from descendants
for this case.

As we did in (4.8), we want to perform a Mellin transform on the splitting functions and
check whether they match with the OPE. Mellin transforming split(n)

− (1−) given in (2.15),
and going to the integration variables ωp, ξ1, . . . , ξn, we obtain ∆p =

∑n
i=1 ∆i − n+ 1 and

ope(n)
− (1−) =

n∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

1−
n∑
j=1

ξj

 ξ2
1

ξn
∏n−1
l=1 ξl zl,l+1

= B(∆1 + 1,∆2 − 1, . . . ,∆n − 1)
z12 z23 · · · zn−1,n

,

(4.12)

which again matches with (4.10).
To venture beyond such basic consistency checks, we finally come to the Mellin trans-

form of the second splitting function split(n)
+ (1−) of (2.16). This produces

ope(n)
+ (1−) =

n∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

(
1−

n∑
k=1

ξk

)
ξ2

1
ξn
∏n−1
i=1 ξi zi,i+1

×

n−1∑
j=2

(
∑j
l=1 ξl z1l)3

(
∑j
l=1 ξl) (

∑j
l=1 ξl zjl) (

∑j
l=1 ξl zj+1,l)

zj,j+1
S1j

− (
∑n
l=1 ξl z1l)3

(
∑n
l=1 ξl znl)

1
S1n

 , (4.13)

where S1j :=
∑

1≤k<l≤j ξk ξl |zkl|2. Firstly notice that this has the same number of terms
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as (4.11). Each term in (4.13) comes from a particular MHV diagram [35], so that this
counting points to a plausible 1:1 correspondence between each term in the multi-gluon
OPE and an MHV diagram. We will begin with a detailed exploration of the various terms
in this integral in the “toy model” of a triple-collinear limit. Subsequently, we will briefly
explain how to scale this up to general n, in particular holographically recovering the j = 2
term in the second line of (4.13). The means of recovering the j ≥ 3 terms and the last
term are still being investigated.

4.2.1 n = 3

In the triple-collinear limit, we need to evaluate

ope(3)
+ (1−) = 1

z12 z23

3∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

(
1−

3∑
k=1

ξk

)
ξ1
ξ2 ξ3

×
[

ξ3
2 z

2
12

ξ1 (ξ1 + ξ2) (ξ1 z13 + ξ2 z23)
z23
S12

+ (ξ2 z12 + ξ3 z13)3

(ξ1 z13 + ξ2 z23)
1
S13

]
, (4.14)

where S12 = ξ1 ξ2 |z12|2 and S13 = ξ1 ξ2 |z12|2 + ξ1 ξ3 |z13|2 + ξ2 ξ3 |z23|2.
Let’s look at the first term in (4.14). Substituting for S12 and writing z13 = z12 + z23,

it can be converted into

1
z̄12z23

∫ 1

0
dξ1ξ

∆1−2
1

∫ 1

0
dξ2ξ

∆2
2

∫ 1

0
dξ3ξ

∆3−2
3 δ

(
1−

3∑
i=1

ξi

)
1

(ξ1 + ξ2) (ξ1 + ξ2 − ξ1 z12/z32)

= B(∆1 − 1,∆2 + 1)B(∆1 + ∆2 − 2,∆3 − 1)
z̄12z23

2F1

(
1, ∆1 − 1; ∆1 + ∆2; z12

z32

)
. (4.15)

The integration has been performed using the integral formula (B.2). The beta functions
are the ones we anticipated in (4.11). But we can go even further and holographically
predict the entire Gauss 2F1 appearing in (4.15). To do this, we compute the 3-gluon OPE
by incorporating the contributions from conformal descendants discussed in section 3.2.

We compute the coefficient of the 1/z̄12 z23 term in the 3-point OPE O−O+O+ by
using (3.14). This is precisely the term,

O−a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2)O+c
∆3

(z3, z̄3) ∼ i fabd

z̄12
C−++

∆1,∆2
(z12, z̄12, ∂2, ∂̄2) i fdce

z23

×B(∆1 + ∆2 − 2,∆3 − 1)O+e
∆1+∆2+∆3−2(z3, z̄3) + · · · . (4.16)

In the first Wick contraction, we keep conformal descendants as we will see that sin-
gular terms of the form zm12/z̄12, m ≥ 0, survive. We only need the leading term in
the second Wick contraction because other terms would come with further descendants
of O+e

∆1+∆2+∆3−2 and give subleading contributions to the triple-collinear limit. Apply-
ing (3.15), (3.20), we see that the terms in C−++

∆1,∆2
that contain positive powers of ∂̄2
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cannot act on 1/z23,6 while the action of the rest of the terms produces the coefficient,

C−++
∆1,∆2

(z12, z̄12, ∂2, ∂̄2) 1
z23

= B(∆1 − 1,∆2 + 1)
( ∞∑
m=0

1
m!

(∆1 − 1)m
(∆1 + ∆2)m

zm12(∂2)m
)

1
z23

= B(∆1 − 1,∆2 + 1)
z23

∞∑
m=0

(∆1 − 1)m
(∆1 + ∆2)m

(
z12
z32

)m
(4.17)

= B(∆1 − 1,∆2 + 1)
z23

2F1

(
1,∆1 − 1; ∆1 + ∆2; z12

z32

)
,

having used the series expansion given in (B.2). As promised, the expected Gauss hyper-
geometric function is generated dynamically in the CCFT.

Let us also try to evaluate the second term in (4.14), though we will only partially
succeed at matching this with the OPE. The calculation of the OPE in (4.17) motivates
us to use the new variables w := z12/z32 and its conjugate as expansion parameters around
the leading singularity. These allow us to reexpress the second term of (4.14) as

1
z12 z̄23

∫ 1

0
dξ1 ξ

∆1
1

∫ 1

0
dξ2 ξ

∆2−2
2

∫ 1

0
dξ3 ξ

∆3−2
3 δ

(
1−

3∑
i=1

ξi

)

× (ξ3 − (ξ2 + ξ3)w)3

(ξ1 + ξ2 − ξ1w)
1

(ξ1 ξ2 |w|2 + ξ1 ξ3 |1− w|2 + ξ2 ξ3) . (4.18)

To manifest some of the hidden structure in this integral, we Taylor expand in w̄. This
results in

1
z12 z̄23

∞∑
m=0

w̄m
∫ 1

0
dξ1 ξ

∆1+m
1

∫ 1

0
dξ2 ξ

∆2−2
2

∫ 1

0
dξ3 ξ

∆3−m−3
3 δ

(
1−

3∑
i=1

ξi

)
× (ξ3 − (ξ2 + ξ3)w)m+3 (ξ1 + ξ2 − ξ1w)−m−2 . (4.19)

Evaluating the ξ2-integral, each term in this series takes the form of a type-(3, 6) Aomoto-
Gelfand hypergeometric function (see [46], section 3.3.5),

1
z12 z̄23

∞∑
m=0

w̄m
∫ 1

0
dξ1

∫ 1−ξ1

0
dξ3 ξ

∆1+m
1 ξ∆3−m−3

3 (1− ξ1 − ξ3)∆2−2

(−w + ξ1w + ξ3)m+3 (1− ξ1w − ξ3)−m−2 . (4.20)

Such functions were already encountered in the context of celestial amplitudes in [5]. One
can perform these integrals explicitly by computing a double series expansion in w, w̄ and
hope to match the coefficients with the 3-gluon OPE.

For instance at O(w0), setting w = 0 while formally keeping w̄ non-zero directly
in (4.18), this time we arrive at a 2F1 in w̄:

O(w0) : B(∆1 + 1,∆2 − 1)B(∆1 + ∆2 − 2,∆3 + 1)
z12 z̄23

2F1(1, ∆1+1 ; ∆1+∆2 ; w̄) . (4.21)

6It is natural to drop distributional terms of the form ∂̄2 z
−1
23 ∼ δ(z23) because these can only contribute

when the corresponding celestial operators exactly coincide and the leading OPE diverges. However, they
might be needed for calculating subleading corrections to the multi-collinear limits. We thank Tim Adamo
for pointing this out.
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This can be recovered by computing the coefficient of the 1/z12 z̄23 term in the O−O+O+

OPE, and again keeping only conformal descendants,

O−a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2)O+c
∆3

(z3, z̄3) ∼ i fabd

z12
C−+−

∆1,∆2
(z12, z̄12, ∂2, ∂̄2) i fdce

z̄23

×B(∆1 + ∆2 − 2,∆3 + 1)O+e
∆1+∆2+∆3−2(z3, z̄3) + · · · . (4.22)

Using (3.19), we find

C−+−
∆1,∆2

(z12, z̄12, ∂2, ∂̄2) 1
z̄23

= B(∆1 + 1,∆2 − 1)
( ∞∑
m=0

1
m!

(∆1 + 1)m
(∆1 + ∆2)m

z̄m12 (∂̄2)m
)

1
z̄23

= B(∆1 + 1,∆2 − 1)
z̄23

∞∑
m=0

(∆1 + 1)m
(∆1 + ∆2)m

(
z̄12
z̄32

)m
(4.23)

= B(∆1 + 1,∆2 − 1)
z̄23

2F1

(
1, ∆1 + 1 ; ∆1 + ∆2 ; z̄12

z̄32

)
.

This agrees with (4.21).
The most plausible origin of the non-trivial functional dependence of (4.20) on w lies in

contributions coming from Kac-Moody descendants. This will require finding an all order
understanding of these analogous to our analysis of conformal descendants in section 3.2.
At least at leading orders, this viewpoint is reinforced by the OPE limit of a 4-gluon
amplitude derived in appendix A where such descendants do indeed show up.

4.2.2 General n

We can now describe some methods that may help scale up these computationsk in
the future.

Denote the jth term, 2 ≤ j ≤ n− 1, in the expression (4.13) by

In,j =
n∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

(
1−

n∑
k=1

ξk

)
ξ2

1
ξn
∏n−1
i=1 ξi zi,i+1

×
(
∑j
l=1 ξl z1l)3

(
∑j
l=1 ξl) (

∑j
l=1 ξl zjl) (

∑j
l=1 ξl zj+1,l)

zj,j+1
S1j

. (4.24)

Observe that, except for the delta function, the integrand of In,j can be factorized into a
product of two functions, one depending on ξ1, . . . , ξj and the other on ξj+1, . . . , ξn. In fact,
Euler integrals like In,j satisfy an elegant factorization property whereby factorization of
the integrand also breaks the integral into two smaller such integrals. This is discussed in
some detail in appendix B. Using this, the Euler sub-integral involving ξj+1, . . . , ξn is found
to be a simple Dirichlet integral. Then (B.9) yields one of the anticipated multivariate beta
functions occurring in the various terms of (4.11), leaving us with

In,j = B(
∑j
i=1 ∆j − j,∆j+1 − 1, . . . ,∆n − 1)∏n−1

i=1 zi,i+1

j∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

1−
j∑

k=1
ξk


× ξ1
ξ2 ξ3 · · · ξj

(
∑j
l=1 ξl z1l)3

(
∑j
l=1 ξl) (

∑j
l=1 ξl zjl) (

∑j
l=1 ξl zj+1,l)

zj,j+1
S1j

, (4.25)

removing the redundancies in the calculation.
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With the help of this simplification, the j = 2 case for instance reduces to a product
of beta and hypergeometric functions,

In,2 = B(∆1 − 1,∆2 + 1)B(∆1 + ∆2 − 2,∆3 − 1, . . . ,∆n − 1)
z̄12 z23 z34 · · · zn−1,n

× 2F1

(
1, ∆1 − 1 ; ∆1 + ∆2 ; z12

z32

)
. (4.26)

This is the all multiplicity generalization of the calculation (4.15) of the same term in the
triple-collinear case. Scaling up the Wick contractions in (4.16) by adding n − 3 further
positive helicity gluon operators, and keeping conformal descendants for just the first O−O+

contraction, CCFT predicts precisely this singularity.
To end this section, let us describe a systematic way to recover the rest of the leading

singularities entering the expression (4.11) of ope(n)
+ (1−). Inspired by the variable w =

z12/z32 that showed up in the triple-collinear limit, we define a set of new variables in
terms of ratios of consecutive distances,

wi := zi,i+1
zi+2,i+1

, i ∈ {1, . . . , n− 2} . (4.27)

This choice of variables also makes sense from the standpoint of sequential Wick contrac-
tions in the multi-gluon OPE. In terms of the wi, one easily derives,7

zkl = ζjkl zj−1,j , ζjkl =
(

1 +
l−k−1∑
a=1

(−1)l−k−a
l−k−1∏
b=a

wk+b−1

) j−2∏
c=l−1

wc . (4.28)

To leading order in the ratios wi,

S1j = |zj−1,j |2
j∑
l=1

ξl

l−1∑
k=1

ξk |ζjkl|
2 = ξj |zj−1,j |2

j−1∑
k=1

ξk +O(wi) . (4.29)

Similarly, we find the numerator factor, j∑
l=1

ξl z1l

3

=

zj−1,j

j∑
l=1

ξl ζ
j
1l

3

= ξ3
j z

3
j−1,j +O(wi) , (4.30)

and the denominator factors,

j∑
l=1

ξl zlj = zj−1,j

j−1∑
l=1

ξl ζ
j
lj = zj−1,j

j−1∑
l=1

ξl +O(wi) , (4.31)

j∑
l=1

ξl zl,j+1 = zj,j+1

j∑
l=1

ξj ζ
j+1
l,j+1 = zj,j+1

j∑
l=1

ξj +O(wi) . (4.32)

The main signifance of these expansions lies in the fact that one can also systematically
keep subleading terms of O(wi) to probe descendants exchanged in the OPE.

7Except for some boundary cases that can be handled directly.
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With these leading order results in wi, along with judicious use of the constraint∑j
k=1 ξk = 1, (4.25) simplifies to

In,j = B(
∑j
i=1 ∆j − j,∆j+1 − 1, . . . ,∆n − 1)

z12 · · · zj−2,j−1 z̄j−1,j zj,j+1 · · · zn−1,n

×
∫ 1

0
dξ1 ξ

∆1
1

j∏
i=2

∫ 1

0
dξi ξ∆i−2

i δ

1−
j∑

k=1
ξk

 ξ2
j

(1− ξj)2 +O(wi) . (4.33)

Again using the factorization techniques of appendix B, specifically (B.6), this evaluates
to the desired leading ope singularity,

In,j = B(∆1 + 1,∆2 − 1, . . . ,∆j−1 − 1)
z12 · · · zj−2,j−1 z̄j−1,j zj,j+1 · · · zn−1,n

B

j−1∑
i=1

∆i − j + 1,∆j + 1

 (4.34)

×B

 j∑
k=1

∆k − j,∆j+1 − 1, . . . ,∆n − 1

+O(wi) . (4.35)

And finally, one can similarly show that the last term of (4.13) produces the last singularity
in (4.11).

5 Multi-graviton collinear limits

One can hope to attempt similar computations for perturbative gravity. However, the
collinear regime of graviton amplitudes is generically non-singular (i.e., not meromorphic).
Consequently, the question of multi-collinear limits also becomes much less precise. In fact,
generally it even depends on the order in which the gravitons are made collinear. Hence,
in this section, we will restrict ourselves to an analysis of sequential double-collinear limits.
These are the natural objects that we can expect to get mapped to sequential applications
of the OPE under a Mellin transform. They would also have to act as leading order
approximations to more precise notions of multi-collinear limits for sake of consistency.8

For simplicity, we will only consider the case where all helicities are positive and the
case where only one helicity is negative. In the first case, on applying the 2-point OPE
between two positive-helicity gravitons (2.7) recursively, we have

G+
∆1

(z1, z̄1)G+
∆2

(z2, z̄2) · · ·G+
∆n

(zn, z̄n)

∼
(
−κ2

)n−1 z̄12 z̄23 · · · z̄n−1,n
z12 z23 · · · zn−1,n

n∏
j=2

B

j−1∑
i=1

∆i − 1,∆j − 1

G+
∆p

(zn, z̄n) , (5.1)

where ∆p =
∑n
i=1 ∆i. Unlike the n-point OPE singularity (4.8) for gluons, here the co-

efficient does not collapse to a multivariate beta function symmetric under permutations.
8In the case of multi-gluon collinear limits split(n)

+ and split(n)
− (1−), this approximation happens to yield

the exact splitting functions as they only possess 2-particle factorization singularities. These also generated
OPE coefficients that were permutation symmetric in the positive helicity gluons. So we did not need to
discuss these issues earlier.
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This means that the order in which we perform the recursive OPE is important, and from
the bulk point of view it corresponds to obtaining the multi-collinear limit from repeatedly
taking double-collinear limits in the same order.

In momentum space, repeated double-collinear limits give the following multi-collinear
splitting function,

split(n)
+ =

(
−κ2

)n−1 z̄12
z12

(ω1 + ω2)2

ω1 ω2
· z̄23
z23

(ω1 + ω2 + ω3)2

(ω1 + ω2)ω3
· · · z̄n−1,n

zn−1,n

(ω1 + · · ·+ ωn)2

(ω1 + · · ·+ ωn−1)ωn

=
(
−κ2

)n−1 ωp
ω1

n∏
j=2

∑j
i=1 ωi
ωj

z̄j−1,j
zj−1,j

, (5.2)

where ωp =
∑n
i=1 ωi, having concatenated the double-collinear splitting function split(2)

+
given in (2.18) n − 1 times. Along the lines of (4.4), Mellin transforming this gives the
conformal weight ∆p =

∑n
i=1 ∆i and the ope factor,

ope(n)
+ =

(
−κ2

)n−1 n∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

(
1−

n∑
k=1

ξk

)
1
ξ1

n∏
j=2

∑j
l=1 ξl
ξj

z̄j−1,j
zj−1,j

=
(
−κ2

)n−1 n∏
j=2

B

j−1∑
i=1

∆i − 1,∆j − 1

 , (5.3)

where the integral can be performed by noticing that the integrand is an example of a
generalized Dirichlet distribution ([45], chapter 49). This matches the celestial CFT re-
sult (5.1). The non-trivial consistency check here is the fact that Mellin transforms do map
concatenated splitting functions to sequential OPEs, which is a basic requirement before
one can embark on an analysis of BMS descendants.

Similarly, the leading contribution to ope(n)
− (1−) comes from the multi-graviton OPE,

G−∆1
(z1, z̄1)G+

∆2
(z2, z̄2) · · ·G+

∆n
(zn, z̄n)

∼
(
−κ2

)n−1 z̄12 z̄23 . . . z̄n−1,n
z12 z23 · · · zn−1,n

n∏
j=2

B

j−1∑
i=1

∆i + 3,∆j − 1

G−∆p
(zn, z̄n) + · · · , (5.4)

with the same weight ∆p =
∑n
i=1 ∆i as before. In this case, the corresponding momentum

space splitting function is found to be

split(n)
− (1−) =

(
−κ2

)n−1 ω3
1
ω3
p

n∏
j=2

∑j
i=1 ωi
ωj

z̄j−1,j
zj−1,j

, (5.5)

obtained from n−1 applications of split(2)
− (1−) given in (2.18). Mellin transform then gives

ope(n)
− (1−) =

(
−κ2

)n−1 n∏
i=1

∫ 1

0

dξi
ξi
ξ∆i
i δ

(
1−

n∑
k=1

ξk

)
ξ3

1

n∏
j=2

∑j
l=1 ξl
ξj

z̄j−1,j
zj−1,j

=
(
−κ2

)n−1 n∏
j=2

B

j−1∑
i=1

∆i + 3,∆j − 1

 , (5.6)

which again matches the celestial CFT result (5.4).
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6 Conclusions

The emergence of bulk physics from celestial CFT is an important subject of much ongoing
research. Ideally speaking, given the OPE algebra of the holographic dual, one should be
able to work out all its correlators recursively. We have shown that even in the absence
of this, we can determine many interesting limits of celestial amplitudes already with
the leading order OPE. Our focus has been on finding an understanding of emergent
locality and unitarity through the lens of asymptotic symmetries and the celestial operator
algebra. Our methods aim to utilize the operator spectrum of the CCFT to all orders, and
hint at interesting organizational principles that could generate multi-particle factorization
behavior from the CFT data. Moreover, they also open the doors to many interesting
directions of speculation.

The operator spectrum of the Yang-Mills CCFT clearly contains much more infor-
mation than we have been able to find from just translation invariance. Even though we
managed to fix the contributions of all global conformal descendants and some leading
examples of Kac-Moody descendants to the OPE of celestial gluons, the absence of the
remaining Kac-Moody descendants is still a big gap that needs to be filled. We suspect
that these extra descendants will help in finding a truly holographic derivation of all the
remaining terms in the multi-collinear splitting functions discussed above.

On a similar note, we also need to find how the subleading soft gluon symmetry of [44]
fits into this paradigm of primaries and descendants. This should be an interesting repre-
sentation theoretic problem in its own right. In fact, the subleading soft gluon symmetry
will in general impose non-trivial constraints on the multi-gluon OPE, just as it constrained
the 2-gluon OPE in [29]. These constraints could take the form of differential-recurrence
equations like the well-known Gauss contiguous relations and give an alternative way of
discovering the hypergeometric functions occurring in the Mellin transformed splitting
functions. Such a method would also be easier to scale up to higher multiplicity in contrast
to our technique of summing up infinite series of descendants.

Another interesting route for future work is the study of the CCFT spectrum dual to
general relativity and possibly quantum gravity. Initial steps in this direction have been
taken in [30, 31] where the OPE coefficients of some of the BMS and other descendants
were computed by using symmetry constraints on the celestial graviton OPEs. However,
here the set of symmetries that form a non-trivial algebra with translations is much larger,
obstructing an all order computation analogous to that in section 3.2. But the recent work
on a double copy for celestial amplitudes [10] holds promise to overcome these issues. It
should be possible to find a notion of color-kinematics duality that acts as an algebra ho-
momorphism on the CCFT operator algebra and maps celestial gluon OPEs to those of
celestial gravitons. Hints of this are already present in our results from section 3.3. There,
if one maps ja

−1O
b
∆1+∆2−1 and jb

−1O
a
∆1+∆2−1 to P−2,−1G

+
∆1+∆2−1 and −P−2,−1G

+
∆1+∆2−1

respectively in the notation of [30], then the OPE coefficient for the graviton supertransla-
tion descendant P−2,−1G

+
∆1+∆2−1 is found to be α−β. This is given in (3.28) and matches

with the result found in section 8.3 of [30]. Also, the vanishing of the OPE coefficient of
its antiholomorphic partner P−1,−2G

+
∆1+∆2−1 seems to go hand in hand with the absence

– 20 –



J
H
E
P
0
3
(
2
0
2
1
)
0
3
0

of antiholomorphic Kac-Moody descendants in the O+O+ gluon OPE. Similar lines of
research could also be explored in the full Einstein-Yang-Mills theory.

Above, we also saw that we only possess limited knowledge of the multi-collinear be-
havior of gravity. Celestial CFT might also be able to help with this by giving a concrete
foundation for the gravitational MHV formalism of [47]. We saw indications of this when
working out the multi-gluon OPEs in section 4. There, various terms in the multi-collinear
splitting functions were in 1:1 correspondence with both terms in the CSW recursion rela-
tions and the multi-gluon OPE singularities. This might have a straightforward general-
ization to gravity and help in making novel universal statements.

Finally, we would like to mention that one of our original hopes in deriving subleading
terms in the OPEs was to find conformal block expansions for 4-point celestial amplitudes.
There has been some work on partial wave expansions in [7, 11], but relating them to the
operators flowing in the celestial OPE is still an open question of great import. This will
bring us a step closer to viewing scattering amplitudes as conformal correlators.
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A Descendants from 4-gluon amplitude

In this appendix, we look at the 4-point gluon amplitude in the OPE limit. We follow
an analogous calculation for the 4-graviton amplitude carried out in [30]. Since we need
to work with 3-point amplitudes, we will go to split signature for the sake of this section.
This entails using a reality condition with zi and z̄i being independent real variables.

The 4-point gluon amplitude with gluons 1, 2 negative helicity and gluons 3, 4 positive
helicity is given by

A4
(
1−a 2−b 3+c 4+d

)
= fadef cbe 〈1 2〉3

〈2 3〉 〈3 4〉 〈4 1〉 + facefdbe 〈1 2〉3

〈2 4〉 〈4 3〉 〈3 1〉 . (A.1)

We take the negative helicity gluons to be incoming and the positive helicity ones outgoing.
Then the momentum conserving delta function can be expressed as follows:

δ4(ω1q1 + ω2q2 − ω3q3 − ω4q4)

= 1
ω∗1 ω

∗
2 z

2
12
δ(ω1 − ω∗1) δ(ω2 − ω∗2) δ

(
z̄14 + ω3

ω∗1

z23
z12

z̄34

)
δ

(
z̄24 −

ω3
ω∗2

z13
z12

z̄34

)
, (A.2)

where
ω∗1 = z42

z12
(ω3 + ω4) + z34

z12
ω3 , ω∗2 = z14

z12
(ω3 + ω4)− z34

z12
ω3 . (A.3)

To do the Mellin transform, we make the substitutions,

ω3 = t ω , ω4 = (1− t)ω , (A.4)

and integrate over ω ∈ R+ and t ∈ (0, 1).
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In the OPE limit z34 → 0, this produces the following asymptotics for the
celestial amplitude:

A4
(
1−a

∆1
2−b

∆2
3+c

∆3
4+d

∆4

)
∼ 1
z34

[
facefbde

(
1− z34

z14

)−1
+fdaefbce

(
1− z34

z24

)−1]

×
{∫ 1

0
dt t∆3−2(1−t)∆4−2

(
1− z34

z24
t

)∆1−1(
1− z34

z14
t

)∆2−1
+O(z̄34)

}

×Ã3
(
1−∆1

2−∆2
4+

∆3+∆4−1

)
. (A.5)

The O(z̄34) term comes from Taylor expanding the last two delta function factors in (A.2)
and will contain contributions from L̄−1-descendants which can be determined analo-
gously to our procedure below. For illustration purposes, we will only focus on the L−1
and Kac-Moody descendants. Also, here Ã3 denotes the color-stripped 3-point MHV
celestial amplitude [3],

Ã3
(
1−∆1

2−∆2
4+

∆3+∆4−1

)
= Θ

(
z42
z12

)
Θ
(
z14
z12

) 2π δ(i (4−
∑4
j=1 ∆j)) δ(z̄14) δ(z̄24)

z1−∆3−∆4
12 z2−∆2

14 z2−∆1
42

, (A.6)

(with ∆j ∈ 1 + iR assumed as usual). The leftover t-integral is an Appell’s F1 hypergeo-
metric function, with series expansion

∫ 1

0
dt t∆3−2 (1− t)∆4−2

(
1− z34

z24
t

)∆1−1 (
1− z34

z14
t

)∆2−1
(A.7)

= B(∆3 − 1,∆4 − 1)
∞∑

m,n=0

(∆3 − 1)m+n (1−∆1)m (1−∆2)n
m!n! (∆3 + ∆4 − 2)m+n

(
z34
z14

)n (z34
z24

)m
.

We will just keep the m+ n = 0, 1 terms for simplicity.
Expanding (A.5) to O(z1

34 z̄
0
34), some simple manipulations yield

A4
(
1−a

∆1
2−b

∆2
3+c

∆3
4+d

∆4

)
∼ B(∆3−1,∆4−1)

z34

[
fabef cde

(
1+ ∆3−1

∆3 +∆4−2z34∂4

)

+ ∆4−1
∆3 +∆4−2z34

(
facefbde

z14
+ fdaefbce

z24

)
− ∆3−1

∆3 +∆4−2z34

(
facefbde

z24
+ fdaefbce

z14

)

+O
(
z2

34, z̄34
)]
Ã3
(
1−∆1

2−∆2
4+

∆3+∆4−1

)
. (A.8)

From this and the Virasoro and Kac-Moody Ward identities, one reads off the descendants
and their OPE coefficients. See for instance [48], section 3.5 for an introduction to com-
puting correlators of Kac-Moody descendants via the OPE and the global residue theorem.
As expected, they can be made to agree with the coefficients predicted from symmetry
in (3.22), (3.26) by replacing particle labels 1 and 2 with 3 and 4 respectively.
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B Factorization of Euler integrals

We first note some useful integral representations of special functions. The Euler beta
function is given by

B(a, b) =
∫ 1

0
dξ ξa−1(1− ξ)b−1 = Γ(a) Γ(b)

Γ(a+ b) . (B.1)

The Gauss hypergeometric function can be represented by a similar Euler integral formula
as well as by a series expansion,

2F1(a, b ; c ; z) = 1
B(b, c− b)

∫ 1

0
dξ ξb−1(1− ξ)c−b−1(1− ξ z)−a =

∞∑
n=0

(a)n(b)n
(c)n

zn

n! . (B.2)

Such integrals occur numerous times in section 4.
Next, we provide some standard tricks that can be applied to recursively simplify the

Euler-type integrals occurring in this work. Suppose we start with an integral of the form

I[f · g] =
n∏
i=1

∫ 1

0

dξi
ξi

δ

1−
n∑
j=1

ξj

 f(ξ1, . . . , ξk) g(ξk+1, . . . , ξn) , (B.3)

for a pair of integrable functions f and g. Also assume that g is a homogeneous function
of degree β under a diagonal rescaling,

g(t ξk+1, . . . , t ξn) = tβg(ξk+1, . . . , ξn) , t ∈ R∗ . (B.4)

This will be a ubiquitous property in our splitting functions. Since the dependence on ξi’s
is factorized in the integrand, we now show that this is also enough to factorize the integral
into two smaller Euler integrals.

Simply insert identity in the form,

1 =
∫ 1

0

dξ0
ξ0

δ

1−
n∑

i=k+1

ξi
ξ0

 . (B.5)

Since 0 <
∑n
i=k+1 ξi < 1 due to the delta function constraint in (B.3), we only need

to integrate ξ0 over this range. Inserting this in I[f · g] and rescaling ξi 7→ ξ0 ξi for
i = k + 1, . . . , n produces

I[f · g] =
n∏
i=0

∫ 1

0

dξi
ξi

δ

1−
k∑
j=0

ξj

 δ
1−

n∑
l=k+1

ξl
ξ0

 f(ξ1, . . . , ξk)g(ξk+1, . . . , ξn),

= I[ξβ0 f ]I[g] ,

(B.6)

where the sub-integrals are given by

I[ξβ0 f ] =
k∏
i=0

∫ 1

0

dξi
ξi
δ

1−
k∑
j=0

ξj

 ξβ0 f(ξ1, . . . , ξk) ,

I[g] =
n∏

i=k+1

∫ 1

0

dξi
ξi
δ

1−
n∑

j=k+1
ξj

 g(ξk+1, . . . , ξn) . (B.7)
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Moreover, if f is also a homogeneous function of degree α under a diagonal rescaling, say

f(t ξ1, . . . , t ξk) = tαf(ξ1 . . . , ξk) , t ∈ R∗ , (B.8)

we can further factorize I[ξβ0 f ] along similar lines. The final result is

I[f · g] = B(α, β) I[f ] I[g] , (B.9)

where, as expected,

I[f ] =
k∏
i=1

∫ 1

0

dξi
ξi
δ

1−
k∑
j=1

ξj

 f(ξ1, . . . , ξk) . (B.10)

This factorization will be very useful in extracting beta functions from complicated inte-
grals. Such properties may also be helpful in studying more general factorization behaviors
of celestial amplitudes in the future.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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