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Abstract—We introduce the use of describable visual attributes for face verification and image search. Describable visual attributes

are labels that can be given to an image to describe its appearance. This paper focuses on images of faces and the attributes

used to describe them, although the concepts also apply to other domains. Examples of face attributes include gender, age, jaw

shape, nose size, etc. The advantages of an attribute-based representation for vision tasks are manifold: they can be composed

to create descriptions at various levels of specificity; they are generalizable, as they can be learned once and then applied to

recognize new objects or categories without any further training; and they are efficient, possibly requiring exponentially fewer

attributes (and training data) than explicitly naming each category. We show how one can create and label large datasets of

real-world images to train classifiers which measure the presence, absence, or degree to which an attribute is expressed in

images. These classifiers can then automatically label new images. We demonstrate the current effectiveness – and explore the

future potential – of using attributes for face verification and image search via human and computational experiments. Finally, we

introduce two new face datasets, named FaceTracer and PubFig, with labeled attributes and identities, respectively.

Index Terms—Face recognition, attribute classification, classifier training, content-based image retrieval, image search.
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1 INTRODUCTION

ONE of history’s most successful books was a five-
volume pharmacopoeia titled De Materia Medica,

written in the first century by the Greek botanist
and physician Pedanius Dioscorides. It is perhaps the
earliest known field guide, giving pictures and written
descriptions of nearly 600 plant species, showing how
each could be found and identified. This work would
be the first in a line of botanical texts, including the
ninth century medieval agricultural and toxicologi-
cal texts of Ibn Washiyah, and the early eighteenth
century Systema Naturae of Carl Linneaus, which laid
out the rules of modern taxonomy. All of these works
have in common an effort to teach the reader how to
identify a plant or animal by describable aspects of its
visual appearance.
While the use of describable visual attributes for

identification has been around since antiquity, it has
not been the focus of work by researchers in computer
vision and related disciplines. Most existing methods
for recognition (e.g., [13], [36], [38], [54]) work by
extracting low-level features in images, such as pixel
values, gradient directions, histograms of oriented
gradients [13], SIFT [34], etc., which are then used to
directly train classifiers for identification or detection.
In contrast, we use low-level image features to first

learn intermediate representations [29], [30], in which
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images are labeled with an extensive list of descrip-
tive visual attributes. Although these attributes could
clearly be useful in a variety of domains (such as
object recognition, species identification, architectural
description, action recognition, etc.), we focus solely
on faces in this paper. These face attributes can range
from simple demographic information such as gender,
age, or ethnicity; to physical characteristics of a face
such as nose size, mouth shape, or eyebrow thickness;
and even to environmental aspects such as lighting
conditions, facial expression, or image quality. In our
approach, an extensive vocabulary of visual attributes
is used to label a large dataset of images, which is then
used to train classifiers that automatically recognize the
presence, absence, or degree to which these attributes
are exhibited in new images. The classifier outputs
can then be used to identify faces and search through
large image collections, and they also seem promising
for use in many other tasks such as image exploration
or automatic description-generation.

Why might one need these attributes? What do they
afford? Why not train classifiers directly for the task at
hand? Visual attributes – much like words – are com-
posable, offering tremendous flexibility and efficiency.
Attributes can be combined to produce descriptions
at multiple levels, including object categories, objects,
or even instances of objects. For example, one can
describe “white male” at the category level (a set of
people), or “white male brown-hair green-eyes scar-
on-forehead” at the object level (a specific person),
or add “..., smiling lit-from-above seen-from-left” to
the previous for an instance of the object (a particular
image of a person).
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(a) Attribute values for two images of the same person (b) Attribute values for images of two different people

Fig. 1. An attribute classifier can be trained to recognize the presence or absence of a describable visual attribute. The
responses for several such attribute classifiers are shown for (a) two images of the same person and (b) two images
of different individuals. In (a), notice how most attribute values are in strong agreement, despite the changes in pose,
illumination, expression, and image quality. Conversely, in (b), the values differ completely despite the similarity in these
same environmental aspects. We train a verification classifier on these outputs to perform face verification, achieving 85.54%

accuracy on the Labeled Faces in the Wild (LFW) benchmark [27], comparable to the state-of-the-art.

Moreover, attributes are generalizable; one can learn
a set of attributes from large image collections and
then apply them in almost arbitrary combinations to
novel images, objects, or categories. Better still, at-
tributes are efficient: consider that k binary attributes
may suffice to identify 2k categories, clearly more
efficient than naming each category individually. (Of
course, in practice, the potential benefits are limited
by the problem domain, the type of categories being
considered, and the accuracy of learned classifiers.)
In contrast to existing labeling efforts such as Im-
ageNet [15] and LabelMe [48] that label large col-
lections of images by category or object name, the
use of attributes may provide a significantly more
compact way of describing objects. This would allow
for the use of much smaller labeled datasets to achieve
comparable performance on recognition tasks.

Perhaps most importantly, these attributes can be
chosen to align with the domain-appropriate vocabu-
lary that people have developed over time for describ-
ing different types of objects. For faces, this includes
descriptions at the coarsest level (such as gender and
age) to more subtle aspects (such as expressions and
shape of face parts) to highly face-specific marks (such
as moles and scars).

While describable visual attributes are one of the
most natural ways of describing faces, a person’s
appearance can also be described in terms of the
similarity of a part of their face to the same part of
another individual’s. For example, someone’s mouth
might be like Angelina Jolie’s, or their nose like Brad

Pitt’s. Dissimilarities also provide useful information
– e.g., her eyes are not like Jennifer Aniston’s. We call
these “similes.”

In this work, we show two major uses of classifiers
trained on describable visual attributes and similes:
face verification and image search. Face verification
is the problem of determining whether two faces are
of the same individual. What makes this problem
difficult is the enormous variability in the manner
in which an individual’s face presents itself to a
camera: not only might the pose differ, but so might
the expression and hairstyle. Making matters worse
– at least for researchers in biometrics – is that the
illumination direction, camera type, focus, resolution,
and image compression are all almost certain to vary
as well. These manifold differences in images of the
same person have confounded methods for automatic
face recognition and verification, often limiting the
reliability of automatic algorithms to the domain of
more controlled settings with cooperative subjects [4],
[22], [24], [44], [46], [49], [51].

We approach the unconstrained face verification
problem (with non-cooperative subjects) by compar-
ing faces using our attribute and simile classifier
outputs, instead of low-level features directly. Fig. 1
shows the outputs of various attribute classifiers, for
(a) two images of the same person and (b) images of
two different people. Note that in (a), most attribute
values are in strong agreement, despite the changes in
pose, illumination, and expression, while in (b), the
values are almost perfectly contrasting. By training
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(a) Yahoo image search results (b) Attribute-based image search results

Fig. 2. Results for the query, “smiling asian men with glasses,” using (a) the Yahoo image search engine (as of November
2010) and (b) our face search engine. Conventional image search engines rely on text annotations, such as file metadata,
manual labels, or surrounding text, which are often incorrect, ambiguous, or missing. In contrast, we use attribute classifiers
to automatically label images with faces in them, and store these labels in a database. At search time, only this database
needs to be queried, and results are returned instantaneously. The attribute-based search results are much more relevant to
the query.

a classifier that uses these labels as inputs for face
verification, we achieve close to state-of-the-art per-
formance on the Labeled Faces in the Wild (LFW) data
set [27], at 85.54% accuracy.

LFW is remarkable for its variability in all of the
aspects of visual appearance mentioned above, which
also makes it a challenging benchmark for face ver-
ification algorithms. Our excellent performance on
this benchmark shows that our particular approach
to building and using attribute classifiers is, at the
very least, adequate; however, how much better could
one do? The attribute classifiers we train are currently
binary, with continuous outputs approximated by the
distance of a sample to the classification boundary.
One could instead train regressors to directly estimate
real-valued attribute outputs with greater accuracy.
An upper-bound on the expected accuracy of attribute
classification can be found by asking humans to la-
bel attributes. Thus, replacing the automatic classifier
outputs with human labels, we found that accuracy
on LFW goes up to 91.86%. Going even further, we
asked humans to do the entire verification process.
This experiment revealed the ideal to which automatic
algorithms should aspire – 99.20%.

Given the tremendous strides in face recognition
performance over the last two decades, in large
part due to the introduction of larger and more
realistic data sets, we have publicly released two
large datasets: FaceTracer, which contains URLs to
15, 000 face images and 5, 000 attribute labels; and
PubFig, which contains URLs to 58, 797 images of
200 public figures – politicians and celebrities.

Another application of describable visual attributes
is image search. The ability of current search engines

to find images based on facial appearance is lim-
ited to images with text annotations. Yet, there are
many problems with annotation-based image search:
the manual labeling of images is time-consuming;
the annotations are often incorrect or misleading,
as they may refer to other content on a webpage;
and finally, the vast majority of images are simply
not annotated. Figs. 2a and 2b show the results of
the query, “smiling asian men with glasses,” using
a conventional image search engine (Yahoo Image
Search, as of November 2010) and our search engine,
respectively. The difference in quality of search results
is clearly visible. Yahoo’s reliance on text annotations
causes it to find some images that have no relevance
to the query, while our system returns only the images
that match the query. In addition, many of the correct
results on Yahoo point to stock photography websites,
which can afford to manually label their images with
keywords – but only because they have collections
of a limited size, and they label only the coarsest
attributes. Clearly, this approach does not scale.

Both of our systems first require the creation of a
large dataset of real-world face images. This is done
by downloading images from the internet, running
face detection and alignment, and then obtaining
ground-truth attribute labels, all of which is described
in Sec. 3. From this labeled data, one can train accurate
attribute and simile classifiers fully automatically, as
described in Sec. 4. Performing face verification using
these attributes is described in Sec. 5, which also
contains various experiments and looks at how well
people perform on verification. Finally, the use of
attributes for searching in large collections of images
with faces is described in Sec. 6.
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2 RELATED WORK

Our work lies at the intersection of attribute clas-
sification, face verification and content-based image
retrieval. We present an overview of the relevant
work, organized by these topics.

2.1 Attribute Classification

Prior research on attribute classification has focused
mostly on gender and ethnicity classification. Early
works [12], [23] used neural networks to perform
gender classification on small datasets. The Fisher-
faces work [2] showed that linear discriminant anal-
ysis could be used for simple attribute classification
such as glasses/no glasses. Later, Moghaddam and
Yang [35] used Support Vector Machines (SVMs) [11]
trained on small “face-prints” to classify the gender
of a face, showing good results on the FERET face
database [44]. The works of Shakhnarovich et al. [50]
and Baluja and Rowley [1] used Adaboost [21] to se-
lect a linear combination of weak classifiers, allowing
for almost real-time classification of face attributes,
with results in the latter case again demonstrated on
the FERET database. These methods differ in their
choice of weak classifiers: the former uses the Haar-
like features of the Viola-Jones face detector [57], while
the latter uses simple pixel comparison operators. In
a more general setting, Ferrari and Zisserman [20]
described a probabalistic approach for learning simple
attributes such as colors and stripes.
In computer vision, the use of attributes has re-

cently been receiving much attention from a number
of different groups. This journal paper builds on
earlier conference works [29], [30]. Other contempo-
raneous works that use attributes to describe objects
include [31], for animal categorization, and [18], for
building general attribute predictors. However, the
focus of all of these papers is quite different. The
latter [18] explores how to train attribute classifiers
in a very general setting (such as for evaluation on
the Pascal VOC challenge [17]) and the problems
associated with, e.g., correlations in training data. The
former [31], on the other hand, focuses on trying to
distinguish animal species and transfer labels across
categories. In contrast to both of these approaches,
which are trying to find relations across different cat-
egories, we concentrate on finding relations between
objects in a single category: faces.
Faces have many advantages compared to generic

object categories. There is a well-established and con-
sistent reference frame to use for aligning images;
differentiating objects is conceptually simple (e.g., it’s
unclear whether two cars of the same model should
be considered the same object or not, whereas no such
difficulty exists for two faces); and most attributes can
be shared across all people (unlike, e.g., “4-legged,”
“gothic,” or “dual-exhaust,” which are applicable to
animals, architecture, and automobiles, respectively

– but not to each other). All of these benefits make
it possible for us to train more reliable and useful
classifiers, and demonstrate results comparable to the
state-of-the-art.

In psychology and neuroscience, there have been
a number of works on face recognition as done by
humans. The work of Bruce et al. [5] addresses many
aspects of human recognition of faces in video and
images, including results showing that people are
very robust to decreased resolution when recognizing
familiar faces, and that the face itself is more useful
than the body or gait in such settings [6]. In contrast,
Sinha and Poggio [53] show an example where context
dominates image information in the face region itself.
In later work, Sinha et al. [52] provide a wide-ranging
overview of results from psychology on face recog-
nition, briefly covering the work of Bruce et al. [5]
and also discussing the effects of varying many other
imaging conditions.

Exciting recent work [41] considers explicitly train-
ing attribute classifiers for words, in order to decode
fMRI measurements of brain activity while subjects
think about words. This work includes initial PAC-
style bounds on attribute-based zero-shot learning.

2.2 Face Verification

Early work in appearance-based face verification [28],
[56] looked at the L2 distance between pairs of images
in a lower dimensional subspace obtained using Prin-
cipal Components Analysis (PCA). This was extended
and improved upon by using linear discriminant
analysis [2]. However, these algorithms are mostly
limited to images taken in highly controlled envi-
ronments with extremely cooperative subjects. It is
well understood that variation in pose and expression
and, to a lesser extent, lighting cause significant dif-
ficulties for recognizing the identity of a person [61].
Illumination changes can be mostly handled using a
variety of different approaches; the direction of the
image gradient [9] and related image features such as
SIFT [34], the phase of Gabor jets [58], and gradient
pyramids [33] are all highly insensitive to lighting
variation. The CMU Pose, Illumination, and Expres-
sion (PIE) data set and follow-on results showed that
sometimes alignment, especially in 3D, can overcome
the other difficulties [4], [7], [10], [24], [51].

Unfortunately, in the setting of real-world images
such as those in the “Labeled Faces in the Wild”
(LFW) benchmark data set [27] and similar data
sets [3], [16], 3D alignment is difficult and has not (yet)
been successfully demonstrated. Various 2D align-
ment strategies have been applied to LFW – aligning
all faces [25] to each other, or aligning each pair of
images to be considered for verification [19], [37].
Approaches that require alignment between each im-
age pair are computationally expensive. Our work
does not require pairwise alignment. Neither do many
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Fig. 3. Creating labeled image datasets: Our system downloads images from the internet. These images span many sources
of variability, including pose, illumination, expression, cameras, and environment. Next, faces and fiducial points are detected
using a commercial detector [39] and stored in the Columbia Face Database. A subset of these faces are submitted to the
Amazon Mechanical Turk service, where they are labeled with attributes or identity, which are used to create the FaceTracer
and PubFig datasets, respectively. Both datasets have been publicly released for non-commercial use.

other recent methods on LFW [47], [55], [59], [60], all
of which use a large set of carefully designed local
features. The best-performing of these [60] ranks the
similarity of each face in an input pair to those in
a “background set,” which is similar in spirit to our
simile classifiers.

2.3 Content-Based Image Retrieval (CBIR)

Our search application can be viewed as a form of
CBIR, where our content is limited to images with
faces. Interested readers can refer to the work of
Datta et al. [14] and Lew et al. [32] for a recent
survey of this field. Most relevant to our work is the
“Photobook” system [43], which allows for similarity-
based searches of faces and objects using parametric
eigenspaces. However, their goal is different from
ours. Whereas they try to find objects similar to a
chosen one, we locate a set of images starting only
with simple text queries. Although we use vastly
different classifiers and methods for feature selection,
their division of the face into functional parts such
as the eyes, nose, etc., is echoed in our approach of
training classifiers on functional face regions. While in
this paper we ignore existing text annotations for im-
ages, one could envision using describable attributes
in combination with such annotations for improved
search performance, somewhat akin to the idea pre-
sented in the “Names and Faces” work [3].

3 CREATING LABELED IMAGE DATASETS

Two recent trends in internet services have made
collecting and labeling image data dramatically eas-
ier. First, large internet photo-sharing sites such as
flickr.com and picasa.com are growing exponentially
and host billions of public images, some with tex-
tual annotations and comments. In addition, search
engines such as Google Images allow searching for
images of particular people (albeit not perfectly). Sec-
ond, efficient marketplaces for online labor, such as
Amazon’s Mechanical Turk (MTurk)1, make it possible
to label thousands of images easily and with very low
overhead. We exploit both of these trends to create a
large dataset of real-world images with attribute and
identity labels, as shown in Fig. 3 and described next.

1. http://mturk.com

3.1 Collecting Face Images

We use a variety of online sources for collecting
face images, including search engines such as Yahoo
Images and photo-sharing websites such as flickr.com.
Depending on the type of data needed, one can
either search for particular people’s names (to build
a dataset labeled by identity) or for default image
filenames assigned by digital cameras (to use for
labeling with attributes). The latter technique allows
one to find images that are otherwise not returned
in most users’ queries, i.e., images which are effec-
tively “invisible.” Relevant metadata such as image
and page URLs are stored in the EXIF tags of the
downloaded images.

Next, we apply the OKAO face detector [39] to the
downloaded images to extract faces. This detector also
returns the pose angles of each face, as well as the
locations of six fiducial points: the corners of both
eyes and the corners of the mouth. These fiducial
points are used to align faces to a canonical pose, via
an affine transformation computed using linear least
squares on the detected points and corresponding
points defined on a template face. The 3.1 million
aligned faces collected using this procedure comprise
the Columbia Face Database.

We make two observations about this database.
First, from the statistics of the randomly-named im-
ages, it appears that a significant fraction of them
contain faces (25.7%), and on average, each image
contains 0.5 faces. Thus, it is clear that faces are
ubiquitous and an image case to understand. Second,
our collection of aligned faces is the largest such
collection of which we are aware. It is truly a “real-
world” dataset, with completely uncontrolled lighting
and environments, taken using unknown cameras and
in unknown imaging conditions, with a wide range of
image resolutions. In contrast, existing face datasets
such as Yale Face A&B [22], CMU PIE [51], and
FERET [44] are either much smaller in size and/or
taken in highly controlled settings. Even the more
expansive FRGC version 2.0 dataset [45] has a limited
number of subjects, image acquisition locations, and
all images were taken with the same camera type. The
most comparable dataset is LFW [27], itself derived
from earlier work [3]. These images were collected
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(a) PubFig Development set (60 individuals)

(b) PubFig Evaluation set (140 individuals)

(c) All 170 images of Steve Martin

Fig. 4. The PubFig dataset consists of 58, 797 images of 200 public figures – celebrities and politicians – partitioned into (a)
a development set of 60 individuals and (b) an evaluation set of 140 individuals. Below each thumbnail is shown the number
of photos of that person. There is no overlap in either identity or image between the development set and any dataset that
we evaluate on, including Labeled Faces in the Wild (LFW) [27]. The immense variability in appearance captured by PubFig
can be seen in (c), which shows all 170 images of Steve Martin.

from news sources, and exhibit many of the same
types of variation as the Columbia Face Dataset.

3.2 Collecting Attribute and Identity Labels

For labeling images in our Columbia Face Database,
we use the Amazon Mechanical Turk (MTurk) service.
This service matches workers to online jobs created
by requesters, who can optionally set quality controls
such as requiring confirmation of results by multiple
workers, filters on minimum worker experience, etc.

We submitted 110, 000 attribute labeling jobs show-
ing 30 images to 3 workers per job, presenting a

total of over 10 million images to users. The jobs
asked workers to select face images which exhibited
a specified attribute. (A few manually-labeled images
were shown as examples.) Only labels where all 3
people agreed were used. From this raw data, we were
able to collect over 145, 000 triply-verified positive
attribute labels, for about $6, 000.

Although this approach is somewhat similar to
other labeling efforts in the computer vision com-
munity – such as ImageNet [15] and LabelMe [48],
which focus on naming objects, images, and regions
of images using nouns – there are several important
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Fig. 5. Overview of attribute training architecture. Given a set of labeled positive and negative training images, low-level
feature vectors are extracted using a large pool of low-level feature options. Each feature option consists of a region chosen
from Fig. 6 and a feature type chosen from Table 1. An automatic, iterative selection process then picks the best set of
features for correctly classifying the input data. The outputs are the selected features and the trained attribute classifier.

differences. One is that attributes need not be binary
or even discrete; a person’s age or the thickness of
their eyebrows are both continuous attributes. (How-
ever, in this work we only consider discrete attributes,
to simplify labeling.) Another critical difference is
that visual attributes can be composed more freely
than names, which generally exist in a tree-structured
hierarchy. This allows for the use of a set of general
attributes, which can be combined in an exponential
number of ways to describe many objects at different
levels of specificity. Attributes can therefore compactly
provide a great deal of information, both about object
properties and their identity. Finally, for many objects,
it can be prohibitively expensive to obtain a large
number of labeled training images of a specific object
or category. In contrast, the same attribute can be ex-
hibited by many otherwise-unrelated objects, making
it easier to find more training images.
For gathering identity labels, we used the im-

ages downloaded from keyword searches on people’s
names as raw inputs, which were then filtered to
create the final set. We submitted MTurk jobs asking
users to select only the face images of a given person
(of whom a few examples were shown). We also
ran additional jobs pruning images for quality, good
alignment, and some conservative duplicate-removal.
From these attribute and identity labels and our face

database, we have created two publicly available face
datasets, described next.

3.3 FaceTracer Dataset

The FaceTracer dataset is a subset of the Columbia
Face Database, and it includes attribute labels. Each
of the 15, 000 faces in the dataset has a variety of
metadata and fiducial points marked. The attributes
labeled include demographic information such as age
and race, facial features like mustaches and hair color,
and other attributes such as expression, environment,
etc. There are 5, 000 labels in all. FaceTracer can be
used as simply a dataset of real-world images with
face detections and fiducials; or by researchers want-
ing to train their own attribute classifiers; or for any
other non-commercial purpose.

The dataset is publicly available as a set of face
URLs and accompanying data at http://faceserv.cs.
columbia.edu/databases/facetracer/

3.4 PubFig Dataset

The PubFig dataset is a more direct complement to
the LFW dataset [27]. It consists of 58, 797 images
of 200 public figures. The larger number of images
per person (as compared to LFW) allows one to
construct subsets of the data across different poses,
lighting conditions, and expressions for further study.
Figure 4c shows the variation present in all the images
of a single individual. In addition, this dataset is well-
suited for recognition experiments.

PubFig is divided into a development set of 60 peo-
ple (shown in Fig. 4a), on which we trained our simile
classifiers (described in Sec. 4.4), and an evaluation
set of 140 people (shown in Fig. 4b). The evaluation
set was used to create a face verification benchmark
similar to that from LFW.

All the data (with URLs to images) and evaluation
benchmarks from PubFig are publicly available for
non-commercial use at http://faceserv.cs.columbia.
edu/databases/pubfig/, which also includes informa-
tion on pose, expression and illumination for the eval-
uation set, and the outputs of our attribute classifiers
on all images in both the development and evaluation
sets.

4 LEARNING VISUAL ATTRIBUTES

Given a particular describable visual attribute – say
“gender” – how can one train a classifier for the at-
tribute? Let us first formalize our notion of attributes.
Attributes can be thought of as functions ai that map
images I to real values ai. Large positive values of ai

indicate the presence or strength of the ith attribute,
while negative values indicate its absence.

Consider the attribute “gender.” If images I1 and I2

are of males and image J is of a female, the gender
function ag should map the males to positive values
and J to a negative value, even if I1 and I2 differ in
other respects such as lighting, pose, age, expression,
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(a) (b)

Fig. 6. The face regions used for automatic feature selection
are shown here on an affine-aligned face image. There is (a)
one region for the whole face, and (b) nine regions corre-
sponding to functional parts of the face, such as the mouth,
eyes, nose, etc. Regions are large enough to contain the face
part across changes in pose, small errors in alignment, and
differences between individuals. The regions are manually
defined, once, in the affine-aligned coordinate system, and
can then be used automatically for all aligned input faces.

etc. The magnitudes of the outputs should measure
the degree of the attribute. For instance, if I1 were
an image of Clint Eastwood and I2 were an image of
Orlando Bloom, we might want ag(I1) > ag(I2).
Similes are another class of describable visual traits,

which describe the similarity of a face region between
two different individuals. For example, we could say
a person has “eyes like Penelope Cruz’s” or a “mouth
like Angelina Jolie’s.” We can formalize these two
simile functions as scruzeyes

and sjoliemouth
; someone

who shared Cruz’s eyes but not Jolie’s mouth would
thus have a positive value for the former and a
negative value for the latter.
Learning an attribute or simile classifier consists of

fitting a function to a set of labeled training data. If
the training labels are ±1, this can be seen as fitting a
classification function; real-valued labels imply regres-
sion; and if only ordering constraints are given, it be-
comes a problem of learning ranking functions. In all
cases, regularization is important because the inputs
(low-level image features) are very high-dimensional
with complex variation, and there is always limited
training data. This regularization could be biased by
the distribution of features actually observed, which
can be acquired from both labeled and unlabeled data.
In this work, we consider mainly binary classifiers;
regressors would likely behave very similarly, though
possibly with greater accuracy.

4.1 Training Architecture

An overview of the attribute training architecture is
shown in Fig. 5. The key idea is to leverage the many
efficient and effective low-level features that have
been developed by the computer vision community,
choosing amongst a large set of them to find the ones
suited for learning a particular attribute. This process

TABLE 1

Feature type options. A complete feature type is

constructed by first converting the pixels in a given

region (see Fig. 6) to one of the pixel value types from

the first column, then applying one of the

normalizations from the second column, and finally

aggregating these values into the output feature

vector using one of the options from the last column.

Pixel Value Types Normalizations Aggregation

RGB None None
HSV Mean Normalization Histogram

Image Intensity Energy Normalization Mean/Variance
Edge Magnitude
Edge Orientation

should ideally be done in a generic, application- and
domain-independent way, but with the ability to take
advantage of domain-specific knowledge where avail-
able.

For the domain of faces, this knowledge consists
of an affine alignment procedure and the use of low-
level features which have proven to be very useful
in a number of leading vision techniques, especially
for faces. The alignment takes advantage of the fact
that all faces have common structure – i.e., two eyes,
a nose, a mouth, etc.– and that we have fiducial point
detections available from a face detector [39]. The low-
level features are described next.

4.2 Low-Level Features

As described in Sec. 3.1, face images are first aligned
using an affine transformation. A set of k low-level
feature extractors fj are applied to an aligned input
image I to form a feature set F(I):

F(I) = {f1(I), · · · , fk(I)} . (1)

We describe each extractor fj in terms of four choices:
the region of the face to extract features from, the type
of pixel data to use, the kind of normalization to apply
to the data, and finally, the level of aggregation to use.

The complete set of our 10 regions are shown in
Fig. 6. The regions correspond to functional parts of a
face, such as the nose, mouth, etc., similar to those
defined in the work on modular eigenspaces [42].
Regions are defined manually in the affine-aligned
coordinate system. This only has to be done once,
after which all aligned faces can use the same region
definitions. Our coarse division of the face allows us
to take advantage of the common geometry shared
by faces, while allowing for differences between indi-
vidual faces as well as robustness to small errors in
alignment. Prior to feature extraction, we mask out the
background to avoid contaminating the classifiers. We
also use the detected yaw angles of the face to first
flip images so that they always face left. This small
tweak makes the classifier’s job slightly easier, as the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

“good” side of the face is always on the same half of
the image.

From each region, one can extract different types
of information, as categorized in Table 1. The types
of pixel data to extract include various color spaces
(RGB, HSV) as well as edge magnitudes and orien-
tations. To remove lighting effects and better gen-
eralize across a limited number of training images,
one can optionally normalize these extracted values.
One method for normalization is mean normalization,
x̂ = x

µ
, which removes illumination gains. Another

option is energy normalization, x̂ = x−µ
σ

, which
removes gains as well as offsets. (In these equations,
x refers to the input value, µ and σ are the mean
and standard deviation of all the x values within the
region, and x̂ refers to the normalized output value.)
Finally, one can aggregate normalized values over
the region rather than simply concatenating them.
This can be as simple as using only the mean and
variance, or include more information by computing
a histogram of values over the region. A complete
feature type is created by choosing a region from Fig. 6
and one entry from each column of Table 1. (Of course,
not all possible combinations are valid; e.g., it doesn’t
make sense to normalize hues.)

4.3 Attribute Classifiers

In creating a classifier for a particular attribute, we
could simply extract all types of low-level features
from the whole face, and let a classifier figure out
which are important for the task and which are not.
This, however, puts too great a burden on the clas-
sifier, confusing it with non-discriminative features.
Instead, we design a selection procedure which auto-
matically chooses the best features from a rich set of
feature options. The chosen features are used to train
the final attribute or simile classifier.

Attribute classifiers Ci are built using a supervised
learning approach. Training requires a set of labeled
positive and negative images for each attribute, ex-
amples of which are shown in Fig. 7. The goal is to
build a classifier that best classifies this training data
by choosing an appropriate subset of the feature set
F(I) described in the previous section. We do this
iteratively using forward feature selection. In each
iteration, we first train several individual classifiers
on the current set of features in the output set, con-
catenated with a single region-feature combination.
Each classifier’s performance is evaluated using cross-
validation. The features used in the classifier with
the highest cross-validation accuracy are added to
the output set. We continue adding features until the
accuracy stops improving, up to a maximum of 6 low-
level features. For computational reasons, we drop
the lowest-scoring 70% of features at each round, but
always keeping at least 10 features.

Fig. 7. Training data for the attribute classifiers consists of
face images that match the given attribute label (positive
examples) and those that don’t (negative examples). Shown
here are a few of the training images used for four different
attributes. Final classifier accuracies for all 73 attributes are
shown in Table 3.

Our classifiers are Support Vector Machines
(SVMs) [11] with RBF kernels, trained using lib-
svm [8]. For each classifier, we use between 500 to
2000 positive and negative examples each, and per-
form a grid search over the C and γ parameters.
The entire process is fully automatic, and takes a
few hours of computation time per attribute trained,
using a small grid of roughly 10 Intel Xeon processors,
running at 3.0 Ghz each. We note that our procedure
is by no means optimal; picking optimal features
for non-linear classifiers is still an open problem in
machine learning. Nevertheless, we obtain excellent
results in practice.

While we have designed our classifier architecture
to be flexible enough to handle a large variety of
attributes, it is important to ensure that we have
not sacrificed accuracy in the process. We therefore
compare our approach to three previous state-of-the-
art methods for attribute classification: full-face SVMs
using brightness normalized pixel values [35], Ad-
aboost using Haar-like features [50], and Adaboost
using pixel comparison features [1]. Since these works
have mostly focused on gender classification, we use
that attribute as the first testing criteria. In addition,
we also test performance on the “smiling” attribute –
which we expect to be localizable to a small region of
the face: the mouth.

Results are shown in Table 2. Our method performs
the best in all cases (in some cases significantly so).
This highlights the power of doing feature selection;
in particular, we see that the full-face SVM method,
while performing reasonably well on gender, did
much worse on a localized attribute like smiling. Note
that for the purposes of this test, we limited training
and evaluation images to mostly frontal faces.

Using the Columbia Face Database and the learning
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TABLE 2

Comparison of attribute classification performance for

“gender” and “smiling” attributes. Our fully-automatic

feature selection and training procedure learns better

classifiers than prior state-of-the-art methods for both

attributes. Note that for this comparison, classifiers

were trained and evaluated using only near-frontal

faces.

Classification Method
Gender

Error Rate
Smiling

Error Rate
Attribute Classifiers 8.62% 4.67%
Pixel comp. feats. [1] 13.13% 7.41%
Haar-like feats. [50] 12.88% 6.40%
Full-face SVM [35] 9.52% 13.54%

TABLE 3

Cross-validation accuracies of our 73 attribute

classifiers.

Attribute Acc. Attribute Acc.
Gender 85.8% Nose Size 86.5%
Asian 93.8% Nose Shape 87.0%
Caucasian 91.5% Nose-Mouth Lines 93.2%
African American 94.6% Mustache 92.5%
Indian 91.9% Mouth Closed 90.0%
Baby 93.0% Mouth Open 84.6%
Child 80.3% Mouth Wide Open 89.0%
Youth 87.7% Lip Thickness 82.4%
Middle-Aged 84.9% Wearing Lipstick 86.7%
Senior 92.0% Teeth Visible 91.2%
Black Hair 90.8% 5 o’clock Shadow 89.3%
Blond Hair 88.4% Beard 88.7%
Brown Hair 74.9% Goatee 80.4%
Gray Hair 89.9% Double Chin 81.0%
Bald 90.4% Jaw Shape 66.1%
Wearing Hat 89.1% Chubby Face 81.2%
Curly Hair 70.1% Oval Face 73.3%
Wavy Hair 66.6% Square Face 78.6%
Straight Hair 78.4% Round Face 75.5%
Receding Hairline 86.8% Heavy Makeup 89.0%
Bangs 91.5% Shiny Skin 84.2%
Visible Forehead 89.3% Pale Skin 89.4%
Obscured Forehead 77.0% Flushed Face 88.8%
Blocked Forehead 81.2% Smiling 95.9%
Eyebrow Thickness 94.6% Frowning 95.3%
Eyebrow Shape 79.7% Wearing Necktie 83.7%
Eye Shape 89.7% Wearing Necklace 67.3%
Eyes Open 92.3% Blurry Image 93.4%
Eye Color 86.8% Harsh Lighting 77.0%
No Eyewear 93.3% Flash Lighting 73.4%
Eyeglasses 92.4% Soft Lighting 68.5%
Sunglasses 96.5% Environment 85.3%
Bags Under Eyes 85.4% Color Photo 97.9%
Wearing Earrings 77.6% Posed Photo 71.9%
Sideburns 72.3% Attractive Man 74.2%
High Cheekbones 86.1% Attractive Woman 82.6%
Rosy Cheeks 86.2%

procedure just described, we have trained a total of 73
attribute classifiers. Their cross-validation accuracies
are shown in Table 3, and typically range from 80%
to 90%. Analysis of the chosen features indicate that
all regions and feature types are useful (to varying
extents), suggesting the importance of performing
feature selection.

Fig. 8. Each simile classifier is trained using several images
of a specific reference person, limited to a small face region
such as the eyes, nose, or mouth. We show here three
positive and three negative examples each, for four regions
on two of the reference people used to train these classifiers.

4.4 Simile Classifiers

Simile classifiers measure the similarity of part of a
person’s face to the same part on a set of reference
people. We use the 60 individuals from the develop-
ment set of PubFig as the reference people. The left
part of Fig. 8 shows examples of four regions selected
from two reference people as positive examples. On
the right are negative examples, which are simply the
same region extracted from other individuals’ images.

We emphasize two points. First, the individuals
chosen as reference people do not appear in LFW or
other benchmarks on which we produce results. Sec-
ond, we train simile classifiers to recognize similarity
to part of a reference person’s face in many images,
not similarity to a single image. The use of face parts
increases the number of classifiers, but makes each
one easier to learn, while the use of several input
images allows for much better generalizability.

For each reference person, we train support vector
machines to distinguish a region (e.g., eyebrows, eyes,
nose, mouth) on their face from the same region
on other faces. We manually choose eight regions
and six feature types from the set of possible fea-
tures described in Sec. 4.2 and train classifiers for
each reference person/region/feature type combina-
tion, without feature selection, yielding 2, 880 total
simile classifiers. Each simile classifier is an RBF
SVM, trained using at most 600 positive samples of
a reference person and at most 10 times as many
negative samples, randomly chosen from images of
other people in the training set.

5 FACE VERIFICATION

Existing methods for face verification – “are these two
faces of the same person” – often make mistakes that
would seem to be avoidable: men being confused for
women, young people for old, asians for caucasians,
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Fig. 9. The face verification pipeline. A pair of input images are run through a face and fiducial detector [39], and the fiducials
are then used to align both faces to a canonical coordinate system. The aligned face images are fed to each of our attribute
and simile classifiers individually to obtain a set of attribute values. Finally, these values are compared using a verification
classifier to make the output determination, which is returned along with the distance to the decision boundary. The entire
process is fully automatic.

etc. On the other hand, small changes in pose, ex-
pression, or lighting can cause two otherwise similar
images of the same person to be misclassified by an
algorithm as different. Based on this observation, we
hypothesized that the attribute and simile classifiers
could avoid such mistakes.

5.1 Training a Verification Classifier

Fig. 9 illustrates how attribute-based face verification
is performed on a new pair of input images. In order
to decide whether two face images I1 and I2 show
the same person, one can train a verification classifier
V that compares attribute vectors C(I1) and C(I2)
and returns v(I1, I2), the verification decision. These
vectors are constructed by concatenating the result of
n different attribute and/or simile classifiers.
To build V , let us make some observations about

the particular form of our classifiers:

1) Values Ci(I1) and Ci(I2) from the ith classifier
should be similar if the images are of the same
individual, and different otherwise.

2) Classifier values are raw outputs of binary clas-
sifiers, where the objective function is trying to
separate examples around 0. Thus, the signs of
values should be important.

Let ai = Ci(I1) and bi = Ci(I2) be the outputs of the
ith trait classifier for each face (1 ≤ i ≤ n). One would
like to combine these values in such a way that our
second-stage verification classifier V can make sense
of the data. This means creating values that are large
(and positive) when the two inputs are of the same
individual, and negative otherwise. For observation
(1), we see that using the absolute difference |ai − bi|
will yield the desired outputs; for observation (2), the
product aibi. Putting both terms together yields the

tuple pi:
pi = 〈|ai − bi|, aibi〉 (2)

The concatenation of these tuples for all n at-
tribute/simile classifier outputs forms the input to the
verification classifier V :

v(I1, I2) = V (〈p1, . . . , pn〉) (3)

Training V requires pairs of positive examples (two
images of the same person) and negative examples
(images of two different people). For the classification
function, we use an SVM with an RBF kernel for V ,
trained using libsvm [8] with the default parameters
of C = 1 and γ = 1/ndims, where ndims is the
dimensionality of 〈p1, . . . , pn〉.

5.2 Experimental Setup

We perform face verification experiments on the La-
beled Faces in the Wild (LFW) benchmark [27] and
also on our PubFig benchmark. For each computa-
tional experiment, a set of pairs of face images is
presented for training, and a second set of pairs is
presented for testing. In all experiments, not only are
the images in the training and test sets disjoint, but
there is also no overlap in the individuals used in the
two sets. In addition, the individuals and images used
to train the attribute and simile classifiers are disjoint
from the testing sets.

5.3 Attribute Classifier Results on LFW

The LFW dataset consists of 13, 233 images of
5, 749 people, gathered from news photos, and orga-
nized into 2 “views”:

1) A development set of 2, 200 pairs for training
and 1, 000 pairs for testing, on which to build
models and choose features; and
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2) A 10-fold cross-validation set of 6, 000 pairs, on
which to evaluate final performance.

We used View 1 for high-level model selection (e.g.,
representation for the final classifier V ) and evaluated
our performance on each of the folds in View 2 using
the “image restricted configuration,” as described in
the LFW paper [27].
A verification classifier V is trained using nine

folds from View 2 of LFW and then evaluated on the
remaining fold, cycling through all ten folds. Receiver
Operating Characteristic (ROC) curves are obtained
by saving the classifier outputs for each test pair in
all ten folds and then sliding a threshold over all out-
put values to obtain different false positive/detection
rates. An overall accuracy is obtained by using only
the signs of the outputs (e.g., thresholding at 0) and
counting the number of errors in classification. The
standard deviation for the accuracy is obtained by
looking at the accuracies for each fold individually.
Fig. 10 shows results on LFW for our attribute

classifiers (red line), simile classifiers (blue line), and
a hybrid of the two (green line), along with several
previous methods (dotted lines) [26], [47], [55], [56],
[59], [60]. The accuracies for each of our methods are
85.25%± 1.58%, 84.14%± 1.31%, and 85.54%± 1.23%,
respectively.2 Our highest accuracy of 85.54% is com-
parable to the 86.83% accuracy of the current state-
of-the-art method [60] on LFW. The small bump in
performance from combining the attribute and simile
classifiers suggests that while they contain much of
the same kind of information, there are still some
interesting differences. This can be better seen in
Fig. 10, where similes do better in the low-false-
positive regime, but attributes do better in the high-
detection-rate regime.

5.4 Human Attribute Labels on LFW

Although our methods already achieve close to the
current best performance on LFW, it is interesting to
consider how well attribute classifiers could poten-
tially do. There are several reasons to believe that our
results are only first steps towards this ultimate goal:

• We have currently trained 73 attribute classifiers.
Adding more attributes, especially fine-scale ones
such as the presence and location of highly dis-
criminative facial features including moles, scars,
and tattoos, should greatly improve performance.

• Of the 73 attributes, many are not discriminative
for verification. For example, facial expression,
scene illumination, and image quality are all un-
likely to aid in verification. There is also a severe
imbalance in LFW of many basic attributes such
as gender and age, which reduces the expected
benefit of using these attributes for verification.

2. Our face detector was unable to detect one or more faces
in 53 of the 6, 000 total pairs. For these, we assumed average
performance.
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Fig. 10. Face verification performance on LFW of our at-
tribute classifiers, simile classifiers, and a hybrid of the two
are shown in solid red, blue, and green, respectively. Dashed
lines are existing methods. Our highest accuracy is 85.54%,
which is comparable to the current state-of-the-art accuracy
of 86.83% [60]. Notice that similes perform better at low false
positive rates, attributes better at high detection rates, and
hybrid better throughout.
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Fig. 11. Comparison of face verification performance on LFW
using human attribute labels (blue line) vs. automatically-
computated classifier outputs (red line). Verification using
human labels consistently outperforms that using classifier
outputs. With 18 attributes, human attribute labels reach
91.86% accuracy, compared to only 81.57% using classifier
outputs. Training better attribute classifiers (or regressors)
could thus greatly improve verification performance.
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• The attribute functions were trained as binary
classifiers rather than as continuous regressors.
While we use the distance to the separation-
boundary as a measure of degree of the attribute,
using regression may improve results.

With the hope of exploring what might be possible
given better attribute classifiers, we performed an
experiment in which our automatic attribute labeling
process was replaced by human labels, keeping the
verification process identical. MTurk workers were
asked to label attributes for all faces in the LFW View
2 benchmark set. We averaged seven user-responses
per image to obtain smoothed estimates of the at-
tribute values.
Fig. 11 shows a comparison of face verification per-

formance on LFW using either these human attribute
labels (blue line) or our automatically-computed clas-
sifier outputs (red line), for increasing numbers of
attributes. In both cases, the labels are fed to the
verification classifier V and training proceeds identi-
cally, as described earlier. The set of attributes used
for each corresponding point on the graphs were
chosen manually (and identical for both). Verification
results using the human attribute labels reach 91.86%
accuracy with 18 attributes, significantly outperform-
ing our computed labels at 81.57% for the same 18
attributes. Moreover, the drop in error rates from
computational to human labels is actually increasing
with more attributes, suggesting that adding more
attributes could further improve accuracies.

5.5 Human Verification on LFW

The high accuracies obtained in the previous section
lead to a natural question: How well do people
perform on the verification task itself? While many
algorithms for automatic face verification have been
designed and evaluated on LFW, there are no pub-
lished results about how well people perform on
this benchmark. To this end, we conducted several
experiments on human verification.
We followed the procedure of O’Toole et al. [40]

to obtain this data, using Amazon Mechanical Turk.
MTurk users were shown pairs of faces from the LFW
View 2 benchmark set and asked to mark whether
the images showed the same person or not. This
was done on a scale of −1 to +1, where the sign of
the score was their decision, and the magnitude was
their confidence in their response. The responses of
10 different users were averaged per face pair to get
a score for that pair. (Thus, for the 6, 000 image pairs
in LFW, we gathered 60, 000 data points from users
for each of the three tests described below, for a total
of 240, 000 user inputs.) An ROC curve was created
by sliding the confidence threshold from −1 to +1,
counting scores less than the threshold as “different”
and those above as “same.”
Results are shown in Fig. 12. Using the original

LFW images (red curve), people have 99.20% accuracy

Fig. 12. Face verification performance on LFW by humans is
almost perfect (99.20%) when people are shown the original
images (red line). Showing a tighter cropped version of the
images (blue line) drops their accuracy to 97.53%, due to the
lack of available context. The green line shows that even with
an inverse crop, i.e., when only the context is shown, humans
still perform quite well, at 94.27%. This highlights the strong
context cues available on the LFW dataset.
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Fig. 13. Face verification results on the PubFig evaluation
benchmark using our attribute classifiers. Our accuracy is
78.65% on this benchmark, which consists of 20, 000 face
pairs partitioned into 10 folds for cross-validation. Our lower
performance on this experiment as compared to LFW sug-
gests that it is a more challenging dataset.
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(a) Results for “dark-haired people with sunglasses” (b) Personalized results for “children outside”

Fig. 14. Results of queries (a) “dark-haired people with sunglasses” and (b) “children outside,” using our attribute-based face
search engine. In (a), search results are shown in the left panel as cropped faces, while the right panel shows a preview of
the original image for the selected face. Clicking the image takes the user to the image’s original webpage. (b) shows search
results on a personalized dataset constructed from a single user’s photos, displayed as thumbnails of the original images. In
both cases, only relevant results are found. Also, note that the results in (b) were correctly classified as being “outside” using
only the cropped face images, showing that faces often contain enough information to describe properties of the image not
directly related to faces.

– essentially perfect. We then made the task tougher
by cropping the images, leaving only the face visible
(including at least the eyes, nose and mouth, and
possibly parts of the hair, ears, and neck). This ex-
periment measures how much people are helped by
the context (sports shot, interview, press conference,
etc.), background (some images of individuals were
taken with the same background), and hair (although
sometimes it is partially visible). The results (blue
curve) show that performance drops to 97.53% – a
tripling of the error rate.
To confirm that the region outside of the face is

indeed helping people with identification, we ran a
third experiment where the mask was inverted, i.e.,
we blacked out the face but showed the remaining
part of the image. Surprisingly, people still achieve
94.27% accuracy, as shown by the green line in Fig. 12.
These results reinforce the results of Sinha et al. [52],
that context and hair are powerful cues for face
recognition. It also perhaps points to a bias in LFW –
many news photos tend to be taken at the same event,
making the face recognition task easier.

5.6 Attribute Classifier Results on PubFig

The PubFig benchmark, being much deeper (more
images per person) and gathered from more varied
sources, should ameliorate this issue. We test this
hypothesis using an evaluation benchmark similar
to LFW’s. Face verification is performed on 20, 000
pairs of images of 140 people, divided into 10 cross-
validation folds with mutually disjoint sets of 14 peo-
ple each. These people are separate from the 60 people
in the development set of PubFig, which were used

for training the simile classifiers. The performance of
our attribute classifiers on this benchmark is shown
in Fig. 13, and it is indeed much lower than on LFW,
with an accuracy of 78.65%.

6 FACE SEARCH

Image search engines are currently dependent on
textual metadata. This data can be in the form of
filenames, manual annotations, or surrounding text.
However, for the vast majority of images on the
internet (and in peoples’ private collections), this data
is often ambiguous, incorrect, or simply not present.
This presents a great opportunity to use attribute
classifiers on images with faces, thereby making them
searchable. To facilitate fast searches on a large collec-
tion of images, all images are labeled in an offline
process using attribute classifiers. The resulting at-
tribute labels are stored for fast online searches using
the FaceTracer engine [29].

The FaceTracer engine uses simple text-based
queries as inputs, since these are both familiar and
accessible to most internet users, and correspond well
to describable visual attributes. Search queries are
mapped onto attribute labels using a dictionary of
terms. Users can see the list of attributes supported
by the system on the search page, allowing them
to construct searches without having to guess what
kinds of queries are allowed. This approach is simple,
flexible, and yields excellent results in practice. Fur-
thermore, it is easy to add new phrases and attributes
to the dictionary, or maintain separate dictionaries for
searches in different languages.

Search results are ranked by confidence, so that
the most relevant images are shown first. We use the
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computed distance to the classifier decision boundary
as a measure of the confidence. For searches with
multiple query terms, we combine the confidences of
different attribute labels such that the final ranking
shows images in decreasing order of relevance to all
search terms. To prevent high confidences for one
attribute from dominating the search results, we first
convert the confidences into probabilities by fitting
a held-out set of positive and negative examples to
gaussian distributions, and then use the product of
the probabilities as the sort criteria. This ensures that
the images with high confidences for all attributes are
shown first.
Example queries on our search engine are shown in

Figs. 14a and 14b. The returned results are all highly
relevant. Fig. 14b additionally demonstrates two other
interesting things. First, it was run on a personalized
dataset of images from a single user, showing that
this method can be applied to specialized image col-
lections as well as general ones. Second, it shows that
we can learn useful things about an image using just
the appearance of the faces within it – in this case
determining whether the image was taken indoors or
outdoors.
This attribute-based search engine can be used in

many other applications, replacing or augmenting
existing tools. In law enforcement, eyewitnesses to
crimes could use this system to quickly narrow a list
of possible suspects and then identify the actual crim-
inal from the reduced list, saving time and increasing
the chances of finding the right person. On the inter-
net, our face search engine is a perfect match for social
networking websites such as Facebook, which contain
large numbers of images with people. Additionally,
the community aspect of these websites would allow
for collaborative creation of new attributes. Finally,
people could use our system to more easily organize
and manage their own personal photo collections. For
example, searches for blurry or other poor-quality
images can be used to find and remove all such
images from the collection.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have shown how to automatically
train classifiers for describable aspects of visual ap-
pearance – attributes and similes. These classifiers
are learned using large collections of labeled images
obtained from the internet. We demonstrated the use
of these describable attributes for performing face ver-
ification and image search. We showed performance
comparable to or better than the state-of-the-art in
all aspects of the work: attribute classification, face
verification, and search (qualitatively). We have also
made available two large and complementary datasets
for use by the community to make further progress
along these lines.
These seem to be promising first steps in a new

direction, and there are many avenues to explore. The

experiments with human attribute labeling in Sec. 5.4
suggest that adding more attributes and improving
the attribute training process could yield great bene-
fits for face verification. Another direction to explore
is how best to combine attribute and simile classifiers
with low-level image cues. Finally, an open question is
how attributes can be applied to domains other than
faces. It seems that for reliable and accurate attribute
training, analogues to the detection and alignment
process must be found.

7.1 Dynamic Selection of Attributes to Label

The set of attributes used in this work were chosen
in an ad-hoc way; how to select them dynamically in
a more principled manner is an interesting topic to
consider. In particular, a system with a user-in-the-
loop could be used to suggest new attributes. Thanks
to Amazon Mechanical Turk, such a system would be
easy to setup and could operate autonomously.

The idea is to evaluate a current set of attribute
classifiers on a verification dataset and look at the
mistakes made by the algorithm. Presumably, these
mistakes would occur on face pairs which could not
be sufficiently distinguished using the current set of
attributes. Borrowing terminology from color theory,
we term these face pairs “metamers.” The metamers
could be shown to users on MTurk, asking them
to suggest new attributes which could disambiguate
such pairs. By doing this over a large enough number
of images and users, one could grow an existing set
of attributes in a maximally-efficient way. Measures
based on mutual information and information gain
could be used in association with this metamer dis-
ambiguation strategy to ensure that the best attributes
were picked.
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