Describing free groups

J. Carson, V. Harizanov, J. Knight, K. Lange, C. Maher, C. McCoy, A. Morozov, S. Quinn, J. Wallbaum*

Abstract

We consider countable free groups of different ranks. For these groups, we investigate computability theoretic complexity of index sets within the class of free groups and within the class of all groups. For a computable free group of infinite rank, we consider the difficulty of finding a basis.

1 Introduction

Free groups play an important role in several branches of mathematics, including algebra, logic, and topology. Within logic, around 1945, Tarski asked whether free groups on different finite numbers of generators (greater than 1), are elementarily equivalent. Sela, in a series of papers [11], gave a positive answer to this question (see also Kharlampovich and Myasnikov [4]).

In light of this result, we try to describe the different free groups, as simply as possible, using infinitary sentences. Formulas of $L_{\omega_{1} \omega}$ are infinitary formulas with countable disjunctions and conjunctions, but only finite strings of quantifiers. If we restrict the disjunctions and conjunctions to c.e. sets, then we have the computable infinitary formulas [1].

Scott [10] showed that if \mathcal{A} is a countable structure for a countable language L, then there is a sentence of $L_{\omega_{1} \omega}$ whose countable models are exactly the isomorphic copies of \mathcal{A}. A sentence with this property is called a "Scott sentence" for \mathcal{A}. To describe specific countable free groups, we use computable infinitary sentences, and we aim for the simplest possible form.

For infinitary formulas, in particular, for computable infinitary formulas, we cannot bring the quantifiers "outside", but we can bring negations "inside". We have a kind of normal form, and we can classify formulas according to the number of alternations of infinite disjunction and \exists with infinite conjunction and \forall.

[^0]- $\varphi(\bar{x})$ is computable Π_{0} and computable Σ_{0} if it is finitary quantifier-free.
- For a computable ordinal $\alpha>0$,
$-\varphi(\bar{x})$ is computable Σ_{α} if it is a c.e. disjunction of formulas $\exists \bar{u} \psi(\bar{x}, \bar{u})$, where ψ is computable Π_{β} for some $\beta<\alpha$,
$-\varphi(\bar{x})$ is computable Π_{α} if it is a c.e. conjunction of formulas $\forall \bar{u} \psi(\bar{x}, \bar{u})$, where ψ is computable Σ_{β} for some $\beta<\alpha$.

For a formula φ, in normal form, we write $\operatorname{neg}(\varphi)$ for the dual formula, in normal form, that is logically equivalent to the negation of φ. For a discussion of computable infinitary formulas, see [1].

We fix a group language, including a binary operation symbol for the group operation, a unary operation symbol for inverse, and a constant for the identity. In this language, the axioms for groups are universal. A group G is free if there is a set B of elements such that B generates G and there are no non-trivial relations on elements of B. We call B a basis for G. If B and U are two bases for a free group G, then B and U have the same cardinality. For a free group G, the cardinality of a basis is called the rank. We write F_{n} for the free group of rank n, and F_{∞} for the free group of rank \aleph_{0}. The groups F_{n} and F_{∞} all have computable copies. If two computable structures satisfy the same computable infinitary sentences, then they are isomorphic. Thus, it is natural to look for descriptions using computable infinitary sentences.

To show that our descriptions are "optimal," we consider index sets.
Definition 1 (Computable index). A computable index for a structure \mathcal{A} is a number e such that φ_{e} is the characteristic function of the atomic diagram of \mathcal{A}.

Definition 2 (Index set).

1. For a structure \mathcal{A}, the index set, denoted by $I(\mathcal{A})$, is the set of computable indices for structures isomorphic to \mathcal{A}.
2. For a class K of structures, the index set, denoted by $I(K)$, is the set of computable indices for elements of K.

In [2], there are results on index sets for some familiar kinds of structures, including the computable Abelian p-groups of computable lengths. These results support the thesis that for a computable structure, the complexity of the index set matches the complexity of an optimal description. If, for instance, we can describe \mathcal{A}, up to isomorphism, by a computable Π_{3} sentence, then $I(\mathcal{A})$ is Π_{3}^{0}. If $I(\mathcal{A})$ is m-complete Π_{3}^{0}, then there can be no simpler description of \mathcal{A}.

Sometimes we are interested only in members of a class K, and we want to describe a particular \mathcal{A} in K so as to distinguish it from other members of K, not from arbitrary structures. We define complexity of one class "within" a larger class. This definition allows us properly to analyze situations where, for instance, determining whether an index is in B is harder than Γ, but once we know that the index is in B, the problem of determining whether it is also in A not harder than Γ.

Definition 3 (Complexity within a larger set). Let Γ be a complexity class (such as Π_{3}^{0}, or $d-\Sigma_{2}^{0}$) and let $A \subseteq B$.

1. We say that A is Γ within B if there is some $C \in \Gamma$ such that $A=C \cap B$.
2. We say that A is Γ-hard within B if for any set S in Γ, there is a computable function $f: \omega \rightarrow B$ such that $f(n) \in A$ iff $n \in S$.
3. We say that A is m-complete Γ within B if A is Γ within B and A is Γ-hard within B.

For a structure \mathcal{A} in a class K, where K is closed under isomorphism, we consider the complexity of $I(\mathcal{A})$ within $I(K)$. If $I(\mathcal{A})$ is Γ, or Γ-hard, within $I(K)$, we may simply say that it is Γ, or Γ-hard within K.

1.1 Summary of results

When we look at index sets for specific free groups within the class of free groups, we find that $I\left(F_{1}\right)$ is m-complete $\Pi_{1}^{0} ; I\left(F_{2}\right)$ is m-complete Π_{2}^{0}; for $n>2, I\left(F_{n}\right)$ is m-complete d - Σ_{2}^{0}; and $I\left(F_{\infty}\right)$ is m-complete Π_{3}^{0}. When we look at index sets for specific free groups within the class of all groups, we find that for all $n \geq 1$, $I\left(F_{n}\right)$ is m-complete d - Σ_{2}^{0}. For F_{∞}, we show that $I\left(F_{\infty}\right)$ is Π_{4}^{0}. In part II [7], the authors show that $I\left(F_{\infty}\right)$ is Π_{4}^{0}-hard, so it is complete at this level. These results are in Section 2. In Section 3, we consider the index sets of three classes of groups: finitely generated groups, locally free groups, and free groups. We show that for the class of finitely generated groups, the index set is m-complete Σ_{3}^{0}, and for the class of locally free groups, the index set is m-complete Π_{2}^{0}. For the class of free groups, we observe that the index set is Π_{4}^{0}. As with F_{∞}, the proof that this index set is Π_{4}^{0}-hard is contained in part II [7].

Here is a table summarizing these results:

Group G or class K	$I(G)$ or $I(K)$ within $F r G r$	$I(G)$ or $I(K)$ within $G r$
F_{1}	m-complete Π_{1}^{0}	m-complete d - Σ_{2}^{0}
$F_{n}, n>1$	m-complete d - Σ_{2}^{0}	m-complete d - Σ_{2}^{0}
F_{∞}	m-complete Π_{3}^{0}	m-complete Π_{4}^{0}
Finitely generated	m-complete Σ_{3}^{0}	m-complete Σ_{3}^{0}
Locally free	Δ_{1}^{0}	m-complete Π_{2}^{0}
Free	Δ_{1}^{0}	m-complete Π_{4}^{0}

When we specify a free group, we often specify a set of letters such that the group elements are the reduced words on these letters and their inverses. An automorphism of the group may take the original set of letters to another basis. Recall that a basis for a free group G is a generating set B with the feature that the identity cannot be expressed as a non-trivial word on elements of B. In trying to describe the different free groups, especially F_{∞}, we need to describe tuples that can be included in a basis. Finding formulas which describe basis elements is an old question of Mal'tsev [6], who produced a finitary formula with
parameters that distinguished bases of F_{2} from all other pairs. We may also ask how difficult it is to find a basis in a given computable free group. In Section 4 , we show that for any computable copy of F_{∞}, there is a Π_{2}^{0} basis. In part II [7], the authors show that this result is optimal by constructing a computable copy of F_{∞} with no Σ_{2}^{0} basis. In the remainder of the introduction, we state some facts about free groups and their bases (see Lyndon and Schupp [5]).

1.2 Facts about free groups and their bases

Let U be a tuple of elements in a group G with identity e. If U is a finite tuple, say $\left(a_{1}, \ldots, a_{n}\right)$, then to denote the group generated by U we write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Otherwise, if U consists of infinitely many elements, we write $G p(U)$ for the group generated by U.

Definition 4. Let $U=\left(a_{1}, \ldots, a_{n}\right)$ be a tuple of elements in a group G with identity element e. The following operations on this tuple are called elementary Nielsen transformations:

1. for some i, replace a_{i} by a_{i}^{-1},
2. for some i and j, replace a_{i} by $a_{i} a_{j}$,
3. for some i such that $u_{i}=e$, delete u_{i}.

A Nielsen transformation is the result of a finite sequence of elementary Nielsen transformations.

Nielsen transformations, and the following important facts about them (taken from [5]), will be used throughout this paper.

Fact 1 (2.1 of [5]). If U is carried into V by a Nielsen transformation, then $G p(U)=G p(V)$.

Definition 5. Fixing a basis X for a free group G, let U be a set of elements, expressed as reduced words on X. Let $|u|$ be the length of u. We say that U is N-reduced with respect to X if for all $v_{1}, v_{2}, v_{3} \in U$,

N0 $v_{1} \neq e$,
N1 $v_{1} v_{2} \neq e$ implies $\left|v_{1} v_{2}\right| \geq\left|v_{1}\right|$ and $\left|v_{1} v_{2}\right| \geq\left|v_{2}\right|$,
N2 $v_{1} v_{2} \neq e$ and $v_{2} v_{3} \neq e$ implies $\left|v_{1} v_{2} v_{3}\right| \geq\left|v_{1}\right|-\left|v_{2}\right|+\left|v_{3}\right|$.
Fact 2 (Proposition 2.2 of [5]). Fix a basis X of a free group G. If $U=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is finite, then U can be carried by a Nielsen transformation into some V that is N-reduced with respect to X.

Fact 3 (Proposition 2.5 of [5]). Fix a basis X of a free group G. If U is N-reduced with respect to X, then U is a basis of $G p(U)$.

Definition 6. If U is a tuple of elements of a free group, then let $U^{ \pm 1}$ consist of u and u^{-1} for all $u \in U$.

Fact 4 (Proposition 2.8 of [5]). Let G be free with basis X and let U be N reduced with respect to X. Then $X^{ \pm 1} \cap G p(U)=X^{ \pm 1} \cap U^{ \pm 1}$.

Fact 5 (Proposition 2.7 of [5]). Let G be a free group of finite rank n. Then G cannot be generated by fewer than n elements, and if a set U of n elements generates G, then it is a basis for G (i.e., there are no non-trivial relations on the elements of U).

Fact 6 (Proposition 2.26 of [5]). There is an algorithm, uniform in n and $k \leq n$, to decide whether a k-tuple of words $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ on a basis $\left(b_{1}, \ldots, b_{n}\right)$ of the free group F_{n} is part of a basis of F_{n}.

Fact 7 (Proposition 2.6 of [5]). Every finitely generated subgroup of a free group is free of finite rank.

Fact 8 (Proposition 2.11 of [5]). Every subgroup of a free group is free.
Definition 7. For each $n \in \omega$, let $\left(b_{1}, \ldots, b_{n}\right)$ denote a basis of the free group F_{n}.

1. A k-tuple of words $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ on the basis $\left(b_{1}, \ldots, b_{n}\right)$ is called primitive if it forms part of a basis of F_{n}. (By Fact 5, it must be that $k \leq n$ if a k-tuple is primitive.) Otherwise, the tuple is called non-primitive.
2. For each n, let V_{n} be the set of all primitive tuples of words on the generators $\left(b_{1}, \ldots, b_{n}\right)$ of F_{n}. (By Fact 6 , the sets V_{n} are uniformly computable.)

It is important to note that if \bar{b} and \bar{c} are any two bases of a free group F_{n}, then a tuple of words $\left(w_{1}(\bar{b}), \ldots, w_{k}(\bar{b})\right)$ extends to a basis iff the tuple $\left(w_{1}(\bar{c}), \ldots, w_{k}(\bar{c})\right)$ extends to a basis. Therefore, the set of primitive words should be thought of as a set of formal words on "dummy variables" rather than a set of words tied to any particular set of basis elements.

The following lemma is an easy consequence of the facts above.
Lemma 1.1. If G is a countable free group, then for a tuple $\bar{x}=x_{0}, \ldots, x_{n}$ in G, the following are equivalent:

1. \bar{x} is part of a basis,
2. for every finitely generated subgroup $H \subseteq G$ with \bar{x} in H, \bar{x} is part of a basis for H.

Proof. To show $1 \Rightarrow 2$, assume that \bar{x} is part of a basis X for G. Let H be a finitely generated subgroup with \bar{x} in H. By Fact $7, H$ is free and finitely generated, with basis $\left(y_{1}, \ldots, y_{k}\right)$. Now, by Fact $2,\left(y_{1}, \ldots, y_{k}\right)$ can be transformed, using Nielsen transformations, into N-reduced (with respect to X) set $\left(z_{1}, \ldots, z_{\ell}\right)$. By Fact $1,\left(z_{1}, \ldots, z_{\ell}\right)$ generates the same group as $\left(y_{1}, \ldots, y_{k}\right)$,
and by Fact $3,\left(z_{1}, \ldots, z_{\ell}\right)$ is a basis of $\left\langle z_{1}, \ldots, z_{\ell}\right\rangle=\left\langle y_{1}, \ldots, y_{k}\right\rangle=H$. (So, in fact, $\ell=k$.) Then \bar{x} is in $\left\langle z_{1}, \ldots, z_{\ell}\right\rangle$. By Fact $4, \bar{x}$ is in $\left\{z_{1}, \ldots, z_{\ell}\right\}^{ \pm 1}$. Then \bar{x} is part of a basis for H.

To show $2 \Rightarrow 1$, let G have an infinite basis $B=\left\{b_{0}, b_{1}, \ldots\right\}$, and write \bar{x} as a tuple of words over B. Assume, without loss of generality, that the first k elements are the only letters that appear in \bar{x}. Let $H=\left\langle b_{0}, \ldots, b_{k}\right\rangle$. Then there exists a tuple \bar{y} in H so that $\bar{x} \cup \bar{y}$ is a basis for H. Then $\bar{x} \cup \bar{y} \cup\left\{b_{k+1}, \ldots\right\}$ is a basis for G.

There is a computable sequence $\left(\gamma_{k}(\bar{x})\right)_{k \in \omega}$ of computable infinitary Π_{2} formulas, where k is the length of the tuple \bar{x}. These formulas express, within free groups, Property 2 from Lemma 1.1. To express this property for a k-tuple \bar{x}, we need to say that there are no non-trivial relations on \bar{x}, and if \bar{x} is in any finite subgroup generated by a tuple \bar{y}, then \bar{x} must be generated as a set of primitive words on \bar{y}.

First, there is a computable sequence $\left(\varrho_{k}(\bar{x})\right)_{k \in \omega}$ of computable Π_{1} formulas stating that there are no non-trivial relations on the k-tuple \bar{x}. Let R be the set consisting of non-empty reduced words on no more than n letters.

$$
\varrho_{k}(\bar{x})=\bigwedge_{w \in R}(w(\bar{x}) \neq e)
$$

Next, recall the uniformly computable sets of primitive tuples V_{n} from Definition 7 . Then the following formula, which we will call $\gamma_{k}(\bar{x})$, expresses the desired property from Lemma 1.1.

$$
\varrho_{k}(\bar{x}) \wedge \bigwedge_{n \in \omega} \forall y_{1}, \ldots, y_{n}\left[\varrho_{n}(\bar{y}) \rightarrow \bigwedge_{\left(w_{1}, \ldots, w_{k}\right) \notin V_{n}} \neg\left(x_{1}=w_{1}(\bar{y}) \wedge \ldots \wedge x_{k}=w_{k}(\bar{y})\right)\right]
$$

Note that the formulas γ_{k} make sense in all groups, not just free ones. Note also that the only clause making this formula Π_{2}, rather than simply Π_{1}, is the antecedent of the implication, namely, $\varrho_{n}(\bar{y})$. We will refer to this sequence of formulas $\left(\gamma_{k}\left(x_{1}, \ldots, x_{k}\right)\right)_{k \in \omega}$ throughout the rest of the paper.

2 Index sets for free groups

2.1 Working within the class of free groups

Let $F r G r$ be the class of free groups. Working within this class, we have the following results.

Proposition 2.1. The set $I\left(F_{1}\right)$ is m-complete Π_{1}^{0} within $F r G r$.
Proof. We can describe F_{1} within $F r G r$ by saying that it is Abelian. This implies that $I\left(F_{1}\right)$ is Π_{1}^{0} within $F r G r$. For hardness, let S be a Π_{1}^{0} set. We show that there is a uniformly computable sequence of free groups $\left(\mathcal{C}_{n}\right)_{n \in \omega}$ such that $\mathcal{C}_{n} \cong F_{1}$ iff $n \in S$. For each n, we enumerate the diagram of \mathcal{C}_{n} in stages. We copy F_{1} so long as we believe that $n \in S$. If we discover that $n \notin S$, then we add a second generator.

For each $n \geq 1$, there is a natural computable Π_{2} sentence φ_{n} saying that for any $(n+1)$-tuple of elements, there is an n-tuple that generates it. We let φ_{n} say that for any x_{1}, \ldots, x_{n+1}, there exist y_{1}, \ldots, y_{n} such that for some $(n+1)$-tuple of words \bar{w}, we have $x_{i}=w_{i}(\bar{y})$. The group F_{n} satisfies φ_{m} iff $m \geq n$. The group F_{∞} does not satisfy any φ_{m}. Throughout the rest of this paper, we will refer to these sentences φ_{n} for $n \in \omega$.
Proposition 2.2. The set $I\left(F_{2}\right)$ is m-complete Π_{2}^{0} within $F r G r$.
Proof. We can describe F_{2} within $F r G r$ by the conjunction of φ_{2} and a finitary Σ_{1} sentence saying that the group is not Abelian. The only free groups that satisfy φ_{2} are F_{1} and F_{2}, and F_{1} is Abelian. It follows that $I\left(F_{2}\right)$ is Π_{2}^{0}. For hardness, let P be a Π_{2}^{0} set. We show that there is a uniformly computable sequence of free groups $\left(\mathcal{C}_{n}\right)_{n \in \omega}$ such that $\mathcal{C}_{n} \cong F_{2}$ iff $n \in P$. When we guess that $n \in P$, then we build a group with generators a and b. If we guess that $n \notin P$, then we add a new generator c. If we later guess that $n \in P$, then we make the third generator into a word on a and b. The result of this is that if $n \notin P$, then we eventually always guess that $n \notin P$, and we get a copy of F_{3}. If $n \in P$, then infinitely often we guess $n \in P$, so we collapse all the extra generators, and we have a copy of F_{2}.

Proposition 2.3. For $n>2, I\left(F_{n}\right)$ is m-complete d - Σ_{2}^{0} within $\operatorname{Fr} G r$.
Proof. Recall the computable Π_{2} sentences φ_{n} describing the groups of rank less than or equal to n. The sentence

$$
\varphi_{n} \wedge \operatorname{neg}\left(\varphi_{n-1}\right)
$$

describes F_{n}, up to isomorphism, within the class $F r G r$. It follows that $I\left(F_{n}\right)$ is d - Σ_{2}^{0} within $F r G r$. For hardness, let S_{1} and S_{2} be Σ_{2}^{0} sets. We can produce a uniformly computable sequence of free groups $\left(H_{n}\right)_{n \in \omega}$ such that

$$
H_{n} \cong \begin{cases}F_{n-1} & \text { if } n \notin S_{1} \\ F_{n} & \text { if } n \in S_{1} \& n \notin S_{2} \\ F_{n+1} & \text { if } n \in S_{1} \cap S_{2}\end{cases}
$$

We begin by building a free group with generators $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ that we will never collapse, that is, we will never make any a_{i} into a word on the remaining generators. If we guess that $n \in S_{1}$, we add a new potential generator b. If, additionally, we guess that $n \in S_{2}$, we add a second new potential generator c. After this point, if we ever guess that $n \notin S_{1}$, we collapse both b and c by making them words on $\left(a_{1}, \ldots, a_{n-1}\right)$. As long as we continue to guess that $n \in S_{1}$, we maintain b as a generator and concentrate on S_{2}. When we guess $n \in S_{2}$, we maintain c as a generator. If we guess $n \notin S_{2}$, we collapse c. We can then later add another potential generator if we think again that $n \in S_{2}$.

Now, we verify that we build the correct isomorphism types. If $n \notin S_{1}$, then infinitely often we guess that $n \notin S_{1}$ and we will collapse any potential
generators we had added so that only $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ will be true generators and $H_{n} \cong F_{n-1}$. If $n \in S_{1}-S_{2}$, then since S_{1} is Σ_{2}^{0}, we will eventually come to a stage after which we always guess $n \in S_{1}$. The final b that we add as a potential generator will never be collapsed, and therefore will be a true generator of H_{n}. However, for $n \notin S_{2}$, we will infinitely often guess $n \notin S_{2}$. When we guess $n \notin S_{2}$, we collapse any potential generator c we may have added. Then H_{n} will have true generators $\left(a_{1}, a_{2}, \ldots, a_{n-1}, b\right)$ and will be isomorphic to F_{n}. Finally, if $n \in S_{1} \cap S_{2}$, then we will come to a stage after which we always guess that both $n \in S_{1}$ and $n \in S_{2}$. The two potential generators we add will never be collapsed and H_{n} will be isomorphic to F_{n+1}.

Proposition 2.4. The set $I\left(F_{\infty}\right)$ is m-complete Π_{3}^{0} within $F r G r$.
Proof. Consider the conjunction of the sentences $n e g\left(\varphi_{n}\right)$. This is a computable Π_{3} sentence that is true in F_{∞} and false in F_{n} for any $n \in \omega$. For completeness, consider the m-complete Σ_{3}^{0} set Cof $=\left\{n: W_{n}\right.$ is cofinite $\}$. We build a uniformly computable sequence of free groups $\left(H_{n}\right)_{n \in \omega}$ such that $H_{n} \cong F_{\infty}$ iff $n \notin$ Cof. To build H_{n}, we designate an infinite collection of potential generators, say g_{e} for each e. We then simultaneously begin to build our free group and enumerate W_{n}. Whenever we see e enter W_{n}, we collapse g_{e} as a potential generator by making it a word on the previous generators g_{i} for $i<e$. If $n \notin$ Cof, then there are infinitely many e that will never enter W_{n}, and we will maintain g_{e} as a generator for each of those values, so we will have $H_{n} \cong F_{\infty}$. If $n \in$ Cof, then we will collapse all but finitely many of the potential generators, so H_{n} will be isomorphic to F_{k}, where k is the cardinality of the complement of W_{n}.

2.2 Working within the class of all groups

In this section, we give optimal descriptions of the groups $F_{n}, n \in \omega$, within the class of all groups. In each case, the "natural" or "obvious" description is not optimal, from a computability theoretic standpoint. For the free group F_{n}, the "obvious" definition says that there exists an n-tuple, with no non-trivial relations among its elements, so that every other group element can be written as a word on this tuple. This sentence is computable infinitary Σ_{3}, while we shall see that every F_{n} has, in fact, a $d-\Sigma_{2}$ definition. In our discovery of the optimal definition, the hardness argument actually led to the definition. That is, we were unable to establish Σ_{3}^{0} hardness, and our examination of the reasons for failure suggested the correct level of complexity for the optimal definition.
Proposition 2.5. The set $I\left(F_{1}\right)$ is m-complete $d-\Sigma_{2}^{0}$.
Proof. We first show that $I\left(F_{1}\right)$ is d - Σ_{2}^{0}. We have a computable d - Σ_{2} sentence saying the following:

1. the group is Abelian and torsion free,
2. there is a non-zero element not divisible by any prime,
3. for any pair of elements, there is a single element that generates both elements in the pair.

For this proof, the groups that we consider are Abelian, so we use additive notation. For any group satisfying the above sentence, take a non-zero element a not divisible by any prime. This must actually be a generator. For any other element b, we have c generating both. If $k \cdot c=a$, then k must be ± 1. It follows that a generates both c and b. Therefore, the group is isomorphic to $(\mathbb{Z},+)$.

For hardness, let S_{1} and S_{2} be Σ_{2}^{0} sets. In this (and the next) proof, it will be easier to give the construction by explicitly mentioning the approximations $S_{1, s}$ and $S_{2, s}$ such that $n \in S_{1}\left(n \in S_{2}\right.$, respectively) iff there is a stage t so that for all $s \geq t, n \in S_{1, s}\left(n \in S_{2, s}\right.$, respectively). We produce a uniformly computable sequence of Abelian groups $\left(H_{n}\right)_{n \in \omega}$ such that H_{n} will have a summand that is divisible if $n \notin S_{1}, H_{n} \cong \mathbb{Z}$ if $n \in S_{1}-S_{2}$, and $H_{n} \cong \mathbb{Z} \oplus \mathbb{Z}$ if $n \in S_{1} \cap S_{2}$. Recall that there are computable approximations. We start with two possible generating elements a_{0} and b_{0}. If $n \in S_{1, s+1}$, then $a_{s+1}=a_{s}$, and if $n \notin S_{1, s+1}$, then a_{s+1} is new, with $2 a_{s+1}=a_{s}$. To describe how we treat the other generator, we consider the following two cases.

Case 1. The element b_{s} is not expressed in terms of a_{s}. If $n \in S_{2, s+1}$, then we let $b_{s+1}=b_{s}$, and we continue not expressing b_{s} in terms of a_{s}. If $n \notin S_{2, s+1}$, then we let $b_{s+1}=b_{s}$, but now we express $b_{s}=m \cdot a_{s+1}$, where m is larger than the product of all numbers we have considered up to this point. (This ensures that in making b_{s+1} a part of the subgroup generated by a_{s+1}, we will not contradict any quantifier-free statements to which we have already committed.)

Case 2. The element b_{s} has been expressed in terms of a_{s}. If $n \notin S_{2, s+1}$, then, again, $b_{s+1}=b_{s}$. If $n \in S_{2, s+1}$, then b_{s+1} is new, and it is not expressed in terms of a_{s+1}.

Definition 8. A group is locally free if every finitely generated subgroup is a free group.

There exist locally free groups that are not free. A trivial example is the Abelian group generated by $\left\{b_{n}: n \in \omega\right\}$, where for all $n, b_{n+1}^{2}=b_{n}$.

Proposition 2.6. For finite $n>1, I\left(F_{n}\right)$ is m-complete $d-\Sigma_{2}^{0}$.
Proof. Fix n, and recall the set V_{n} defined in Definition 7. Let N be the subset of V_{n} consisting precisely of the n-tuples of words in V_{n}. So an n-tuple of formal words $\left(w_{1}(\bar{z}), \ldots, w_{n}(\bar{z})\right)$ on "dummy" variables \bar{z} belongs to N iff for a basis $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ of the free group F_{n}, the tuple $\left(w_{1}(\bar{a}), \ldots, w_{n}(\bar{a})\right)$ is also a basis of F_{n}. (Recall, by the comment after Definition 7, that if this property holds for a tuple of words over one basis, then it holds for that same tuple of words over any basis.) Of course, N is computable, since V_{n} is computable. We can describe F_{n}, up to isomorphism, by the conjunction of sentences saying the following.

1. There exists an n-tuple \bar{x} such that there are no non-trivial relations on \bar{x}, and for all n-tuples \bar{y} and all n-tuples of words \bar{w} not in N, it is not the case that for all $1 \leq i \leq n, x_{i}=w_{i}(\bar{y})$.

2 . For every tuple \bar{y}, there exists an n-tuple \bar{x} that generates \bar{y}.
We can take the first sentence to be computable Σ_{2}, and we can take the second sentence to be computable Π_{2}. To show that $I\left(F_{n}\right)$ is d - Σ_{2}^{0}, we must show that the conjunction describes F_{n} up to isomorphism.

First, we show that F_{n} satisfies the conjunction of the first and second sentence. If the n-tuple \bar{x} is a basis, and some other n-tuple \bar{y} generates \bar{x}, then, by Fact 5 , the tuple \bar{y} must also be a basis. Therefore, by the definition of N, the n-tuple of words in \bar{y} used to express \bar{x} must belong to N. Conversely, if G is any group satisfying the first sentence, then it has a free subgroup H of rank n generated by \bar{x}. (We are not assuming that \bar{x} is a basis of G, or even that G is free - that is what we must show.) Furthermore, if \bar{y} is any n-tuple that generates \bar{x}, then the generating words form an n-tuple of words from N. By Fact 4, a sequence of Nielsen transformations formally converts this n-tuple of words on \bar{y} into the elements \bar{y}. And by Fact 1, it must be true that \bar{x} generates \bar{y}.

Note that in the argument above, we do not assume that G is a free group. Consequently, no subgroup of G generated by n elements properly includes H. Now, let g be any element of G. Consider the tuple (\bar{x}, g). By the second sentence, this tuple is generated by an n-tuple \bar{y}. However, by what we just concluded, the subgroup generated by \bar{y} is identical to H, so $g \in H$. Since g was arbitrary, $H=G$. That is, $G=H \cong F_{n}$.

If $n>2$, the proof showing that $I\left(F_{n}\right)$ is m-complete d - Σ_{2}^{0} within $\operatorname{Fr} G r$ shows hardness as well. If $n=2$, let $S=S_{1}-S_{2}$, where S_{1} and S_{2} are Σ_{2}^{0} sets with computable approximations as in the previous proof. We produce a uniformly computable sequence $\left(H_{n}\right)_{n \in \omega}$ such that if $n \notin S_{1}$, then H_{n} is locally free but not free; if $n \in S_{1}-S_{2}$, then $H_{n} \cong F_{2}$; and if $n \in S_{1} \cap S_{2}$, then $H_{n} \cong F_{3}$. We consider possible generators a_{s}, b, and c_{s}.

When we guess that $n \notin S_{1}$, we replace a_{s} by a_{s+1}, where $a_{s+1}^{2}=a_{s}$, so a_{s} cannot be part of a basis of the group H_{n}. When we guess that $n \in S_{1}$, we define $a_{s+1}=a_{s}$, so we are guessing that it is, in fact, a genuine basis element. If infinitely often we guess that $n \notin S_{1}$, then the subgroup generated by $\left(b, a_{0}, a_{1}, \ldots, a_{s}, \ldots\right)$ is not free, so, by Fact $8, H_{n}$ is not free-it is locally free. If eventually we always guess that $n \in S_{1}$, then this subgroup is generated by b and a single a_{s}.

When we guess that $n \notin S_{2}$, we collapse the current c_{s}, making it equal to some word on a_{s+1} and b. When we guess that $n \in S_{2}$, after having collapsed the previous c_{s}, we add a new generator c_{s+1} that is not expressed as a word on a_{s+1} and b. If infinitely often we guess that $n \notin S_{2}$, then all of the c_{s} elements are included in the subgroup generated by $\left(b, a_{0}, a_{1}, \ldots, a_{s}, \ldots\right)$ (which may or may not be free, depending on S_{1}). If eventually we always guess that $n \in S_{2}$, then some c_{s} cannot be generated by $\left(b, a_{0}, a_{1}, \ldots, a_{s}, \ldots\right)$. Then, if $n \in S_{1}$, we have $H_{n} \cong F_{3}$.

For F_{∞}, we can show that $I\left(F_{\infty}\right)$ is Π_{4}^{0}. The fact that it is Π_{3}^{0}-hard follows from Proposition 2.4, and in part II [7], the authors show that it is Π_{4}^{0}-hard. Their result implies that we have an optimal description.

Proposition 2.7. The set $I\left(F_{\infty}\right)$ is Π_{4}^{0}.
Proof. Recall the sequence of formulas $\left(\gamma_{k}\left(x_{1}, \ldots, x_{k}\right)\right)_{k \in \omega}$, which express, within a free group, that \bar{x} is part of a basis. Now, to describe F_{∞}, we say the following.

1. There exists x_{1} satisfying γ_{1}.
2. For each k, each $\left(x_{1}, \ldots, x_{k}\right)$ satisfying γ_{k}, and each y, there exist $\ell \geq$ $k+1$ and $\left(x_{k+1}, \ldots, x_{\ell}\right)$ such that $\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{\ell}\right)$ satisfies γ_{ℓ} and $y \in\left\langle x_{1}, \ldots, x_{\ell}\right\rangle$.

This description is computable Π_{4}, since the γ_{k} are uniformly Π_{2}. It is easy to see that F_{∞} satisfies this sentence, since it has an infinite basis ($a_{1}, a_{2}, \ldots, a_{n}, \ldots$). Let H be any other group (not assumed to be free) which satisfies this sentence. A straightforward back-and-forth argument shows that $H \cong F_{\infty}$.

Recall that each formula $\gamma_{k}(\bar{x})$ is Π_{2} only because we have to say that for \bar{y} with no trivial relations, it is not the case that \bar{x} can be expressed as a nonprimitive k-tuple of words on \bar{y}. Is it the case that some k-tuple of genuine basis elements in F_{∞} can be written as a non-primitive k-tuple of words on some n tuple \bar{y} that does have a non-trivial relation? It turns out that the answer is positive ([3]). Therefore, there is no obvious way to simplify the formulas γ_{k} to Π_{1} formulas in order to give a computable Π_{3} description of F_{∞}.

Finally, note that if we would try to modify the sentence in the above proof by replacing the formulas γ_{k} with simpler formulas stating only that the tuple $\left(x_{1}, \ldots, x_{k}\right)$ has no non-trivial relations, then this sentence is no longer true in F_{∞}. Indeed, if a_{1} is a basis element, then $\left(a_{1}\right)^{2}$, as a singleton, has no non-trivial relations; however, given the element a_{1}, there is no way to extend the singleton $\left(a_{1}\right)^{2}$ to an ℓ-tuple that generates a_{1} and also has no non-trivial relations.

3 Index sets for some classes of groups

Let FinGen denote the class of all finitely generated groups. Based on the results above, we can quickly establish the complexity of I(FinGen) within the class of free groups and within the class of all groups.

Proposition 3.1. The set $I($ FinGen $)$ is m-complete Σ_{3}^{0} within the class of free groups.

Proof. Recall the computable Π_{2} sentences φ_{n} saying that any $(n+1)$-tuple is generated by an n-tuple. Let ψ be the disjunction of these sentences. This is a computable Σ_{3} sentence, and among free groups, it is satisfied exactly by those that are finitely generated. For completeness, recall that in the proof of Proposition 2.4, we defined a uniformly computable sequence of free groups $\left(H_{n}\right)_{n \in \omega}$ such that $n \in$ Cof if and only if H_{n} is finitely generated.

Proposition 3.2. The set $I($ FinGen $)$ is m-complete Σ_{3}^{0} within the class of all groups.

Proof. We have a computable Σ_{3} sentence saying that for some n, there is an n-tuple \bar{x} such that for every element y, we can express y as a word $w(\bar{x})$. This sentence characterizes the finitely generated groups within the class of all groups. Again, the proof of Proposition 2.4 establishes completeness.

Let LocFr denote the class of all locally free groups.
Proposition 3.3. The set $I($ LocFr $)$ is m-complete Π_{2}^{0} within the class of all groups.

Proof. Consider the computable Π_{2} sentence saying that the group is torsion free, and that for any $n \in \omega$ and any n-tuple \bar{y}, if \bar{y} has a non-trivial relation, then there is an $(n-1)$-tuple \bar{x} so that \bar{x} generates \bar{y}. We claim that a group G is a locally free group iff it satisfies this sentence.
(\Rightarrow) Let \bar{y} be an n-tuple in G. By definition, the subgroup generated by \bar{y} is free, and, by Fact 5 , it has a basis $\left(x_{1}, \ldots, x_{m}\right)$, where $m \leq n$. If $m<n$, then \bar{y} is generated by fewer than n elements, and hence by $(n-1)$ elements. If $m=n$, then \bar{y} generates a free group of rank n, so, by Fact $5, \bar{y}$ is a basis, and hence has no non-trivial relations.
(\Leftarrow) Let H be a non-trivial, finitely generated subgroup of G, generated by an n-tuple $\left(y_{1}, \ldots, y_{n}\right)$. If this tuple has no non-trivial relations, then it is a basis for H. Otherwise, there is an $(n-1)$-tuple $\left(x_{1}, \ldots, x_{n-1}\right)$ generating H. If this $(n-1)$-tuple has no non-trivial relations, then it is a basis for H. Otherwise, we continue in this fashion until we either reach a k-tuple that is a basis for H, or we come down to a single element g that generates H. In the latter case, since G is torsion free, $H \cong F_{1}$.

To show hardness, we use the " S_{2} half" of the hardness argument from Proposition 2.5. That is, let P be a Π_{2}^{0} set. We construct a computable sequence $\left(H_{n}\right)_{n \in \omega}$ of groups so that if $n \in P$, then $H_{n} \cong \mathbb{Z}$ and if $n \notin P$, then $H_{n} \cong \mathbb{Z} \oplus \mathbb{Z}$. As usual, P has a computable approximation P_{s} so that for all n, we have $n \notin P$ iff there is some s so that for all $t \geq s, n \notin P_{t}$. We construct H_{n} as an Abelian group with two possible generators a and b_{s}. At stage s, if $n \notin P_{s}$, then we let $b_{s+1}=b_{s}$, and we continue not to express b_{s} as any multiple of a. Assume that $n \in P_{s}$. Then we declare $b_{s}=m \cdot a$, where m is greater than the product of all numbers we have considered up to this point. We define b_{s+1} to be a new number not expressed as a multiple of a.

Here we remark that the index set $F r G r$ is Π_{4}^{0}. We can write a computable sentence saying that a group is either F_{n} for some finite n, or F_{∞}. This sentence is a disjunction of d - Σ_{2}^{0} sentences for each F_{n}, and a Π_{4}^{0} sentence for F_{∞}. This disjunction is then itself Π_{4}^{0}. In part II, McCoy and Wallbaum [7] show that this sentence is optimal by showing that $I(F r G r)$ is Π_{4}^{0}-hard.

4 Bases for free groups

We consider bases for free groups of infinite rank. We show that every computable copy of F_{∞} has a Π_{2}^{0} basis. There is an old result of Metakides and Nerode in $[8]$ on \mathbb{Q}-vector spaces, saying that there is a computable vector space of infinite dimension with no infinite c.e. linearly independent set. While the analogous result is true in the setting of free groups, part II [7] shows that a Π_{2}^{0} basis is optimal by constructing a computable copy of F_{∞} with no Σ_{2}^{0} basis.

Proposition 4.1. Every computable copy of F_{∞} has a Π_{2}^{0} basis. Moreover, a Π_{2}^{0} index for the basis can be computed uniformly from a computable index for F_{∞}.

Proof. Let G be a computable copy of F_{∞}, and assume G has universe \mathbb{N}. First, we will show that with $0^{\prime \prime}$ as an oracle, we can enumerate a basis in increasing order-hence, G has a Δ_{3}^{0} basis. Recall that there is a computable sequence of computable Π_{2} formulas $\gamma_{k}\left(x_{1}, \ldots, x_{k}\right)$ so that for a k-tuple $\left(a_{1}, \ldots, a_{k}\right) \in G$, $\left(a_{1}, \ldots, a_{k}\right)$ is part of a basis iff $G \models \gamma_{k}\left(a_{1}, \ldots, a_{k}\right)$. Using $0^{\prime \prime}$, we search for the first (according to the ordering on $\mathbb{N}) b_{0}$ such that $G \models \gamma_{1}\left(b_{0}\right)$. Once we have found this b_{0}, we search, using $0^{\prime \prime}$, for the first a_{0} in G not included in $\left\langle b_{0}\right\rangle$. Find elements c_{1}, \ldots, c_{k} so that a_{0} is in $\left\langle b_{0}, c_{1}, \ldots, c_{k}\right\rangle$ and $G \models \gamma_{k+1}\left(b_{0}, c_{1}, \ldots, c_{k}\right)$. Using Nielsen transformations, we can replace c_{1} with $b_{1}:=\left(b_{0}\right)^{p_{1}} \cdot c_{1}$, replace c_{2} with $b_{2}:=b_{0}^{p_{2}} \cdot c_{2}, \ldots$, and replace c_{k} with $b_{k}:=\left(b_{0}\right)^{p_{k}} \cdot c_{k}$, where the powers p_{1}, \ldots, p_{k} are chosen so that $b_{0}<b_{1}<b_{2}<\ldots<b_{k}$. We continue in this way to get a Δ_{3}^{0} basis $B=\left\{b_{0}, b_{1}, \ldots\right\}$.

Now we use this Δ_{3}^{0} basis B to produce a Π_{2}^{0} basis U. We give a Δ_{2}^{0} enumeration of the complement \bar{U}. We use the fact that given (x, y) a basis for a free group of rank 2, we can apply Nielsen transformations to obtain infinitely many further bases, all disjoint. Starting with (x, y), we get $(x y, y)$ and then $\left(x y, x y^{2}\right)$, disjoint from (x, y). Each new basis is obtained from the current one by two steps just like these.

Relativizing the Limit Lemma, we obtain a binary Δ_{2}^{0} function $f, f(i, s)=$ $b_{i, s}$, so that for every $i \in \mathbb{N}, \lim _{s} b_{i, s}=b_{i}$. Moreover, we can assume that at any stage $s, b_{0, s}<b_{1, s}<\ldots<b_{s, s}$, and all these elements have no non-trivial relations among them, because otherwise, by using a 0^{\prime} oracle, we could detect this aberration, and so, we would keep re-approximating up to the $(s+1)$-st element.

The idea of the construction is as follows. To enumerate the complement of U, we use a 0^{\prime} oracle to guess at both the initial pair b_{0}, b_{1} of B and at longer and longer initial segments from B, and we enumerate elements into the complement of U based on the current guess. If a change in the guess at b_{0}, b_{1} makes us realize that we have mistakenly enumerated one of them into U, then we use the fact about pairs of basis elements mentioned above to guess at an equivalent pair c_{0}, c_{1} that we can preserve in U. We then use our guesses at longer initial segments of B, together with the trick used above to obtain the Δ_{3}^{0} basis, to produce the rest of the basis.

In the formal construction that follows, the function of Step 1 is to find a pair c_{0}, c_{1} equivalent to the pair b_{0}, b_{1}, and the function of Step 2 is to find, for $j>1$, elements c_{j} that can stand in for b_{j} in the basis. Step is performed only finitely often, and it is necessary to build the Π_{2}^{0} basis uniformly from the index for F_{∞}.
$\underline{\text { Stage } 0 . ~ C o m p u t e ~} b_{0,0}$ and $b_{1,0}$. Let $c_{0,0}=b_{0,0}$ and $c_{1,0}=b_{1,0}$. Enumerate into \bar{U} all elements smaller than $c_{0,0}$, and all elements between $c_{0,0}$ and $c_{1,0}$. Declare $c_{k, 0}$ undefined for all $k>1$.

Stage $s+1$. Assume that at stage s, we have enumerated only finitely many elements into \bar{U}, so U_{s} is cofinite. Compute the elements $b_{0, s+1}$ and $b_{1, s+1}$.

Step 1.
Case 1 within Step 1: If $b_{0, s+1}=b_{0, s}$ and $b_{1, s+1}=b_{1, s}$, then let $c_{0, s+1}=c_{0, s}$ and $c_{1, s+1}=c_{0, s}$. Proceed to Step 2.
Case 2 within Step 1: If $b_{0, s+1} \neq b_{0, s}$ or $b_{1, s+1} \neq b_{1, s}$, and $b_{0, s+1}$ and $b_{1, s+1}$ belong to U_{s}, then enumerate all elements smaller than $b_{0, s+1}$ and all elements between $b_{0, s+1}$ and $b_{1, s+1}$ into \bar{U}. Define $c_{0, s+1}=b_{0, s+1}$, define $c_{1, s+1}=b_{1, s+1}$, and declare $c_{k, s+1}$ undefined for all $k>1$. Otherwise, if it is not the case that both $b_{0, s+1}$ and $b_{1, s+1}$ belong to U_{s}, then systematically apply Nielsen transformations to the pair $\left(b_{0, s+1}, b_{1, s+1}\right)$ until a new pair $\left(c_{0, s+1}, c_{1, s+1}\right)$ is produced so that both $c_{0, s+1}$ and $c_{1, s+1}$ belong to U_{s}, and $c_{0, s+1}<c_{1, s+1}$ in the usual ordering on \mathbb{N}. (This can be done because Nielsen transformations on independent elements can produce arbitrarily long words on these elements, and the set U_{s} is cofinite.) Enumerate into \bar{U} all elements smaller than $c_{0, s+1}$ and all elements between $c_{0, s+1}$ and $c_{1, s+1}$. Declare $c_{k, s+1}$ undefined for all $k>1$. Proceed to stage $s+2$.

Step 2. Compute $b_{2, s+1}, \ldots, b_{s+1, s+1}$. Let j be the first number so that $2 \leq j \leq$ $s+1$ and either $b_{j, s+1} \neq b_{j, s}$ or $c_{j, s}$ is undefined. For all k so that $2 \leq k<j$, let $c_{k, s+1}=c_{k, s}$.

To complete Stage $s+1$, we find the least p so that $\left(c_{0, s+1}\right)^{p} \cdot b_{j, s+1}$ belongs to U_{s}, and $\left(c_{0, s+1}\right)^{p} \cdot b_{j, s+1}$ is not equal to $c_{k, s+1}$ for any $0 \leq k<j$. Call this element $c_{j, s+1}$. Enumerate all elements between $c_{j-1, s+1}$ and $c_{j, s+1}$ into \bar{U}. Declare $c_{k, s+1}$ undefined for all $k>j$. This completes Stage $s+1$.

We have described the whole construction. Given $i \in \omega$, there is a stage s so that for all $t \geq s$, we have $b_{0, t}=b_{0}, \ldots, b_{i, t}=b_{i}$. Therefore, by the construction, for each $i, \lim _{s \in \omega}\left(c_{i, s}\right)=c_{i}$. Moreover, the sequence of elements $\left(c_{i}\right)_{i \in \omega}$ has the following important properties.

1. The set $\left\{c_{0}, c_{1}, b_{2}, b_{3}, \ldots\right\}$ is a basis of G, because c_{0}, c_{1} is derived from b_{0}, b_{1} by Nielsen transformations.
2. For each $i \geq 2$, there is a k so that $c_{i}=\left(c_{0}\right)^{k} \cdot b_{i}$.

It can then be easily shown that the set $C=\left\{c_{i}: i \in \omega\right\}$ is a basis of G. By construction, C is Π_{1}^{0} relative to Δ_{2}^{0}, and hence C is Π_{2}^{0}.

Of course, for F_{n}, a basis is finite, and hence computable. However, even for this free group of fixed finite rank n, we can still inquire about how difficult it is to identify a basis uniformly in the presentation of F_{n}, or to identify uniformly all n-tuples that constitute a basis, or to identify uniformly all m-tuples ($m<n$) that could be included in a basis. The following syntactic result puts upper limits on the difficulty of making these identifications.

Proposition 4.2. For every $n \geq 2$, there is a computable Π_{1} formula $\theta_{n}\left(x_{1}, \ldots, x_{n}\right)$ saying, in F_{n}, that $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis.

Proof. The formula $\theta_{n}\left(x_{1}, \ldots, x_{n}\right)$ says that for all $\left(y_{1}, \ldots, y_{n}\right)$ and all nonprimitive n-tuples of words $w_{1}(\bar{y}), \ldots, w_{n}(\bar{y})$, it is not the case that $x_{i}=w_{i}(\bar{y})$ for $i=1, \ldots, n$. Suppose that \bar{x} is a basis. If \bar{y} is a basis, then \bar{x} is not obtained by a non-primitive tuple of words. If \bar{y} is not a basis, then, by Fact $5, \bar{x}$ is not obtained by any tuple of words. Therefore, the formula is satisfied. Suppose that \bar{x} is not a basis. Let \bar{y} be a basis. Then \bar{x} is obtained using a non-primitive tuple of words, so the formula is not satisfied.

Recall that for $k<n$, the Π_{2} formula $\gamma_{k}\left(x_{1}, \ldots, x_{k}\right)$ says that $\left(x_{1}, \ldots, x_{k}\right)$ forms part of a basis for F_{n}. By the previous proposition, there is also a computable Σ_{2} formula expressing this; namely, $\exists z_{k+1} \ldots \exists z_{n}\left[\theta\left(x_{1}, \ldots, x_{k}, z_{k+1}, z_{n}\right)\right]$. Therefore, a 0^{\prime}-oracle can identify such tuples uniformly in the computable presentation of F_{n}.

We close with some brief remarks on the model-theoretic interest in free groups and their bases. Sela showed that the common elementary first order theory of the non-Abelian free groups is stable. The theory is of interest in model theory because it seems to be maximally bad among stable theories. Poizat [?] showed that the theory is not superstable. Recently, Pillay [9] and his student, Sklinos [?], have investigated the "generic" type, showing that it has infinite "weight". The idea in this work is very much like our proof of Proposition 4.1: for a given basis B for F_{∞}, we can produce infinitely many bases, all disjoint. We used Nielsen transformations to produce the different bases. Pillay uses "forking transformations", but these are really the same.

References

[1] C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, 2000.
[2] W. Calvert, V. S. Harizanov, J. F. Knight, and S. Miller, "Index sets for computable structures", Algebra and Logic, vol. 45 (2006), pp. 306-325.
[3] D. Grove and M. Culler, personal correspondence.
[4] O. Kharlampovich and A. Myasnikov, "Elementary theory of free nonabelian groups", Journal of Algebra, vol. 302 (2006), pp. 451-552.
[5] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, 2001.
[6] A. I. Mal'tsev, "On the equation $z x y x^{-1} y^{-1} z^{-1}=a b a^{-1} b^{-1}$ in a free group", (Russian) Algebra i Logika Sem. 1, no. 5 (1962), pp. 45-50.
[7] C. McCoy and J. Wallbaum, "Describing free groups, part II: Π_{4}^{0} hardness and no Σ_{2}^{0} basis", this journal.
[8] G. Metakides and A. Nerode, "Effective content of field theory", Annals of Math. Logic, vol. 17 (1979), pp. 289-320.
[9] A. Pillay, "On genericity and weight in the free group", to appear in Proceedings of the $A M S$.
[10] B. Poizat, "Groupes stables, avec types gnriques rguliers", Journal of Symbolic Logic, vol. 48(1983), pp. 339-355.
[11] D. Scott, "Logic with denumerably long formulas and finite strings of quantifiers", in The Theory of Models, ed. by J. Addison, L. Henkin, and A. Tarski, North-Holland, 1965, pp. 329-341.
[12] Z. Sela, series of papers, "Diophantine geometry over groups I: MakaninRazborov diagrams", Publications Mathématiques, Institute des Hautes Études Scientifiques, vol. 93 (2001), pp. 31-105; Diophantine geometry over groups II: Completions, closures, and formal solutions", Israel J. of Math., vol. 134 (2003), pp. 173-254; Z. Sela, "Diophantine geometry over groups III: Rigid and solid solutions", Israel J. of Math., vol. 147 (2005), pp. 1-73; "Diophantine geometry over groups IV: An iterative procedure for validation of a sentence", Israel J. of Math., vol. 143 (2004), pp. 1-130; "Diophantine geometry over groups V_{1} : Quantifier elimination I , Israel J. of Math., vol. 150 (2005), pp. 1-197; "Diophantine geometry over groups V_{2} : Quantifier elimination II", Geometric and Functional Analysis, vol. 16 (2006), pp. 537-706; "Diophantine geometry over groups VI: The elementary theory of a free group", Geometric and Functional Analysis, vol. 16 (2006), pp. 707-730.
[13] R. Sklinos, "On the generic type of the free group", to appear in the Journal of Symbolic Logic.

[^0]: *The authors acknowledge partial support under NSF Grant \# DMS-0554841. The second author also received partial support under NSF Grant \# DMS-0904101.

