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PREFACE

In the last few years the study of nonlinear mechanics 

has received the attention of numerous investigators, either 

under the scope of pure mathematics or from the engineering 

point of view.

Many of the recent developments are based on the early 

works of H. Poincare [1] and A. Liapunov [2] As examples

can be cited the perturbation method, harmonic balance, the 

second method of Liapunov, etc.

An approximate technique developed almost simulta­

neously by C. Goldfarb [3] in the USSR, A. Tustin [4] in 

England, R. Kochenburger  [5] in the USA, W , Oppelt [6]  in 

Germany and J. Dutilh [7]( and C. Ecary [8]in France, known 

as the describing function technique, can be considered as 

the graphical solution of the first approximation of the 

method of the harmonic balance.

The describing function technique has reached great 

popularity, principally because of the relative ease of 

computation involved and the general usefulness of the method 

in engineering problems.

However, in the past, the describing function technique 

has been useful only in analysis. More exactly, it is a 

powerful tool for the investigation of the possible exist­

ence of limit cycles and their approximate amplitudes and 

frequencies.
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Several extensions have been developed from the ori­

ginal deseribing function technique. Among these can be 

cited the dual-input deseribing function, J. C. BouCe et 

al. [¥]f the Gaussian-input deseribing funetion, R. C, 

Rooton jjLo]; and the root-mean-sqtiare deseribing function,

J. E. Gibson and K. S* Prasanna-KUmar jjLlJ.

In a reeent work whieh employs the deseribing function, 

C. M„ Shen ^12*"| gives one example of stabilization Of a 

nonlinear system by introducing a saturable feedback. How­

ever, Shen5s work eannot be qualified as a synthesis method 

since he fixes "a priori" the nonlinearity to be introduced 

in the feedback loop.

A refinement of the same principle used by Shen has 

been proposed by R» HausSler £lf|. The goal of this new 

method of synthesis is to find the deseribing funetion of 

the element being synthesized. Therefore, for Haussler*s 

method to be useful, a way must be found to reconstruct the 

nonlinearity from its describing funetion. This is called 

the inverse-deseribing-functlon-problem and is essentially 

a synthesis problem.

This is not the only ease in which the inverse-descri*- 

bing-function-problem can be useful. Sometimes, in order 

to find the input-output characteristic of a physical non­

linear element, a harmonie test can be easier to perform 

rather than a static one (which also may be insufficient).



The purpose of this report is to present the results 

of research on a question which may then be concisely 

stated as; "If the describing function of a nonlinear 

element is known, what is ^he nonlinearity?"

The question may he divided into two parts, the first 

part being the determination of the restrictions on the 

nonlinearity (or its describing function) necessary to in­

sure that the question has an answer, and the second part 

the practical determination of that answer when it exists. 

Accordingly, the material in this report is presented in 

two parts.

Part I is concerned with determining what types of 

nonlinearities are (and what types are not) uniquely de­

termined by their conventional (fundamental) describing 

function.

This is done by first showing the non-uniqueness in 

general of the describing function, and then constructing 

a class of null functions with respect to the describing 

function integral, i.e., a class of nonlinearities not 

identically zero whose describing functions are identically 

zero. The defining equations of the describing function 

are transformed in sueh*a manner as to reduce the inverse

describing function problem to the problem of solving a 

Volterra integral equation, an approach similar to that 

used by Zadeh |ljf|. The remainder of Part I presents the
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solution of the integral equations and studies the effect 

of including higher order harmonics in the description of 

the output ware shape. The point of interest here is that 

inelusion of the second harmonie may cause the describing 

function to become uniquely invertible in some cases.

Part II presents practical numerical techniques for 

effecting the inversion of types of describing functions 

resulting from various engineering assumptions as to the 

probable form of the nonlinearities from which said descri­

bing functions were determined.

The most general method is numerical evaluation of the 

solution to the Volterra integral equations developed in 

Part I, A second method, which is perhaps the easiest to 

apply, requires a least squares curve fit to the given des- 

cribing function data. Then use is made of the fact that 

the describing function of a polynomial nonlinearity is it­

self a polynomial to calculate the coefficients in a poly­

nomial approximation to the nonlinearity. This approach is 

indicated when one expeets that the nonlinearity is a 

smooth curve, such as a eubic characteristic. The third 

method presented assumes that the nonlinearity can be 

approximated by a piecewise linear discontinuous function, 

and the slopes and y-axis intercepts of each linear segment 

are computed. This approach is indicated when one expects 

a nonlinearity with relatively sharp corners.



It may toe remarked that the polynomial approximation 

and the piecewise linear approximation are derived inde­

pendently of the material in Part I*

411 three methods presented in Part II are suited for 

use with experimental data as well as with analytic ex- 

pressions for the describing functions involved. Indeed, 

an analytical expression must toe reduced to discrete data 

for the machine methods to toe of use.

To the best of the authors® knowledge, research in the 

area of describing function inversion has been nonexistent 

with the exception of Zadeh®s paper in 1953. It seems

that a larger effort in this area would toe desirable in the 

light of reeent extensions of the describing function it­

self to signal stabilization of nonlinear control systems

toy Oldentourger and Sridhar ^19~J and Boyer and the

less restrictive study of dual-input describing functions 

for nonautonomous systems toy Gribson and Sridhar ^JJ1~]„

There presently exist techniques for determining a 

desired describing function for use in avoiding limit cycle

oscillations in an already nonlinear system (Haussler 

I1*])? and the methods presented in this report now allow 

the exact synthesis of the nonlinear element from the des­

cribing function data.
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THEORY OP DESCRIBING FUNCTION INVERSION



CHAPTER 1

DEFIMITX0MS

1*1 Introduction

The purpose of the present chapter is to define a 

suitable mathematical model for a general type of nonli­

nearity* The nonlinearities considered will be restricted 

to the Rind known as "gain type nonlinearities." The pro­

perty of this type of nonlinearity is that the output va­

riable depends only on the actual value of the inputs its 

past history and the sign of its first derivative. How­

ever, the output does not depend on the actual value of 

the first derivative of the output, nor on its higher de­

rivatives.

This mathematical model will be chosen in order to 

match the nonlinearities that are found in practice. Thus 

many of the definitions that in principle can be estab­

lished arbitrarily, will be chosen with a view toward the 

physics of the situation.

Once this mathematical model is defined, a formal de­

finition of the describing function will be established.

1.2 Definitions

Let us consider a nonlinear element and define as x 

and y the input and output variables respectively. Assume
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that a functional relationship will exist between the in­

put and the output

y « f(x) (1,1)

Let x be a sinusoidal wave of amplitude 1 and angular fre­

quence m o

x 38 E si.n tat (1.2)

The output y will be a periodic function of time with pe­

riod 2w/V. If the output y satisfies the Diriehlet condi­

tions* it ean be expanded in a Fourier series

A@(E)
y(t) = i',+ A1(E) cos tat + Ag(E) cos 2mt + 

+ B-j^(l) sin tat + B2(l) sin 2tat + .., (1.3)

W here A^E) and Bn(E) are the Fourier coefficients given by 

the following expressions

T

f(E sin tat) eos neat dt (1.4)

B(E) f(E sin tat) sin n®t dt (1.5)

If in the equations above we make the change of variable

/

a **■ ®t ■ (1.6)

and keep in mind that T = 2«/ta* equation (1.4) and (1.5) are

transformed into
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An(E) *
*f f(E sin a) cos nada (1.7)

2rr

1
W f(E sin a) sin nada (1.8)

Hue ratio between the nth harmonic to the amplitude of the 

input will he defined as the nth describing function. Then

gn(D
A *nBL(B)

E

/2«r

JL|
wE]

^0

f (E sin a) sin nada (1.9)

2fr

bn(E)
A VE)

E frE
f(E sin a) cos nada (1.10)

For n ** 1 we have the first (or conventional) describing 

function or, simply, the describing function. This is gen­

erally represented by the complex quantity

Keq(E) - g(E) + j b(l) (1.11)

Oiven the definition of the describing function, we ean ask 

if the simple functional relationship (1.1) is sufficient 

to describe completely the behavior of the nonlinearity! at 

least with respect to sinusoidal inputs. One simple example 

will reveal that equation (1.1) is not sufficient to deter­

mine, in some eases, the describing function.



Consider the ease of a relay with hysteresis and dead 

hand; whose characteristic is shown in figure (1). It is 

obvious from the figure that the characteristic of the ele­

ment is double valued for certain ranges of the variable x. 

Therefore it will be neeessary to define a criterion which 

will permit us to resolve the indeterminacy that appears 

when x lies within the interval in which f(x) is double 

valued. The following criterion will prove convenient:■

Let f(x) be equal to f^(x) for negative increments of the 

independent variable x and equal to f2(x) for positive in­

crements of the same variable, where

f^(x) - b x 4. a

f^(x) = M x y a (1.12)

f^x) - -M x 4 -b

f2(x) * 0 - a 4. x 4

f2(x) - M x > b (1.13)

f*(x) - -r x <C -a

However,, this mathematical model is not sufficient to 

describe the real behavior of a relay with hysteresis and 

dead band. As a matter of fact the output of such an element 

not only depends on the actual value of the input, but also 

on its past history. For the example under consideration,
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Fig. 1
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-.a

o x

M

« Characteristie of a Eelay with. Hysteresis 
and Bead Band



«a 0 «s»

the output is identically nulls if the absolute value ©f x 

has never reached a maxipura value larger than b. Therefore 

the describing function is identically zero if E < b. This 

information cannot be given by equation (1.1).

Consider now the more general functional relationship

where

y * f(x) h(E)

h(E) ■ 0 E < b

h(E) - 1 E > b

(1.14)

(1.15)

It is not difficult to show that equation (1.14) is suffi­

cient to describe the behavior of the relay under considera­

tion* at least with respect to sinusoidal inputs. In 

figure (2) is shown the three dimensional representation of

equation (1.14).

The following definition will be established 

the functional relationship

fop x

y

E sin a

max

Given

(1.16)

y • F(x* E) (1.17)

when (1.16) is double valued with respect to x (independent 

variable)* y is equal to F-^(xs E) for negative increments 

of x* and equal to FgCx, E) for positive increments of x. 

The describing function of Fjx(t), max^ }x( J )f|will be de-
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fined as the following complex quantity

Keq(E) - g(E) + j b(E) (1.18)

where

F(E sin a, E) sinada (1.19)

F(E sina, E) cosada (1.2©)

The function F also will he defined

as the inverse describing function of Kg^(E).

The nonlinearities to he dealt with in this work may 

he divided into two groups!

I) Nonmemory type nonlinearities, are those for which 

a mathematical model of the form y •» f(x) is suf­

ficient to describe its behavior.

IX) Memory type nonlinearities, are those for which a

In both cases f(x) and F x(t), max . can be double
L

valued with respect to x. J

1*3 Conclusions

In this chapter a convenient mathematical model to des-

mathematical model of the form y = F x(t), max
L

is needed to describe completely its behavior.



eribe the behavior of gain type nonlinearities has been de­

fined* A formal definition of the describing function has 

also been established. Prom this definition will be d@ - 

rived, in the next chapters, an analytical approach to the 

inverse-deseribing-funetion-problem. This approach will 

be, of course, only valid for the type of nonlinearities 

for which the mathematical model applies. Then, from now 

on, for "nonlinearity" will be understood, "gain type non­

linearity."



CHAPTER 2

DESCRIBING FUNCTION TECHNIQUE

-2*1. Introduction

Im Chapter 1 the kinds of functions which can com­

pletely describe the behavior of a nonlinearity* in the 

sense that they are sufficient to determine the Fourier or 

conventional describing function were discussed,, It was 

concluded that the functional relationship*

y “ f (x) (1.1)

is not enough for some types of nonlinearities. Among 

those nonlinearities not included in (1.1) will be those

which are said to have memory. Since the behavior of the 

majority of systems with memory-type nonlinearities de­

pends On the maximum value of the input* the more general 

relationship

y = p|x(t)* max^fx(|>)|j| (1.16) 

was adopted. For sinusoidal inputs Eq. (1.16) reduces to

y « Fix* E) where 1 is the amplitude of the sinusoidal sig­

nal at the input of the nonlinearity.

In the present Chapter Eq. (1.19) and (1.26) will be 

transformed, in order to find a elosed expression that will

permit us* not only to solve the problem of the inverse

describing function* but also gain more insight into the 

conventional describing function itself.
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2.2 Transformation of the IntegralEquations (1.19) and

(1.2#) .

Consider the function

y = F(xs E) (2.1)

which satisfies the conditions stated in Chapter 1. Let

F^(x, E) and Fg(x, E) he the two branches of F(x, E) in the 

intervals in which it is double valued. According to the 

definition given in Chapter 1, the describing function will 

be

g(B)

2ff

F(E sin 0, E) sin 0 &0

(2.2)

b(E) =
,_1_

trE

2tr

F(E sinj$<, E) cos 0

•s" In order to simplify further development the following 

change of the variable of integration will be performed in 

Eq.(2.2).

0 - p + ts/2 (2.3)

Once the transformation (2.3) is performed* Eqs. (2.2) 

are reduced to
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g(E)
ffl

F(E cos g, E) cos g dg

m/2

+;

A_
t t E

/

cos p, E) sic p dp

(2.4)

Because of the periodicity of F(E cos g, B) and cos g, Eq.

(2.4) can he transformed into

g(E) F(E cos P, E) cos g dg

, E) sin p dp

(2.5)

In the interval 0 to ^ the increment of the independent va~ 

riahle is negative and it is positive in the interval ..m to 

2tT. Therefore, according to the hypothesis on F(x, E) for- 

mulated in Chapter 1, Eq. (2.5) can he rewritten

g(E) « -fe- Ft(E cos p, E) cos p
W E !

2tr

+1 Fg(E cos g, E) cos p 

w

(2.6)

0
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w

b(E) - - i I P^E cos p, E) sin p

2tr

+j Fg(E cos ®) sin p dp

where F^(x,,;E) and F2(x., E) are single-valued functions

x an(j g#

Let Us decompose F-j^x, E) and F2(x, E) in the follow­

ing manners

F1(x, E) - P1(x? E) + Q1(x, E)

(2.7)

F2(x , E) - Pa(x, E) 4 ^(x, E)

where Pj.(x, E)# P2(x? E), (^(x, E) and C^2(x, E) satisfy the 

following conditions for all values of x and E

Px(x, E) - Px(- x, E)

P2(x, E) - P2(- xs E)

(2.8)

%(x9 E) * - %( - x5 E)

Q2(x s E) « - Q2( - xs E)

i.e*s P^# P2 are even in xs and Q2 are odd in x. To

(i)
F^(x,E) and F^(x^E) can he double-valued functions 

in a set of points of zero measure! i.e„, a finite or in­
finite denumerable number of discontinuities may be allowed.



show that it is always possible to find the set of functions 

P^(x,E), P2(x,E>, dxCxjE) and Q2(x,E) that simultaneously 

verified Eq. (2.7) and (2.8), change the sign of x in Eq. 

(2.7)

- 14 -

F-jJ-XjE) * P1(-x,E) + ^(-XjE) « P1(x,E) - Qx(x,E)

(2.0)

F2(-x ,1) - P2(-x ,E)'.+ Qg(-x,E) - P2(x ,E) - ^(xjE)

Eq. (2.7) and (2.9) constitute two linear systems of equa*- 

tions in whieh the unknowns are P^(XjE), Pg"(x,E),; Q-^XjE) 

and Q,2(x,E). These are,

Fx(x,E) « P1(x,E) + Qg(x,E) 

F1(-x,E) * P1(x,E) - ^(xjE)

(2.1®)

F2(x , E) ~ P2(x ,E) + Q2(x ,E) 

F2(-x ,E) - P2(x ,E) - Q2(x ,!)

(2.11)

The solution of system (2.10) and (2.11) will always exist 

because its determinant is different from zero. Solving 

Eq. (2.1®) and (2.11) results in,
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P1(xsE) - i F^x,®) + E^-x,®) 

%(x,E) - | Fx(x,E) - Px(-xsE)

(2.12)
P2(x s E) - | P2(X;e ) + P2(-XjE)

^(x.E) * | P2(x ,E) - P2(»x?l)

The functions defined by Eq. (2.12) will exist everywhere 

and will be single-valued functions of x if P1(x,E) and 

F2(x,E) are themselves single valued functions of x. Once 

the validity of the decomposition of the functions F^(x,E) 

and P2(x,l), given by Eq. (2.7), has been proved, Eq. (2.7) 

may be substituted into (2.6), in order to transform Eq.

(2.6) into the conventional form of the Volterra integral 

equations. This substitution yields

_1

1?I

L
P^(E cos p, E) eos p dp

P2(E cos p, E) cos p dp

%j_(E cos p, E) eos p dp

f
Q2(E cos p, E) cos p dp
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PjXE cos 0, E) sin 0 d0

+

2tt

Pg(E cos 0, E) sin 0 d0

«r'

^(E cos 0, E) sin 0 d0

2tT

cos 0, E) sin 0 d0

If in Eq. (2.13) the change of variable 0 - 0 + rt 

is made in all those integrals that are taken over the in­

terval w to 2«r, it is found, after some elementary trigo­

nometric transformations, that,

jr

g(D JLj^ P(E cos 03 E) cos 0

•ir

+ / Q(E cos 0, E) cos 0 H.0

J©

b(E)
trE

,tr (2.14)

P(E cos 09 E) sin 0

'0

cos 0, E) sin 0 &0
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where

P(x, 1) - P1(xs E) - P2(x *E)

(2.15)

Q(x, E) ■ QjCx, 1) + Q2(x ,E)

Bat, because P^(x,E) and Pg(x,E) are even functions of x, 

P(x,E) als© will be an even function of x. For similar 

reasons &(x,E) will be an odd function of x. Keeping in 

mind the above properties of P(x,E) and ©(x,E), Eq. (2.14) 

can be considerably simplified.

In Eq. (2.14) divide the interval of integration into 

two subintervals, the first between 0 and n/2 and the se­

cond between tr/2 and tr. In addition make the change of 

variable p ** w = 0 in all those integrals that are taken 

over the interval tr/2 to «. After some elementary trigo­

nometric transformations we obtain,

To transform Eq. (2.16) and (2.17) into the conventional 

form of the V©1terra% integral equations, let

w/2

©

d(E eos P, E) cos P dp (2.16)

w/2

P(E eos p, E) sin p dp (2.17)
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1 cos 0

(2.19)

(2.20)

The conventional method of computing the describing 

function of a nonlinear element requires the knowledge of 

the actual shape of the output signal of the nonlinear ele­

ment when its input is driven by a sinusoidal wave. Then a 

Fourier analysis must be performed in order to find the am­

plitude of the first harmonic. This procedure is sppetimes 

rather tedious* especially in the ease in which the charac­

teristic of the nonlinear element is not known by ai| ana­

lytic expression but by experimental data. However* by 

using Eq. (2.19) and (2.20) it is not necessary to compute 

the shape of the output* but only the two functions S(x*E) 

and p(x*S). These functions* given by Eq. (2.15) ai^l (2.12)* 

ean be computed directly from the characteristic of the non­

linear element. This approach appears to possess ai| ad­

vantage over the original expression given by Eq. (1.19) and

Finally

,E

2_f x &(x.E)

‘ -o
dx

-E

b(E) as . - "'""'ll \ F(k, E) dx 
rrE

0

Discussion of Eq. (2.19) and (2.



(1.20) , As a matter of fact, by means of Eq* (2.19) and

(2.20) a general method of computation of the describing 

function can be developed.

This is not the only advantage over the initial form 

given by Eq. (1.19) and (1.20). By means of Iq. (2.19) and

(2.20) it is possible to gain more insight into the mecha­

nism of the describing function. Important properties such 

as the non-uniqueness of the inverse describing function, 

conditions of existence of the describing function, etc., 

can be deduced from them.

From the conceptual point of view, Eq. (2.19) and

(2.20) present great interest by themselves. W ith each 

single or double-valued (but memoryless) nonlinearity can 

be associated two single valued functions which give the 

complete information about the nonlinearity, in the sense 

that those two functions are sufficient to compute the des­

cribing function.

2.3 Non-Uniqueness of the Inverse Describing Function

Memory Type Nonlinearities

Let us show the non-uniqueness of the solution of the 

integral equation (2.19) for the ease of memory type non- 

linearities. It is sufficient to show the existence of a 

set of functions Q@ (x,E), not identically zero, whose cor­

respondingg(E) are identically zero. Assume Q@(x,E) to
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and attempt to choose h-^x), h2(x), m^E) and ra2(E) in order 

to have g(E) =0. Substituting Eq, (2.21) into (2,10)

E E

Q^(x,E) s hj_(x) m^(E) + hg(x) mg(E) (2.21)

x hl(x)

0

p:
dx + mo(E)

x h2(x)

2
'ft.

dx 85 © (2.22)

This means that if we choose h2(x), m-^CE) and m2(E) arbi-
m2(E)

trarily (assuming that ^ has meaning) h^(x) will be 

given by the solution of the following integral equation

.E E

x h^ (x) m

©

f ~Z E*
D - x

dx *
2

ffjTET
I i

x h0(x)
4 dx

2 21
S - x

(2.23)

Solving Eq. (2.23) for hx(x) (See Appendix II) yields,

az

Z ra2(z) y hg(y)

% m
^(z). ^ x^z4 ^

dy
2 2

z -y
(2.24)

Therefore to every function of the type
(i)

^^Because of the symmetry of the original Eq. (2.22) 

the subimdeees 1 and 2 ©an be interchanged in Eq. (2.25)»
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<1g (x s E) - hg(x) m2(E)

2mi<E) d z m9(z) dz dy

sr-asl —nff Jrr
0 ./y m^z) |x -z y s- -

(2.25)
(i)

will correspond g(E) - ®.

To illustrate the procedure let us consider one ex­

ample. Let us choose arbitrarily

m2(E)

1JW
E2

Eq. (2.25) becomes

a (x,E) z h2(x) m2(E)

2m1(E) {

wx 3x
y hg(y]

|f 2 % f 2 2
'y | x =z i z -y

dz dy (2.26)

but
x

y

z-

2 2'1/2 2 
x -z 1/ z =y

dz'« 2 (x2 + y2)
4

(2.2?)

Substituting (2.27) into (2.26)

GL(x*E) - h2(x) m2(E)
cE 1 y h2^y^ <x2+y2)dy (2.28)

0



which ©an he reduced to
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(x*E)

(E) j^h2(x) (E2-x 2) y h2(y) dyj (2.29)

Suppose that

m^E) = 1 (2.30)

hg(x) = x (2.31)

Substituting (2.30) and (2.31) into (2.29)

%(x 9E) - x E2 > - x3 (2.32)

In figure 3 is represented the block diagram of this non­

linear element.

In an analogous manner the non-uniqueness of the 

solution of the integral equation (2.20) can be demonstrated.

Nonmemory Type

If the nonlinear element is of the nonmemory types 

Eq. (2.19) and (2.20) are reduced to

g(E)

b(E)

x Q(x)

1 ; 2 
E - x

dx (2.33)

(2.34)P(x) dx



X

Fig,

max x2

multiplier

Identically Bill
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Both integral equations are Yolterra integral equations 

of the first kind and their solutions will he unique if 

P(x) and Q,(x) are assumed to he continuous. Therefore, 

govern the functions g(E) and h(!) there will exist one and 

only one pair of functions d(x) and P(x), that, substituted 

in Iq. (2.19) and (2,20), will transform these equations 

in an identity^. But P(x) and Q(x) are not sufficient to 

determine the nonlinearity* As a matter of fact, the equa­

tion of the nonlinearity will only he determined if P1(x), 

P2(x), ^(x) and %(x) are known. From Eq, (2.15) it can 

he shown that, given P(x) and Q(x), any set of equations 

PjCx), Pg(x), ^(x) and Q3(x) that satisfy Eq. (2.15) can 

generate a different nonlinearity with the same describing 

function* Therefore the knowledge of the describing func­

tion of a nonlinear element is not sufficient to determine 

the equation of the nonlinear element. Even in the ease 

of single-valued nonlinearities, g(E) is not sufficient to 

determine the nonlinearity* It will be shown in Chapter 3, 

that one even harmonie in addition is necessary to deter­

mine the nonlinearity uniquely*

2*4 Sufficient and Necessary Conditions for b(E) to he

Identically Zero

Another important property can he deduced from Eq.

^^g(E) and b(E) must verify some conditions in order 

that P(x) and ^(x) exist. Those conditions will be de­
rived in Chapter 3 *
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(2,19) and (2,20), It is wall known, and its cleraonstration 

is almost immediate, that a sufficient condition for 

b(E) 5 0 is that the nonlinearity must he single-valued.

It is not difficult to demonstrate that this condition is 

not a necessary one. As a matter of fact., for the case 

of nonmemory type ronlinearities, the necessary and suffi­

cient condition for b(E) s o is that P(x) HO, (The case 

of memory-type nonlinearities is not considered here be­

cause it is always possible to find a function P(x,S) % 0 

such that, when substituted into Eq. (2.20), b(E) 3 0,

The sufficiency of the condition is obvious. To prove 

necessity for P(x) piecewise continuous^, suppose P(x) con­

tinuous for x (a,b). Then for x0 (a,b), if P(x0) / 0, we 

also have P(x) f 0 for x in a sufficiently small neighbor­

hood of x0;

P(xo + 0C) f 0, (2,35)

(2.36)

(2.37)

-1^0 £ + 1,

where ^ > 0 is sufficiently small. Therefore3

<x0 *&)s b(xQ +6) - (xc -fc)2 b(x„ -e)

0 P(x)dx = i P(x + 06) 6

IT \ ft

x0 -e

^^Restriction of■P(x) to be piecewise continuous does 

not affect the applicability of the method to practical problems.
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by the mean-value theorem for integrals, since P(x) will be con 

tinuous for x £ £x q - Q , x© ^ ^or ^ sufficiently small. 

But from (2.35), the right hand side of (2.37) cannot be

zero. Therefore either

b(xQ + fe ) / 0 (2.38)

or

b(xQ - £ ) / 0 (2.39)

or both. Thus it has been shown that for b(E) to be iden­

tically zero, P(x) must be zero. Therefore the necessary, 

and sufficient condition that the imaginary part of the 

describing function of a nonlinear element be identically 

zero, is that P(.x) be also identically zero, Thus,

P(x) « P1(x) - Pp(x) £ 0 (2.40)

or substituting P,(x) and P (x)

F^(x) + F]L(-x ) - Fp(x) 4- Pg(-x) (2.41)

Figure 4 shows an example of a double-valued nonlinearity 

(non-memory type) whose describing function is purely real.

In figure 5 is represented the characteristic of a single- 

valued, nonlinear element whose describing function is the 

same as in the example shown in figure 4. The difference ’ 

between them is that in the case of figure 4 the even har­

monics are present at the output, while in the case of 

figure 5 the even harmonics are zero. In figure 6 a non- 

symmetric nonlinearity and its equivalent, with respect to 

the describing function, are represented. In figure 7 the



Fig. 4. Exampleof aDouble Valued Nonlinearity with a Real
Describing Function
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Slagle Valued Nonlinearity with the Same Describing 
Function as the one Shown in Figure 4



—— non symmetric 

----- symmetric equivalent

Pig. 6. Double Valued Non-Symmetric Nonlinearity and 
its Symmetric Equivalent
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n

Wig* 7. Funetiens %(x) and F(x) for Figure 6



corresponding functions Q(x) and P(x) to the nonlinearity 

of figure 6 are shown.
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2.5 Geometrical Interpretation of the Imaginary Part

of the Describing junction

Equation (2.20) permits us to make a geometrical in­

terpretation of the imaginary part of the describing fune~ 

tion. From Eq. (2.12) and (2.15)

P.(x,E) » i^F^x.E) - F2(x ,E) + F1(-x,E) - Fg(-x,E)J

from which

1

-Jj( [P1<*>E> - F2U,E)] d3 

0

E

-Til - P2(-x,B)j

t t E I L

'©

dx

+E

-Aj f Tp1(x ,E) - Pa(x,E)] dx

trE J U J

But the integral

°E

>E

A(E) ^F1(x,E) - Fg(x,E)j dx

•B

(2.42)

(2.43)

(2.44)
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represents the area bounded lay the curves Fj(x,E) and 

F2(x jE) and the straight lines x = E and x ** -E (In figure 

6 it is the striped area), It will be positive if 

F-^(x*E) FgCxjE) and negative if F2(x,E) Fj Cx jE).

From Eq. (2,43) and (2.44).

h(E) - - — ft- (2.45)

it E

This geometric interpretation facilitates, in some eases, 

the computation of the imaginary part of the describing 

function.

To illustrate how this property can he used to compute 

the imaginary part of the describing function of a non­

linear element* let us consider an example. In figure 1 is 

represented the characteristic of a relay with hysteresis 

and dead hand for E y h. For E <£ h the characteristic of 

such nonlinear element will be F(x,E) * 0. In this case

A(E) « 0 for E < h (2.46)

A(E) ■« 2M(h - a) for E > h (2.4?)

A(E) will he positive because F^(x,E) F2(x ,E). There­

fore, according to Eq. (2.45)

b(E) = 0 for E b (2.48)

b(B) - - <b-a)
2

wE

for E h (2.48)
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In an analogous manner we could have demonstrated, by 

inspection, that the imaginary part of the describing func­

tion corresponding to the nonlinearity whose characteris­

tic is represented in figure 4, is identically zero.

2.6 Computation of the Describing Function

As we have shown, given a nonlinear element, it is 

always possible to find the two functions Q(x) and P(x), 

whose real part of the describing function will depend only 

on Q(x,E) and whose imaginary part will depend only on 

P(x,E)•

This fact facilitates the computation of the descri­

bing function of any nonlinear element. As a matter of 

fact b(E) can be calculated easily by using the geometric 

interpretation derived in (2,5), while g(E) ean be computed 

keeping in mind the linearity of the transformation

g(.B)
x %(x,E) dx (2.19)

Prom the above equation it can be shown that a symmetric, 

single-valued function

f(x,E) * i Q(x,E) (2.50)

and the double-valued nonlinearity that has the same Q(x,E) 

have describing functions whose real parts are equal. This
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can be shown keeping in mind the definition of Q(x,E). 

As a matter ©f fact

But because f(x,E) is single-valued and symmetric,

QjXx,E) - f(x,E) and ©2(-x,E) » - f(x,E), which justifies 

Eq. (2.50), But sinee the functional transformation (2.19) 

is linear the superposition principle applies, and the 

describing function of the sum is equal to the sum of the 

describing functions. Therefore the describing function 

of the original element will be

To illustrate the method let us consider an example. 

Figures 8 and 9 show the characteristics of an amplifier 

with dead band, saturation and hysteresis, bet us consider 

that, for E b, the nonlinearity is single-valued (Figure 

9), Therefore for E b the describing function will be

For E > b b(E) will be (applying the geometric interpre­

tation),

Q(x,E) — Q^(x,E) — Qg(—x,E)

g(E) - © 

b(E) - ©

(2.52)

(2.53)

A(E) «. 2M (b - a) (2.54)

Therefore



/
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Mg» 8. Gharaeteristi© ®f an Amplifier ©f Crain nx with Saturation 
Hysteresis aM. Bead Band f®r 1 h
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FCx,E)

M- - - - - - - -

•M

Fig. 9. Charaeteristie ©f a® jtoiplifier ©f Grain n^ witk Saturatien 
Hysteresis and Head Hand f©r 1 d

x
 t
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b(E) - - (b - a) (2.55)

Figure 10 represents the function F(x,E) “ |Q(x,E).

Figure 11 shows the four functions into which# f(x,E) can 

he decomposed. If we call g-^(E), gg(E), g^(E), and g4(E) 

respectively, the describing function of the original non- 

linearity (figures 8 and 9) will be

g(E) - gx(E) + g2(E) + g3(E) + g4(E) (2.56)

But

(2.57)

(2.58)

«r 2 04) + E sin 2 ^4 - 4(b + — •) cos 04

(2.60)

where

arc sin |j (2.61)

M
a + :r

ig = are sin — (2.62)



Fig. It. Fumtioii Q(x) Corresponding to the Nonlinearity
Shown in Figure 8



= 3t -

Mg, 11, Ftaetions f-^Cx), fg(x)# f^(x) and f4(x) Gorrespondiag

to tk® DeeoHiposition of ^ Q(x-)-



~ 4© »

V to 
arc sin — 

E

to +

0A =* are sin

JL

ni

E

(2.63)

(2.64)

Therefore

g(E) ) + E/2(sin 2 0^ sin 2

and

+ sin 2 0^ - sin 2 04) + 2 a (eos 02 “ 

+ 2 to(e©s 04-cos jf^) + ^r(eos 02+ c@ s

cos ^)

'•’l

(2.65)

to(E)
~2M

wE2
(to a) (2.66)

Ms is a well known nonlinearity. The results found toy 

the method illustrated above agree with the results found 

toy conventional techniques £$ridhar,

2,7 ©escribing Function of Nonmemory Type Nonlinearities

W hose Characteristic can toe Represented toy

Analytical Functions

A particular ease presents itself when F(x) is 

analytie^^.

^^(x) will toe considered odd, for, as we have shown, 

g(E) depends only on the odd component of F(x). It will toe 
considered that for x R Eq. (2.67) converges uniformly.
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In Ms ease F(x) ean toe expanded in a Taylor's 

series

i^©o

F(x) -
x1

i=@
it

Fi(0)
d^Cx)

dx^

From equations (2.67), (2.59) and (2.33)

.E i=oo

g(E)
4 F^(0) x1

trl i-« 1
dx E C. R

But given that the series (2.©7) converges uniformly, 

equation (2.69) ean toe written as

i“oo 4

rrS i®@ i I j

E

x1 + 1
dx

B2-*2

But

,E
,i+l

0
f

,4x 1+3"r

(2.67)

(2.68)

(2.69)

the

(2.79)

(2.71)

Therefore
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g(E)

F E i=@

P1(0) E1
14 (2.72)

2.8 Existence of the Describing Punetion

Up to now we have said nothing about the conditions 

that F(x,E) must satisfy to insure the existence of the 

describing function. In the next few paragraghs it will 

he demonstrated that a sufficient condition for the 

existence of b(E) and g(E) is

F1(x j E) pdx £r M(y) (2.73)

F2(x ,E) pdx — M(y) (2.74)

whe**e M(y) is any real, single<=*valued even and finite func«* 

tion of y and p is any positive constant greater than 2. 

Aeeording to equation (2.15)

%(x,E)
F-^x.E) - F2(-x ,E)
................ ................... 2— ------------------ (2.15)

%(xjE) ^ 1/2
|p1(x,E)| + |f x (-x ,B^

(2.75)

Therefore
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Raisingboth sides of equation (2.69) to the power p and 

then integrating between 0 and E we obtain

E ' .E '

r ‘ P
QiCxjE)

P dx £ (a)i I F^(XjE)| + |f 1(-x ,E)|

L

But according to Mineowski’s inequality M

r
|jf(x) + h(x)jP dx f . jf(x)| P dx P

a

[f |h(!E)l
^a

dx

dx

(2.76)

(2.77)

Applying this to equation (2.76) yields

e  r e

0

Q1(i,E) dx £ ^2) (f ]l (x jE)| P dxj

F1(x,E)]i dx
P , I P

Is) P

*E

(2.78)

Therefore from equations (2.73) and (2.74), (2 

dueed to

■ E , r~ i i v
|q ^(x s E)| dx 4 (|)PJ^ Mp (E) + Mp (E)

is re-

M(E) (2.79)

In an analogous manner we can show 

„ E
P ■‘a- M(E)Q2(Xjl)| dx (2.80)

0
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But* fey definition

Q(x,E) ■ Qx(x>E) + QgCxjE) (2.81)

Therefore

(a (x,E)j * |ft1(x,E)| + (OgU,!)! (2.82)

Raising both sides of equation (2.82) to the power p and 

integrating with respect to X between 0 and E 

• E

j I «*.«)!
p dx ^ 1 i | o l (x 9e )| + dx

(2.83)

But according to Mineowski*s inequality

•E r E
P

1

P PJ ^ [ol(x*E)|-+ ‘|Q2(x,E)||.'r'. dx 4 Qx(x, E) r dx

E

(j (^(x.B)^ dxj -[“fe+ *uY

» 2P M(E) (2.84)

Therefore
E

'0

Q(X,E)|P dx £ 2P M(E) (2.85)

In an analogous manner we ean demonstrate

• E
f |q *(x ,B)|P dx ^ 2P M(E)

(2.80)

0
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rEI |'P(x,E)' | P dx £ 2P M(E)

0

(2.87)

E

|p*(x,E)JP dx ^2 P (2.88)

According to equation (2,22)

E

S(E)I * V
«E

x a*

if E2 - X2 '

(2.89)

Applying Holder's inequality 15 to (2.83) we obtain

E 1 E

2 1 ( U(X,E)|P dx p * i4^]

rrE LJ ■ ■ J J

1 
¥

o

(2.90)

where

P > 1 q > 1

I + i - 1
p q

(2.91)

But



E E
x*

, 2 2„
0 (E -x )

1

<1

E _/2p“l p°2\
I B^Ip^ * fp^

1

t

where B(x*y) is the beta function [JL6j . Substituting 

(2.92) and (2.85) int© (2.90)

X
i

(2.92)

P-I
P

2

p+1

P

wE

P+1
P

M(E) B
1

2p^
(2.93)

But according to the hypothesis formulated at the beginning^ 

p 2. Therefore the right hand side of (2.93) will he 

hounded for every value of E. Thus we have shown the 

existence ©f,g(E). The existence of b(E) can he deduced 

almost immediately fey applying the Holder inequality to 

the second equation of (2.81)» This yields
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E

2

irE

P(x.E) dx

&

w:
P(x,E) dx

■]’[f *■]

~ j M(1) J ^ =* ~2-iyq

wE U 4 E

'l1 1

4 MP (E) (2.

Thus the existence ©f b(E) has been demonstrated. Equations 

(2.93) and (2.94) can be simplified in the case ©f bounded 

functions t©

|f i(x #E)( ^ R

^F2(x 9E) l £ R

where R is any positive constant. From (2.95) it can be 

deduced

rY

(2.95)

n F^E)) dx 6 y R1

(2.96)

|f 2(x ,E) |P dx y RP

Therefore it can be chosen

M(y) = y RP (2.97)
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Substituting in equation (2.93)

|g(l) ^
2

JC1

P 1/PD 

E R
i+|

P-1
h\~r

jci
p

ng [R B
»2

Ip^

4^>]

Szi
P

(2.98)

Equation (2.98) holds for* any value of p larger than 1. 

Therefore as p —^,00

g(E) 6 2| B(l,0.5)

4R

fl
(2.99)

Substituting equation (2,97) into (2.94), for p 00

(2.190)

Therefore

lKeq (*>t- ±S~S (2.101)

This result ©an be stated in the following manner: given any

bounded nonlinearity* its describing function will be less 

than or equal to the describing function of a perfect relay 

with a maximum amplitude equal to 4 2 lRs where R is the

superior bound of the nonlinearity.



2.9 Conclusions

In the present chapter the original integral trans­

formation given hy Eq. (1.19) and (1.20) has been trans­

formed into a more convenient form given by Sq. (2.19) and 

(2.20). W ith this* the problem of the inverse describing 

function has been reduced to the problem of solving a Vol- 

terra integral equation. This problem will be solved in 

the next chapter. However* even without having the closed 

solution of Eq_. (2.19) and (2.20)* interesting conclusions 

have been deduced. Some of them* such as the existence of 

the describing function* are of interest only from the 

theoretical point of view. Others, such as the geometric 

interpretation of the imaginary part of the describing fune 

tion* and the method of computing the describing function 

from the decomposition of the original nonlinearity into 

partial functions* are of more practical interest.

The main point of this chapter consists in the fact 

that to any single or double-valued nonlinearity* there 

corresponds two single-valued functions 0(x*l) and P(x,I) 

that contain all the necessary information to compute the 

describing function of the nonlinearity.



CHAPTER 3

THE INVERSE DESCRIBING F1NCTI0N

3,1 Introduction

In Chapter 2. the integrals that generate the descri­

bing function have been transformed into the following 

form?

x %(x,B)

HFT?
dx (3.1)

E

P(x,E) dx (3.2)

>

!q0 (3.1) and (3.2) have a more convenient form for our pur­

poses than the original form given in Eq. (1.19) and (1.20).

Also in Chapter 2 the inverse transform that generates 

Q(x9!) and F(x,E) as a function of g(E) and b(l) was shown 

to be non-unique, in the ease of memory-type nonlinearities. 

For this reason only the case of nonmemory-type nonli­

nearities will be considered below. In the present chapter 

an analytical method to invert the integral equations (3il) 

and (3.2) will be developed. From that, some interesting 

properties of the inverse describing function will be 

deduced.
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3.2 Inversion of the Integral Transformations that Generate

the Describing Function

In the ease of nonraemory-type nonlinearities, Eq. (3.1) 

and (3.2) are reduced to

(3.3)

(3.4)

These integral equations are of the type of Volterra integral 

equations of the first kind. In Appendix I the solution of 

the most general integral equation of this kind,

F(z) k(x)

©

2 2 (z - x*)

dx, for © < 0 <1 (3-5)

is given. The solution of Eq. (3.5) is

, „ 2 sin « 0 d
k(x) = # J. ': dx

z F(z) dz
L / 2 2a-
0 (x - z )

(3.6)

For the ease of Eq. (3 -3)

1 .2 ?

fir x^ g; (x)

F(x) = 2 » k(z) = z Q(z) (3*?)
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Therefore,: substituting (3.?) int® (3,@ ) yields,

x

a(x) - I JL ( ....a3...S<g->

* J if!—p
0 | r - z

dz (3.8)

integrating (3,8) fey parts, and assuming that g* (z) exists^

a(x) = I <1 Z2g(z) X2“Z2J^ + l V x =z

x2 - z2 d l z2g(z)

lo * ( ^**"**' d [!

@

^z2g(z^

z2g(z)

(3.9)

and performingthe derivative with respect to x

x

a(x) *

[z2g{z)l

rQ V X ~ z

(3,1®)

The solution ©f the integral equation (3,4) is obvious and 

yields, assuming that fe^Cs) exists.

P(x) <* ~
it _d_ 

2 dx (3,11)

3,3 Existence ©f the Inverse Describing Function

Sufficient Condition

Given g(E) and fe(E), equations (3,1®) and (3,11) 

generate the pair of functions Qt(x) and P(x), But as pointed 

out in Chapter 2, Q,(x) and P(x) are not sufficient, even in



the ease of monmeraory-type monlinearities, to determine the 

nonlinearity. Let ms state the problem of the inverse des­

cribing function in the following manner* Given a pair of 

functions g(E) and b(E), is it possible to find a bounded 

nonlinearity whose real and imaginary parts of the des­

cribing function are g(E) and b(E)? W hat are the conditions 

that g(E) and b(E) must satisfy to insure boundedness?

To investigate this problem let us rewrite equation (3.1©)

©(x) ■ 2

x

dz +
z2 gV(z)

f 2 2 
© U x - z

dz (3.12)

Therefore the sufficient conditions for ©(x) to exist are 

that both integrals on the right hand side of (3.12) exist, 

Let us consider one at a time.

2

©

z $(.z)

2 2 X -Z:

dz

/ vlp I * 
t(z) dz

—
z ^ dz

\T 2 21
1 x -z —

1

*
(3.13)

© ~ 0 

Equation (3.13) was obtained by applying the Holder ^15^

^^W e must impose the condition of boundedness in 

order to insure physical realizeability.



inequality to the first integral ©f the right hand side of 

(3*12)* The constants, p and q, satisfy the conditions

P > 1 I f > 1 J p + q 

It is hot difficult to show that

(3.14)

2p-l p-2*
WbZS’WZ'

(3.15)

If Holder’s inequality is applied to the seeond in­

tegral in the right hand side of (3.12) we ©htain

z
2

dz

1
1

(3.16)

where

x > 1 | t ^ 1 and i + ^ « 1

Hut

f z 1 ,»»■ / 2t, 2
dz -f z (x( z ) dz

■ 3s-l s-2^ x
nn > -

2s-l
s-T

(3.17)

(3.18)
2
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Thus from equations (3.12), (3.13)> (3.15), (3.16) and 

(3.18) we obtain

■ ■■ [ (3.19)

Therefore, a sufficient condition for Q(x) to exist is that 

the integrals

(3.20)

and

, {*>
(3.21)

exist for all values of x, where p is any positive constant 

larger than 2, It is interesting to note that the condi­

tions for the existence of the inverse describing function 

are more restricted than the conditions for the existence 

of the describing function (derived in Chapter 2).

(i) , x
Since g(z)

plies Eq. (3.20).

was assumed continuous Eq. (3.21) im-



Necessary Conditions

It will be shown that, for d(x) to exist, a neeessary 

condition is that g(z) be a continuous function. Let us 

assume g(z) to be a bounded function with bounded first 

derivative everywhere except at the point z = z^ at which 

it has a finite discontinuity, and eall

A ■ lira ^(z1 -6) (3.22)

0

B - lim g(zx +e> £> ® (3.23)

Define the function

h(z) ■ g(z) + (B (3.24)

where u(z) is the step function. The function h(z) will be 

continuous at z « and it will have a bounded derivative 

everywhere»

Prom (3.24)

g(z) h(z) + (A 

Therefore from (3.8) 

Q(x)

.Ji - n(z - zl^"| (3

1 jCl/" z^h(z) 

X Ixj dz

+ (A - i)J
X Z^Fi - U(z - Z

2 2 
X - IT

(3*26)



The second integral in (3 .26) will be

A - B

Q

If
2 2 

x - z

dz = A * B x3 for x z, (3.27) 
3 1

and

,Z1

A - B | z^dz _ A ~ B

2 J «j 2 2* 2
70 V X -Z

X

1 ---- dz

^ \/ 2 2 *

Z1 V x -z

■t

- (A - B) j 1/3(x -Zl r' - x' f2 2^3/2_ .2U X2.Z2 + l/3 * ’]
Zl < X

(3.28)

Therefore

Q(x)
1 _d f
X dx J

z^h(z)

2 2* 
x -z

dz + (A - B) x for x zi (3.29)

and

d(x) «* -
1 A
x Ax

z%(z) 2x - z,
J~^ J8 dz + (A - B)(x - --....*■—.—)

2 2 
X -z

\f~2~  2*
V x - Zj.

for x z-i (3.30)

lunations (3.29) and (3.3©) show that in spite of the 

existence of
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Q(x) is not bounded for x = z1. Prom this it can be de­

duced that for the existence of Q(x), g(E) must be con­

tinuous .

3.4 Examples

To illustrate the properties deduced above let us 

consider some examples.

Example 1

Assume

g(E) “ \ E 

b(E) « 0

Applying equation (3.22) we find

(3.31)

(3.32)

Q(x) - -
1 d

lx

js.

3
4 f ,dz

0 \/ x2 - z2

1 d 
t dx

3
1

, 2 2.5/2 2 2.3/2
(x - z ) ' 2(x - z Y-

r-. —- 4*  r 11 '• ■ ^—•' . 1 1 ' ' 1

*4(X2 - z2)1/2
2x; (3.33)

and F(x) is assumed to be single-valued and symmetric, then 

l/2 Q(x) = %(x) = Qz(x) » f^(x) = f^(x) « f(x). Therefore

f(x) * x^ (3.34)
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Consider the following describing function

g(E) « 0 1 ^ a

g(B) ‘ \/E2

ml f a2 E > a (3.35)

b(E) - O

Applying Eq. (3.10).

_d_
dz

z2 g(z) 4M z 
tr

f 2 2
Z'- - '-a' '

Therefore

Q(x) =
4M^
W -L

z dz

f n
z2 - a2 I X2 - z2

* 2M x a (3.36)

and

Q(x) = 0 ^ a (3.37)

From equation (3.11) it can he deduced that

P(x) = ©

If the non

(3.38)

linearity is assumed tobesymmeiric and single-

valued it may he shown (see Eq. (4.5) and Eq. (4.9)^ that,
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f (x) = = M u( |x| - a) sgn x (3.39)

where u(x) is the step function.

Example 3

This example will be divided into two parts. In the 

first, the condition for the existence of the inverse des­

cribing function will be illustrated. In the second part 

a method to synthesize memory-type nonlinearities from dis­

continuous describing functions is proposed.

Part 1

Consider the following describing function,

^E2 - a2 +
g(E) =

2M 2 2 
E - b E > b (3.40)

g(E) = 0

b(E) = - (b - a) 
t t E

b(E) =0

E ^ b (3.41)

E 'V b (3.42)

E ^ b (3.43)

This is the describing function of a relay with hysteresis 

and dead band. It has a discontinuity at E = b and, as it 

was shown above, Q(x) will be unbounded for this value. To. 

illustrate this point, write Eq. (3.8) for x *> b.

x

Q(x) -
TT
W x

2M d JU
b V?-s

dz +

(
dz

2 2 
x -z

(3.44)
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But

f\\i
'»j

2 2 
z -a

~1 2^ 
■xr-zr

dz

e sxn
1 x2-b2

x2-a2
(3.45)

and

Z' \/ 2 21 2 2
z Vz -b _ x -t b w

dz - 2 2

/ i If
„2 .2 
x - b

Therefore

2 2
r * 2 M d / Vb - a
‘x* w -x 3x

l/, 2 2* if 2 Jfe:'

Vb - a K x - b

■V "•* J JrS * ^ S (3.47)

And performing the derivative

x 2M 1/ b2 - a2 . 2M „4w-i
<i(x) “ T If  "g + ” sxn

x - b

2 ,2
x ■ - ■
~T ~2
x - a

+ M (3.48)

For this example,

Q(x) « § for x < b (3.49)

Equation (3*48) shows that

lim Q(b + £ ) = oo (3.

This result eould be foreseen from the fact that g(E) is 

discontinuous at 1 * I,



Part 2

Attempt new to find a memory­

describing function is given by (3. 

(3.43)

Define for 1 <C b

nonlinearity whose 

, (3.41), (3,42) and

b(E) »

(3.51)

(3.52)

Both functions will be chosen in such a way that g(E) and 

b(E) are continuous at E = b. W ith (3,51), (3.52), (3.40), 

and (3.42) we can find a bounded Q(x) and P(x), The next 

step will be to define

Q(x,E) - P(x,E) - 0 E ^ b (3.53)

Q(x,E) « d(x) E > b (3.54)

P(x,E) P(x) E > b (3.55)

and

where P(x) and &(x) are the inverse describing function 

found with (3,51), (3.52), (3.40) and (3.43), considering 

the nonlinearity to be of the memory type. For the ex­

ample under consideration the following choices will be 

made.

inm 2



Q(x) -

and for E "> b 

ft(x) -

t2(E) =
2M

E ^ b

2M V> 2
- a

b2

4M V
2

b
2

- a

t

I

, 2 
Tb

3M V b2 2
- a

E < b

x dx

3 '
z^ dz 

^ x2- z2'

itb"

2 M4 
t t  x dx r

+ w x dx

h

1 1 a f

X H f
o '

z \ 2 2' 
z - a

f x2 - z2'

. if *2'

%? dz

“^~T>
x -z

dz

f
dz

2 2 
x - z

Performing the integration and derivatives 

4M ^Tb

Q(x)
«b

3 - (* - ^-k2) + f s 1“'1\R:±5 1
I x -a

Prom equations (3*5.7), (3.42) and (3.11)

P(x) - (b - a) x x < b

(3.57)

(3.58)

(3,59)

M

(3.60)

(3.61)



X bP(x) »■ 0

Therefore for I -4 h

and

Fer E *!> b

§(x*E) » b

P(x.E) * 0

(3.63)

(3.64)

Q(x$E) *» —-L  

tfb f , 2 2 
h “ a x x C b (3.65)

Q(x,E) -

4M. \[b2~a2

m2

[«- f^7] , 2M . -1,1 x2 - b2 
+ sin. \/ 4=----- + Mt

x

2 2 
x - a

>:4b
(3.@ 6)

and

2M
P(xsE) ** —s- (b - a) x . x b

b

P(x.E) - 0 a; b

(3.

(3

Fer M 1, b

%(x) = 

Q(x) *

P(x) s

P(x) *

2 and a = 1

VT

n

3
w

x

(x - Vx =4

fer 0 4 x < 2 

2+ i ^'Ml.4=*♦1
x -1

x

x 2

x 4. 2 

x > 2



In figure 12 is presented the characteristic ©f the non­

linearity for E 2. For E <1 2

F(x,E) - F1(xsE) « F2(x ,E) = ©

This example illustrates the calculation of a hounded in­

verse describing function, given a discontinuous describing 

function*

3*5 Higher ©escribing Functions

As was shown in the preceding paragraphs, even in the 

ease of nonmemory nonlinearities, g(B) and b(E) are not 

sufficient to uniquely identify the nonlinearity. To over­

come this indeterminacy, the nth describing function will 

be, defined as the rati© of the amplitude of the nth harmonic 

to the amplitude of the input. Denote this by gn(E) and 

bn(E). Then

w

F(E sin 0S E) sin n 0 dj$ (3.69)

2t t

kn(E> = ilj F(E sin 09 E) cos m 0 d0 (3.70)

0

where Fjx(t), max |x( f )| I satisfies the hypothesis stated 

L . ft. t J

in the first chapter. Following the procedure for the case 

of the first harmonic, Eqs. (3.69) and (3.70) can be trans­

formed into
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tr/2

-~( F2<E sin E) sin n 0 d0

+ ij F^(E sin j^E) sin n 0 d0

t t /2 

2w

ffE
Fg(E sin 0, E) sin n 0 (3.71)

and

t t /2

VD
_1
trE

0

F2(E sin E) cos n 0 d0

trE
F-^E sin 0 , E) cos

tr/2

2i t

+ -53. j Fg(E sin 0, E) cos n 0 d0
TTE '

(3*72)

Introducing in (3.71) and (3.72) the functions P-j^x, E), 

P2(x? 1), ^(x, E) and Q2(x, E) defined in Chapter 2, equa­

tions (3.71) and (3.72) are transformed into
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«n<®) * n

t t /2

Q2(E sin 0g E) sin n 0 d0

0

t t /2

+ \ Pg(E s*n sin n 0 &0

0

+

tt/2

Q,^(E sin 0t E) sin n 0 60

+ Pj(E sin 0f E) sin n 0 60

+ J sin 0f E) sin n 0 60

2w

+ P2(E sin E) sin n 0 6.0 (3.73)

and



@ 9 -

r s'*
M®) ■ ib  1 I

to

Qg(E sin 03 E) cos n

0 

t t /2

j" Pg(E sin 03 E) eos n 0

Q,^(E sin 0, E) eos n 0

tr/2

^ P^(E sin 0, E) eos n0 djef

t t /2

2t t

(^(E sin E) cos n 0

P«(E sin 0, E) eos n 0 &0
2t t

'] (3.74)

In the above integrals the interval of integration tr/2 to 

3w/2 ean he divided into two parts, the first between t t /2 

and t t and the second between t t and 3tr/2 . In addition make 

the following changeof the dummy variable.

3 * « - 0  (3.75)

in the integrals performed in the interval t t /2 to t t .



IT (3.76)0 » 0

in the integrals performed in the interval w t© 3w/2.

0=2w » 0 (3.77)

in the integrals performed in the interval 0w/2 to 2tt.

But according to the definitions, P-j_(x, E) and Pgte, 1) are 

even functions of x and %_(x, 1) and odd functions

of x„ Also

(-1)11 sin n 0sin n(w - 0) - x „

sin n(w + 0) = («1)B sin m 0

cos n(w - 0) = (-1) cos n 0

n(w + 0) = («1)B cos n 0cos

Fi*om (3.73) to (3.81) we find
w/2 ' ■

^ ( Qg(E sin 0, E) sin n 0 &0

n/Z ■
sin 09 E) sin n 0p2(b

.0
(-1 )aJr (^(E sin 09 E) sin n n 0 

w/2

r°
' Pi (E sin 0 , E) sin n 0+ ("1) J ^1 

w/2, 
n /" w/2

(~D Q,^ (E sin 09 E) sin n 0

w/2

PX(E sin 09 E) sin n 0

s 0 A .

Q2(E sin 09 E) sin n 0 &0

w/2 

/®

+ / Pg(E sin E) sin n 

/ w/2

0 0

J

(3.

(3.

(3.

(3.

(3.82)
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and
?r/2

t>n(E) - ff} | f Q2(fi sin & S) cos n 0

'o 

t t/2
+ f Pg(E si® 0f E) C0S ® 0 &0 

0 n

(-D* / ^(E sin 09 E) e@ s n 0 <10

tt/2 

0

(-1) P^(E sin 0, E) cos n 0 6.0

tt/2

rr/2
(-l)nJ^ Q^(E sin 0, E) cos n 0 6.0

tt/2

(-1)®^ P-^E sin 0* E) cos n 0 6.0

+ [ Q (E sin 09 E) cos n $

n/2

P«(E sin E) cos n $ djef

tt/2

And rearranging (3,82) and (3*83) 

tt/2

g(E) = :Jjji ^ ^Qg(E sin 09S) - (-1) Q^(E sin 0f E)^J 

0

« sin n 0

(3*83)

(3*84)
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tt/2

VE> - r®

0

P„(E sin E)

(«=l)n Pj/E sin 0$ E)"j c®s n 0 d0 (3 .85)

Define

Q(x, E) = %(x, E) + %(xs E)

Q*(x, E) « ̂ (x, E) - Qg(x, E)

P(x, E) - P^x, B) - P2(x, E)

P*(x, E) - P1(xs E) + P2(xs E)

(3.86)

(3.87)

(3.88) 

(3.89)

From equations (3.84) t© (3.89) the following two sets of 

equations are obtained.

For n odds

tt/2

gn(E) “if ^(E sin E) sin n $

0

rr/2

P(E sin 09 E) cos n 0 d0

(3.90)

W E
(3.91)

0

For n evens
n/%

2
■*»*=*«

W E

J" %»(E sin 0S 1) sin n 0 d0 (3.92) 

hn(l) = ^ [ P$(E sin 0, E) cos n 0 d0 (3.93)



+ 1) 0 « (2n +

i'n / n+i\

i) 21 <-D1f ]
i-0 \ 21/

4I . 2i+l 
sxn

2i+l

(3.®4)

j  " -R“l H A i 1
e©s n 0 = 2 cos 0 + n ^ (-1

i^Ji/2 Jn~i-l\ 0n-l 21
2 e®sn"2*

1=1 V i-1

(3.95)

i=n=l / n+1

kll 221+1 Si„31+1 0sin 2n 0 * e@ s 0 ^ (-1)J

1=0 V 2i+l

(3.96)

Substituting (3.94), (3.95), and (3.96) int© (3.90), (3.91), 

(3.92) and (3.93),

x=n n+i\

«an-M(E)
2(2n+l)

•nrE
2. ‘-i)1

w/2
1=0 2i

4
I2I+T

Q(E sin 0, E) sin2l+1 0 (3.97)

bn(E) =
,n

,tr/2

P(E sin 0, E) cos® 0 &0

0
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i=n-l n+i

«2n(E) “ ' ^
2 (-1)1

i=0 \2i+l

21+1(
fr/2

n • i -|

d#(E sin 0, E) sijr 0 cos 0 40

,n /
t t /2

* wB
P*(E sin 0, E) cos11 0

2n

frE

i^n/2 / n-i-1 \

1 (-i)1!
i=l i-1 /

,n-l-2i

w/2

•I P*(E sin 0, E) cos 

‘'o

n-2i
40

(n even)

(3.99)

(3.100)

If in the above integrals the following change of variable 

is raa4ej,

x » E sin 0 (3.101)

Then

w> - 2 ■ <-l>1
x=n

i=0

n+i'

2i

4r
2i+l

•E

E
o

x2l+1 M*L$L 4x

2~*
(3.102)
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i=n-l

S2n^E^ “ "“3 (-1) i \~zi
- i=0 V 2i+l j E A

n+i \ i+i rE
2 I 2i+l

j-J Q*(x,E) x* 

0

dx

(3.183)

bn(E) =
*n

.E

tTEn+1
AU

14
2n <

TTEn+l
i

gn-l-2i

P(x, IHE2 - x2)2^ dx

n-1 
2x~W~

1=1

n-i-1

i-1
E

n-2i-l

E2i [ P(x, E)(E^-x2)" 2 ' dx

©

(n odd)

(3.1@ 4)

VE> * ~4k

*E J

. 2n

E n-1
. N . 2 2. 2 

P*(x, E)(E - x ) dx

©

t t E
n+T I <•«

i=l

n-i-i'

“ )*
i-1

n-l-2i

E n-2i-l

2il , *,2 2v ^
E j P*(x, E)(E - x )

0

dx (3.105)

Equations (3,102) to (3,1©5) show that (at least for non- 

memory- type nonlinearities) there must exist a relation he - 

tween all the functions g2n+1(Eb where n 1, 2, 3, and.



the same with g2n(E), to2n+l*E) and to2m^ ’ 'Therefore we 

can expect that, given any one of the functions g2]m+1(l), 

the Complete set of functions g2n+i(E) ©an he found. The 

same reasoning holds for the other sets of functions. As 

will he shown below, this faet is true for nonmemory*-type 

monlinearities.

In the case of memory-type nonlinearities the problem 

cannot he solved because of the non-uniqueness of the in­

tegral equation relating Sgn+i(E) an& Q(x, E), The same 

holds for the other sets of functions g£ra.(Ei)> h2n+^(E) and

W E)*

Equations (3,102) through (3,105), also show that if 

any of Q(x, E), Q(x, E), P(x, E), and/or P(x, E) are zero 

all the harmonics depending on this function will also he 

zero, In particular, one can say in the case of nonmemory- 

type, that if any one of the functions g^(E), gg(E), b^(E) 

and h1(E) are identically zero, all the functions belonging 

to the same set will he identically zero,

3e6 Derivation of the Functional Relation between

gx(E) and g2n+1(E)

Let ms consider the ease of nonmemory type nonlin­

earities, and find the functional relation between g2n+1(E) 

and g-jXB), As has been shown previously,



Q(x)
fx d[^z2g1(z)"]

f 2 2 
x - z

(3.106)

Substituting Eq. (3.106) into (3.102)

^ i(E). >asu <4 B-2*.

i=0

1
f /x

y0 |/x* - z2 ’ y E2 -X 2"1

2i+l

(3.107)

where

4 - (-i)'
n+i\

2i
2i+l (3.108)

Change the order of integration in equation (3.107)

. <„) = 2(2n+1)
s2n+l*“^ wb2

£

i=0

4 B'
■2i J d|z2 %(z)|

E
2i+l . 

x dx

- z2
(3.109)

In Appendix 6 it is shown



w
p=±

X “i
p»©

P (E2 2,u 2
z (i-p) (3,

V

i \ /2p>

p /V p

4 P

But

/—2 2\p y
(i - z r = (■

j=p / p

2_' (»l) j | 1 l23 z2(P“3)

3-0 . ‘ V 3

From Eqs, (3*112) and Eq. (3*11©) 

1 x21+1 dx

■ V 2 2 
x“ - z

P=i 3=P
12 2

p-@  3*=®

(3*111)

(3*112)

Changing the order of* smmraation ii S|. (3*113) 

I
21+i . „

x dx w
j=i P=i

- z2 3=0 p=®

(-1)

i\ /SpA /p
P+3 f M l I ) 4»PE2j z2(i-3)

P / H

(3*114)

If Eq* (3*114) is rearranged, it is possible to remove z 

from the first summation

2k



« S3- z2k E2(i~k) «

k=0

p=i

(-D
p+i-k

p=i“k

In Appendix 4 it is shown

p®i / i\ / 2p\ / p
Z ) ( u-» -

p=i-k \ p /\ p / \ i~k<

i \ / 2p\ f p

p /\ p / Vi-kJ

/k-£\ '

i-k

(3.115)

(3.116)

From (3.116) and (3.116)

k=i i~k f k~4\
2 <-*> (
k=0 \ k

Substituting Eq. (3.117) into (3.109)

g (E) ** .
s2n+ll ' e2 *

“2 j » g2(i-k) z2k

12 
i~k /

(3.H7)

i«n k-i

2 2 (-1)1
i«§ k=0

n+i\ / k«4\ / *4 \ 4iE”2k / E

"Ii+1
2i /V k / x i - kf '0

jz2 g-^z^ ,2k

(3.118)

Perf orming_ the integration by parts

1

d^z2 g1(z)|z2k

-E

g^(l) E2k+2 J gi(z) z2k+1 dz

° (3.H9)0



From (3.119) and (3.118)

4i
i=n k=i . /n+lW k-IY ’’^

Wx(E) = <2n+1) 2 2L (-iy ( I I AH*I n
1=0 k=0 N 2i/x k /VL-k

St CD

2(2n»l)

E

i=n k~i

Z Z <-i>
1=0 k=©

/ n+i\ / k--§\/

k(
2i/\ k/vi-1

z^2k+l
VEl) dz

(3.12®)

In Appendix 3 it is shown

i=n k=i n+l\ /k“4’

'21+1 “ (-D (3*121)

i»k

(2a+l) ^ ^ («))]

i=0 k=0 \ 2i / \ k

If the order of summation in Ef. (3.120) is ehanged and Ef. 

(3.121) is substituted into Ef. (3.120)

k-fk=n

ngan+10s> - (-1)" gl(E) - ^^f11 C-i)k k

k=0 k

i=n /n+i' E
4J z 2k+l

g1(z)(g) dz (3.122)

i=k \ 2i A i-ki

Now define the polynomial

k=n

Nn(y) = 3(2n .1)2 Tn,kJr2k+l
(3.123)

k=©

where



ao 03 * **

Tn,k
(-l)k k

k-i i=n /n+i

Z

i=0 v 2i i-k

4c
2J+T (3.124)

Therefore

s 2„+i<e) - (-D

f*

n*l(E)-|J gl(Z)Nn|dz
y®

(3.125)

Eq* (3*125) ean fee transformed into

Tn,k ‘ »

2k\ i“H
2

k / i=0

x 11
^ (-i):

/n+i^

2i

/2i-2k^

i-k

1
li+T (3.126)

Equation (3*125) gives the functional relationship between 

g1(E) and all the ggn+l^* Note that Eq. (3*125) applies 

for the general case of nonmemory type nonlinearities, 

single or double valued. It shows that, given the first 

harmonie of the output of any nonlinearity of the nonmemory 

type, when the input is driven fey a sinusoidal wave, it is 

always possible to find all the odd harmonics. In Table I 

are given the numerical values of the coefficients Tn *

Example

To illustrate the above results, consider an example*

Let

%(E) * H E@ (3.127)

From Table I is found
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M^(y> = - 4y3

%(y) ■ - - 12y3 + 24y5

N^(y) ■ ” 24y^ + 12®y® *. 12®y^

N (y) = - 4®y3 + 36®y5 + 84@ y‘5' 
4

. ™ 9

therefore* from Eq.„ (3.125)

S(E) ‘ -1E® + J§i( 29 dz “ - §3 e6

, 35 „6 3§ x 12
g-(E) -.■*? E + *-- TT—“
S5V ' 64

E

64E

6[<I>3 - «(»)•] dz X E

64

0

g^(E)
35 E® + 24 x 35 

64 641

E

®

® Fr z\3

6(|)5 5(
l)9]

dz = 1 l6

E6 * 35JT40

641

z 7
21 (|) -

dz ■ ®

For the example under consideration it ©an be shewn

ing the inversion formula) that the equation of the 

linearity iss . ■ ■ ■

(3.128)

(3.129)

(3.13®)

(3.131)

(3.132)

.6

(3.133)

(3.134)

(3.135) 

(Apply- 

non-



y “ x7 (3.136)

For

x ■ E sin $

7
7 - - sin 7 0 + B7 sin 5 fl

- || E7 sin 3 0 ♦ H E7 sin fi (3.137)

which verifies the results obtained by the application of 

Eq. (3.136).

- 33 -

3.7 Derivation of the Functional Relations between * (E)

b1(E) and b2n+i(E)

Consider the functional relationship between b^(E)

(E) for the 

From Eq. (3.104)

b2n+i(E) for the case of nonmemory type nonlinearities

w e> - •!S>| p(x)(b2 • xVd*
WE

i=n

2(2htl)

E'

E

2n+2 2
i=l

2n-l

i-1

%2n-2i

• E21 P(x) (E2 - x2)™’1 dx

'0
For n = 0S Eq. (3.138) is reduced to

E

VB> - -

(3.138)

P(x) dx
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p(x) * ‘ l ast1* bi(x).
(3.140)

From (3.140) and (3.138)

fe2n+l^

,E
4® / .2 2.n , f 2 , /
% 1 (E - x ) d lx b (x)J

x=n

2n+l

S'
I ^
i=l

2n-i\

i-1

,2n-2i

E

0 s
,2i ')n“± d[x2 bx(x)J- (3.141)

Integrating Eq. (3.141) by parts* and rearranging the sum­

mation

fe2n+2^ (2n+l) (-1)11 bx(B)

E j=n-l
+ Ssilf xb-^(x)

E2
(-1)

n-l\
3 I L£*23+2

I (B) 4x

0
3

+ 245ili) 2 2 <_!>/ x bl(x)(|,8ll+a.

JQ*0 I
vv. /©

i^n-p-l M ( 2n-i \ / n-i-1^

. i-iY
■ • \

n-x
4

(n-i) — 5— - dx

i=l i-1
(3.142)



Ira Appendix 5 it is shown that.

i=m~P“l

£
n (-D

i«l

2n=i\ /n-i-l'

i“l/\ p

(ra-i)
4

R-X

1
2I+T

n+p+1'

(p +1) 4P+1 n

/n-1"

P

(3.143)

Prom (3,143) and (3,142) it may he seen that

j=ra-2 /n-l>

2
1=0

2n4 1 1^(1) 2  (-l)J ( I <l) - dx

E2

(=Dn |SS-S xh

E*

2(2n+l)

E2

•E

ivx; (^)2n dx 

n=2
xhj(x)^ (~1)P (g)

E

x.2p+2

0 p=0

(2n-l)(»l)n b,<E)- ^
,n f

dx

2n4“ xb^xHf)211 dx

A

+ ps( xhl(x)

io

p=n-3 / n=l\
(-DP[m4*

p=0

+ (8n+l)4](|
_)

(3.144)

But from Eq, (3,143)

n^V

n 4n ( ] + (2n + 1)

n+p+l

(p + 1) 4P+1 (3

Therefore from Eq, (3,144) and (3,145)
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(-1)“ (2n+l) D^B) + “3
rE?/

§

*)

(3.146)

where

rn(»)

p=n~l

p=®
(-1) ‘(p+l) (

/ n+p+l'
„p+l 
4r w

\ 2p+2

(3.147)

Example

For n = 3, Eq. (3.147) yields

Y-<w) “ 24w2 - 16@ w4 + 192w6 (3.148)

Therefores from Eq„ (3.147) the seventh describing function 

will he given

'

ht(E) = ^b^E) -4
' ■ '0

xhx(x) |j“24(§y

+ (3.149)

3,8 Conclusions

In the present chapter has been developed a method to 

synthesize a nonlinearity from its describing function. 

However., as was shown, the knowledge of the describing func­

tion of a nonlinearity is not sufficient to determine uniquely



the nonlinearity. Nevertheless, it is always possible to 

eonstruet a nonlinearity with a prescribed describing 

funetion^*^. Even in the ease in whieh the describing 

function is discontinuous, the inverse-deseribing-function 

problem can be solved by using a memory-type nonlinearity. 

The method was illustrated with an example. It was also 

shown that, for the nonmemory-type nonlinearities, all the 

odd and even harmonics of the output of the form sin n mt, 

depend on the same functions Q,(x) and %*(x) respectively.

The same property has been deduced for the odd and the even 

harmonics of the output with terms of the form cos n rnt.

They depend on the same functions P(x) and P#(x) res­

pectively. Prom this property was deduced a functional re­

lationship between the real part of the describing function, 

g-^(E), and all the functions gga+iCB)*

Jn analogous functional relationship was deduced be- 

tweeithe imaginary part of the describing function, b^CE) 

and all the functions

(±\
' 'The describing function must be such that the con­

ditions for the existence of the inverse describing function 
are satisfied (See See. 3.3).



fable’ I

k
Numerical Value of the Coefficients Tn
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k

n X.

0 0 2 3 4

1 i ■ © „ s ■
~ 3

0 0 0

2 0
6

~ 5

12

5
0 0

' ' '

3 ©

/

12
«* *mTT'

7

@ 0

7

6®

7
0

...

4 0 1
20 

“ 9

18®
0

^ 420

9

280

9
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CHAPTER 4

NUMERICAL METHODS

4.1 Introduction

In chapter 3 has been developed an analytical method 

for the solution of the inverse describing function prob­

lem. In chapter 2, the non-uniqueness of the inverse- 

describing- function problem was also shown. Therefore, to 

reconstruct"a nonlinearity from its describing function, 

some "a priori** knowledge about the nonlinearity is re­

quired. Or, if nothing is known about the nonlinearity, 

some arbitrary assumptions must be formulated about the 

nonlinear element.

In this chapter, it will be assumed that the non­

linearity is such that when its input is driven by a sin­

usoidal wave, the output of the nonlinearity will be 

periodic with only odd harmonic components. This type of 

nonlinearity is known as a "symmetric nonlinearity".

From Eq. (3.103) and (3.105) the conditions for all the 

even harmonies to be zero are, in the case of nonmemory 

type nonlinearities,

where Q#(x) and P*(x) are defined by Iq. (3.87) and (3.89).

(4.1)

and

P*(x) “ 0 (4.2)



Therefore from Sq. (3»®7) and (3.89)

and

%(x) - ^(x) - q(x) (4.3)

P1(x) ■ - Pg(x) * p(x) (4.4)

(4.3),, (4.4), (3.86)

G
O

0
00

<
r\

■
gm

<k*)= ^(x) + 9g(x) * 2q(x) (4.5)

pw = PiCx) - Pg(x) ■ 2p(x) (4.6)

From Eq. (3.10) and (3«H)

r* m \f s(z>]

q(x) * £

p(x)

yx2 -

l-ISE [x2fe(x)l

dz

The functions F^(x) and Fg(x) will be given by

(4.7)

(4.8)

Fx(x) - Q1(x) + P1(x) » q(x) ♦ p(x) (4.9)

and

Fg(x) - Clg(x) + Pg(x) - q(x) - p(x) (4.19)

By means of Eq. (4.7), (4.8), (4.9) and (4.1©) a symmetric 

nonmemory-type nonlinearity can be synthesized from its 

describing function. However, the operations expressed in
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Eqs. (4.7) and (4.8), are in general very difficult t© per­

form, if not impossible. Also, in the majority of eases, 

the describing function is not known by an analytical ex­

pression, but by experimental data. Therefore a numerical 

method is needed.

4.2 Numerical Computation of the Inverse 

Describing Function

In the next few paragraphs a numerical method for the 

computation of the inverse describing function will be de­

veloped. It will be assumed that the describing function 

is knbWn Only for discrete values of E. Thus

g(Ej) = g-j 3 l,2,o... n (4.11)

b(Ei) = l>t i = 1,2,.... m (4.12)

Different subindiees will be used for the real and imaginary 

part of the describing function since, in general, the 

values of E for which g(E) is known are not the same as the 

values of E for which b(E) is known. Let us define

s(z) = z2g(z) (4.13)

and

r(x) - x2b(x) (4.14)

From Eqs. (4.13), (4.14), (4.8) and (4.7)
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J
 x a s(z) 

dz

..— ....-7 . dz (4.15)

\) 22/
0 ^ x -z

and

p(l) - - | iXM (4.16)

The original problem of finding the inverse describing 

function has been divided into two parts. The first one 

consists in performing the first derivative of a function 

known for discrete values of the independent variable. The 

second consists in performing the integral expressed by 

Eq. (4.15). Numerical Differentiation of Eq. (4,13) 
and Eq. (4.14)

The functions s(z) and r(x) are known for discrete 

values of z and x. Let us define

2
s(zj) = sj - zj g(zj) (4.17)

where

Zj = Ej

and

Kx*) - rA = xx2 b(x±) (4.18)

xi “ %

The numerical differentiation of s(z) and r(x) can be



achieved toy approximating: these functions in each one of 

the intervals,, z<C z ^zj an^ xi-l ^ x x±* ^ func­

tions that will toe called sJ“1(z) and r1“1(x). Therefore

Since the values of z^ and x^ will not toe uniformly 

distritouted* a second-degree polynomial makes further de­

velopment relatively easy to handle. Therefore* if a sec­

ond degree polynomial is chosen to approximate the func­

tions s(z) and r(x)* it is found that

s(z) = s^1(z) for ^ z ^ Zj (4.1f>)

and

r(x) ■ r^-“^“(x) for x^^ x < xjL (4.20)

s^“^(z) “ z^

zj+l“ z3°l

A
z

(4.21)

and

Xi+l”Xi-l

Bi-1
x

where
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A.. =

A 8.1+1 A sj

A z,J A z.
J*i

and

A r-i+1

A x.1+1

Vj

A x.

The operator is defined as

Ayk - Yk+i - Yk

From Eq . (4.21)

m
j-1

dg^^Cz)

dz
. A. ,

z“zj-i Azj'1 Zj+rzi-1 J

From Eqs. (4.22)^ (4.18) and (4.8)

p(x)
w

4

B
i«l„ % A

t‘.' . (3x ‘ xi-xi-l) + -T~i-----
i+1 i~l A xi-i

for xi<=1 4 i ^ ^

numerical Integration of Eq. (4.15)

The problem of finding q(x) is now reduced to 

putation of the integral

q(x) * §

m(z)

f*2-^2

©

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

the com~

(4.28)



where m(z) is known for discrete values of the variable z 

by E<£. (4.26). This can be achieved by approximating m(z)

in each of the intervalss z 

function p^”^(z). Then Ef.«

j=l < z < zy  

(4.28) becomes

by a suitable

<l(x)

/
ma(z)

dz (4.29)

for zn+1

Sinee s(z) was approximated by a second-degree poly- 

nomialj it seems logical to approximate its derivative m(z) 

by a first-degree polynomial (linear approximation.

m . , z „-m ,z . , m .-m . _i-1/ x 2-132 3-1 . 3 0=1
ur (z) » ~—  ^—  + -------------z .-z . _ 

0 0=1 zrzo-i

z

(4.3©)

where

(4.31)

v 'This reasoning holds strictly only in the case that 
s(z) is really a second order polynomial. However* a linear 
approximation will be used for the integration to simplify 

the development.
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and

R.
A-3m.

‘i "5^7

Substituting Eq. (4*30) into (4*29)

(4*32)

4  A-isst(x) dz

!j-l

22
X -z

. i + 5
zn+lzn

A zn *

dz

i 2 2 ’ 
X z

(4.33)

Onee the integral (4*33) is performed,

t(x) i
-S. Z iZ i=1 / z-l 1 Z.

1 -f--4 ± P^.i (are Sin -lli - are sin -1)
1 Azj-.i 1 1

+ R.t-i * ^
2 2 

X “ Zj-1 f 2 2%  

x - Z-j)

+ i p,n are sin
am «

\f 2 2

+ Rj j yx -zn (4*34)
A zn

If the summation in Eq^. (4*34) is divided into two parts?

the first containing all the terms in whieh the expressions 

z i„i
are sin — £•— and

2 2
x » z^i appear and the second summa­

tion containing all the terms in which the expressions 

are sin — and )j x2 - zj * appear, it is found that



zj*i

j=i z3-i

,, 2 2
+ H. . ,. M X -z_. -, 

3-1 V 3”1

7

arc sin

j=n i z .z . ,
i -U=ipi

j=l
A z, i 3-X •

® arc sin + R j„i V x^~ z j

P„ are sin
x

v „ zn+lzn

3 n i >,
(4.35)

In the first summation of Eq. (4„35) make the following 

ehange of the index of summation

i “ j - 1

Then

(4.36)

If the last term of Eq. (4.36) is introduced into the first 

summation of the same equation
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q(x) = |

n

J.5*

zi+lzi

A Zi
P.* arc ♦ R± Vx2 - z±v\

n

1
2

z 4 *« z . z
J.-----i p # arc sin

Rd^f*a - zi]

tr- o zn+lzn
1 a A *„

(4.37)

It is not difficult to transform Eq. (4.37) into

q(x) *

-■*.£ [

j=i L

(^ p, . !ti!lp >

Azj 3 Azj-i

Z 4 lZ

4 / arc sm _£
j-1 x

+ <Rj - r j

,-i)^
- I Pn -ftf * iH0 x (4.38)

In order to simplify Eq. (4.38) let us consider the ex­

pression

ZJ±l!l p „ *J-rjZj i Z

Az j ^ A Z j^ ^"1

Substituting Eq. (4.31) into (4.39)

(4.39)

z.i+izj r _ zj-Xzj p>

Azi 3 Azj-i 3-1

_ nJ*lzrm.1zi-H ■ “)z3-l~"3^lz,1SI4Z,• T-m-s iZ

Z3+l‘Zj Zj"Zj-l

mjnzrm.iz^i-m^izj-i+mjz^i'm^iz/nl^iz^i

(zj+i~z(zrzM }
Zj (4.40)



Adding and subtracting mjzj to the numerator of Eq. (4.40) 

and factoring

Z 0 — Z c Z » i z «
p . J=LJ. *

A zj A Zj.i Zj+l"Z3 zrz \m

* zj(Rj “ Hj-i*

* Zj A^x (4.41)

,' " : : ’• •

Sinee* from Eqs. (4.23) and (4.32)

a^ ** Rj+1 “ (4.42)

Substituting Eq. (4.41) into (4.38)

q(x) * | 2 Aj=l^zj are s±n "x^ + V*2 " zj

= |-nf^^R0X (4.43)

for x 4 zn+1.

W ith the method described above* using the RPC 4000 digital 

computer*^ the inverse describing function corresponding

^^It was found in the initial computation that the 

discontinuities in the first derivative of the describing 
function resulted in large errors in the inverse describing 
function. Therefore* the programming of the differentiation 
was performed in sections* with end points at the disconti­
nuities of the first derivative of the describing function.

( E. difada[l?^j )
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to the describing function shown in figures 13 and 14 was 

calculated. In Table II the experimental and exact values 

are listed. In figure 15 the experimental values from 

Table II are plotted.

4.3 Numerical Computation of the Describing Function

In chapter 2, it was shown that the real and imaginary 

parts of the describing function of a nonlinearity can be 

expressed by the following integral transformations:

.1 ' ■ ■ -

g(E)
Tf

0

,E

x Q (x)

^E2 -X2'
dx (4.44)

b(E)»-
tr:

P(x) dx (4.45)

For the same reasons discussed in paragraph 4.1 for

the ease of the inverse describing function, it is in­

teresting to find a numerical method to compute the above 

integrals. In a manner similar to that used for the cases 

of the inverse describing funetion,1 the functions Q(x) and 

P(x) may be approximated by polynomials. In order to 

simplify the procedure a linear approximation will be used. 

Therefore, for the interval Xj^ x

ftJ“1(*> = -J— Tc
j-i“fj L

^xj.i* »ixj >*.■ * (4.46)
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TABLE II

INVERSE DESCRIBING FUNCTION OF THE DESCRIBING FUNCTION 
SHOW N IN FIGURES 13 AND 14 

EXPERIMENTAL AND THEORETICAL RESULTS
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TABLE II (Continued)
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- x [PjXj-l-P3-lXJ + (pj-l- Pj)x] (4'47)

where

Qj * Qtxj) (4.48)

and

Pj = P(xj) (4.49)

Substituting (4.36), (4.3?) into (4.34) and (4.35) and after 

some transformations

g(E)

3=n

y Qj-i(xrxj+i)+cii(xj+i"xj-i)+ai+i(xi

3=1 °(*j-

f — ^

XJ^ E^-Xj xj

”TS--  + arc sin TT
, " Si+1 . 2<i0

(4.50)
Ea . ■ * 2(xa-Xn+i) «B

b(E)

n

X
2

1 fr<x3-l“x3) <xr*j+i}

Pn+lxn~Pnxn+l 2

x -X ’ , 
n n+1

tf®
^  5 for *n^E<x (4.51)

W ith the method described above, using the 400© digital 

computer, the describing function corresponding to the relay 

with hysteresis and dead band whose characteristic is shown 

in figure 16 was computed. The results are listed in



16. Gharaoteristie of a Relay with Hysteresis and Dead
Band
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Table III* In figures 17 and 18 the experimental values 

listed in Table III are plotted* In reference 17 the 

program of computation is discussed*

4.4 Conclusions

In the present chapter, numerical methods to compute 

the inverse describing function and the describing function 

have been developed. Both methods are based on the approx­

imation with a polynomial of a function, known only for 

discrete values of the independent variable. The selection 

of a polynomial to fit the original function is arbitrary. 

Other kinds of functions, besides the polynomial, can be 

used in the method presented in this chapter. However, to 

simplify the development, polynomial fitting is convenient. 

In this chapter the polynomial was restricted to a second 

degree only to simplify the development. If a better 

accuracy is needed a higher degree polynomial can be chosen* 

The philosophy of the method will remain the same. The 

development will be more involved however.
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TABLE III

DESCRIBING FUNCTION OP THE RELAY 
W HOSE CHARACTERISTIC IS SHOWN IN FIGURE 16
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CHAPTER 5

NUMERICAL INVERSIONS POLYNOMIAL TYPE NONLINEAHITIMS

5.1 Introduction

Given a nonlinear element characterized fey the func­

tional relationship between its output and its input

y * f(x) (§.l)

the describing function is defined fey the integral trans­

formation

where

2w

_1_

W E
f(E sin a) sin a da

sin a) cos a da (5.2)

x = E sin a (5.3)

K - g(E) + j h(E) (5.4)

In general, for symmetric, single-valued nonlinearities, 

there will fee no phase shift in the output fundamental, 

and thus fe(E) is zero. The problem to fee investigated is 

the development of a procedure for carrying out the inverse 

transformation, i.e., given as defined fey (5.2), what 

is the functional relationship of the nonlinearity.
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The problem will he simplified initially by restricting 

f(x) to the Class of single-valued odd functions.

5„2 Polynomial Describing Functions and Nonlinearities

The input-output characteristic of a general polynomial 

type nonlinearity is described by the following equation.

f(x) = a^ x + a^ x + 

n

o o o« ^ an x
n

k=l
*k

Jk (5.5)

Substituting (5,5) in (5.2), the describing function com- 

ponents are

2ff
n

g(E)

and

wB
k=l

a^ (E sin a)^ sin a da

n
2w

i 2 *k a*'1

k=l
o

A
w

n

k+1
sin a da

,k + 2

ak
k*l

<^F>

m

©

EL

ajj (1 sin a)K cos a da

k-i

2w

i ^ a^ 1 sink a eos a da * ©

k=l

so that
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Keq = S<E> “

2 y- k-l f

as in Sridhar H-

The describing function is also a polynomial and 

may be written

E K
eq

n

n

k«l

. _k 
ak ^k E

k-l

P^)

r(LF>

where

n

2
k=l

\=

_g_ r t^-2) 

^ rc^)
1,2,3,..., n

(5.7)

Ck " ak V k - 1,2,3, ..n

Equation (5.7) is of the same form as (5.5). Therefore, 

the characteristic polynomial describing f(x) is given by

n
f(x) - 2' 

k=l

k

k
x (5.8)



Hi

A table of bfe is shown below, where

k + 1) = k P (k)

r(|) ^ fr

and in general

|pi ^k + 1^ 1’3'5* • • • ° (k 1)

»n7F

b, =

b« *

1

S

3
4

3 2 

liw

5 
8

64 

6 35W

b« -

J4

b* =

k

k + 2^
-~z— >

5.2 Examples

Example 1. Consider the describing function

K = g(E) - .75E? - 1.2582E3 (5.9)

Find the nonlinearity whose describing function is given
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k ■- 3, 4

From (5.8), (5.1©) and tables of b^

f(x) = x3 + 2x4 (5.11)

If an analytical expression of the describing function is 

not given and tabular data for the describing function is 

known, the problem then reduces to finding a polynomial of 

best fit. ©nee a polynomial of best fit is obtained the 

previous analysis is effected.

Example 2. Consider the plot of the describing func­

tion

in (5,9). From (5.7) and (5.9)

E Ket - .75E3 + 1.2582E4 (5.1©)

; E
o0

0 !

>
%

i 1 2 ... 3... . ;.4 __ 5 6 7 8 :

>e4

•4
.0 .75 3 6.75 12 18.75 27 36.75 48 :

Find the nonlinearity.

An assumed 4th order polynomial was programmed on the 

digital computer using the method of least squares. The 

resulting coefficients of the assumed polynomial is

K - - .07635 + .12192E + .69166S2 + .©1048E3 
eq

- .000617 E4 (5.12)
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From (5.8), (5.12) and. tables of k = 1J2#3,4,§, the 

nonlinearity is

f(x) = - .0763§x + .143@ 3x2 + ,9222x3 + .©1543x4

- .00©9f7x§ (5.13)

Mote that the predominant coefficient in (5.13) is that of 

x3< A plot of (5.I3) is shown in figure It, coinciding 

with that of f(x) = x3.



\

- 1X8 -

5 X

Mg* 19. Example ©f layer si ©a of a P@ lyn©mial Type
Describing Function
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CHAPTER i

NUMERICAL INVERSIONS PIECEW ISE LINEAR DISCONTINUOUS

NONLINEARITIES

6.1 Introduction

This chapter will describe the analytical formulation 

And computational technique used to attack the inverse des­

cribing function problem for a general elass of nonlinearities 

specifically those representable by a relation y « f(x) which, 

if drawn in the xy plane* may be approximated by a finite 

number of line segments in the plane. This implies that the 

nonlinearity will not be frequency sensitive, but it may be 

asymmetrical and discontinuous.

The extension to asymmetrical nonlinearities should be 

apparent from this analysis, and sinee the asymmetrical case 

is principally of academic interest it will not be presented 

here.

6.2 Piecewise Linear Single-Valued1 Nonlihearities

In this section an analytical formulation of the prob­

lem of describing function inversion for single-valued 

symmetrical nonlinearities will be presented. The problem

1Single-valued except possibly at a set of points of 

zero measure? specifically, finite discontinuities are

allowed*
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is defined as “Given the describing function of a non- 

linearity, find an analytic representation for the non­

linearity” . The analysis here is for the simplest ease 

in order to provide intuitive feel for the problem.

The fundamental assumption is that the nonlinearity 

may be approximated by a finite number of piecewise linear 

segments. The slopes and y-axis intercepts of these seg­

ments will be chosen so that the piecewise linear approxi­

mation will have the same describing function as the ori­

ginal nonlinearity for a specified number of input signal 

amplitudes.

Consider a piecewise linear, single-valued, symme­

trical nonlinearity as shown in figure 2®, which is an N/2 

segment approximation to a nonlinearity whose describing 

function is known. This describing function will be 

matched for the input amplitudes Ek « xk, k = 1,2,..., N.

For the k/2th segment
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k I Ak+2

■j

KLg, 2®, Single =>¥aliiei, Symmetrical Nonlinearity



5yk/2 ' "k/2 1 + V* (k - 2,4,6,...,N)

(6.1)

where M is the number @ f subdivisions on x.

he t

x = E sin at * E sin a (6.2)

For the restricted N. h. (nonlinearity) considered here, the 

D. F. (describing function) is real and has no de term,

henee consideration of the first coefficient is sufficient

[*•!». Wl«

2w
A & i C

g(E) “ describing function « l f(x) sin a da

(6.3)

Since y = f(x) is single-valued and symmetrical,

rr/2
g(E) - ^ J f(x) sin a da (6.4)

©

This integral will be evaluated by the insertion of the re­

lation given in (6.1), and will be shown to lead to a set 

of 1 simultaneous linear algebraic equations in the slopes 

and y-axis intercepts, whose solution will determine the 

nonlinearity from experimental or analytical describing 

function data.

Inserting (6.1) leads to
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51 dr

s(E> * m' (aij x + d^) sin a da +J (m^ x + dj^sin a da 

0 al
,a

4> ,,l»T © • © *

k

k«2

(mk/2 x + dk^2) sin a da + ...

•nr/2

mn+2 dn+2N .
(-~-r- x + — p—) sin a da (6.5)

where

n

a-j_ = Arc sin -g-

x2
= Arcsin g

* Ak
ai, = Arcsin

Xj

E

(6.6)

an « Arcsin
~n

E

subscript n is such that, for a given value of the 

variable A, the nonlinearity is driven into operation on 

the th segment.

Mow substitute x = E sin a into (6.5)



- 124

*.<®) ^

a-i
r

(m^ B sin a + dj) sin a da +

“k

.. + 1 (mfc/2 E sin a + dv/p) sin a da +

®k-2

ti/2

" + / E sin a + °!z) sin a da
?

a.n

(6.7)

Now

/ sin^ a da s | j^a - ^ sin 2a

/ sin a da = - cos a 

and the integration can he performeds

j^a - \ sin 2a^

4. I mlE

s(E) “ H) ~~Z~

(6.8)

(6,9)

7* al - —

a - \ sin 2a - dl cos a

^ <*» ©

a.

"V »•

bl ,/«E i
...+ V ... | a - ^ sin 2a

ak

©

a.
k

dfc/2 e0S'a * 
la

“W B -,tt/2

a - ■§ sin 2a
n+2

k-2

tt/2

cos a

an

Now notice that from equations (6.6), the angles
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ak* • • •>> can fee evaluated for a given value of 

E.

W e now define

aij
Aresin

E,
(6.11)

and evaluate (6.10) successively for i - 1,2, ..., H, thereby

forming an Nth order set of simultaneous linear algebraic 

equations whieh must fee satisfied fey the m^/g and d^/g5 

(the subscripts on the limits of the integrals in (6.10) 

have been relegated to the second ordered subscript in 

order to conform more closely with standard matrix notation).

g(E±)

aii r

a - ^ sin 2a - d1 I cos a

o( L J

a.

^ » 0 •

a

a - i sin 2a

ik

ai(k-2)

lk/2 cos a

a,
ik

+ ..

J ai(k-2)

m _ E. .
n+2 i

t t /2

| sin 2a

ain

a

a.
XB

(6 *12)

with i = 1,2,No

By eTaimating the from the coefficients of

the unknowns Jmk/2 and dk/2) may fee determined, and (6.12) 

will appear as
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g(Ex) * all m-^ + bn dl +
a12 m2 + b12 d2 + ...

g(E2)
Z a21

+ b21 dl +
a22 “2 + b22 d2 + ... (6.I3)

s (e n)

w

aui m^ + bNl dl aN2 m2 + bN2 d2 + , ..

where many of the a's and b*s are zero because the signal 

will not get into the higher ordered intervals for small 

inputs.

Choose the E^ such that E^ = x^, i = 1,2, .,., N; and 

choose the such that

Ai> xi+l - Xi = A x (6.14)

i.e., let the x increment be constant.

The set ( 6.13) then appears as follows:

g(Er) ■- an mx + bu dx

g(E2)■“ a21 ml + ^21 dl . '

g(E3) = a31 m1 + 1>31 41 + a32 »2 ♦ 1>32 d2

S(V - a4! »! + b41 dl + a42 m2 * b42 d2 

0

The set (6.15) may be written in matrix form as 

M g
VVvA

(6.15)

(6.16)

with g being the describing function data, where

A : . _ .)
g ^ •••, g(EN) r (6.17)



are N dimensional eelumn vectors., and

al(N/2) bl(N/2)

M

all bll a12 b12 © o o ©

a21 b21 a22 b22 a2(N/2) b2(N/2)

lNl bNl aN2 bN2 © o © o a N(N/2) bl(N/2)

(6.19)

is an N x N square matrix.

Notice that M will be •’quasi-diagonal11, the 

(6.15) may be solved pairwise. Therefore

M * 
Sm*

all bll 0 0 0 » o e » « ©

a b 0 0 0 0o 0 O O o v
21 21

a b a b « 0 o
0 9 0 0© V

31 31 32 32

a41 b41

©

a42 b42 0 o o a o ® ^

6

©
«

aNl bNl aN2 bN2 © © © *

©

’ aN(N/2) bN(N/2)

(6.20)

For the more complex nonlinearities the matrix M will 

not have this characteristic appearance.
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The use of N/2 segments to approximate the nonlinearity-

in the right half-plane leads to N equations in N unknowns,

2
requiring N coefficients in the M matrix and knowledge of 

the D. F„ at the N amplitudes,

\ = xi , i = 1,2, ..., N (6.21)

A digital computer program to generate M and perform 

the inversion required by (6.16) has been written for N = 50 

using the Burroughs Datatron. Ah important point to make is 

that the matrix M does not depend on g, so that M can he
W V VVu W w

generated once, inverted to get and can be stored

on tape. One then has

= M-1 q (6.22)
U>_ u^'-

and the production routine need only perform! matrix multi­

plication.

6.3 Examples

In figure 21 the behavior of the inversion technique 

is indicated for the case of simple ideal saturation.

The nonlinearity has a gain of unity, and it saturates 

at - 15, The dotted line is the original nonlinearity, 

with the solid straight line segments being the results of 

the piecewise linear inversion. The nonlinearity was de­

liberately chosen to have a break in the middle of a seg-
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y=f(x)

18

16+

•••••.Original Nonlinearity 
—  Inverted from tabular data*

Fig, 23-. Inverse Describing Fanction 
Saturation nonlinearity, Gain = 1, Saturation level

@
2
1



ment so that the inversion could not possibly match the 

nonlinearity exactly, in order to see whether or not the 

resulting approximation would he usable. If the corner 

had occurred at x = 16, the resulting fit would have been 

exact* The conclusion is that the piecewise linear appro­

ximation is certainly good enough for engineering use, 

since the only visible error is in the range 14 ^ x ~ 16.

It should be noted that the actual "dynamic range" of the 

inversion used here extends to + 50, but only a part of 

this range is shown in figure 21.

In figure 22 a similar presentation is made of the 

results for a saturating cubic nonlinearity, where again 

the saturation level was chosen so as to have a sharp 

corner in the middle of a segment. The fit of the piece- 

wise linear approximation to the cubic part of the non­

linearity is clearly visible, and the only region of error 

is 10 x 12. Again the range of inversion extends to 

+ 50.

In figure 23, the nonlinearity is a more difficult 

relay with dead band, the discontinuity being chosen in the 

middle of a segment. Here the error near the discontinuity 

is fairly large, but the inversion solution quickly converges 

to the desired nonlinearity. The inversion is exact if the 

discontinuity value is even. The accuracy here could be



f (x)

. . . . . . .  Original nonlinearity
—— Invented from tabular data

Fig. 22. Inverse Describing Function 
Saturating Cubic Nonlinearity^, Saturation level » 1®



y-f(x)

Original nonlinearity 

Inverted frorrr tabular data

8 20 22

Fig. 0, Inverse Describing Fraction Relay w ith Dead Band 
Half-dead-band width = 11 j y j = 10 for x 11



markedly improved by grouping more segments near points 

where the slope of* the describing function changes rapidly, 

lte,j near x * 11* fhe range of inversion extends to ♦ 50.
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CHAPTER 7 

CONCLUSIONS

7.1 Conclusions

An analytical approach to the inverse-describing- 

function problem has been developed in this report. To 

accomplish this task a suitable mathematical model was 

defined to describe the behavior of a nonlinear element. 

The definition of this mathematical model was chosen in 

order to be compatible with physical nonlinear elements. 

This enhances the practical usefulness of the work. W ith 

this mathematical model the mechanism of the describing 

function has been investigated. The principal result is 

that the real and the imaginary parts of the describing 

function of a nonlinear element are related by an integral 

transformation to a pair of functions that are called 

Q(xsE) and P(x* E).

These functions are completely determined by the 

characteristic of the nonlinear element. Sufficient con­

ditions for the existence of the describing function have 

been deduced.

For the case of memory type nonlinearities it was 

found that the solution of the integral transformation 

that relates g(E) as a functional of Q(x,E) is not unique. 

As a result of this work a method ©f constructing nonlin-
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earities with a describing function identically null was 

developed.

For the case of nonmemory type nonlinearities the 

functions Q(x,E) and P(x,E) do not depend on E. Therefore 

the functional relationship between the describing function 

and the functions d(x) and P(x) is reduced to a V©1terra 

integral equation of the first kind. In general it is not 

possible to find the solution of a Volterra integral 

equation in closed form. Nevertheless, for the case of the 

describing function, an analytical solution was found for 

Q(x) and P(x) as a function of g(!) and b(E) respectively.

Even if it is true that to any nonlinearity there 

corresponds one and only one pair of functions <l(x) and 

P(x), the inverse transformation does not have the same 

property0 To any pair of functions Q(x) and P(x) there 

corresponds an infinity of nonlinearities. Prom this was 

concluded the non-uniqueness of the solution to the inverse- 

describing-function problem.

Sufficient conditions for the existence of the inverse 

describing function have been deduced. It is interesting 

to note that the conditions for the existence of the inverse 

describing function are more restrictive than the conditions 

for the existence of the describing function. It was also 

found that a necessary condition for the existence of a 

bounded inverse describing function is the continuity of



the describing function in the case ©f nonmemory type non- 

linearities.

Nevertheless it was illustrated with one example how 

a bounded memory-type nonlinearity can be synthesized from 

a discontinuous describing function.

The original definition of the describing function 

has been extended to the higher harmonies of the output. 

These new functions have been called higher describing func­

tions.

It has been found that,, when the input of a nonlinear 

element is a sinusoidal wave* all the odd and even harmonics 

of the type Bn sin n eat (n » 1,2, .... ) depend on the same 

functions Q(x) and %*(x) respectively. The same property 

has been found for all the odd and even harmonics of the 

type cos n eat (n = 1,2,3,....). They depend on the same 

functions P(x) and P*(x). The functions Qt(x), Q*(x), P(x) 

and P*(x) are completely determined by the characteristic 

of the nonlinear element. Therefore, sinee g-^(E) determines 

uniquely Q(x), a functional relationship must exist between 

g^E) and all the functions S2n+1^E^

Similarly, a functional relationship must exist between 

b^(E) and all the functions Both relationships

have been deduced.

The goal of the method developed is to find the analy­

tical expression of the inverse describing function. How-



every if* the describing function has net a simple mathe­

matical expression, the integrals that result from this 

method are difficult, if not impossible, to perform. Also,

in many practical eases the analytical expression of the 

describing function of the nonlinearity being synthesized 

is not known. It is known as experimental data or as a re­

sult of a graphical or a numerical computation. Thus the 

necessity of a numerical method of computation for the in­

verse describing function is apparent. This problem has 

been solved by approximating the describing function of 

the nonlinearity being synthesized by a polynomial.

Also the integral that generates the real and imaginary 

parts of the describing function appears particularly appro­

priate to a numerical computation. A numerical method to 

compute the describing function for a general type of non­

linearity has been developed and two other independent nu­

merical techniques have been presented.

Several extensions may be made to the method proposed 

in this report. First of all the method may be extended 

to non-conventional describing functions, as the root mean

square describing function, the Gaussian input describing

(1)
function R. C. Booton, etc

^^Some unpublished research has been done by E. G. 

diTada in this area.



In the case ®f a symmetric nenmemery type nonlinearity 

the describing function gives the complete information about 

the nonlinearity. Thus it seems that an exact method of 

analysis and synthesis may be developed on the basis of the 

describing function.

Also it seems that a series development of a function

in terms of its describing function, or funetionals of it, 

fil
may exist.' /

The method may also be extended to a more general class 

of nonlinearities. This type may be the one in which the 

functional relationship between the input and the output is 

not restricted to a simple function, but to a differential 

or difference equation.

If these extensions can be made, a great insight in 

the analysis, synthesis and identification of nonlinear 

systems may be gained.

(i)
Some unpublished research has been done by 1, 

diTada in this area.
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APPENDIX 1

Let us consider the following integral equation

f

F(x)

A
(z)

,2 2. a
(x - z )

dz 0 a < 1 (1)

Equation (1) is a general case of (3.3) and (3.4) and 

a special case of a Volterra integral equation of the first 

kind. Multiply Doth sides of (1) by H(x,^ ) and integrate 

with respect to x between 0 and

0

F(x) H(x,^)dx »j dx ( -.iff I dZ

/ 2 2\d
(x - z )

(2)

where H(x,^) will be determined later.

If the order of integration in (26) (Diriehlet’s for­

mula) is changed, we have

F(x) H(x,^)dx ** ( <£> (z) dz f - H(x,|)

J (x* - z^Y

z

dx (3)

0 0 

If H(x,^ ) is chosen properly, the integral

(** - **>2xa
dx (4)

can be reduced to a constant.

Make the following change of variable in equation (4)
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Thus

where

(6)

2
z

p(y , |) -

(7)

(8)

Let us make another change of variable in equation (6)

then

t . ay .-A
l V2

t -n

and

dt
dy

i -1
r

■2
r -r,

Prom equations (6), (9), (10) and (11), we find

.1

dt
ta(? - M )a-1

0

1(1, f^> ‘ i { Hl' ^ >-----

i 1 '1 )a'

i (y*^ )U - t)
a-1

0

,a.U2 \a-l
t(f - y)

dt

(9)

(11)

(12)
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Therefore if we cheese

5 )' = < % -r)
a-1

the integral (12) is reduced to

1

It V^7) = i 1 t-“(1 - t)0"1 dt

0

« 5 B(1 - a, a)

- 4 P(1 - a) P (n)

fr

2 sin arr

From (5), (7) and (8)

'— -------------------------
’* ' 2,1-a

( J - x )

Using (14) and (15) the equation (3) is reduced

VT
.____ F.<*> * <lx----------- -------- I 4>(z) dz

2 2 1-a 2 sin a t t I
(V - x) y

0 > 0

Therefore

•t

4
2 sin a w d 

“

x F(x)
= tr

0

^ 2 2.1-a
(1 - *)

dx

(13)

(14)

(15)

(17)

Equation 17 gives the solution of the integral equation (1)
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APPENDIX 2

In Appendix I the solution of the integral equation

F(x) dz 0 4 a O
, 2 2x0,
(x - z )

(1)

was shown to he

■T
f(|)

2 sin a t t d
It

x ,— dx
d^ 1 . _2 2. 1-a
■? Jit

0

)

(2)

Therefore for

a = 

f(z) -

F(x) -

A
2

z h^z)

X

m2(x)/ V}h2(^)

Bii (x) "2 21
x - n

di (3)

Equation (2) becomes

. / x „ 2 a
V x) “ S E

X

dz

z h2( ^ ^ d(^

mi(z)f z2-vF\t2-z2'

0

(4)

0
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APPENDIX 3

Let us consider the following summation 

i»n k-i

k

/n+i\ /k«5\ [

+1) (-!)■ 

1=0 k=0

2 2 ,
2i ) \ k / \i- k

The above summation can be rewritten as

k=i

4T

2T+T (1)

x=n /n+i'

sn ° (2n +

But

2 4
2i+l

i=0 \&L I k=0

t. y

[+1 (=1)

k

'2

i-k,

s«t

k

3»k

j=0

(-1)

s \ /t+j*l 

5 l »

k-J l\ J

Therefore

(2)

(3)

i‘<‘D-(>-<'

From (4) and (2)

(-1) (4)

i=n n+i\

i=0

(“l)1

21 j

4*

2i + l
(5)

But
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i=n

SID + 1) P = (2n + 1) 2- (-D

1=0

For 0 = w/2

n+i\

\ 2i

4 sin21+1
H+I sin

(•)

n
(-D

2'n + 1 (7)

From (7) and (5) we find

Sj j - (-1)
n

(§)
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APPENDIX 4

Let us consider the summation

i [ i\/2p\ f

H-s - 2  (-1)1

p*i-k

k
H

P\P/ vi-k

(1)

Make the following transformations

2p

4*

/p-|

P

(2)

From eqs. (1) and (2)

k
%

i\ / P
_ i
P~2

(-1)1

p^i-k p/\i-k/ \ p

(3)

But 

P \ / i fi\

it

. , „ . (i-k)l (p-i+k)I p(i-p)t
x-k/\p/ Vk >x-P

(4)

Substituting E^. (4) into (3)

k
Mi

i\

k
p=i-k

(-DJ

k \ /p-5

i-p/V P

(§)
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But

i-p /

(6)

f©r i • p ) k ®r p <( i - k,

Therefore the lower limit in (5) can he extended to zero.

(7)
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APPENDIX 5

Let us consider* the following summation 

i=n~j-l

^ - Z <-«1

i=l v i-1

„n-i

(1)

But

n-=i=l 'n — i

(n -i) - (j + 1)\ i I \ j + i

From eq„ (l) and (2) we obtain

(2)

S* - (j ♦ 1)

i=n-j“l / 2n - i

ki
(-1V

i-1 i - 1

n - x
n-i

+ 1

(3)

But

2n “ i

2n - 2i + 1

From (4) and (3)

Sn “ (3 + 1)

n-j-1 /2n - l\ /n - ±\

2 (-D1 I

i=l \ i / V 3 + 1 /

(4)

4n-i

- irn

(5)
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Let us make in (5) the following change of the index i

p = n - 1

From (§) and (5)

n»l / n+p\ / p

S
j _
n

(-1)" <j + 1) £  (-1)P

..PTj+1

4P

2p + 1
(7)

2p /\j+1

Let us define

n

[n - 2 (-1}

p=0

p

2p j

P

j

4P
3 + 1 (8)

But

i=n n+i

sin(2n + 1) 0 ~ (2n + 1) sin 0
Z ('1)1( )s£r (rtB* ^

i=© V 2i

n

• (2n+l) sin 0 (-1) I J SI+I (l~cos 0)

i=® \ 21

(9)

2 i
Expanding (1 - cos 0) , and rearranging the summation in 

increasing powers of cos 0 we find

4 .2
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sin(2n + 1) 0 - (2n + 1) sin (-1) 3 cos2j 0

3=h
2

3=0

i“n

i=0

n+i’

(-i y
211 \ 3

4
21 + I

n

* (2n + 1) sin 0 ^ (-1)J T* e©3 .3
n

3=®

Therefore from (10)

n

Sln ^ *0-V-£ - <2» ♦ *1 ••• *J *

3=o

But

sin (2n + 1) 0

sin 0

can he expanded, in the following fashion

3=n /n+3^
slnlf; . (~i)n ^ (-i)J 4j|

3=® > 23 /
sm

cos23

From Eq. (11) and (12)

1) - (-1)B 43

n+3

23

(11)

(12)

(13)



Now from Eqs. (8) and (7)

st = (-1)“ (j +D T 5+1 - (j +n n

Substituting Eq0 (13) into (14)

n 2n + 1
4 J+1 (j + 1)

'n+ j+1

24+2
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APPENDIX 6

Let us consider the integral

•E X2n+1 a*

V - 2z v a ” * v 

Make the change of the dummy variable

t »

2 2 
X - z

2 2 
E - z

Prom (2)

dt
2x dx

E^z2

1 - t
E2 » x2

„2 2
E - z

Prom (2) and (4) we find

. 2 2  w 2 2% /n ■ . , 2 2.2 
(E - x )(x - z ) * (1 - t)(E - z ) t

Therefore

(1)

(2)

(3)

(4)

(5)

E ’ - x Vx - z
,2 -2 V/ —2 _2 _ (e 2 - z2) ft(l-t)

x dx dt

fTTTf*2 2 
x V x = z

2^ t(l - t)‘
(7)

I
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Prom (2)

2 / 2 2s 2
x « t(a - z ) + z

Therefore

x2n » It(E)2 - z2) + z2

I
n i=n /n,

■2 [,)**<■* - *•>*. ,2(n-i)

i=0 v±

Substituting (9) into (1)

i=n /.m

* z2n

i*0 i

(I)2 - 1
if

A

t1”* ^l-t)"^ dt

i=n /n

« A z2n- 2 Z

i*=@ ' i

E 2
(7) -1

i P a + *)T a)

F q +1)

But

r 1 q - i) r a)__(alii
(i + 1)

(ii)2^
ff = W (11)

Prom (11) and (10)
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&
/

' z

2n+l
x dx w

2

i=n
Z

z2)1 z2(n-i)
(12)

where

/“

\ i

(13)
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