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PREFACE

In the last few years the study ef nonlinear mechanicé
has received the attention of numerous investigators, either
under the scope of pure mathematics or from the}engineering
point of view, |

Many of the‘recent developments are based on the early
works of H. Poincare [liland A, Liapunov EZ]. As examples
can be cited the perturbation method, harmonic balance, the
second method of Liapunov, etec.

An approximate technique developed almost simulta-
neously by C. Goldfarb [_31 in the USSR, A, Tustin L{( in
England, R. Kochenburger [5]in the USA, W. oppelt [ 6]in
Germany and J, Dutilh [7] and C, Eeary [é] in France, known
as the describing funetion teehnique, can be considered as
the graphical solution of the first approximation eof the
method of the harmonic¢ balance.

- The describing funetion teehnique.has reached great
popularity, principally because of the relative ease of
computation involved and the general usefulness of the me thod
in engineering problems,

However, in the past, the describing function technique
has been useful only in analysis. More exactly, it is a
poverful toel for the investigation of the possible exist-
ence of limit cycles and their approximate amplitudes and

frequencies.
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Several extensions have been developed from the ori-
ginal deseribing function technique. Among these can be
cited the dual-input describing function, J. C. Douce et
al. E?]g*the'Gaussian-input‘deseribing funetion, R, C,
Booton Eld}; and’the root-mean-square describing'function,
J. E. Gibson and K. S. Prasanna-Kumar [11].

' In a recent work whiech employs the deseribing function,
C. N, Shen [12] gives one example of stabilization of a
nenlinear system by introdueing a saturable feedback. How-
ever, Shen?s work cannot be qualified as a’synthesis’methed
since he fixes "a priori" the nonlinearity to be intreduced
in the feedback loop. - -

a refinement of the same principle used by Shen has
been proposed by Ra Haussler {}é}. The goal of this new
methed of synthesis is to find the deseribing funetion of
the element being‘syntheéized. Thefefure, for Haussler's
method to be useful, a way must be found to reconstruct the
nonlinearity from its describing funetion. This £e called
the inverseedeseribingAfpnction«preblem and is’essentially
"a  synthesis problem. |

Thié»is nof_the only cease in which the inverseadeseri;
bing-funetion-problem can be useful, Sometimes, in efder
to findethe‘inputmeutput characteristic of a physical non-
1inear‘element,'a harmonic test e¢an be eesier to perform

rather than a static one (which also may be insufficient).
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- The purpese of this repoft is to present the results
of research on a question which may thén be conecisely
stated as: "If the describing function of a nonlinear
element is known, what is the nonlinearity?"

The question may be divided into two parts, the fifst
part being the determination of the restrictions on the.
nonlinearity (or its describing function) necessary to in-
sure that the question has an answer, and the second part
the practical determination of that answer when it exists,
Accordingly, the material in this report is presented in
two parts, |

| Part I is concerned with determining what types of
nonlinearities are (and what types are not) uniquely de-
termined by their conventional (fundamental) deseribing
function. ‘

This is done by first showing the non-uniqueness in
general of the describing funetien, and then constructing
a:class of null functions with respect to the deseribing
function integral, i.e., a class of nonlinearities not
identically zero whose descriﬁing_functions are identically
zero, The defining equations of the describing,fﬁnction‘
are transformed in suehca manner as to reduce the inverse
describing function problem to the probleﬁ of solving a
Volterra integral equation, an approach similar to that

used by Zadeh E}é]o The remainder of Part I presents the
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solution of the iﬁtegral,equatiens and studieé“the effect
of including higher ordeé'harmenics in the deseription'of :
the output wave shape. The pOint of interest here is that
inclusion of the second harmonic may cause the desceribing
funcétien to become uniquely iﬁvertible in some cases, |
Part II presents practical numerical techniques:forlugﬁ
effecting the inversion of types of describing functiens{*&
resulting from various engineering'assumptionéias”tﬁ;ihe
probable form of the nonlinearities from which,saié:hescri-
bing-funétions were determined. |
| Tﬁe most general method is numerical evaluation of the
sblution to ihe Volterra integral eqﬁations developed in‘.
Part I. A second method, which is perhaps’the easieét'toy
apply, requires a least squares curve fit te the given des-

~1 )
eribing function data., Then use is made of the faect that

the describing function of a polynomial nonlinearity is it-

“self a polynomial to caleulate the ceoefficients in a poly-
"nomial approximation to the nonlinearity,‘ This approaeh is
indicated when one expects that the nonlinearity is a
smooth curve, such as a cubie characteristie., The third

- method presented assumes that the nonlinearity can be |
approximated by a piecewise linear discontinuous fuhbtion,_
and the slopes and yaaxiS'intercepts of each‘linear segment
are computed., This apﬁroach is‘indicated when one expects

a nonlinearity with relatively sharp ceorners,
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It may be remarked that the ﬁelynemial approximation
and the piecewise linear appreximation are derived inde-
pendently of the material in Part I,'  |

All three methods presented in Part II are suited for
use with experimental data as well as with analytic ex-
pressiens for the describing functions involved. Indeed;
an analytical expression must be reduced to discrete data
for the machine methods te be of use.

To the best of the authors’ knowledge, researeh in the
area of describing funetion inversion has been nonexistent
with the exception of Z%deh's paper [iéj in 1956, It seems
that a larger effort in this area would be desirable in the
light of recent extensions of the describing function ita_
self to signal stabilization of nonlinear control syétems
by Oldenburger and Sridhar E}é]_and Boyer [?é], and the
less restricetive study of dual-=input describing,funetioﬁs
for nonautonomous systems by Gibson and Sridhar K?i],

There presently exist techniques fer determining a
'desired describing_funetidn for use in aveiding limit eycle
oseillations in an already nonlinear system (Haussler
[15])? and the methods presented in this report now allew
the exact synthesis of the nonlimear element from the des-

cribing funetion data.
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THEORY OF DESCRIBING FUNCTION INVERSION



CHAPTER 1
DEFINITIONS

1.1 Introdug@ion

/ Tﬁe puqusé of the present chapter is to define a
suitable mathematical model for a géneral type of nonli-
nearity. The nonlinearities eonéidered will be restricted
to the kind known as "gain type nenlinearities," The pro-
perty of this type of nonlinearity is that the output va-
riable depends only on the actual value of the input, its
past history and the sign of its first derivative., How-
ever, the output does not depend on the actual value eof
~the fifst derivative of the éutput, ner on its higher de-
rivatives.,

" This mathematical model will be chosen in order to
mateh the nonlinearities that are found in praetiece. Thus,
many of the definitions that in prineiple can bé estab-
‘lished arbitrarily, will be chosen with a view toward the
physies of the situation, o

Once this mathematical model is defined, a formal de-

finition of the deseribing function will be established.

1.2 Befinitions

Let us consider a nonlinear element and define as x

énd'y the input'and @utput variables r~esp(A,act;:i.:vely_o Assume



that a functional relationship will exist between the in-
put and the output

y = £(x) | o - (1.1)
Let x be a sinusoidal wave of amplitude E and angular fre-
quence ®. |

x = E sin ot (1.2)
The eutp‘ut-vairll be a periodic funetion of time with pe-
riod 27/w. If the output y satisfies the Dirichlet condi-
tions, it can be expanded in a Fourier series

A@(E) . : ' o ‘

y(t) = g + Al(E) ¢os ot + Az(E)_eos 2ot + ...

v

+ By(E) sin wt + Bo(E) sin 20t + ...  (1.3)

Where (E) and B_(E) are the Fourier coefficients given by
,_ nt) @ n : _

!

~the following expressions

A,(E) = ?T.j f(E sin ot) cos not dt (1.4)
- * -
B(E) = %f f(B sin ot) sin net 4t - (1.5)
9 .

If in the equations above we make the change of .variable:

/

o= ot | . (1.6)
and keep in mind that T = 21/w, equation (1.4) and (1,5) are

transformed inte
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- Ap(E) = %if- F£(E sin a)‘cos nada 1.7
| o v |
| 2w
By(E) = #\  f(E sin o) sin nade (1.8)
0

The ratio between the‘nth harmonic to the amplitude of the
input will be defined as the nth deseribing function. Then

A "nt? 1 N e
gn(E),? = " f (B sin a) sin nada (1.9)
. o
- 2
(E) ,
bn(E)‘é AnE = %E" f(E sin a) cos nada | (1.10)
0

For n=1we hgve the first (or conventional) deseribing
funetion or, simply, the deseribing function. This is gen-

erally répresented by the eomplex quantity

Keq(E) = £(E) + j B(E) - (an

S

Given the definition of the deseribing funetion, we can ask
if the simple functional relationship (1.1) is sufficient

to describe completely ﬁhe behavior of the nenlinearity; at
_»1east with respeét to sinusoidal inputs., One simple examéle
will reveal that equation (1.1) is not sufficient to deter-

mine, in some cases, the deseribing function.
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Consider the case of a relay with hysteresis and dead
band, whose characteristic is shown in figure (1). It is
obvious from the figure that the characteristic of the ele-
ment 1s double Valued for certain ranges of the variable x.
Therefore it will be neeessary to define a criterlon whlch
will permit us to resolve the indeterminaey that appears
when x lies‘within-the interval in whieh f(x) is double

iraluedo The following eriterion will preove convenienté

Let £(x) be équal to fl(x) for negative inerements of the

independent variable x and equal to f5(x) for positive in-

erements of the same variable, where

f1(x) =0 -b<dx4a
£,(x) = M x>a (1.12)
£,(x) = -M x < b

and
folx) = 0 -a < x40
£,(x) = M x> a3
£,(x) = M x<-a

However this mathematical model is not sufficient to
deseribe the real behavior of a relay with hysteresis and
dead band. As a matter of fact the output of such an element
not only depends on the actual value of the input, but alse

on its past history. For the example under consideration,
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Fig. 1. Characteristic of a Relay with Hysteresis
and Dead Band



@69

the output is identically mull, if the absolute value of x
has never reached a maximum valﬁe‘larger than b, Therefore
the describing function is identically zero if E < b, This
infénmétion cannot be given by equation (1.1).

Consider now the more ggneral funetional relationship

y = £(x) h(l%). ' ' (1.14)
where | o ' ‘
h(E) = 0 . g <bp
" | (1.15)
n(E) = 1 E>0b |

It is not diffieult to show that equation (1.14) is suffi-
cient to desoribe the behavior of the relay under considera-
tion, at least with respect t6 siﬁusbidal inputs. In
figure (2) is shown the three dimensional represeﬁtation of
equation (1.14). | | |

The following definition will be esiablishedz Given

the functional relationship
B A F[x(t), max [x(}?)q (1.16)
. - ~ FL£t = o
for x = E sin a
y = F(x, E) | (1,17)

when (1.16) is double valued with respect to x (independent
variable), y is equal to F;(x, E) for negative increments
‘of x, and equal to Fg(x, E) for positive inerementé of x.

The describing funetion of F[é(t), ?3xtlx(:r)plﬁill'be de-
, £ ¢ -
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fined as the following complex quantity:

Kgq(B) = g(B) + j b(E)

where
2%
1 . R
g(E) = &= F(E sin a, E) sinada
0
2n
b(E) = gﬁ F(E sina, E) cosada

0

(1.18)

(1.19)

(1.20)

The function F{f(t), max t[x(*f){] also will be defined
et . | T

as the inverse deseribing function of Keq(E).

The nonlinearities to be dealt with in this work may

be divided into two groups:

I) Nonmemory type nonlinearities, are those for which

a mathematical model of the form y = £(x) is suf-

fiecient to describe its behavior.

II) Memory type nonlinearities; are those fer which a

mathematical model of the form y = F{;(t), maxe(g){l
’ A

is needed to describe completely its behavior,

In both cases f(x) and F[}(t), maxftix(j’)(] can be double

<.
valued with respect to x. '

1,3 Conclusions

In this chapter a convenient mathematical model to des-
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eribe the behavior of gain type nonlinearities has been de-
fined. A formal definition of the describing function has
also been established. From this definitien will be de-
rived, in the next chapters, an analyiical appreach to the
'inverséndescribingefunction=prob1ém.f This approaeh will
be, of course, only vaiid for ﬁhe type of nbnlinearities
for whieh the mathematical model applies. Then, from new
on, forv"nonlinearity“ will be undérstood, "gain type non-

linearity.”



CHAPTER 2
DESCRIBING FUNCTION TECHNIQUE

‘2.1 Introduction

In Chapter 1 the kinds of functions whieh can eom-
'pletely desecribe the behavior of a nonlinearity, in the
sense that they are suffieieﬁt to determine the Peurier or
eonventional deseribingkfunétion were discussed. It was

‘soheluded,that the-functional relationship, .

y = £(x) (1.1)

"~ is not enough for some types of nonlinearities. Ameng

those nonlinearities not included in (1.1) will be thése
which are said to have memofyo Since the behavier of the
majority of systems with memory-type nonlinearities de-

pends on the maximum value of the input, the more general

relationship
y g.\ F x(t)g?agtix(f)\] (1.16)

wés adopted. For sinusoidal inputs Eq. (1.16) reduces to
y = F(x, E) where E is the amplitude of the sinusoidal sig-
- nal at the input of the nenlinearity. |

In the present Chapter Eq. (1.19) and (1.20) will be.
transformed, in erder'te find a elesed eﬁpressi@n that will
permit us, not only td solve the problem of the iﬁverse

describing function, but also gain mere insight inte the

conventional deseribing functien itself,
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2.2 Transformation of the Integral Eguatioens (1.19) and
(1.20) 1
Consider the function‘

y = F(x, E) (2.1)
which satisfies the conditions stated‘in Chapter 1. Let
F,(x, E) and”Fé(x;;E)bbe the two branches of F(x;VE) in the
intervals in which it isrdeuble valued. According to the
definition given in Chapter 1, the describing function will
be | |

2% v
g(BE) = éﬁ}f F(E sin §, E) sin g ag
B o ,

(2.2)

b(E) =

" In order to simplify further development the follewing
change of the variable of integration will be performed in

"Eq. (2.2).
g=p+mn/z | (2.3)

Once the transformation (2.3) is performed, Egqs. (2.2)

are reduced to



+3/2m
g(E) = éﬁ F(E cos B, E) cos B dB
-n/2
(2.4)
+3/2m
b(E) = - F(E cos B, E) sin B dp
-7/2

Because of the periodicity of F(E cos B, E) and cos B, Eq.

(2,4) ean be transformed into

W

g(E)v= éﬁ F(E cos B, E) cos B dB
(2.5)

" 'F(E cos B, E) sin B dp

In the interval 0 te w the increment of the independent va-
riable is negative and it is positive in the interval T to
2n, Therefore, according to the hypothesis on F(x, E) for-

malated in Chapter 1, Eq. (2.5) can be rewritten

"

1 :
g(E) = - F,(E cos B, E) cgs B dp
' 0

2% :
+ F5(E cos B, E) cos B dB ‘ '.(2.6)
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Al i
b(E) = -véﬁ  F,(E cos 8, E) sin g dp
e .
, 2T
+ Fz(E cos B, E) sin B dB
o

where F;(x, E) and Fy(x, E) are single-valued functions
éf(i) X and E.
Let us decompose Fl(x, E) and Fé(x, E) in the follow-
ing manner: |
Fi(x, E) = Py(x, E) + @(x, E)
| (2.7)
Fp(x, E) = Pp(x, E) + Qy(x, E) |
“where Py(x, E), Py(x, E), Q;(x, E) and Qy(x, E) satisfy the
following conditions for all values of x and E
P,(x, E) = Py(~ x, E)

(2.8)

]

Q(x, E) = - ( - x, E)

Qy(x, E) = = Qy( - x, E)

i.e., Pj; Py are even in x, and Q;, Qg are odd in x., Teo

(1) .
Fl(x,E) and Fl(x,E) can be double-valued functions

in a set of points of zero measure; i.e., a finite or in-
finite denumerable number of discontinuities may be allowed.
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shew that it is always passiblé to find the set of funetiéns
P,(x,E), Py(x,E), Q;(x,E) and Qz(x,E) that simulganeausly '
verified Eq. (2.7) and (2.8), change the sign ef x in Eq.
(2.7) | :

Fy(-x,E) = Py (-x,E) + Q, (-x,E) = P1(x,E) - @;(x,E)
| | (2.9)
Fyo(-x,E) = Py(-x,E) + Qy(-x,E) = Py(x,B) - Qy(x,E)
Eq. (2.7) and (2.9) constitute two linear systems of e@u§¢
tions in which the unknowns are P,(x,E), Py(x,E), Q;(x,E)
and Qy(x,E). These are, | o
Fl(x,E) = Pl(x,E) + Q,z(x,E) ,
, . (2.10)
Fl("xsE) = Pl(xsE) - Ql(xgE) :

]

Fz(x, E) Pz(x,E) + Qz(x,E)
(2.11)

F2(=X,E? = Pz(X,E) = Q«g(xsE) |

The solution of system (2.10) and (2.11) will always exist
because its determinant is different from zero. Solving

"Eq., (2.10) and (2.11) results in,
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P]..(x,E)nn_é-» Fl(x,E)‘
1

Q, (x,E) = 5 F(x,E)

Pp(x,E) = 5 Fy(x,E)

Q,(x,E) = & Fy(x,E)

The functions defined b‘vaqo (2.12)

and will be single-=valued functions of x if Fl(x,E) and

+ Fl(nxsE)

- Fi(é#,E)

+

will exist everywhere

Fy(-x,E)

Fb(ex,E)

(2.12)

Fz(x,E) are themselves single valued functions of x, Once

the validity of the deeomposition of the functions Fj(x,E)

and Fp(x,E), given by Eq. (2.7), has been prdved, Eq. (2.7)

may be substituted into (2.6), in order to transform Eq.

(2.8) into the conventional form of the Volterra integral'

equations, This substitution yields

e
g(BE) =‘§ Jf P, (E cos
0

Bs

By

B,

E)

E)

E)

.E)

€oSs

cos

€os

¢os

B dp

B dB

’ ds]
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b(E) = - -V%E[f Pl(E cos B, E) sin B dp -
Yo | S

2w
+ /(ﬁ Pé(E_cos B, E) sin B dB
-
. |
- +;f ‘Ql(E'cos B, E) sin B dp
o o

+/( Q,(E cos B, E) sin B dB |

JIf in Eq. (2.,13) f:he change of variable B = ;Z‘ + o '
is made in all those integrals that areftakén ovef'the'in; -'
terval ™ to 2w, vit is found, after some 'elementary. t_r_'ig_é-_; '
nometric transf'ormé.tiohs, that,

24

g(E) = -lﬁ{f P(E cos @, E) cos # dﬁ
0 f

il

+( Q(E cos #, E) cos § dﬂ]

(2.14)

0

+J< Q(E cos §, E) sin g ag _}
- Jo

b(E) = - _lﬁ[f P(E cos @, E) sin @ d}Z“
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nwhere

P(x, E} = Pl(x, E) - Pz(x,E) |
(2.15)

ax, E) = Q,(x, E) + Qy(x,E)

But, because P;(x,E) and‘Pg(x;E):are even functions‘of X,
P(x,E) also will be an even funectien of x. Fer similar
~reasons Q(x,E) will be an odd functlon of X. Keeping in
mind the above properties of P(x,E) and Q(x,E) Eq, (2. 14)
can be censiderably simpllfled. o

In Eq. (2. 14) d1v1de the interval of 1ntegrat10n into
twevsnbintervals, the flrst between 0 and ﬂ/2 and the se-
cond between m/a and w, In addition make the change of
varlable B=wu-@in all those integrals that are taken
over the interVal ﬂ/2 to w, After some elementary trige-

nometrlc transformatlens we obtaln,

/2

g(E) = é%Jf Q(E cos B, E) cos B 4B ,(2016)
' w/2
b(E) = - .g;ﬁ( P(E cos B, E) sin B dB (2.17)

To transform Eq. (2 ,16) and (2. 17) into the conventional

form of the Velterra“ integral equations, let
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E cos B = x ‘. v »(2.18)
Finally
LE |
R (L - e O
b(E) = - PGB e (2.20)

Diseussion of Eq, (2 19) and (2 20)

- The conventional methed of eomputing the describing
function of a nonlinear element requires the-knowledge ef
the actual shape of the output signal of tbe»nOnline;r ele-
ment ‘when its input is driven by a S1nusoida1 wave. Then”a
Fourier analysis must be performed in order to find the ame:
plitude of the first harmonie. This procedure is sqpetlmes
rather tedious, especially in the ecase in which the éhahac»
teristic of the nonlinear element is net known’by'aq.ana_
lytic expresSioh but by experimental data. Hewever, by
using Bq. (2.19) and (2,20) it is not necesgary to compute
the shape of the output, but only the two functions Q(x,E)
and,P(x,;,E)° These funetions, given by Eq,‘(2.15)‘aga‘(2.12),
can be computéd directly from the characteristic of the non-
linear element. This appreach’appeafs to possess ag ad-

vantage over the original expression given by Eq. (1;19) and
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(1.20), As a matter of fact, by means of Eq. (2.19) and
(2.20) a general method of computation of the describing
function ean be developed. |

Thié'is not the only advantage over the initial form
_given by Eq. (1.19) and (1.20). By means of Eq. (2.19) and
(2.20) it is'possiblevto gain more insight into the mecha-
‘nism of the describing function., Important properties such
as the non—uniquenessvof the inverse describing funetion,
6Qnditiohs of existence of the describing function, etec.,
¢ean be déduced‘from thenm. | o

From the conceptual point of view, Eq. (2.19) and
(2.20) présent great interest by themselves, With each
single or double-valued (but mémoryless) nonlinearity can
be-aéseciated two single valued functions which give,the
complete information about the:nonlinearity,‘in the sense
that those two functions are sufficient to compute the des-

cribing function.

2.3 Non=Uniqueness of the Inverse Deseribing Function
. Memory Type Nonlinearities
Let us show the non-uniqueness of the solution of the
integral équation (2.19) for the case of memory type non-
linearities. It is sufficient to show the existence of a}
set of funetions Q4(x,E), not identically zero, whese eor-‘

reSponding_g(E)Aare identically zero. Assume Q,(x,E) to
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be of the form
Q,(x,E) = hy(x) my(E) + hp(x) mp(B)  (2.21)

and attempt to choose hj(x), hp(x), mj(E) and my(E) in order
to have g(E) = 0. Substituting Eq. (2.21) inte (2.19)

S - B

m(E)| =, dx +m2(E)S” dx = 0 (2,22)
o @:'}Ez“'xz 0 LEZ"

This means that if we choese ho(x), ml(E) and mz(E) arbi-

‘ mg(E)
trarily (assuming that —~ has meaning) h;(x) will be
‘ mli ) 1

given by the solution of the folleﬁingjintegral eqnation;

{ x h.l(x) ‘my(B) (. x hz(x)

- dx = - O (2.23)
BN ) ‘ m (EF ‘r“"“‘—“ﬂ ‘ T
o IET x* | o :

ASolving Eq. (2. 23) for hl(x) (See Appendlx II) yields

b4 z | :
2 4 . -z m,(2z) ¥y hy (y)
hy(x) = 'E;a;j QZJ e 07
‘0 Yo ml(z) Vﬁf -z 0

z -y
(2.24)

Therefore to every function of the type(i)

' (1 )Becanse of the symmetry of the original Eq. (2. 22)
the subindeces 1 and 2 ean be interchanged in Eq. (2. 25),
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a, (x,E) = hy(x) my(E)

2m1(E) d X -X z mg(z) dz dy
- — ‘ — 2.25)
X dX yha(y) T2 2 1\ 5 2 (2.
0 y m,(2) 'qrx -z Vz -y

0.

will correspond g(E)
To illustrate the procedure let us consider one ex-

ample. Let us chooée arbitrarily

mg(E)

Eq. (2.25) becomes

Q,(x,E) I hy(x) my(E)

X X
.. 2m, (E) . 3
1 da 4
- —— EEJ, y by (y) ' ~— dz dy (2.26)
v 2 2 vrz' 2
0 y X =% z =y
but o
* 3
e dz = 2 (x* + v*) (2.27)
V";2=22 ‘v;2=y2 4
y .
Substituting (2.27) into (2.26)
X

® | |
0y (x,B) = hy(x) my(B) - Sy | ¥ By (ParPray (2.28)

0

(1)
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which ean be redueed to

X

Qo (x,E) = my (E) Eh?»(x’ (8°-x°) - f ¥ hy(y) ds] (2.29)
P 0 |

Suppése théfv‘
m(E) =1 (2.30)
hy(x) = x (2.31)

Substituting (2.30) and (2.31) into (2.29)

Q(x,E) = x T ;’% x3 | (2.32)

~In figure 3 is repreSented the block diagram of this non-
linear element,
In an analogous manner the non-uniqueness of the

: solution of the integral equation (2.20) can be demonstrated.
Nonmem@ry Type

If the nonlinear element is of the nonmemory type,

Eq. (2.19) and (2.20} are reduced to

B ,_ | |

g(m) = 2 xAx) gy (2.33)
E 5 2 .
') E - x '

(2.34)--




max x°

multiplier

1 Y
| ,C'\

"’52"



> 24 =

Both integral equations are Volterra integral eqnatiohs"
of the first kind and their solutions will be unique if
P(x) and Q(x) are assumed to be contimuous. Therefore,
given the functions g(E) and b(E)‘there will exist one and
only one palr of functions Q(x) and P(x), that, substituted
in: Eq, (2,19) and (2.20), will transform these equations
in an identity(l), But P(x) and a(x) are not sufficient to
determine the nonlinearity. 4s a matter of fact, the equa-'
tion of the nonlinearity will only be determined if Pl(x),
‘Pz(x), Qy (x) and Q3 (x) are known. From Eq. (2.15) it can
be shown that, given P(x)jand Q(x), any set of equations :
Pl(x), Pé(x),‘Ql(x) and Qg(x) that satisfy Eq. (2.15) ecan
generate a different nonllnearlty with the same descrlbing_
function, Therefore the knowledge of the descrlblng fune-
tion of a nonlinear element is not sufficient to determine
the equation of the nonlinear element. Even in the case
of single-valued nonlinearities; g(B) is not suffieient te
determine the nonlinearity° It will be shown in Chapter 3,
that one even harmonic in addition is necessary to deter-

mine the nonlinearity uniquely.

2.4 Sufficient and Necessary Conditions for b(E) to be

Identically Zero

Another important property can be deduced from Eq.

(i)g(E) and b(E) must verify some conditions in erder
that P{(x)} and @(x) exist. Those conditions will be de-
rived in Chapter 3.
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(2.19) and (2.20). It is well known, and its demonstration
is almost immediate, that a sufficient condition for

b(E) =z © ié that the nonlinearity must be single-valued.

It is not difficult to demenstrate that this condition is
not a necessary one, AS armatter of fact, for the case

of nonmemory type nonlinearities, the neecessary and suffi-

§

cient condition for b(E) 5 0 is that P(x) = 0. (The case
of memory=-type nonlinearities is not considered here be-
cause it is always possible to find a function P(x,E) £ 0

such that, when substituted into Eg. (2,20), b(E) 0,

048

The sufficiency of the eondition is obvieus. To prove
necessity for P(x) piecewise continuous(i)g suppose P(x) con-
tinﬁous for x (a,b). Then for x, (a,b), if P(x,) # 0, we
also have ?(x) % 0 for x in s suffihient}y small neighbor-

hood of x4:

P(x + gey £ o, (2,35)

= lég é"“ﬁ“ 19 (2036)
where € > 0 is sufficiently small. Therefore,
(xp +€)7% Blx, +€) = (x5 - €)° b(x, -€) =
X, ) Xo +€) = (x4 = Xy = =

%o +€ P(x)ax = £ Px, + ﬁé) € (2.37)
ﬁ .

(i>ﬁestriation of P(x) to be piecewise continuous does
not affect the applicability of the method to practical problems,



by the mean-value theorem for integrals, since P(x) will be con-
timuous for x‘é-{xo - e XO‘% é] fer‘é; sufficiently small,
But from (2.35), the right hand side of (2,37) cannot be
zero, Therefore either |
b(;go +& )£ o0 (2.38)
or
Bx =€) 40 (2.39)
or both. Thus it has been shown that for b(E) to he iden-
tically zero, P(x) must be zero. Therefore the necessary
and sufficient condition that the imaginary part of the
describing function of a nonlinear element»ﬁe identically
zero, is that P(x) be also identieally zero. Thus,
P(x) = Pl(x) - PQ(X) =0 | - (2.40)

or substituting Pi(x) and ?z(x)
P A{x} + F (- = P (x) + =X .
1(%) »1{ x) Eg(x) Fg( x) (.41)

Figure 4 shows an exszmple of o double-valued nonlinearity
{(non-memory type) whose describing funetion is purely real,
In figure 5 is represented the characteristic of a single-
valued, nonlinear element whose describing funetion is the
gsame a8 in the example shown in figure 4. ‘The difference
between them is that in the case of figure 4 the even har-
monics are present at the output, while in the case of
figure 5 the even harmonics are zero. In figure 6 a non-
symmetric nonlinearity and its egquivalent, with respect to

the describing function, are represented. In figure 7 the
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| Fig. 4. Example of a ‘Deﬁbiev Valued Nonlinearity with a Real
Deseribing Funetion
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x,f*

- Fig. 5. 'Single Valuevaenlinearity»wit,h’ the Same Deseribing
: ~Punetion as: the one Shown in Figure 4
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~-—-non symmetric

~--- symmeitric equivalent

Fig. 6. Double Valued Non-Symmetriec Nonlinearity and
its Symmetrie Equivalent
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corresponding functions Q(x) and P(x) to the nonlinearity

of figure 6 are shown.

2.5 Geometrical Interpretation of the Imaginary Part

. of the Deseribing Function
Equation (2.20) permits us}to'Make a geometriecal in-
terpretation of the imaginary part of the describing func-

tion., From Eq. (2.12) and (2.15)

P(x,E)_=v%{jF1(x,E) - Fz(x,E) + F1(°x9E) - Fz(ax,Ej]

| (2.42)
from which -
1 ,
b(E) = - ;E—gf [F_‘l(x,E) - Fz(x,E)] dx
| E
1 K
- - F,(-x,E) - Fb(»x,E)- dx
o [ -]
70
+5
- - ﬂ_;_z( [Fl(x,E) - Fz(x,E)] ax (2.43)
| -B : '

But the integral

‘ ‘ +E ' | ' |
A(E) ={ [Fl(x,E) - Fz(x,Ei:! dx o (2.44)
-E T
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repfééeﬁts?thé éfeé Beuﬁ&ed by the curvéé:Fl(x,E)iand‘
2(x E) and the straight lines x = E and x = -E (.I'n'_figur‘e
6 it is the striped area) t will .be p651t1ve if |

F;(x,E) 2 Fy(x,E) and negatlve if Fz(x E) > Fl(x E).

From Eq. (2.43) and (2.44). |

A(E)

b(E) = - o ; (2.45)

This geometric interpretation faeiiitates,‘in some cases,
the»compntation of thé“imaginary part of the;describing
funetion. | » |
To illustrate how this property can be used to compute
the imaginary part of the describing funcfien of a nen-
linear glement,Alét,us consider an example. In figure 1 is
. represented the éharacteristie of a relay with hysteresis
and dead band for E > b. For E { b the characteristic of

such_nonlinearyelemént will be F(x,E) 2 0, In this ease

A(B) = O for E < b - (2.46)

A(E):s.gﬁ(b - a) 'for E>D o (2.47)
A(E) will be positive because Fy(x,E) 2> Fz(x E). There~

- fore, aceerding to Eq. (2 45)

b(E) = 0 for E < b (2.48)

L]

b(E) = - 33’12- (b-a) for E > b  (2.49)
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'In.an analogous manner we could have demonstrated, by
inspection, that the imaginary part of the deseribing func-
tion corresponding to the nonlinearity whose c¢haracteris-

tic is represented in figure 4, is identically zero.

2.6 Computation of the Describing Function

As we have shoﬁn, given a nonlinear element, it is
always posSib1e to £ind the twe functions Q(x) and P(x),
whose gealvpaft‘of the describing function will depend‘only
on Q(x,E) and whose imaginary part will depend only on
P(x,E). | |
" This fact facilitates the computation of the descri-
bing funetion of any nonlinear e1ement, As a matter of
fact b(E) can be calculated easily by using the geometrie
interpretation derived in (2.5), while g(E)}can be computed

keeping in mind the linearity of the transformation

E .
g(E) = 2 x (x,E) 4. (2.19)
= +
0 E = x

From the above equation it ean be shown that a symmetrie,

single-valued funetion
f(x,B) = { a(x,E) (2.50).

and the double-valued nonlinearity that has the same Q(x,E)

have deseribing functions whose real parts are equal., This
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can be shown keeping in mind the definition of Q(x,E).

As a matter of fact
Q(XQE) = Ql(x,E) - Qz("XQE)

But because f(x,E) is single-valued and symmetric,
Q; (x,E) = £(x,E) and Qy(-x,B) = - £(x,E), which justifies
Eq. (2.50), But since the functional transformation (2.19)
is linear the sﬁperpOSition principle applies, and the
deseribing function of the sum is equal to the sum of the
describingﬂfunctions; Therefore the‘des¢ribing.function
of the original element will be
g(E) = %? 2 (E) (2.51)

To illustratevthe metheod let us consider an example.
Figures 8 and 9 show the characteristics of an amplifier
with dead band, saturation and hysteresis. Let ﬁs consider
that, for E < b, the nonlinearity is single-valued (Figure

9). Therefore for E < b the describing function will be

0 - (2.52)
0 - (2.53)

g(E)
b(E)

]

For E > b b(E) will be (applying the geometric interpre-
tation),
A(E) = 2M (b - a) | (2.54)

Therefore
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{ y F(x2)
=sM — - e - -

-

n -y
b -4 [ .
a b X
ﬂ, 'I”I,
Y SN R —— ,“_M

Fig. 8 Gharaeterlstic of an Amplifiev of Gain nj with Saturation
Hysteresis and Dead Band for E b
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Figo 9, Characteristic of an Amplifler of Gain n; with Saturation
Hystere81s and Dead Band feor E b '
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b(E) = - =5 (b - a) (2.55)
ﬁE
Figure 10 repreéents the function F(x,EB) = éQ(x,E).
Figure 11 shows the foﬁr functions inte which. f(x,E) ean
be decompesed. If we call g,(E), g5(E), gB(E), an.dr g4(E)
respectively, the deseribing function of the original non-

linearity (figures 8 and 9) will be

g(E) = g (E) + g5(E) + g5(E) + g4(E) (2.56)
But
R ,nl
gl(E) = 3%E E(m - 2¢1) + E sin 2¢1
- 4 a cos ¢1] | | (2.57)
gz(E) = 2111‘5 E(w - 2 ¢2) + E sin 2 ¢2 - 4(a +3— ) cos ¢2]

(2.58)

gB(E) = ;ﬂ_lﬁ [E(fzr - 2 ¢3) + E sin 2 }63 - 4D cos ¢3‘] (2.59)

g4(E) = %_EE’(TI -2 ¢4) + E sin 2 ¢4 - 4(b + %) cos }Z‘;]
(2.60)

where

g, = arc sin B (2.61)

M
a + nl ‘
fy = arc sin —p— (2.62)



Fig., 10, Funetion Q(x) Corresponding to the Nenlinearity
' Shewn in Figure 8
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p+M
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Fig. 11, Functions £1(x), £5(x), £, (x) and f4(x) CorreSponding

“to the Decomp051t10n of % Q(x)
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S | ,
fiy = arc sing | (2.63)
b+ o |
¢"= are sin A (2 64)
4 E o
Therefore
n
g(E) = ;r-;} E(¢2~¢1+¢45¢3) + B/2(sin 2 §, - sin 2 §,
+ sig 2 ¢3 - sin 2 §,) + 2 a (cosﬁ2 - ¢os ﬁl)
+ 2 b(cos 8,-cos ¢3) + %%(ces fot+ cos §,)
' ‘ ' ‘ (2.65)
and
B(E) = 25 (b - a) (2.66)

This is a well known nonlinearity. The results found by
the method illustrated above agree with the results found

by conventional techniques (Sridhar#{}i]},

2,7 Deseribing Function of Neonmemory Type Nonlinearities

Whose,characteristic can be Representea by

Analytical Funct;ons

"A particular case presents itself when F(x) is

analytic(i)o

L (i)F(x) will be considered odd, for, as we have shown,
g(E) depends only on the edd component of F(x). It will be
considered that for x R Eq. (2.67) eonverges unifermly.



In this case F(x) can be expanded in a Tayler's

series
i=00

R(x) = > Fl(o) x (2.67)
i=o

) i
F*(0) = d_F(x) (2.68)

E i

, : i ’
z(E) = _:i_z_f S E_i.g_?lz_ dx EZLR (2.69)
0

But given that the series (R2.67) converges uniformly, the

equation (2.69) can be written as

DU | i+1
g(E) = A F_(O)J/ X ax (2.70)

But

(2.71)

)/E L+l g F i+2
0

Therefeore
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i=e@ (ﬂ_iéi

Vo'e i [P

Fi(o) Bl 14 (2.72)

2.8 Existence of the Deseribing Funetion

Up to now we have said nothing about the conditiens
that F(x,E) must satisfy to insure the existence of the
deseribing function. In the next few paragraghs it will
be demonstratéd that a sufficient condition for the

existence of b(E) and g(E) is

J/ iyi(x,m){ Pax £ M(y) (2.73)
. '

.y |
j/. EFé(x,E)[ Pax & M(y) (2.74)
0 .

where M(y) is any real, single-valued even and finite func-
tion of y and p is any pesitive constant greater than 2.

According to equation (2.15)

Fl(xpE) = F2(°XSE)
Q; (x,E) = 25 (2.15)

Therefore

| lQl(X,E)E £ 1/2 l”Fl(X,E) + Fl(“x’Eﬂ (2.75)
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Raising both sides of equation (2.69) to the power p and
then integrating betweehfﬂ and E we obtain

{Ql(xsE)lp dx é (%)}{ [lFl(XsE){ +
0

Fy (-x, E)'] P ax

(2.76)

0o

But according to Mincowski's inequality [}5]
b .

' [f(x) + h(x)]p dx é L

if(x)i P ax P

a ST T a

b 1

+U lh(x)‘(p GX] P f . (2.77)
a

Applying this to equatiqn>(2.76) yields
E _ E 1
p =
( [le('x,E)l dx £ () [[(Fl(x,E)lp d{(p
/0 0 '

+{[ iFl(x,E)!p dx]"ﬁ T | (2.78)

Therefore from equations (2.73) and (2.74), (2.78) is re-

duced to

- /E 1 1.
f o, (x,B)] " ax £ (%)P[MP (E) + MP (E{J " - M®) (2.79)
0 .

In an analogous manner we c¢an show

E |
. ERTS |
,(e ] gz(x,E)E dx 4 M(E) | . (2.80)



But; by definition
0(x,E) = @,(x,E) + Qy(x,E)  (2.81)
Therefore. |

+ {Qz(x,ﬁ) ! (2.82)

lo )| £ |o,m

Raising both sides of equation (2.82) te the power p and

integrating with respect to x between 0 and E

Jc i_Q(x,E)]P dx éj@ {‘_Ql(x,m) + ‘QZ(X’E)]}P dx

(2.83)

But according to Mincowski's inequality

r E | ) - l
f {{Ql(X,E)l‘f ‘le(x,E)\}p ax € Q(x,E) Pax P
0 .
g .- |

0
+U ay0e,0)] x|

0

D, 1 1o
é[M}()E) * MI(JE)]'

= 2P M(E) (2.84)

Therefore
E

(' Qa(xgE)ip ax < 2P m(®) (2.85)
0 4

In‘an analegous manner we can demenstrate
E -
[/ - P p )
( {Q*(x,E)l ax 4. 2P M(E) (2.86)
0
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E
f{?(x,m)»‘lp ax < 2P M(B)
0

E -
f (Psse(x,E)Ip ax <2 M(®)
0 .

According to equation (2,.22)

E

B

0

{g(E)l Lz 2 g' x Q(x,B) 4

sz - x2

Applying Holder's inequality 15 to (2.83) we obtain

E

le®)] £ ;%U la(x,m)lp‘a%% [ f lv;::;?

0

where
p > 1 q > 1
1 1
- - = ]
P aq

But

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)



E ., 2p=1 -
=13 B(gg ) -—‘fzp 2)5 _ (2.92)

where B(x,y) is the beta function [}6 . Substituting

(2.92) and (2.85) into (2.90)

| p-1
\g(E)‘ »—~§ 2P M(Ei] [TB(2P°1 P°2)§] P

= L o Pl o
- _E_;ﬁ_ ’ pr p-2 | P (o
= — m(g)” B( s Zp=Z | (2.93)
wE P

But according to the hypethesis formulated at the beginning,
p > 2. Therefore the right hand side of (2.93) will be
boﬁnded for every value of E, Thus we have shown the
éiistence of g(E). The existence of b(E) can be.deduced
almost immediately by applying the Holder inequality to

the second eguation of (2,81)o This yields



i 2
£ _%_2_[213 M(E)\l P gd = —&76 MP (E) (2.94)

Thus the existence of b(E) has beéﬁ demongtrated. Equatiens
(2.93) and (2.94) ean be simplified in the case of bounded
funections te

R

N

%FI(X’E>\

(2.95)
le(x,E) |

In

R

where R is any positive constant, Frem (2.,95) it can be

deduced

y P
J \Fl(igE)i dx < y &P
0
(2.96)

- ¥ p p
f {Fz(x,E)fl ix < y R
0 .
Therefore it ¢an be c¢hosen

M(y) = y R® ‘ (2.97)
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Substituting in equation (2.93)

Pl v
p p=1
oz 2 1/P 2p-1 p,2
|e(e)| £ - — (2p R =3
wg P s
.E%.l. p=1

P
~——R rB(g-E—g ] | (2.9

‘Equatlon (2.98) holds for any value of p larger than 1,

Ther-efore as P —> 00

gm € =2 B(1,0.5)
- 4R (2.99)
B
Substituting equation (2.97) into (2.94), for p 0
R .
: L=
o[£ -‘ (2.100)
Therefore
af{2'r
ixeq ® | < —wE . (2.101)

This result can be stated in the folloﬁing manner: given any
hounded nenlinearity, its describing funetion will be less
than or equal to the describing funetion of a perfeect relay
with s maximum amplitude equal to 4 | 2 R, where R is the

superior beund of the nonlinearity.
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2.9 Conclusions |

In the?present chapter the original integral trans-
formation given by Eq. (1,19) and (1;2®) has been trans-
formed into a more eonvenient form given by.Eq. (2.19) and
(2629);ﬂ With this; the pfoblem'of the inverse deseribing
functiénihas been reduced to the problem of solvingta:Velnf
terra integral equation. This problem will be solved in
the next chapter. However, even without having the closed
solﬁtion of Eq. (2.19) and (2;29),,1nteresting_qonclusions
“have been deduced. Some of(them, such as the existencebof
the deseribing function, are of interest only from the
theoretical point of view. Others, such as the geometric
interpretation of the imaginary part of the describing fune- -
_tien, and the method-of computing the deseribing function‘ |
ffqm the decbmpbsition,bf'the original,nonlinearity into
.partiél funptitnss éfe ef‘more practical interest}’

:Thetmain point of this chapter consists in the faet
‘that to any'éingig,ef double%valued nonlinearity, there
eorresponds tﬁo sing1é=§a1ued functions Q(x,E) and P(x,E)'
that cont§in all thg‘necessary infermation to compute the

describing function of the nonlinearity.



- 50 -

CHAPTER 3
THE INVERSE DESCRIBING FUNCTION

3. l Introduction

In Chapter 2 the 1ntegrals that generate the deseri-

bing functlon have been transformed inte the fellowing

foirm:s
. E.; . R
.,g(v'E‘) = —3-2 M dx (3.
oV S P

- (3.2)

4 qu (3 1) and (3. 2) have a more convenlent form for our pur-
peses than the orlg;nal form given in Eq. (1 19) and (1 20),
Also in Chapter 2 the inverse transferm that generates
Q(x,E) and P(x,E) as a funetien of g(E) and. b(E) was shown
to be nenaunlque, 1n the case ef memeryutype nonlinearitles°
For this reason enly the case ef nenmemorywtype nonli-
nearitles Wlll be eens1dered below° In~the present chapter
an analytieal method to invert the integral equatiens (3.1)
and (3.2) will be develeped, From that, some interesting
properties eof the inverse describing funetioen will be

deduced.
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3.2 Inversion of the Integral Transfermatiens that Generate

the Deseribing Funetion

In the case of nonmemory-type nonlinearities, Eq. (3.1)

and (3.2) are reduced to

g(E) = -—:gf X8 (1) 4 (3.3)
L1 ) -
: 6 sz'a x2
- E | - .
B(E) = - =2 | | .
(E) ;ng P(x) dax | (3.4)
)

These integral equations are of the type of Volterra integral
eqﬁations of the first kind. In Appeﬁdix I the solutien of

the most general integral equation of this kind,

Z

F(z) =J{ zk"(“;)z'ﬁ dx, foro0< g <1 (3.5)
(z= - x)"

0

is given., The solution of Eq. (3.5) is

2sinmg da z F(z) .
k(x) = T E;Jf ' dz (3.6)
' 0 (x2 -2 1-§

-

For the case of Eq. (3.3)

TR S ST L az)  (3.7)




- 52 -

Thereferé,‘substituting'(3;7) int@'(3;6) yields,

(X)

Mﬂl-‘

dx,f g(Z) dz - (3.8)
0 x a.zg _ . ‘ '

' integrating_(3,8)Aby parts, and assuming.that g*(z) exists,

a(x) = ‘;‘aqx‘ !e ,23g(g)' x%-z f V [z g(z)]k
- l = |
i f B \; g‘z’l 2

and performing the derivative_with respect to x

X ’ _ |
q(x) =£ E-Li@] o (3.10)
A m j '

The selution of the integral equation (3.4) is obvious and

yields, assuming that b'(s) exists,

P(x) = - 3 ‘61? 21:.(::)] (3.11)

| 3.3 Existence of the Invense,Descrlblng_Functien

Sufficeient Conditien
Given g(E) and b(E), equations (3. 10) and (3.11)
generate the pair of functions Q(x) and P(x). But as peinted

out in Chapter 2, Q(x) and P(x) are net sufficient, even in
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the case of nonmemory-type nonlinearities, to determine the
nonlinearity. Let us state the problem 6f the inverse des-
cribing function in the following manner. Given a pair of
functions g(E) and b(E), is it possible to find a bounded
nonlinearity whose real and imaginéry parts of the des-
cribing funetion are g(E) and b(E)? What are the conditions
that g(E) and b(E) must satisfy to insure boundedness?(i)

To investigate this problem let us rewrite equation (3.10)

as
X | X '
. - ' ¢ 2 ¥
Q(x) = 2‘{' _Eﬁgﬁﬁl_ dz +Jf z_g(z) dz - (3.12)
. 0 xz - zz 0 X2 = Zz

Therefore the sufficient conditions for Q(x) te exist are

that both integrals on the right hand side of (3.12) exist.

Let us consider one at a time.

{ g

X 1 X 1 |
£ 2U [e2)]" dzl |7=={" g ©Ga»
’ : ] x -z

0 0

k-
[N
v‘.\

Equation (3.13) was obtained by applying the Holder Ds}

, (i)We must. impose the eondition of boundedness in
order to insure physical realizeability.



inequality te the first integral of the right hand side of

(3.12). The constants, p and g, satisfy the conditions

| 1 .1 |
p>1 ;3 ag»1 ;3 Ftrg=t (3.14)

It is not diffieult to show that
2 1% - (2 \T e - E L, S22
2 .2 2 atl 2 " 2p-2°
0 X"~z » 0 X -2z '

(3.15)
If Holder's inequality is applied to the second in-

tegral in the right hand side of (3.12) we obtain

!Jf zg(Z)dZ'

X l x 1
‘ , s ] ' t T
< [,( [z az] f dz
: 3 2
(3.16)
where
) 1.1 .
x>1 ;3 t>lands+g=1 (3.17)
But
a 2 1t t/2
[ ]== dz—{ 242 - A7 4
0 ‘@x’g«-z2 0
2s=1
“EZI

- 3355 L ) X3 (3.18)
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Thus from equations (3.12), (3.13), (3.15), (3.16) and
(3.18) we obtain
L ¢
lat) | & 2 [Bé%% P“"‘)]E f g(z>\P ao|F

0
1.

. 1 X
. (xff )I[ (33-1 s»2 ] f \g (z)\ dz
(3.19)

Therefore, a sufficient condition for Q(x) to exist is that

the integrals

x - | |
j; lg(z)lp dz (3.20) B
and
x .
f let)|” az , ‘(3.21§1)
0

exist for all values of x, where p is any positive constant
larger than 2, It is interesting to note that the condi-
tions for the existence of the inverse describing function
are more restricted than the conditions fof the existence

of the deseribing function (derived in Chapter 2).

Since g(z) was assumed continuous Eq. (3.21) im-
plies Eq. (3.20). :
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Necessary Conditions

It will be shown that, for Q(x) to exist,}a necessary
condition is that é‘z)fbe a continuous function. Let us
assumejé(ij to be‘élbéuhded function with bounded first
deriVati#e everywhere except at the point z = zy at which

it has a finite discentinuity, and eall

A=lim gz, -€) (3.22)

€>0
B=1lim g(z; +€) | c> o0 (3.23)
c—>0 -

- Define the function

-2

h(z) = g(=) + (8 - &) [4 - u(z - =) |  (3.29)

where u(z) is the step function. The funetion h(z) will be
‘1ﬂohtinuous at z = 21 and it will have a boeunded derivative
everywhere,
From (3.24)
g(z) = h(z) + (4 - B) [% - u(z - 21)‘1 (3.25)

_*Thefefore from (3.8)‘

. V1 b (3.2
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The second integral in (3.26) will be

A,; B —2 . dz=Ac B x3 for x <z1 (3.27)
0 X = z
aﬁd :
X
A - B

1 ’ :
f : zde _ 4 - Bg , 23 dz
. . s T2
0 ‘} x2-22 zy V xz-z'?' v
- (A - B) 1/3(1{2-212)3/29 %2 x'?‘-zzl. +1/3 xa]f‘or zq £ x

. . ,  (3.28)

Therefore

.3
Qx) = %a%;j/ h(z) 42 + (a - B) x for x L z; (3.29)
A |

"x§:z§1

and

o 2 2

9 3 2x° - z

1 a4 h 1
Q(x) =§E}-f %dz+ (A - B)(x -_—_—__5)
2 2

0 v X et Zl

for x > 2z | - (3.30)

Equations (3.29) and (3.30) show that in spite of the

existenece of .

.];..Q. z h(z)
x dx
0 .
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Q(x) is not bounded for x =~zl.; From this it can be de-
duced that fer the existence of Q(x), g(E) must be con-

tinuous., - -

3.4 Examples -
To illustrate the properties deduced above let us

ceonsider some examples.

VEXémple 1

Assume
g(E) = § B | (3.31)

B(E) = 0 o (3.32)

Applying equation (3.22) we find

Q(x) %’
2(x2 - 22)3/?
=3

o i] =20 : (3.33)
@ .

x4(x2 - 22 1/2

‘and F(x) is assumed to be single-valued andfsymmetric, then

1/2 a(x) = ;(x) = Q,(x) = £ (x) = }f"z'(x) =v'ff‘(bx)_'; Therefore

‘f(x)bsz x3 } N : N f: _‘ - (3.34)
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Example ..2-
Consider the following deseribing funection .

o . EZL a

il

g(E)

Cam - 2Eo e G

0

W

 b(E)

applying Eq. (3.10),

Tz [Z?‘ g(Z)—] - =

. Therefore

X .
Q(x) = %gj/ | z dz .
' 2 2' || .2 2"
a v; - & VX - Z
= M x> (3.36)
and
ax) =0 x £ a (3.37)
From equation (3.11) it can be deduced that. o
-0 Bo®

If. the nonllnearlty 1s assumed to be symmetrlc and 51ng1e-

valued it may be Shown (see Eq. (4. 5) and Eq. (4. 9)) that,
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f£(x) = Qéx) =M u(|x{[ - a) sgn x (3.39)
where u(x) islﬁhe‘sléﬁ funetion. | |
| | Eiample 3

 This éxample‘will be divided into two parts. In the
first, the conditioh for the existénce of the inverse des-
eribing function will be illustrated. In the second part
a methdd to synthesize memory-type nonlinearities from dis-
continuous describing funetions is preposed.

~Part 1

Consider the following deseribing funetion,

g(E) = %%VEQ - a® s -m E> b  (3.40)
: L34

g(E) = 0 E < b (3.41)
b(E) = - —%}%'(b - a) ES>b  (3.42)
b(E) = 0 EL b (3.43)

This is the deseribing function of a relay with hysteresis
and dead band, It has a discontinuity at E = b and, as it
was shown above, Q{(x) will be unbounded for this value., To.

illustrate this point, write Eq. (3.8) for x > b,
' . X ',r“——‘ﬂ x
_2M 4 'z~‘zz-a2 ' z sz-bz
Q(x) = -7 Ix - dz +]| - dz |
X 2 2 V'_z_z"’ |

(3.44)

1b . VX -2
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But v N v
X : ‘ ” — | . L
f N2z 2 22 Ve
== dz = —5 —— + 3 ¢©
b zxzczz_ . - o ‘
, . o ) o o
o sin~l _X b (3.45)
xz-a o
and
: ' X
\/ 2 2 2 b2 o : _
z 1z -b 4,_%X -b 7 . (3.46)
| z .2 R 2
v x° - b '
b .
Therefore
Qx) = 2 M 4 Vﬁ' - a x _=b
CB\X) S wxax — 3 ~
(3.47)
(3.48)
For this example,
a(x) = 0 for x £ b o (3.49)
Equation (3.48) shows that

lim Q(b +€) = @ - (3.50)
This result could be foreseen from the fact that g(E) is
discontinuous at E = b. ' ‘



Part 2

&tteﬁpynngw‘to find a memory-type nonlinear;ty whose
deseribing function is given by (3.40), (3;41), (3.42) and
- (3.43) o
Define for E < b

g(E) = h;(E) | - (3.51)
and.

b(E) = hg(E) ' (3.52)
' Both functions will be chosen in such a way that g(E) and
b(E) are continmuous at E = b, With (3.51), (3.52), (3.40),

and (3.42) we ean find a bounded Q(x) and P(x). The next
step will be to define \

" Q(x,E) = P(x,B) =0  E< b  (3.53)
a(x,E) = a(x) O EYD (.54
and
P(x,E) = P(x) | E> b (3.55)

where P(x) and Q(x) are the inverse deseribing function
found with (3.51), (3.52), (3.40) and (3.43), considering
the nonlinearity to be of the memory tjpeo For the ex-
ample under ceonsideration the following choices will be
made., : -
- h, (E) = %@-Mg ¥ -a® B Lo (3.56)
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hp(e) = 23 (-2) BB (3.57)

Therefore for E < b

2 x5
om Vb° - a5 1 a z> dz
Q(x) = > — ont— o tmnc—
b x dx X% 22
-V v* - | « _ |
- 2 —2- x (3.58)

‘and for E > b

b
a(x) = 2M b3>~ a‘b2 1 éL 23 dz .
= 2 x dx v 5
- a - mh* : V x2_22
x -
2 M.d Lz Z = a
+ = 3 Eijf == > dz
b X - Z
x .
2 2 '
2 M a z z°” = b r
cpraf efeod,, (.50
: X® - 2z '
b _ :

-Performing the integration and derivatives

A2 2 , 22
ox) = B x - Pa®) » B e |

| i o | (3.60)
From equations (3.57), (3.42) and (3.11)
P(x) = 2 (b - a) x x<b  (3.61)

b



P(x) =0 x> b (3.62)

Therefore for E £ b

a(x,E) = b - o (3.63)

and o
P(x,E) = 0 (3.64)
For E > b
a(x,E) = 2 x< b ~ (3.65)
b I |
_»\’ 2 2
a(x, E) ﬂ_,%_?,'.‘[x - | %% bg}- Z_M sin~1 xz b2 + M
b X° - a
x Zb : | (3.66)
and
: 2M '
P(x,B) = 2 (b - a) x x<b (3.67)
P(x,E) = ¢ x>b (3.68)
For M = :1’,-b‘= 2 and a = 1
Q(x)'-'-%mx for 0 <x<& 2
a(x) = % (x - VX2-=4) + %.. sin~1 ’;‘2"'4 +1 x> 2
" x"-1
P(x) = § x x< 2
P(x) = 0 x )y 2
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In figure 12 is ~presented the characteristie of the non-

linearity for E > 2, For E < 2

F(x,E) = Fy(x,E) = Fp(x,E) = 0
This example illustrates the caleulation of a bounded in-
verse describing function, given a discontinuous describing

funection.

3,5 Higher Describing Functioens

As was shown in the preceding paragraphs, even in the
case of nonmemory nonlinearities,;g(E) and b(E) are not
sufficient to uniquel& identify the nonlinearity. To over-
come this indeterminacy, the nth describingvfunction will
be ‘defined as the ratio of the amplitude of the nth harmonic
to”the-amplitude of the input, Denote this by g,(E) and
b (E). Then : |

\ > 1T »
g, (E) = 'le'f F(E sin @, E) sinn # ag (3.69)
8)
2w
b, (E) = ﬁlﬁj F(E sin §, E) cos n § ap © (3.70)
0

where F[x(t),, max t!x( f)\_] satisfies the hypothesis stated
" :

in the first chapter. Follewing the procedure for the case

of the first harmonie, Eqs. (3.69) and (3.70) can be trans-

formed into



 Tmverse Describing Function of

g(E):%ﬂW/ﬂ E<b ‘FW

- 99 -
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- /2
gn(E) = ﬁ%[’ Fo(E sin §, E) sin n ¢ af
° 3m/2 .,
+ gﬁ . Fy(E sin §,E) sin n g af

/2

2w
+ #E_J’ Fo(E sin §, E)‘sin n g ag

3n/2 -
and |
w/2
bp(E) = éﬁ . Fy(E sin §, E) cos n # af
0
3m/2
+ %E F)(E sin g, E) cos ng dag
n/2
2m
. #% | F5(E sin §, E) cos n # af
3n/2

(3.71)

(3.72)

Introducing in (3.71) and (3.72) the functions Pl(x, E),

P,(x, E), Ql(x, E) and Qg(x, E) defined in Chapter 2, equa-

tions (3.71) and (3.72) are transformed into



gn(E) =

and
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| /2

ﬁlﬁ‘jf Q'Z(E sin ¢, E) Sln n ¢ d¢

0

/2
+S ” P,(E sin §, E) sin n § af
0 / |

3m/2 |
+ 'Qi(E sin §, E) sin n # af
/2
3n/2 .
+ P, (E sin §, E) sin n g ag
2m : »
+J(‘ QZ(E sin §, E) sin n ¢ ag
3n/2

2m

+J , Pz(E sin g, E) sin n g dld—]

3n/2

(3.73)
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Q,(E sin g, E) cosn § ag

- /2
" by(E) = ?,% f
| 0
w/

2

+ J/ P,(E sin @, E) cos n § ag

+ J/ Q, (E sin @, E) cos n g ag
w

+ Jﬁ P, (E sin g, E) cos ng ag
k21

+ |  Q,(E sin §, E) cos n § af

2w

+/ P,(E sin g, E) cosn d¢] (3.74)
3ﬁ/2

In the abeve integrals the interval of integration w/2 to

3m/2 ean be divided into two parts, the first between 7/2

and ™ and the second between ™ and 37/2., In additien make

the following change of the dummy variable.

B=m-f (3.75)

in the integrals perfeormed in the interval #/2 to w,



=7®w

p=f-m (3.76)
in the integrals performed in the interval w teo 3m/2,
B=2m-g | (3.77)

in the integrals performed in the interval /2 to 2w,
 But according to the definitions, P;(x, E) and Py(x, E) are

“even functions of x and Q;(x, E) and Qy(x, E) odd functiens

of x, Also
sinn(w-#) =- (-1)" sinng (3.78)
sin n(m + _¢) = v(al)nASi'gl’ n /] : (3.79)
cos n(ﬁ ~ ¢) = (si)n‘ éovsr"n ﬂ‘ ‘ - (3.80)
cos n(m + #) = (-1)" cos n ¢ | (3.81)
From (3.73) to (3.81) we find |

w/2

g, (E) = -ﬁlﬁ[( QE(E sin §, E) sin n gag
, 0 _
n/2

+§; PZ(E sin g, E) sin "n g ag
o ,
o+ (“1)1?‘{ _QI(E sin @, E) sin nn g ag
n/2 ’
~+__7(==1)ﬁ f P (E sin §, E) sin n ¢ daf
- -n)° _‘ﬂ/z Q; (B sin §, E) sinn § af
0 v :

+ (-1)% P,(E sin f, E) sinn g df

-f Q,(E sin §, E) sin ‘n ¢ ag

0 : v | o
+/‘ Po(E sin g, E) sinn @ dﬂf] (3.82)
o .



and

/2 .
by (E) = %Elf Q,(E sin §, B) cos n ¢ ag
0 |
n/2
+J7 P,(E sin §, E) cos n § dff

0

0
(=1)n/ Q, (E sin g, B) cos n § ag

/2
0
- (--wl)}rl Pl(E sin g, E) cosn g af
n/2
/2
- (-1)ff,v Ql(E sin #, E) cos n # a4
0 /2
+ (al)n{ P, (E sin @, E) cos n § af¢
o 0
+[ Q,(E sin g, E) cosn ¢ df
n/2
0
- J( P,(E sin @, E) cos n § dﬂf] (3.83)
/2

And rearranging (3.82) and (3.83)
n/2

g(E) = 7% f [Qz(E sin @§,E) - (-l)n' Ql(E sin @, E)]é

0 |
¢ sinn g a@ | | (3.84)



n/2
b, (E) = 25 f [Pz(E sin §, E)
0

4+ (=1)n P;(E sin §, E;] cos n § df (3.85)

Define
alx, B) = (x, B) + Qp(x, B) (3.86)
a*(x, B) = 4 (x, B) - Qy(x, B) G
P(x, E) = P1{x, E) - Py(x, E) - (3.88)
P#(x, E) = Pj(x, E) + Py(x, E) (3,89)

Frem equations (3.84) to (3.89) the following twe sets of
equatiehs are obtained.

For n odd:

w/2 |

g (B) = ag' U(E sin @, E) sin n § af | (3.90)
6]

bp(E) = - g% P(E sin @, E) cos n § af (3.91)

0 - |
Fovkn evens ﬁ/z

g,(E) = = g% /5‘ Q*(E sin @, E) sinn § dﬂ (3.92)

u/g |

b, (E) = g% jﬁ P«(E sin §, E) cos n f 4 (3.93)
0
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But

- 1=n - /nHi )
sin(2n + 1) g = (2n + 1) Zz: (-1f1< ’ > 41 sin21+1

PreS ) g
i=0 2i i+l
(3.94)
. £ .
B i€n/2 fo-i-1\ _n-1-2i .
cosn g = 2% ¢os™ # + n Zf (-1 é——i-—- cos??1 ¢
o i=m i-1 '
(3.95)
= s n+l
B i 2i+l
sin 2n @ = cos # Zi_ (-l)i(' 2?itl  in™t g
i=0 2i+1
(3.96)

Substituting (3.94), (3.95), and (3.96) into (3.90), (3.91),

(3.92) and (3.93),

i=n n+i )
Eane1 (B = 2(2n+l) :Ei -1 ( 2

2i+T
2i
/2
gé(E sin g, E) sin° ™! ¢ ag (3.97)
0 17/2
: n
bu(E) = - %E P(E sin f#, E) cos § ag
0 i€n/2 n-i-1 n-1-2i.
2n i 2
& ()
i=1 i-1
/2 |
ogj P(E sin §, E) cos™™?1 ¢ ag (3.98)

(n odd)



-4 -
| | ig?il n+i
2 i
g, (E) = - - - (=1) (
2n ™ o \aa

/2 _
1221+;J’ Q*(E sin #, E) sinoi*1 g cos ¢ ag

(3.99)
o /2
b (B) = Eg J/ P*(E sin §, E) cosn'ﬂ g
0
ifn/2 n-i-1 )
on i 2n-1-21
DN C) -3 °
i=1 | i-1 ’ -
n/2 _
¢ Jf P#(E sin §, E) cos™?L g ag (3.100)
o o
(n even)

If in the above integrals the following change of variable

is made,
x = E sin § - - (3.101)
Thén _ .
i=n n+i i
2(2n+1) , i 4
€2n+1(E) === > (1 ( !
B per 2i

Ril ‘ | - |
mgjfﬁ (35 g{ dx (3.102)
X : ‘
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| ;~§ {:gfl i T et * 2i+1
g,,(E) = (- 1) —— |.  Q*(x,E) x*17* ax
=0 2i+1 ) B°L ’

(3.103)

. Cpe1
( P(x, B)(E® - 2°) ©

o
Pa(B) = = —i

0
- i<n/2 n-i-1
2n i
- —=T (1)
TTEn+

i=1 i-1
E

nel-2i . n=-2i-1 =
miteel a4 2 2.7 2
R 3211/ P(x, E)(E"-x") dx

i
0

, (3.104) -
(n odd)

i<n/2 [ m-iei\ 24

1
T (-1) N

i=1 i-1

E | n-2i-1 |
. Ezj( pr(x, E)(E® - %) °  ax (3.105)
. | 3

Equations (3.102) to (3.105) show that (at least for non-

memory-type nonlinearities) there must exist a relation be=

tween all the functiens g2n+1(E), where n 1, 2, 3, ...., and.



- 76 -

the same with g2n(E)’,b2n+1(E),and bzn(E) . Thereforé we
can expect that, given any one of the‘functions"g2n+1(E),
the complete set of functions gén+1(E) céh be found. The

~ same reasoning holds for the other sets of functions. As
ﬁill be sheown below, this faet is true for nonmemory-type
nonlinearities. ,

In the case of memory-type nonlinearities the problem
cannot be solved because of the non-uniqueness of the inf
tegral equation relating g2n+1(E) and Q(x, E). Thé same
holds for the other sets of functions ggn(E); by (E) and
bon(E). V

Equations (3.102) through (3.105), also show that if
any of Q(x, E), Q(x, E), P(x, E), and/or P(x, E) are zero
all the harmonies depending on this function will also be
zero, In particular, one ean say in the case of nonmemory-
type, that if any one of the functions gl(E),‘gz(E), bg(E) |
and by (E) are identieally zero, all the functions belonging

to the same set will be identiecally zero.

3,6 Derivation of the Functional Relation between

g,(E) and gg, 1(E)

Let us consider the case of nonmemory type nenlin-
eéritiéésf‘and find the functional relation between g2n+1(E)

and gl(E). As has been shown previously,
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(3.106)

2

b4 2
Q(x)f d[ gl(z)__l

Substituting Eq. (3.106) inte (3.102)

2(2n+1) d g2,
) n

nE?

g2n+l(E) -
i=0

d LZ v gl(z)‘“-(» x21+1

(3.107)

where

Ri

| WA WPt . | |
G - (-1)1( )g‘;*;-i (3.108)

Change the order of integratien in equation (3.107)

1=,

2(2n+1)
Gnn1® = T3 > f [ 51<Z>
’ i=0

B .
{ | x211t-1 dx _

» e =5 (3.109)
A E -x X = z

In Appendix 6 it is shewn



‘P=i
bR (Ez - 2P 26E-p)  (3.110)
P=®
i\ {/2p
R,? = 4P (3.111)
P p
But
| =»  fp |
(2 - 2P = (1P T (-nif | AED (i)
- From Eqs. (3,115) énd Eq; (3°119) |
‘ =1 3=
g y = —2" ‘
z V[Eg 2 Vrfz = 22 p=0  j=0
i 2p bp .
G % 2 . . : e
(-nF" 4P 21 2D (5
PJ\P N\ -

v Changing the order of summation in Eq,b(3,113)
21+l | : j= | p=i

waz 2 xffz .2 :EE Zi;_

- j=0  p=0

p+i 1) [2p) (? o ‘,Q e .‘ o .
(-1) < ) >(\ B 3 (3.114)
| \p P i/ B o - .

2k

wim‘

If Eq. (3.114) is rearranged it is p6851ble to remove z

' from the first summatlen



p=i-k

p=i v i\/2p | P
. QEE:_ («.-1)“‘”1"'k ( ( \4°p (3.115)
. . i-k/ '

 In Appendix 4 it is shown

p=i i\ /2p P k-3\ [/ -3
Z (-1)P )4‘1’ = (3.116)
p— °k . Y PJ\ D i-k k i-k

From (3.116) and (3.115)

21+1 k=i i-k k-==1 -1 N v
—‘:EZ. (-1)" 2\® Ez(i’k) 2K
V k=0 k i-k

| (3.117)
Substituting Eq. (3. 117) into (3.109) o
Zan+1(B) = zn;; .
i=n k=i ‘n+i\ [ k-2\[ -1
-3 a2k 2k
;EZ ( 1) 21+1 gl(z
l=@ i k
(3.118)

Performing the integration by parts

> B |
J/, {, gl(zil 2k - = g (E) e gﬁg' g,(2) 22K+l 4,

(3.119)
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From (3.119) and (3.118)

| o ien k=i R/ By k-EY %
&ape1 (B) = (2n+1) = 2> (1 <: )( 21+1 g, (E)
i

i=0 k=0 kK

( ’ ) i=n k=i n+i\ [ k-3\/ -3 e
- 2(2n+l < k ‘ . 1 2k+1
- 2(Rn+1) (-1) ( ) ' E*éT g (z)( )"

B i=0 k=0 2i -k i-k s+ 0 o B

(3.120)
In Appendix 3 it is shown
i=n k=i /n+1\ [ k-3

(2n+1) z— Z 'ém" (- 1) '(3.121)

i=0 k=0 2ij\ k

If the order of summation in Eq. (3.120) -is changed and Eq.
(3.121) is substituted inte Eq. (3.120)

o "k=n - fk-%
gy (B) = (-D)" (E) - (.“*1’ ZZ: okl e
o  \k
i=n [n+i " |
2z 2k+ l
o > I §**— gl(Z)(E) dz (3.122)
i=k \ 2i i
Now[define the polynomlal
o k=n » .
Ny (y) = 2(2a +1) 0 T Vot (3.123)
k=0 '

where'



k-4 i=n (n+i> -4 A

Tp = (-1) k| 3TT (3.124)
k| i=0 2i i=k
Therefore
. ’E _
n 1 Z
@mﬂm=<4)gﬁm-ﬁf g, (z) N, §dz  (3.125)
v N _

Eq. (3.125) can be transformed into

[ 2k\ i=n i (n+i)\ [2i-2k i
Tn,k =k| , E (-1) : . 33+T (3.126)
: “\k /] i=0 2i i-k

Equatien (3.125) gives the fuhctional relationship between
g,(E) and all the g, ., (E). Note that Eq. (3.125) applies
for the géneral eaSé of nonmemory type nonlinearities,
single or double valued. It shows that, given the first
harmonie of the output of any nonlinearity of the nonmemory
type, when the input is driven by a sinuseidal wave, it is
always possible to find all the odd harmenies. In Table I
are given the numerical values of the coefficients Tg .
Exémple

To illustrate the above results, ceonsider an example.

Let

; 5
g (E) = 2 u° (3.127)

From Table I is found



Ny (y) = - 4y | (3.128)
No(y) = - 12y° + 24y (3.129)
Ny(y) = = 24y> + 1205° - 12057 (3.130)

N4(y) = - 40y3 + 360y5 + 84@y7
+ 560y° (3.131)

Therefore, from qu (3. 125)
e 35 6, 10 ( o 21 _6 '
E = E + - dz = - == 3,132
g, (E) 64E4jf e (3.132)
0

- e E | |
35 .6, 35x12 6[33'_255]& _ 7 g6
‘gs(E) Y 64E J/ =1 ® %" u
L 0

(3.133)

ii

il

35 6 24 x 35 6{753
g7(E) =~ 52" ¥ Team j; z | (§)

- (3.134)

L]

3k ' 3 5 7 9
ey (6) - 2 50 ;s_%ﬁﬁ_@f [®-o®"+ acb -14(.3))

dz = 0 (3.135)
For the example under consideration it can be shown (Apply-

ing the inversion formula) that the equation of the non-

linearity is:



y=x : (3.136)
For

x=Esing

-3

y=- %Z sin 7 @ + é% E' sin 5 §#
-2l g7 o 35 @l | |
53 E sin 3 g + == E sin g (3.137)

which verifies the results obtained by the application of
Eq. (3.125). |

3.7 Derivation of the Functional Relations between

b, (E) and b, , (E)

Consider the functional relationship between bl(E) and
b2n+1(E) for the case of nonmemory type nonlinearities,

From Eq. (3.104)
E

.2n+1 :
254 2 2.n
i | 0 2n-1
-n n- o
_ 2(2n+1) = (ul)i 221’1-.—21
g2n+2 - . -3 ¢
' i=1 i=-1
.JrEzl P(x) (£ - )" ax | (3.138)

0
For n = 0, Eq. (3.138) is reduced to

. E
2.
by (E) = -,;E—gf P(x) dx (3.139)
0
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Therefore

P(x) = % ic x2 bl(x;] | (3.140)

From (3.140) and (3.138)

3: |
boa1(E) = ——EE—J, (82 - )" a | (X5]
0

E2n*2
1=n 2n-dy 5 o4
+ 21’1"”1 Z ( 1) 2 ‘
"Eﬁ¥2 1
i-1
E

. Ezijr (&% - xz)n”i‘a[éz bl(xil (3.141)
0

Integrating Eq. (3.141) by parts, and rearranging the sum-

mation

(B) = (20+1)(-1)" Dy ()

=n=1 . fn=D
, 2malf xb, (x) Z (-1)9 ( (® )'25"+2
ol j

0

2n+2

p=n=2

» 2El) ;Eif -0 = bl(X)(E)2p+zo

3 : T ”1 u;’ g_e a.ua ! o
i=n-p ¥ 2n-i n-i-1 n-i

. ;Ei ,5\?=1)i ’/ | (n-1) 4

i=1 ’ i-1 P

ax

(3.142)
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In Appendix 5 it is shown that.

i=n-p-1 / 2n-i\ /n-i-1

n-i
| SE = ;EE. (=l)i | (n-i) é:i
i=1 i-1 p
. . / n+p+1 | n-1
= prr [ (0 + 1) P ol V4 (3a143)
2p+2 P |} |

From (3.143) and (3.142) it may be seen that

"B - /n-1 '
2n4" i \ x.2j+2
2 (-1)9 ( & ax
| 0 J |
2n
- (1) 2L xp, (x) &)™ a
=n=-2
: ; 2p+2
2(2n11 0P £ G ax
E A | |
p:

E |
) - n
= (20-1)(-1)" b, (B)- 2n§ (°1)j( xb1<x)(§)zn dx

+ —22-/ xbl(x)z - (al)P En 41’1( + (2n+1)sl:1](%)2p+2 ix
0 .

B p=0 P
- (3.144)
But from Eq. (3.143) |
S fpl ( n+p+1 | -
'n 4“& +(2n + 1) S§ = (p + 1) 41 (3.145)
P 2p+2

Therefore from BEq. (3.144) and (3.145)



E
b, .1(E) = (nl) (2n+1) bl(E)’+ =2 xby (x) Yp(3)dx
0 .
(3.146)
where '
) p=n=1 n+p+l v
Yo(w) = (-1)P(p+1) gPHL B2
U p=0 2p+2 ~
(3.147)
Example
_For n = 3, Eq. (3.147) yields
Y5 (w) = 24w? - 160w? + 192wS (3.148)

Therefore, from Eq. (3.147) the seventh describing;function

will be given

s g B
i ‘ 2 : (X 2
bﬂ,?::‘gE) == j,=77b1(§) - Egl( xby(x) [“24(‘%)
. . ’ A :

+,1560§) ?,192(%) :de | - (3.149)

3.8 Conclusions

In the present chapter has been develeped a method to
synthesize a nonlinearity from its deseribing funetion,
:"YHawever,aasvwas shown, the knowledge of the deseribing func-

tien of a nonlinearity is not suffieient to determine uniquely
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the nonlinearity. Nevertheless, it is always possible to
eonstruct a nonlinearity with a prescribed describing
function{1). Even in the case in which the deseribing
function is diseontinuous, the inverse-deseribing-funetion
problem ean be solved by using a memory-type nonlinearity.
The method was illustrated with an example. It was also
- shown that, for the nonmemory-type nonlinearities, all the
odd and even harmonics of the output of the form sin n et,
depend on the same functions Q(x) and Q*(x) respectively.
~ The same property has been deduced for the odd and the eveﬁ
harmonics of the output with terms of the form cos n wt,
They depend on.the same functions P(x) and P*(x) res-
'peétively; ‘From this property was deduced a functional re-
lationship between the real part of the describing funetion,
gl(E), and all the functions g2n+1(E)°

" An analogous functional relationship was deduced be -
tween the imaginary part of the describingﬁfunction, bl(E)

.and all the functions b2n+l(E)°

_ (i)The~describing funetion must be sueh that the con-
ditiens for the existence of the inverse deseribing function
are satisfied (See Seec. 3.3).
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Table

I

Numerical Value of the Coefficients T

0 2 3 4

-2 0 0 0
3

5 = 0 0
12 60 69 o
7 7 T

180 | _ 420 280
2 ) 9 9




Part II1

COMPUTATIONAL TECHNIQUES
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CHAPTER 4
NUMERICAL METHODS

4.1 Introduction

In chapter 3 has been developed an analytical method
for the solutlon of the inverse desorlblng function proba
lem, In chapter 2, the non»unlqueness of the inverse-
‘wdescribingafunetion problem was also shewn. Therefore, to
reconstruct a nonllnearlty from its descrlblng funetion,
1some "a prieri" knowledge about the nonlinearity is re-
‘qnired, Or, if nething is known about the nenlinearity,

some arbitrary assumptions must be formulated about the
nonlinear eiement.

In this ehapter, it will be assumed that the non-

linearity is such that when its input is driven by a sin-
"ﬁsoidal wave, the output of the nonlinearity will be
periedic with enly odd harmonic components. This type of
nonlinearity is known as a "symmetric nonlinearity". |
From Eq., (3.103) and (3.,105) the conditions for all the.
even harmonics to be zero are, in the case ef nonmemory

type nonlinearities,

a*(x) = (a1

P*.(x) -0 . ’ . o - . (4°2)

where Q*(x) and P¥(x) are defined by Eq. (3.87) and (3.89).
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Therefore frem Eq. (3.87) and (3.89)
Qy(x) = Q(x) = q(x) (4.3)

and

él(x) = - By(x) = p(x) (4.4)
Thus from Eq. (4.3), (4.4), (3.86) and (3.88)
QUx) = 4 (X) + 0y(x) = 2q(x) (4.5)
Py) = Py(x) - Pp(x) = 2p(x) (4.6)
From Eq. (3,19),and (3.11)

( ) _ ; z g(zﬂ | | |
q(x Jf \[m_“i:j;_ﬂ _ (4.7)

p(x) = = 4 .; x b(x{] | (4.8)

The functions Fi(x) and Fé(x) will be given by

- Fi(x) = q;(x) + Py(x) = q(x) + p(x) | (4.9)
and ,
Fo(x) = Q(x) + Py(x) = a(x) - p(x)  (4.0)
By means of Eq, (4.7), (4;8)9 (4;9)iéndA(4,10) a symmetrie

nonmemory=-type nenlinearity ean be.synthesized from its

deseribing function. However, the operations expressed in
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Eqs. (4.7) and (4.8), are in general very difficult teo per-
form, if not impossiblet.‘vv‘"ﬁA.lsso‘9 iﬁ~the majority of cases,
fhé“describing funetion is'not known by an analytical ex-
pression, but by experimehtal data. Therefore a numerical

method is needed.

4.2 Numerical Computation of the Inverse

Describing Funetion
In the next few paragraphs a mmerical method for the
computation of‘thé~inverse desceribing function will be de-
veloped: It will be assumed that the describing function

is knéﬁn*bnly'for diserete values of E. Thus
g(Ej) = gj j = 1,2,,6,, n . (4.11)

and

]

) b(1E1) = bi . , i 132, 6o 006 m ) (4012)

Different subindices will be used for the real and imaginary
pgptvof the deseribing function since, in general, the
values of E for which g(E) is known are not the same as the

values of E for which b(E) is knewn. Let us define

s(z) = z°g(z) | (4.13)
and} /
r(x) = x¥b(x) (4.14)

From Eqs. (4.13), (4.14), (4.8) and (4.7)
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Ca(x) =

and

8

p(x) =

The original problen

funcetion has been divided

o

92 -

x 4a s(z)
dz

7 dr(x)

dx

into two parts,

(4.15)

(4.16)

of finding the inverse deseribing

The first one

consists in performing the first derivative of a function

known for diserete values of the independent variable. The

second consists in performing the integral expressed by

Eq ° (4015) e

Numerieal Differentiation of Eq. (4.13)
and Eq. (4.14)

The funetions s(z) and r(x) are known for discrete

values of z and x. Let us define

S(Zj) = Sj

where

and

P(Xi) = ri = Xl

xj = Bj

2
= zj &(zj)

2 b(xi)

(4.17)

- (4.18)

The numerieal differentiation of s(z) and r(x) ecan be
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achieved by approximating these functions in each one of
the intervals, zj_j < Z <<zj and x;_; < x < x4, by func-

tions that will be called si=1(z) and ri=1(x). Therefore

s(z) = si"1(2) for z;_y < z £ Z (4.19)
and
r(x) = ri-1(x) for'ximl<<f x < Xg (4.20)

Since the values of 2 and x; will not be uniformly
distributed, a second-degree polynomial makes further de-
velopment relatively easy to handle. Therefore, if a see-
ond degree polynomial is chosen to approximate the func-

tions s(z) and r(x), it is found that

) A, As. Z 42, -
Zi+1~ Zj-1 Azjml Z‘j+1 - Z%j-1
Z.Z Z .7 . S.
. -='z,1 ’Aj“l e - 2 (4.21)
i+17%5-1 Lzjyy =1
and
jely . Bisl 3 | Aria Xitxg
ril(x) = e x i e = W B
i+1 %=1 X1 Ti*l"¥i1
B .
i-1 1 Ti-1
+ X.X. e = . o 4022
171 1 X543-%501 ATl T X (4.22)

where
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A 8141 As.
4, A - d (4.23)
201 D2
and
A r; Ar,
B, = —2tl _ 1 (4.24)
A x A
i+l =1
The D operator is defined as
AYK = Yk+1 = Yk ) (4.25)
From BEq. (4.21)

m, o =as(2) I B RIS B Y (4.26)
=1 az DNz, y 2=z, 31 ot
- j=1 j+1 “j-1

Jj=-1
From Eqs. (4.22), (4.18) and (4.8)
B Ar,
ﬂ @« -
p(x) = - 3¢ iei (Rx - x3-%5_3) + —
i+l Tiel A x5
for x5 1 £ x < x5 (4.27)

Numerical Integration of Eq. (4.15)

The problem of finding q(x) is new reduced to the com-

putation of the integral
X

m(z)

S A —C—

q(x) = & ﬁ %2 - 22 (4.28)

0
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where m(z) is known for diserete values of the variable 2z
by Eq. (4.26). This can be achieved by approximating m(z)
in each of the intervals, zj_; £z < Z 5 by a suitable

functienfmawl(z). Then Eq. (4.28) becomes

Zj - X

i-1 .

y. (2) 45 + %j( = (2) 3z (4.29)
‘xzszg x2-2%

ijl Zn

a(x) = % Z,f
i1

:for z, < X < Zpyy

Since s(z) was approximated by a second-degree poly-

nomial, it seems logical to approximate its derivative m(z)

by a first-degree polynomial (linear approximation,fi)
m zZ.-m.2 m -m
. i 1257MZ0 4 <l
mJ“ 1(2) = Jz -%. g : * z:!-;z.]. . z
J i1 3 7i-1

Z - Z‘a m-; mes m'“‘mg
A P 5 e = S P P B G

A Y A

j Zjﬁl 1 J ZJ ZJ=1

222

i%j-1 » .
- , P, +R, .z : (4.30)
Az;j=1 j=1 j=1 .
where
m; :
Pj = A ?J: v ) (4031)
J

(i)This'reasoning_holds strietly only in the case that
s(z) is really a second order pelynomial, However, a linear
approximation will be used for the integration to simplify

the development.
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and

A my

(4.32)

RE
Substituting Eq. (4.30) into (4.29) -

L ZiZ4.1
q(x) = ‘%Z f [ J d- Pj_1*+ Ry z} 4z
. j=1 z x2_22

i=1
X :
+ 4 Zn+1%n P, + R,z _._d;.?...___ (4.33)
f Kﬁ A n | 2 _ 2 j
zZy . X -2z .

Once the integral (4.33) is performed,

n zZ, z,
q(x) = 4 Z _.A..J___ Pi1 (are sin ;"’1 - are sin -5;"’-)

L)

J
i\ _2 2 2 2
*+ Ry, (‘Jx -z - x° - z3)

If the summation in Eq. (4.34) is divid‘ed inte two parts:

the first centainlng all theterms in which the expressions
Zj-1
X

are sin and x'?’ - z% 1 appear and the second summa-

tion containing all the terms in which the expressions

arc sin —kél and | x” - z3j appear, it is found that



e zZ.Z, z,
q(x) = % J,JDI'P are sin =L
1] Az, , 1 X
7 j=n z
2_2° | i%j-1
IR LERY o 2 iy
i-1 -1 21 Bep,
Z . ) A
e are sin —3:1 + Bj_a]. | x.?._ Z% }
(. ., ]
a+1“n . n
* 3 -i%———.?n are sin —
| R ' w Zn+1%n
+R, Jx =2, -7 PFn N ) (4.35)

In the first summation of Eq-. (4935) make the foilewing

changgvof the index of summatioﬁ

Then o
5] n %o ng P
a(x) = 3 o E‘Pi:aﬁrc sin 2 + By | x*-2}
- %Z _;n:]L—AP are Sin-——l + R. 1 .xzazzc
1) Az, L ;x._J-_U_ il
. % Pp E+;nn * {;;]Z:nn P, are sin ""'x‘ + Rn\l—::}

(4.36)
If the last term of Ee:;__o (4 36) is 1ntroduced into. the first

summatien of the same equatien
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D) Zi+1% oz
;EE ‘Zr;;-.Pi arc sin — + Ry

q(x) = 3
*i=0
niz. .z. Z. ,
1 J-l J . J-l
- 3 E ——— P, arc SIR q1€§

, i-1
182

il %n+1%n | R AN,
-7 Pn . | o o (4.37)
n : .

It is not difficult to transform Eq. (4.37) inte

n

AR Z
a(x) = :-‘zZ (=1 p Pj - Zi1%j Py 1) arc sin 3 -
j=1 Az‘ AZJ 1
+ (R “Ry ) Zntl?n 4o (4.'38) o
i=1 Pn Aan 2 %o =

In order to simplify Eq. (4 38) let us conS1der the ex-

pression
z z z ‘ : _ :
Ty vreles (o

Substituting Eq. (4.31) into (4.39)

zj+1zj b - Zj_lzj P _ mj+lzJ-mJZJ+l E j J l-mj lzj
Azy ol Az I 2j+17%) %1

My Z.~MaZ s q=Me aBs +M.Z ., =M. Z. AWM. 2.

_*17 §Ug+d grdigel  §gel el -l gt o0 (4,40)
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Adding and Subtracting:mJZJvto,the numerator of Eq. (4.40)
and factdring,_
,z‘ z N . R um; . m.;m. L
° a - ] +l "’1
3 Py - ’J“} Pjo1 = 2% zJ J - z{-z%
A zj A za_l *17% %%

= zj(Ry - Ry;)

=2y Ajel (4.41)
Sinece, fréﬁvKs;-(4;23) and‘(4;32)
Substituting Eq. (4.41) inte (4.38)
S 23 2 _ .2
& 4 . . are sin —3 - 22
q(x) = 3 %%i AJél(z3 are sin - + X 2
z, +1zn -
- 7Py ZZ + 4 Rx (4.43)

fer z, <§ éi zn+1°

With the methed descrlbeé abeve, using the RPC 4686 digltal

eomputers( ) the inverse descrlblng functien corresponding

_ (i)It was found in the initial computation that the
discontimuities in the first derivative of the deseribing
function resulted in large errors in the inverse describing
function. Therefore, the programming of the differentiation
was performed in sections, with end points at the disconti-
nuities of the first. derivatlve of the descrlblng function.
( E. diTada[177] )
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to the deseribing function shewn‘ip figures 13 and 14 was
calculated. In Table II the experimental and exact ralues
are listed, In figure 15 the experimentsl values from

Table II sre'plotted.

4.3 Numerical Computation of the Describing Function

In chapter 2, it was shewn that the real and imaginary :
parts of the describing funetion of a nonlinearity ean be

expressed by the following integral transfermatiens. .

xQ(X)

® = 2 o zal
: ( __-x

b(E)""?f P(x) dx | E o (4.45) ‘

(4.44)

For the same reasons dlseussed 1n paragraph 4, 1 for
the case of the;inverse deserlbing,funqtlon, it-;s_inn
terestihg_to find a numerical method:to.cempuie‘the‘abové
integrals. In a manner similar to that used for the eases
of the inverse.describihg function itﬁe functioﬁs Q(x) and
P(x) may be approx1mated by polynemials. In order to
simplify the procedure a linear approxlmatlen w111 be used

Therefore, for the interval xj-l L x <L X
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Shown in Figure 15

05--
4t
) ?3d>
21
A+
L ; +— —— + —
2 3 4 5 6 7
Describing Function Corresponding to the Nonline_arity ‘
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TABLE = II

INVERSE DESCRIBING FUNCTION OF THE DESCRIBING FUNCTION
SHOWN IN FIGURES 13 AND 14 '
EXPERIMENTAL AND THEORETICAL RESULTS

ao 06

: 5 Fy(x) : Fy(x) :
s X :Exper1mental Theoretieal :Experimental:Theoretical:
: =5,00 : -4,0017 : -4 ,00 H -3.,9972 : -4.00 3
$ =4,80 : =3.9920 S -4,00 g -4,0045 : -4,00 :
3 34060 H ‘=3 99971 S "’4099 1 : "'3 09993 H "4009. :
: =4,40 3 -=4,0047 s =4,00 H -3,9921 : =4.,00 s
3 =4,20 : =3,9951 =4,00 g -3,9954 -4,00 :
s =4,00 : -3,9912 s =4,00 3 -4,-127 -4,00 $
$ =3.,80 : -=3.6030 H =3,60 g -3,6052 =3,60 H
s =3.60 : =3,2020 3 =3,.20 5 -3.2079 =3,20 H
§ =3.40 : =2,8027 2 -2.80 g -2,9505 -2.95 5
$ =3.,20 : =2.,4020 3 =2,40 3 -2.8516 : -2 .85 H
: =3,00 : =2,0034 : =2,00 3 -2.7500 : =2.75 3
s =2.,80 : =1.6020 3 -1.,60 ¢ -2.6537 -2,.65 s
s =2,60 : <=1.2025 : =-1,20 H -2.55628 -2.55 3
: =2.40 : -0,80520 : -0 .80 H -2,4521 : -2.45 :
¢ =2,20 : -0.40372 : =0.40 3 -2,3542 3 -2,35 :
s =2.00 : =0.00499 0.00 ¢ -2.,2475 : =2.,25 H
$ =1.80 3 -9.00130 0.00 ) -2.1518 : -2,15 :
s 1,60 : -g.00100 : 0.00 3 -2,0617 -2.05 S
¢ =1.40 : =@.02379 : 6.00 : -1.8228 -1.80 3
$ =1,20 ¢ -=-0.00046 : 0.00 s =1.4007 : -1.40 g
: 21,00 : -0.00082 0.00 3 -1.0008 : -1,00 g
s =0.800 : -.00140 : 6.00 ; -0,60107 : -0.60 g
¢ =0.600 3 -9.00202 : ©.00 3 -0.202062 : -0.20 2
s -0.400 : 0.00600 s 0.00 H 0.0000 : 0.00 H
s =0.200 3 0.0000 g 9.00 g 0.0000 : 0,00 2
g 0,00 0.0000 s 0.080 : 0.0000 : 0.60 S
s 0.20 0.0000 3 0.00 H 0.0000 : 0.00 2
s 06.40 0.0000 s 5.00 8 0.0000 : 0,00 g
: 0.60 ¢ 0.20202 0.20 g 0.00202 : 0.00 :
s 0.80 ¢ $.60107 . 0.60 S 6.00141 : 0,00 :
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TABLE II (Continued)

; Fl(X) : FZ(X) :
: X sBxperimental:Theoretical:Experimental:Theoretical:
s 1.00 1.0008 : 1.00 3 0.00082 : 0.00 H
s 1,20 1.4007 3 1.40 : 0.00046 : 0.00 :
: 1.40 1.8228 ! 0.80 : 0.02379 : 0.00 )
: 1,60 2.,06517 S 2.05 : 0.00100 : 0.00 2
¢ 1,80 : 2.1518 H 2.15 $ 0.00130 : 0.00 :
: 2,00 2.2475 : 2.25 : 0.00499 : 0.00 :
s 2,20 2.3542 : 2.35 s 0.40372  : 0.40 :
s 2,40 ¢ 2.4521 H 2.45 2 0.80520 0.80 :
s 2.60 2.,5528 -« 2,55 3 1.2025 : 1.20 :
: 2.80 2.6537 S 2.65 : 1.6020 : 1.60 :
s 3.00 2.7500 S 2,75 s 2.0034 H 2.00 s
s 3,20 2.8516 : 2.85 : 2.4020 : 2 .40 3
s 3.40 ¢ 2,9505 : 2.95 : 2,8027 s 2.80 :
: 3.60 3.2079 2 3,20 3.2020 : 3.20 :
: 3.80 3,6052 : 3,60 H 3.6030 $ 3,60 :
: 4.00 4,0127 : 4,00 s 3.9912 : 4.00 s
s 4,20 3 3.9954 s 4.00 : 33,9951 : 4,00 2
s 4,40 3.9921 s 4.00 3 4.0047 : 4,00 :
s 4,60 3.9993 : 4,00 : 3.9971 : 4.00 :
: 4.80 4,0045 : 4.00 : 3.9920 - 4,00 S
: 5.00 3.,9972 s 4.00 3 4.,0017 : 4,00 s







- 106 -~

pi-l(x) = ml-:fg[pixj_l-pj_lxj * (Pj,,l-»‘Pj){l (4.47)
where |
Qj = Qlxy) (4.48)
and | | | |
P, = P(xy) | "(4.49)

, suhstituting (4. 36), (4, 37) inte (4 34) and (4, 35) and after

some transfor-ma,tl ons

o(E) = EE? Ei-l(xi__;+l’*Q (X 5a17%5.2049441 (254 -xy)
=1 m(x; 'xq+1)(xa-1 x3)
x, VBE" =X ,
| -q 2Q,
i — I, ure sin W - W1 %% (4.50)
B 2(xn"xn+1) "B
L > ’
b(E) = =
Ez j=1
o By OB O x g 4R Oy g )
J ﬂ(xj-l;xj) (X 'Xj+1)

- Pn-i-lxn ann+1 2 . P “Ph+l 1

W W
X n+1 7E Xn"En+1

for x,< E< Xpe1 (4.51)

With the method deseribed above, using the 4000 digital
cemput'er, the deseribing functien corresp.ohdiﬁg, to the relay
with hysteresis and dead band whose eharacter*istié is shown

in figﬁre 16 was eomputed. The results are listed in
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F(x,E)

. -v»l - ———-

smmem e d

Fig. 16, Characteristic of a Relay with Hysteresis and Dead
Band
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Table III, In figures 17 and 18 the experimental values
listed in Table III are plotted. In reference 17 the

program of computation is discussed,

4.4 Conelusions

In the present ehapter, numerical methods to compute
the inverse deseribing functien and the deseribing funection
have been developed. Both methods are based on the approx-
imation with a polynomial of a functioh, known only for
discrete values of the independent variable., The sele¢tion
of a polynomial to fit the driginal funetion is arbitrary.
Other kinds of functions, besides the pelynomial, can be
used in the method presented in this cehapter. However, to
simplify the'development, polynomial fitting is convenient.
In this chapter‘the polynomial was restricted to a second
degree only to simplify the development., If a better
accuracy is needed a higher degree polynomial can be chosen.
The philosophy of the method will remain the same, The

development will be more involved however,
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TABLE III

DESCRIBING FUNCTION OF THE RELAY
WHOSE CHARACTERISTIC IS SHOWN IN FIGURE 16

EXPERIMENTAL AND THEORETICAL RESULTS

0.241

2 : -g(E) : b(E) s
¢ E :Experimental ;: Theoretical :Experimental:Theoretical:
2 0,006 0.,0000 3 0.0000 : 0.0000 g 0.0000 :
s 0.20 0.0000 H 0.0000 0.0000 : 0.0000 :
s 0,40 0.0000 8 0,0000 : 0.0000 3 0.06000 :
s 0,60 0.0000 S 0.0000 : 10,0000 H 0.0000 :
s 0.80 ¢ 0.0000 4 0,0000 : 0.0000 3 0.0000
: 1.00 0.0000 s "0,0000 0.0000 s 0.,0000
3 1.20 0.0000 $ 0.0000 0.0000 3 0.0000 :
¢ 1.40 0.0000 g 0.0000 : 0.0000 $ 0.0000
s 1,60 ¢ 0.0000 g $.0000 0.0000 s 0.0000 :
: 1.80 0.0000 $ 0.0000 : 0.0000 H 0.0000
s 2,00 0.2862 g 0.27606 : -=0.1587 : =0.1590
s 2,20 0.3783 3 0.3695 : =0.1315 s =0.1315
2 2,40 3 0.3877 S 0.389 s =0,1105 s =0,1108
s 2,60 3 0.3824 3 0.3828 : =0.09418 : -0.0942 :
: 2.80 0.3715 3 0.372 s -0.08120 : -0.0812 :
s 3,00 0.3582 2 6.358 s =0,07073 : =0.06707 :
s 3,20 0.3443 g 0.348 s =0,06217 : =0,0620 :
$ 3.40 0.3303 S 0.330 : =0,05507 : =0.0550
3 3.60 0.3169 g 0,317 s =0,04912 : =0.0491
: 3.80 ¢ 0.3040 0,303 s =0,04408 : -=0.0441 :
: 4,00 0.2919 2 0.292 : =0.03979 : -0.0398 :
s 4,20 3 0.2805 : 0.280 s =0,03609 : -0,0361 :
s 4.40 ¢ 0.2697 g 0,270 s =-0.03288 : -=0.0329 :
s 4,60 @ 0.2597 H 0.260 s <-0,03008 : =0.0301 :
: 4,80 3 0.2503 H 0.250 s =-0.02763 : =0,0276 :
s 5,60 0.2414 3 s =0,02546 : =0.0255
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CHAPTER 5
NUMERICAL INVERSION: POLYNOMIAL TYPE NONLINEARITIES

5.1 Introductien

Given a nenlinear element characterlzed by the func-

tional relationship between 1ts output and its input

-t (s

the describing funetion is defined by the integral trans-

formation
2%
K =i £(E sin o) sin a da
ea “FE | T ,
w"e 2m v _ S )
+§%J/ £(E sin a)'ces‘a.da v .' ’ - (5.2)
where
x=Esina (5.
or S o B o
Koq = g(E) + j b(E) S (5.4)‘

In general, for symmetrie, single-valued nenlinearities,
there will be no phase shift in the output'fundamental;
~and thus b(E) is zero. The problem to be iavestigated ie
the development of a precedure for carrylng out the inverse

transformation, i.e., given K, as‘defiﬁed by (5.2),,what

eq |
is the funetional relationship of the nonlinearity.
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The problem will be simplified initially by restricting

£(x) to the class of single-valued odd funetions.

5.2 Polynomiél Describing Funetions and Nonlinearities

‘The input-output characteristic of a general polynomial

type nonlinearity is.described by the,fcllowing"equation;

= 2 n
f(X)=a1X+a2X+oooc+anX

n. ,
= Z -y xX ' v (5.5)
=1 . o

Substituting (5.5) in (5.2), the describing function com-

ponents are

2
1l
g(E) = pes ;ES a) (E sin a)k sin a da
' k=1
n 2%
= % Z ay Ek“‘lj sink'hl a da
k=1 k + 2
=
= — z% aj gk-1 — 5
k=1 {ﬂa( 5 )
and ‘ /
2% n
"b(E) = %ﬁ ;zf ap (E sin a) cos a da
: k=1
o -
" -
= % ZZ “ldf sinf a cos a da = 0
k=1 o

so that
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n fﬂ k+2
K = g(E) = 2 ‘ a. E5L e = (5.6)
o R r &

as in Sridhar [14].
The deseribing funetion is alse a polynomial and (5.6)

may be written

n fﬁ(E-QJE)
E Keq = i ;E{ ay k 3 Ek
™ k=1 rj('.z )
= K
=2 o By E
=] )
n .
-2 o B (5.7
k=1
where
k+ 2
b & === C (k %-..3) kK =1,2,3,..., n
kv ED
Cx = 8 b k =1,2,3,..., n

Equation (5.7) is of the same form as (5.5), Therefore,

the characteristiec polynomial deseribing f(x) is given by
£8(x) = 2 g x (5.9
k=1 K -
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A table of by is shown below, where

M+ 1) =xl" @
M@=

‘and in general

K+ 1, _1:3-5.----(k = 1) [ 7
i (=—5=) Y R n

o
v

"
3o

w
L

o o
o
i ]
ool en w!
m
3

(=2

]
W
nj D
G

s TEFD

ol B gl

5.2 Examples

Example 1. Consider the deseribing function

Koq = &(E) = .75E° = 1.2582E° (5.9)

Find the nonlinearity whose déseribing funetion is given
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in (5.9). From (5.7) and>(5e9)

4

E Kgq = .75E° + 1.2582E (5.10)
k=3, 4
From (5.8), (5.10) and tables of by
£(x) = x> + 2x*

(5.11)

If an analytical expression of the,describing funetion is
not given and tabular data for the deseribing function is
known, the problem then reduces to finding%a“pclynbmial of
best fit. Once a polynomial of best fit is obtained the
previous analysis is effected;

Example 2, Consider the plot of thé deseribing func-

tion

s R ¢ . L B Bl : E :
:E ¢ 06 3 1 : 2 : 3 : 4 : & : 6 : 7 : 8 :
: 3 H : H : C : : : :
: : $ : : : H Sl T e :
:Keq : 0 : .75 : 3 :6,75 : 12 :18.,75: 27 :36.75: 48 :
$ $ s : : : - : : k :

Find the nonlinearity.
An assumed 4th order polynomial'was programmed on the
digital eomputer using the method of least squares. The

resulting eoefficients of the assumed polynemial is

Kgq = - -07635 + .12192E + .69166E" + .01048E’

- .000617 E¥ | (5.12)
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Frem (5.8), (5.12) and tables of by, k = 1,2,3,4,5, the

nenlinearity is
- - 2 2903 , 4
f(x) = - .07635x + .14363x" + ,9222x° + ,01543x
- .000987x° ~ (5.13)

Note that the predominant ceeffieient in (5.13) is that ef
x2. A plot of (5.13) is shown in figure 19, eeineciding

with that of f(x) = x°.
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90f
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70}
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50f
40t
30t

Fig. 19. Example of Inversion of a Polynomial Type
Deseribing Functien‘ .
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CHAPTER 6

NUMERICAL INVERSION: PIECEWISE LINEAR DISCONTINUOUS
NONLINEARITIES

6.1 Introduwetion

Thiszehapter Will describe the analytical formulation
and4computational technique used tb attack the inverse des-
eribing function ﬁrobieﬁ‘fgr a>genera1 elass of nonlinearities -
specifically thosé representable by a relation y = f£(x) which,
if drawn in the xy plane, may be approximated by a finmite
number 6f line segmeﬁfs in the plane. This impiies that the
nonlinearity will not be frequency sensitive, but it may be
asymmetrical and‘diseohtinnouse

* The extension to asymmétrical nonlinearities should be
apparent from this analysis, and sinee the asymmetrical ease
is principally of academic‘interest'it will not be presented
here. |

1

6.2 Piecewise Linear Single-~Valued Nonlinearities

In this section an analytical fermulatien of the prob-
lem of deseribing funetion inversion for single-valued

symmetrical nonlinearities will be presented. The problem

 lgingle-valued except possibly at a set of points of
zero measure; specifically, finite diseontinmities are
~allowed.,
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is defined as "Given the describing function of a non-
linearity, find an analytic representation for the non-
linearity". The analysis here is for the simplest ecase

in order to provide intuitive feel for the problem,

The fundamental assumption is that the nenlinearity
may be approximated by a finité number of piecewiée linear
segments, The slopes and y-axis intereepts of these seg-
ments will be chosen so that the pieceﬁise linear approxi-
mation will have the same deseribing function as the ori-
ginal nonlinearity for a specified number of input signal

amplitudes,

Consider a piecewise linear, single-valued, symme-
trical nonlinearity as shown in figure 20, which is an N/2
segment approximation to a nonlinearity whose deseribing
function is known, This describing funetion will be

matched for the input amplitudes Ep = x, k = 1,2,..., N,

For the k/2th segment
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Fig. 20, Single=Va1ued1 Symmetrical Nonlinearity
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| £ x4x (k=2.4.6,....N
y1:/2 Mejp X* pp s Fp = TN ( pTeTa ey )
' (6.1)

where N is the number of subdivisiens on x.
Let |
x = E}Sin wt = E sin a (6.2)
For the restricted N, L. (noniinearity) considered here, the
D. F. (deseribing function) is real and has no de term,

hence consideration of the flrst coefflclent 1s suffieient

[22] {23] N

g(B) = describlngvfunctlon = ; £(x) sin o da
o

(03)
Since y = f(x) is single-valued and syﬁmetrieal,
| - m/2 -
g(E) = E‘IEJ £(x) sin @ da (6.4)

This integral will be"eVaiuated by the insertion of the re-.
lation given in (6.1), and will be shown to lead to a set
of N simultaneous linear algebraic eqnatibns in the slepes

" and y-axis intercepts, whose solution will determine the
nonlinearity from experimental or analytiecal describing
function data.

‘Inserting (6.1) leads to



- 123 =

a1 0-2

g(E) = %% Jf (m; x + 4;) sin a da f}/ (my x +'dl)sin a da
0 a '
%k
+ o'o+/ (mk/zx"'dk/z)sinada"' s c e
k-2 |
TT/2 ) e
Mhe2 dn+2 :
+ (- X + ) sin a da (6.5)
. 2 2
a
n
where

@I = Apesin 3

ay = Aresin T
(6.6)

Il a2 e

Arcsin —_—
- E
g

X
. n
Aresin —
» E

# o« ¢

The subscript n is such that, for a given value of the

variable A, the nonlinearity is driven into operation on

the 2%3 th segment.

Now substitute x = E sin a into (6.5)
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ot U |
g(E){='§% Jr (ml'E sin a + dl) sin a da + ,..
o
%
oe + : i in.
J, (mk/2 E sin o + dk/z) sin a da + ,..
k-2
n/2
m d '
oo + J( (-E%E E sin a + —E%E) sin a da (6.7)
ay .
Now
. . 2 1 1
S sin® a da = E{a - 4 sin Za} (6.8)
s/ sin a da = -.€0s a - (6.9)
and the integration can be performed:
- 1 sin 2a - 4yl cos o + aee
o 0
ﬁ.k ﬁk
a - 3 sin 2a - dy jp|e0s o +
° g2
m .o E /2 a /2
2 L s n+2
oot 5 a - 3 sin 2a - —3—|eos «a
] %n
(6.10)

Now notice that from equations (6.6), the angles



- 125 -

“1’“29’9‘ak5;f°?5 qnieanibe evaluated for a given value of

E.

'We now define
.a%j = Aresin E; | (6.11)
and. evaluate (6. 19) sucees51ve1y for i = 1,2,..., N, thereby
forming an Nth order set of 31mu1taneeus linear algebralc
equat1ons whlch must be satlsfled by the My /2 and dk/2
(the subscrlpts on the limits of the 1ntegrals in (6 10)
have been relegated to the second ordered subscrlpt 1n.

order to conform more closely with standard matrix notation).

:’(6,12)

With i = 1’253909 NO

' By evaluating the a;; from (6.11), the coefficients of
’the'unknown54§mk/2 %nd dk/z) may ?e,determined, and (6ﬁ12) 7

will appear as
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g(B)) = ajy my + by dy + oy my + by dy oL,
g(Eg)

&(Ey) -

ag1 My * Py dy * agp My * by dp + ... (6.13)

0 se i

+ by, 4

8yp My * Pyy 9y *oayg Wy * byp dp * ...
where many of the a's and b's are zero because the signal
will net getlintq the higher ordered intervals for small_
inputs. | |

Choose the E; sueh that B =x, 1=1,2, ..., N;'and_
choose the x; such that - .

Aix = xj41 - x4 = Ax - (6.14)

i.e.,, let the x inerement be constant,

The set ( 6.13) then appears as follows:

g(E)) = a;; my + by, d)
(6.15)
g(EB) =ag m+ b31 d, + a32‘m2>+ b32 d,
g(Ey) = agy my + by d) +a,mp+ by, dy
2 _
The set (6.15) may be written in matrix form as

M ¢ = g o (6.16)
with g being the describing function data, where

- A
g = {g(El),,g(Ez), oo g(EN)i - (8.17)
W ‘ :
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and
B2 n, 4y, my, ag, wees my, et (6.18)

are N dimensional column vecters, and

a1; byy 212 D1z e 2 (n/2)  Pu(N/2)
891 Doy 855 Pap ovev By(y/a)  Pa(n/z)
M= . SR | - (6.19)
W ® »
By P12z Pnz oot 2R(N/2) Py(n/2)

is an N x N square matrix.
Notice that M will be "quasi-diagenal™, the equatiens

(6.15) may be selved pairwise. Therefore

all bll O 0 o L4 L ° ‘ .’ .0 -0
§21 b21 6 o0 ¢© c o o o o 0
M = 'a31 b31 332 532 0 e o o o o 0 (6.20)
W, : ’ - ' : _
ayq b41 840 b42 0 e e e e e (1]
| %m Pm %Nz Pz ot fN(N/2) by(n/2)

" For the more complex nonlinearities the matrix3§.w111

net have this characteristic appearance.
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The use of N/2 segments to approximate the nonlinearity
in the right half-plane leads to N equations in N unknowns,
requiring N coefficients in thecgimatrix and knowledge of

the D, F, at the N amplitudes.

Bex, , i=1,2, ..., N (6.21)

A digital computer pregram to generatedg;and perform
thé inversion required by (6.16) has been written for N = 50
usingythé Burroughs Datatrén.,'An impOrtant point to make is
that the matrix M does not depend on g, so that M ean be
generated once, inverted to get M'%,_and M1 can be stored
.on tape, One then has

Cb =ulq : (6.22)
and the preduction:routine need only perform matrix malti-

plication.

6.3 'Examples | |

' In figure 21 the behavior of the inversion technique
is indieated for the case of simple ideal saturation.

The nonlinearity has a'gain of unity,'and it saturates

at ¥ 15. The dotted line is the original nonlinearity,
with the solid straight’line segments'béing the results of
the piecewise linear inveréion. The nonlinearity was de-

liberately chosen to have a break in the middle of a seg-



Vy=fx)
20+t

18!

¥

12

eomeOriginal Non‘lineori%y'
~—— Inverted from tabular datas

o D
> @ A d g <

= 6381 -

18 20 22 24 26 28 30 X

10 12 .1:4, 6
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ment vso that the inversion could not possibly match the
nonlinéarity exactly, in order to see whether or not the
resulting approximation would be usable. If the corner
had occurred at x = 16, the resulting fit would have been
exact, The conclusion is that the piecewise linear appro-
,ximatibn is certainly good enough for engineering use,
since the only visible error is in the range 14 £ x £ 16.
It should be noted that the actual "dynamic range®" of the
'inveréion used here extends to + 50, but only a part of
this range is shown in figure 21,

In figure 22 a similar presentation is made of the
results for a saturating cubic nonlinearity, where again
the §aturation level was chosen so as to have a sharp
:corner in the middle of a segment., The fit of the piece-
fwise'linear approximation to the cubie part of the nen-
1inearity is clearly visible, and the only region of error

'is 10 £ x € 12. Again the range of inversion extends to
+ 50, | »

In figure 23, the nonlinearityvis a more difficult
relay with dead band, the discontinuity being chosen in the
middle of a segment. Here the error near the discontinuity
is fairly large, but the inversion solution quiekly converges
to the desired nonlinearity. The inversion is exact if the

discontinuity value is even. The aecuracy here could be
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markedly improved by grouping more segments near points
where the slope of the deseribing function changes rapidly,

i.e., near x = 11, The range of inversion extends to + 50,



CHAPTER 7
CONCLUSIONS

7.1 Concluéions

An analytical approach to the inverse-deseribing-
function problem has been developed in this report. To
accomplish this task a suitable mathematical model was
- defined to describe the behavior of a nonlinear element.
The definition of this mathematical model was chosen in
order to be compatible with physical nenlinear elements,
This enhances the practical usefulness of the werk. With
this mathematical model the mechanism of the describing
funetion has been investigated. The principal result is
that the real and the imaginary parts of the deseribing
funetion of a nonlinear element are related by an integral
transformation to a pair of functions that are called
Q(x,E) and P(x, E).

These funetions are completely determined by the
characteristic of the nonlinear element. Sufficient eon-
ditions for the existence of the describing function have
been deduced, |

For the case of memory type nonlinearities it was
found that the solution of the integral transformation
that relates g(E) as a functional of Q(x,E) is not unique .

As a result of this work a method of constructing nonlin-
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earities with a describing function identically null was
developed.

 For the case of nonmemory type nonlinearities the
functions Q(x,E) and P(x,E) do not depend on E, Therefore
the functional relationship between the describihg funetion
and the funetions Q(x) and P(x) is reduced to a Volterra
integral equation of the first kind. In general it is not
possible to find the solution of a Volterra integral
equation in closed form., Nevertheless, for the éase of the
describing function, an analytical solution was found for
Q(x) and P(x) as a function of g(E) and b(E) respectively.

Even if it is true that to any nenlinearity there
corresponds one and only one pair of functions @(x) and
P(x), the inverse transformation does not have the same
property, To any pair of functions Q(x) and P{(x) there
corresponds an infinity of nonlinearities. From this was
concluded the non-uniqueness of the solution to the inverse-
deseribing-function problem.

Sufficient conditions for the existence ef the inverse
describing function have been deduced. It is interesting
te note that the conditions for the existence of the inverse
deseribing function are more restrictive than the conditions
for the existence of the describing function. It was also
found that a necessary condition for the existence of a

bounded inverse describing function is the continuity of
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the deécribihg'funcﬁiOn'in the case of nonmemory type nen-
linearities.,

Neveftheiess it was illustrated with one example how
a,bouﬁded memory-type nonlinearity can be synthesized from
a discon.tin.ueu'srdescribing_vfunction°

The'original definition of the describing functien

has been extended to the higher harmenics of the output.

These new functions have been called higher describing funcel

Itvhasﬁbeén found that, when the input of a nonlinear
element is a sinusoidal wave, all the odd and even harmonics
of the type By sin n wt (n = 1,2,.... ) depend on the same
functions Q(x) and @%(x) respectively. The same property
has beén'found for all the odd and even harmonics of the
type 4y ¢0s n ot (n = 1,2,3;,....). They depend on the same
functions P(x) and P*(x). The functions Q(x), Q*(x), P(x)
and P*(x) are completely determined by the characteristic
of the nonlinear element., Therefore, since gl(E) determines
uniquely Q(x), a functional relationship must exist between
&1(E) and all the functions gy, .4(E), (n=1,2,3,....).
Similar1y9 a funetional relationship mast exist between
bl(E) and allrthe functions b2n+l(E)° Both relationships
have been deduced, » |

Thé.goal 6f the method developed is to find thevanalyg

tical expression of the inverse describing funection. How-
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ever, if the describing functién has not a simple mathe—
matical expression, the integrals that result from this
method are~difficult,vifvnot impessible, to fberform° Also,
in many praetical cases the analytical expression of the}
‘describing function of the nonlinearity being}synthesized
is not known., It is known as experimental data or as a re-
sult of a graphical or a numerical computatien. Thus the
necessity of a numerieal methed of computatien for the in-
verse describing function is apparent, This problem has
been solved by approximatingmthe describing function of

the nonlinearity being synthesized by a pelynemial.

Also the integral that generates the real énd imaginary
parts ef the deécribing_function appears particularly appro»
priate to a numérical computation. Avnumerical method to -
compute the describing function for a general type of non-
linearity has beenfieveloped'and two other independenﬁvnu_
merical teehniques have been presented.

Several extensions may be made to,the‘method proposed
in this report. First of all the method may be extended
to noen-coenventional describingﬁfunctions, as the roet mean
square describing function, the Gaussian input describing

function R, C. Beotengiédj, etco(l)

: : (i)Some‘unpublished reseafch has been done by E. G.
diTada in this area.
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In the case of a symmetrie nenmemory type nonlinearity

the"deséribing function gives the complete infermation about
thé nonlinearity. Thus it seems that an exact method of
analysis and synthesis may- be developed on the basis of the
describing funection.

Also it seems that a series development of a function
in terms of its describing function, or funetionals of it,

(1)

may exist.

The method may alse be extended te a more general class

of nonlinearities. This type may be the one in which‘the
funetionél relationship between the input and the output is
not restricted to a simple function, but teo a differential
or difference equation.. \

If these extensions can be made, a great insight in
the analysis, synthesis and identification of nonlinear'

systems may be gained.,

i
i (‘)Some'unpublished'research has been dene by E. G.
diTada in this area.

~—
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APPENDIX 1

' Let us consider the following integral equatioen

X

F(x) = ;b(z)z dz 0 a < 1 | (1)
(x~ - 2%)¢

0

Equation (1) is a general case of (3.3) and (3.4) and
a special case of a Velterra integral equation of the first
kind. Multiply both sides of (1) by H(x,};) and integrate

with respeet to x between 0 and '?

. :? . 3 x |
f F(x) H(‘x,‘g’)d'x =J{ de’ : ((Z) H(g;z) dz . (?)

- Z
0 | 0 o ¥

where H(x,?) will be determined later.
If the order of integration in (26) (Dirichlet's for-

‘mula) is ehanged, we have

s - E a3
f F(x) H(x,¥)dx =/dp (2) azf : 2‘“’"%;“ dx (3)
X =2
0

0 z

If H(x,?) is chosen properly, the integral

. § | :
I(z, §) =f H(x, ) gx (4)

(XZ - 22)0'.

2

can be reduced to a constant.

Make the following change of variable in equation (4)



Thus | ’§1

M dy (6)

where
2=y | , (7)
py L5 - BORD) (8)
G
Let us make another change of variable in equation (6)
R | (9)
3N
then
at = __é.L | _ | (10)
3 M
and
2
1-t= %—2—1—-—- (11)
3 -n
From equations (6), (9), (10) and (11), we find
I( ) = f P(ys ¥ ) at
2 tﬁ(f "’VI )a-l
0
‘P(y,?m -0 |
2[ a,-l dt (12)

t C§

0
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Therefore if we choose

P(y,'? ) '§ | (13)
the integral (12) is reduced to
- 1
I(?,.\l;) = %f t™%(1 - t)“’l. at
0

=1 B(1 - a, a)

1 Ma -0

. . /
PR
2 sin aw

L]

(14)

From (5), (7) and (8)

H(x,}') . = ‘ : - (15)

(? : 2 l=a

Using (14) and (15) the equation (3) is reduced

f F(X) X __ dx = T f <}>(z) dz (18)

(§ : XB)I- |

0
Therefore
2 sina ® | x F(x) : .
() = T d J‘ 5 ~ dx (17)
Ct) ; w E (? ) xz)lla |

Equation 17 gives the solution of the integral equation (1).

o



APPENDIX 2

In Appendix I the solution of the integral equation

X

F(x) =f ( 2f(z) dz 0 £La <£1 (1)
X

_ Zz)a
was shown té be

f(?) - 2 ﬂg “_" d f( E:gt F(X))I'—-a ax (2)
. = X |
0

d:g.

Therefore for

£(z) = 2 hl(z)
% A
| my(x)(  ha(1) _
F(x) = - ml(x)/{ > dv (3)
o ¥¥- N

Equation (2) becomes

X Z

‘ L zm(zwwa(q)dn
h,(x) = = 2 @ dz 2 2 e (4)
1 X Ei j [ ml(z)Fz2_W2v?2=Z2

0
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APPENDIX 3

Let us consider the following summation

i=n k-i

8, = (2n + 1) Z Z -1 |

i=0 k=0

1]
e\ .
il |
@
~~
0
)
(-7
)

Therefore

k=i |
2 -1k
=0

k i-k

From (4) and (2)

But

i

f n+i

2i

n

S, = (2n + 1) :ZS

1

0

'
[}
Nl

f n+i

21

w

]
10l

4
M=

(1)

(2)

(3)

(4)

- (5)
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n+i\
i=n » 5
sin (2n + 1) g = (2n + 1)'5%% (_;)i | 2§+ sin?itl g
aa 2i
(6)
For § = w/2
i=n n+i
i n
-1 4 . (-1) ,.
(-1) T +1 Zm+1I (7)
i=0 2i '

From (7) and (5) we find

sy = (D (8)
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APPENDIX 4

Let us consider the summatien

e 2 DF

i

p=i-k

i\/2p

PAP

Make the follewing transfermatien:

2p

P

From eqs. (1) and (2)

; |
g = 2 DF

But

i-k

p=i-k

P

it

p

(1-K)¢ (p-i+k)!  p(i-p)!

o

Substituting Eq. (4) inte (3)

(-1)?

i-k

()

(2)

(3)

(4)

(5)
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But

1
==

(6)
i-p
fori = p >korp< i -k,

Therefore the lower limit in (5) can be extended to zero.

k/\ 1 k i-k

(7
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APPENDIX 5

Let us consider the following summation

i=n-j-1 / 2n-i\ [n-i-1

j . | : n-i
ss= 2 (n-1) 25
i=1 i-1 J
(1)
But
n-i-1 n -1i:
(n -1) =(+1) | (2)
J i+l
From eq. (1) and (2) we obtain
i=n-j=1 2n - i\ (n - i .
3 . ;zij | i &t
s, = (i+1) (-1) I (3)
i=1 i-1 i+ 1
But
(2n = 1\ 2n - i
i
| ] 2n - 21 + 1 (4)
i=-1 i
From (4) and (3)
n-j=1 2n - 1\ /n - i
J R i 4n-i
s, = (i+1) Z (-1) Ty
i=1 i j+1

(5)
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Let us make in (5) the fellowing change of the index i

p=n-1i (8)
From (6) and (5)
n-1 ‘n+p P
P
P ' & 7
= (-1)" ;+1)Z (-1) | T 7
p=j+l 2p i+l
Let us define
n n+p P p
p
Z (-1) | T (8)
p=0 2p | 3
But
n+i
. i 41 2 i
sin(2n + 1} g = (2n + 1) sin @ (-1) 5T (sin® @)
i=0 . 21 :
v n+i
i 4 2 1
i=0 21
(9)

Expanding (1 - cos2 ﬂ)l, and rearranging the summation in

increasing powers of cos § we find



- 152 =~

j=n i=n
. N 3 2
sin(2n + 1) § = (2n + 1) sin @ ;;E (-1)J cos ] g :EE
: ' =0 ~i=0
nt+tiL 1
i
i
(-1) TFT
| \2i/ Vj '_
B ) . . 1 23 ‘
= (2n + 1) sin # Z (-1)7 1) cos®I g (10)
j=0 |
Therefore from (10)
i j i 2 . .
sin g§3~%.1) g = (2n + 1);5(-'1)J Ti cos J g (11)
j=0 '
But
sin (2n + 1) §
sin # '
can be expanded in the follewing fashion
, | J=n N+ j
Iy \ ° : 20
sin(?n <D # - (-1)" 2 nld ‘cos™? (12)
j=0 2]
From Eq. (11) and (12)
‘ e
n i
(2n+ 1) Ti = (=1) 49 o (13)
2]
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Now from Egqs. (8) and (7)

n
j__ n . j+]_- /411
s, = (-1) (3j+1)T, (i +1) s (14)
j*l
Substituting Eq. (13) inte (14)
n+ j+1 n-1 —1

sl - 51_1 GG | -na" | J
| 2 j+2 i
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APPENDIX 6

Let us consider the integral

e g PR
/ c x21rx+,1 dx
z \[Ez ~‘x?j J;? - zg

Make the change of the dummy variable

[

. *

From (2)

2x dx

E°-2°
B - x°
2

1-t=—">

E" - 2z

at

From (2) and (4) we find

B - ) x 2 22) = (1 - )E -2 ¢

Therefore

and

(1)

‘(2)'

. (3)

(4)

(5)

(6)

(7)

g R Y R T
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| From (2)
5 = t(E2 - 2%) + 2P | (8)
Therefore
- p n i=n \n\ 'y ‘ Y
0 = E(Ez - %)+ 2.2] => ( )tl(E?' - 2%)izA(n-1)
im0 Mi |
(9)

~ Substituting (9) inte (1)

B o+l i=n ”n_,v 4 1
[ (-] et
B~ -x" | ‘-z i=@ i :
0o '

2
, gz JilG+Hl &
---%zz"Z( )[@ -1 G+

i=0 i

(10)
But

v 2i

e 1 PR V '

a-pla o ., L an
M4+ 1) (12)74

Frem (11) and (19}
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